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CONDITIONS FOR THE NONOSCILLATION OF THIRD ORDER
DIFFERENTIAL EQUATIONS WITH
NONNEGATIVE COEFFICIENTS*

G. J. ETGEN AND C. D. SHIHf

Abstract. This article is concerned with the oscillation of solutions of third order, linear differential
equations with nonnegative coefficients. The objective of the paper is to obtain necessary conditions
and sufficient conditions for the nonoscillation of such equations. The techniques which are developed
and the results which are obtained depend heavily on the fundamental papers of M. Hanan and A. C.
Lazer on third order differential equations. Extensive use is also made of the survey article on oscil-
lation theory by J. H. Barrett.

1. Introduction. This paper is concerned with the development of necessary
conditions and sufficient conditions for the nonoscillation of third order linear
differential equations of the form

(E) L[y] y’" + p(x)y’ + q(x)y O,

where p(x) and q(x) are continuous, nonnegative functions on an interval [a,
A nontrivial solution y(x) of (E) is said to be oscillatory if the set of zeros of y(x)
on [a, c) is not bounded above, or, equivalently, y(x) is oscillatory if y(x) has
infinitely many zeros on [a, oe). A nontrivial solution which is not oscillatory is
called nonoscillatory. The equation (E) is oscillatory if it has at least one non-
trivial oscillatory solution, otherwise (E) is said to be nonoscillatory. Finally, (E)
is said to be disconjugate on the subinterval [b, c), a __< b < c __< oe, if no nontrivial
solution of (E) has more than two zeros, counting multiplicities, on [b, c). It is
easily seen that if (E) is disconjugate on the subinterval [b, oe) of [a, oe), then (E)
is nonoscillatory. In contrast to the situation for linear second order equations,
however, the nonoscillation of (E) does not imply the existence of a subinterval
[c, oe) of [a, oe) on which (E) is disconjugate. See, for example, the discussion by
J. H. Barrett [2, p. 213]. The relationship between disconjugacy and nonoscillation
of (E) has been investigated by the authors [5].

The results in this paper are derived primarily from the fundamental work
of M. Hanan [6] and we shall be referring to his results throughout. We also have
relied heavily on the survey article by J. H. Barrett [3] and the work of A. C.
Lazer [8].

2. Nonoscillation and disconjugacy. As indicated above, the relationship be-
tween nonoscillation and disconjugacy for (E) is more complicated than in the
case of second order equations. In particular, as a consequence of the Sturm
separation theorem, the second order equation

(E2) (f(x)y’)’ + g(x)y O,

where f(x) and g(x) are continuous functions on [a, ) with f(x)> 0 on this
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interval, is nonoscillatory if and only if there exists a number b >= a such that
(E2) is disconjugate on [b, ]. On the other hand, there are examples of third
order equations which are nonoscillatory on an interval [a, oe) and yet fail to be
disconjugate on every subinterval [b, c) of [a, o). Barrett [2, p. 213] cites the
existence of several examples and J. M. Dolan [4, p. 385] provides an example.

The following results are either well known, or are the combination of known
results. They establish a connection between the notions of disconjugacy, non-
oscillation and oscillation of (E), and they will be of considerable use in the
development of our necessary conditions and sufficient conditions for the non-
oscillation of (E).

THEOREM A (N. Azbelev and Z. Caljuk [1, Lemma 1, Thm. 2]). The differ-
ential equation (E) is disconjugate on [b, c), a <= b < , if and only if the adjoint

(E-*) L*(y) [y" + p(x)y]’ q(x)y 0

of (E) is disconjugate on [b, ). Moreover, if u(x, b) and u*(x, b) are the solutions

of (E) and (E*), respectively, satisfying the initial conditions

(1) y(b) y’(b)_= 0, y"(b) 1, b >= a,

then a necessary and sufficient condition for each of (E) and (E*) to be disconjugate
on [b, ) is u(x, b) > 0 and u*(x, b) > 0 on (b, ).

THEORE B ([3, Thin. 2.15] and [4, Thm. 1])./f(E) is nonoscillatory on [a, ),
then either all solutions of (E*) are oscillatory, or all solutions of (E*) are non-
oscillatory. Moreover, if each of (E) and (E*) is nonoscillatory, then each equation
is disconjugate on some subinterval [b, ) of[a, ).

THEOREM C ([5, Thm. 5]). If (E) is not disconjugate on any subinterval [b, )
of [a, ), then each of the following is a sufficient condition for (E) to be oscillatory"

(a) y" + p(x)y 0 is nonoscillatory on [a, ),
(b) p(x) C’[a, ) with 2q(x) p’(x) of one sign on [a, ) and not identically

zero on any subinterval.
In the work which follows, we shall assume that the coefficients p(x) and

q(x) of (E) satisfy the following hypothesis"

p(x) e C’[a, ), p(x) > O, q(x) > O, q(x) p’(x) >__ O on[a,o)
(H)

with these functions not identically zero on any subinterval.

Assuming that the coefficients satisfy (H), we have 2q(x)- p’(x)>__ 0 on
[a, ). Thus Theorem C applies and we have the following.

THEOREM D. Let the coefficients of (E) satisfy (H). Then (E) is nonoscillatory
if and only if (E) is disconjugate on [b, ) for some b >= a.

3. Necessary conditions. In this section we establish necessary conditions for
the nonoscillation of (E). In view of Theorems A, B and D, our necessary con-
ditions for the nonoscillation of (E) are, at the same time, necessary conditions
for the nonoscillation of (E*), and, in fact, are actually necessary conditions for
the eventual disconjugacy of both (E) and (E*).

THEOREM 1. Let coefficients of(E) satisfy (H). If (E) is nonoscillatory, then each
of the following holds:
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(i) there exists a number b > a such that the second order equation

(2) y" + [p(x) + (1/2)(x c)q(x)]y 0

is disconjugate on [b, oo)for all c >= b;
(ii) the second order equation

(3) y" + p(x) + q(t) dt y O

is nonoscillatory
(iii) I2 x[q(x - ex <
By Theorem D, if (E) is nonoscillatory, then (E) is disconjugate on [b,

for some b >__ a. In addition, by Theorem A, (E*) is disconjugate on [b, oo), and
u(x, b) > O, u*(x, b) > 0 on (b, oo), where u and u* are the solutions of (E) and
(E*) satisfying (1). We remark that since u(x, b) and u*(x, b) are each positive on
(b, oo), and since q(x) and q(x) p’(x) are not identically zero on any subinterval,
neither u’(x, b) nor u*’(x, b) is identically zero on any subinterval of [b, oo).

We now establish a sequence of lemmas which establish the behavior of
the solutions u(x, b) and u*(x, b).

LEMNA 1.1. Let the coefficients of (E) satisfy (H) and let u(x, b) and u*(x, b) be
the solutions of (E) and (E*), respectively, satisfying (1). If (E) is disconjugate on
[b, oo), then D_u(x, b) u"(x, b) + p(x)u(x, b) > 0 on [b, c).

Proof. The disconjugacy of (E) on [b, oo) implies u(x, b) > 0 on (b, oo). Sub-
stituting u(x, b) into (E) and integrating from b to x, yields the equation

u"(x, b) + p(x)u(x, b) ff [p’(t) q(t)]u(t, b) dt O.

Thus,

Dzu(x b) 1 fl [q(t) p’(t)]u(t, b)dt,

and we conclude D2u(x b) -< 1 on [b, oo). Now [D2u(x, b)]’ [q(x) p’(x)]u(x, b)
_<_ 0 and, consequently, D2u(x, b) is nonincreasing on [b, oo). If D2u(x, b) <_ 0 on

[c, oo) for some c >__ b, then u"(x, b) <__ -p(x)u(x, b) <_ 0 on [c, oo), which implies
u’(x, b) is nonincreasing on this interval. If u’(x, b) >_ 0 on [c, oo), then u’"(x, b)

-p(x)u’(x, b) q(x)u(x, b) <= 0 on [c, oo). But u’"(x, b) <= 0 and u"(x, b) <= 0 on
[c, o0), together with the fact that the coefficients are not identically zero and

u(x, b) is nontrivial, implies u’(x, b) --. -oo as x oo, contradicting our assump-
tion u’(x,b)>= 0 on [c, oo). Thus there exists a number d, d >__ c, such that
u’(x, b) < 0 on (d, oo). However, u"(x, b) <__ 0 and u’(x, b) < 0 on (d, oo) implies
u(x, b)-.-oo as x-, oo, and this is impossible. We conclude, therefore, that
D2u(x, b) u"(x, b) + p(x)u(x, b) > 0 on [b,

LEMMA 1.2. Let the hypothesis ofLemma 1.1 hold. Then u*’(x, b) >_ 0 on (b,
Proof. Suppose u*’(x, b) changes sign on (b, oo) and let x c be the first

point at which u*’(x, b) has a sign change. Then we have u*’(x, b) >_ 0 on [b, c),
u*’(c, b)- 0 and u*’(x, b)< 0 on some interval to the right of c. Assume that
u*’(x, b) has a zero on (c, c) and let the first such zero be at x d. Let v*(x, b)
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be the solution of (E*) satisfying the initial conditions

(4) y(b) O, y’(b) 1, y"(b) O,

and put 2*(x)= v*’(x,b)/u*’(x,b) on (c, d). Using the fact that the Wronskian
of two solutions of (E*) is a solution of (E) (and vice versa), it is readily verified
that

(5) u(x, b) =- v*(x, b)u*’(x, b) u*(x, b)v*’(x, b).

We can now conclude that v*’(d, b) < 0. Hence 2*(x) ---, + oo as x T d. Calculating
the derivative of 2*(x) and using (5), we find 2*’(x)= -D2u(x, b)/[u*’(x, b)] 2
Thus 2*’(x) < 0 on (c, d), contradicting the fact that 2*(x) --, + oo as x T d. There-
fore u*’(x, b) < 0 on (c, oo).

We now consider u*"(x, b). Since

u*’"(x, b) -p(x)u*’(x, b) [p’(x) q(x)]u*(x, b) >= 0

on [c, oo), we have u*"(x, b) nondecreasing on this interval. If u*"(x, b) <_ 0 on
[c, oo), then we could conclude that u*(x, b) --, -oo and this is impossible. Thus
u*"(x,b) is eventually positive, i.e., u*"(x,b)> 0 on some subinterval (e, oo),
e _> c. But u*’"(x, b) >_ 0 and u*"(x, b) > 0 on (e, oo) imply u*’(x, b) --, + oo, which
contradicts u*’(x, b)< 0 on (c, oo). We conclude, therefore, that u*’(x, b) > 0 on
[b, oo).

LFNM, 1.3. Let the hypothesis of Lemma 1.1 hold. Then D2u*(x, b) =_ u*"(x, b)
+ p(x)u*(x, b) > 0 on [b, c) and 2 D2u*(x, b) dx c.

Proof. Substituting u*(x, b) into (E*) and integrating from b to x yields

D2u*(x, b) 1 + q(t)u*(t, b) dr.

Since u*(x, b) > 0 and q(x) >_ 0 on (b, oo), the result follows.
LNN, 1.4. Let the hypothesis of Lemma 1.1 hold. Then u’(x,b) > 0 and

u"(x, b) > 0 on (b, oo).
Proof. If we assume that u’(x, b) changes sign on (b, c), say at the point

x c, then using the same argument as in the proof of Lemma 1.2, we find
u’(x, b) < 0 on (c, oo).

The linear operators L and L* are related by the Lagrange identity

(6) zL(y) + yL*(z) {y; z}’,
where

{y; z} zy"- z’y’ + [z" + p(x)z]y.

Using the initial values of u(x, b) and u*(x, b), we obtain {u(x, b);u*(x, b)} 0.
Thus u(x, b) is a solution of the second order equation

(7) u*(x, b)y" u*’(x, b)y’ + Dzu*(x, b)y 0

on (b, oe). Of course, u(x, b) is a solution of (E) so that upon eliminating the y-term
from (E) and (7), we find that u(x, b) is a solution of third order equation

(8) O2u*(x, b)y’" q(x)u*(x, b)y" + [p(x)O2u(x, b) + q(x)u*’(x, b)]y’ O.
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Letting z y’ and dividing (8) by D2u*(x, b), we obtain

q(x)u*(x, b) p(x)D2u*(x, b) + q(x)u*’(x, b)
z" Z’ + Z O,

D2u*(x b) D2u*(x b)

and this equation can be rewritten

z’
p(x)D2u*(x, b) + q(x)u*’(x, b)

(9) Dzu*(x, b)
+

[Dzu*(x, b)] z
z 0.

Now, (9) is disconjugate on [c, oe) since the function z(x)= u’(x,b) is a
solution such that z(c) 0 and z(x) < 0 on (c, oe). From Lemmas 1.2 and 1.3,
p(x)Dzu*(x, b) + q(x)u*’(x, b) >_ 0 on (b, ) and j’ Ozu*(x, b)dx oe. Therefore,
by a theorem of Hille [7], z(x). z’(x) > 0 on (c, oe) and we conclude z’(x) < 0 on
(c, oe). But z(x) =_ u’(x, b) < 0 and z’(x) =_ u"(x, b) < 0 on (c, oe) implies u(x, b)- as x oe, contradicting the fact that u(x, b) > 0 on (b,

We can now conclude that u’(x, b) >__ 0 on [b, oe). Finally, since u(x, b) > 0
and u’(x, b) >= O, p(x) >= O, q(x) >= 0 on (b, oe) with none of these functions being
identically zero on any subinterval, it follows that u’"(x, b) <= 0 on (b, oe) and is
not identically zero on any subinterval. Therefore, u’(x, b) > 0 and u"(x, b) > 0
on (b,

Proof of Tkeorem 1. Assuming that (E) is nonoscillatory, we have (E) dis-
conjugate on some subinterval [b, o) of [a, ), and the solutions u(x,b) and
u*(x, b) of (E) and (E*) satisfying (1) have the properties

u(x, b) > O, u’(x, b) > O, u"(x, b) > O, O2u(x, b) > O,

u*(x, b) > O, u*’(x, b) >= O, D2u*(x b) > 0 on (b,

Now, u(x, b) > O, u’(x, b) > 0 and u"(x, b) > 0 on (b, oe) implies u’"(x, b) <_ 0
on [b, oe), and not identically zero on any subinterval. Thus the second order
equation

b)
q(x)y" + p(x) + u,(x,b) y O

is satisfied by the positive solution if(x, b) on (b, ). Using a result of Lazer
[8, Lemma 3.2], it follows that u(x,b)/u’(x,b)>_ (x- b)/2. Therefore, by the
Sturm comparison theorem, the second order equation

(10) y" + [p(x) + (1/2)(x b)q(x)]y 0

is disconjugate on (b, oe) and the first necessary condition holds.
The argument provided by Barrett [2, Lemma 5.2] establishes the second

necessary condition.
To establish the third condition, fix a number c > b. Then u"(x, b) > 0 and

u(x, b)/u’(x, b) > (x b)/2 implies u(x, b) > A(x b) on [c, ), where

A u’(c, b)/2.

Now substituting u(x, b) into (E) and integrating from c to x, yields

u"(x, b) u"(c, b) + p(x)u(x, b) p(c)u(c, b) + [q(t) p’(t)]u(t, b) dt 0,
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which can be written

Thus

D2u(c b) D2u(x b) + fc [q(t) p’(t)]u(t, b) dr.

D2u(c, b) > x [q(t) p’(t)] A(t b) dt,

and we conclude o x[q(x)- p’(x)] dx < o. This completes the proof of the
theorem.

In view of our remarks concerning the relationship between disconjugacy
and nonoscillation, we have the following equivalent of Theorem 1 providing
oscillation criteria for (E).

COROLLARY. Let the coefficients of (E) satisfy (H). Each of the following is a

sufficient condition for the oscillation of (E):

(i) y" + [p(x) + (1/2)(x b)q(x)]y 0

is oscillatoryfor each b 6 [a, o);

(ii) y" + p(x) + q(t) dt y O

is oscillatory;

(iii) oo x[q(x) p’(x)] dx .
Remark. Hanan obtained the oscillation criterion (iii) under the added

hypothesis: y"+ p(x)y 0 is nonoscillatory [6, Thm. 5.12]. P. Waltman [9]
obtained an oscillation criterion for nonlinear third order equations and the
linear version of his criterion is the same as our condition (iii).

4. Sufficient conditions. In this section we present two conditions which are
sufficient for the nonoscillation and eventual disconjugacy of (E).

THEOREM 2. Let the coefficients of (E) satisfy (H). If xp(x)dx < and
xZq(x) dx < , then (E) is nonoscillatory. In fact (E) is disconjugate on some

subinterval [b, of [a, o
Proof. Assume that (E) is not nonoscillatory, i.e., assume (E) is oscillatory.

The condition q(x)- if(x)>= 0 on [a, ) implies that (E) belongs to Hanan’s
class C,[a, ) [6, Thm. 2.2] and, consequently, every solution which vanishes once
is oscillatory [6, Thm. 3.4]. Thus for each b >= a, the solution u(x, b) of (E) deter-
mined by (1) is oscillatory. Fixing b, b >= a, substituting u(x, b) into (E) and inte-
grating three times, we obtain

u(x, b) -(x b)2 + (x t)p(t)u(t, b) dt

(11)

+ - (x t)2[q(t) p’(t)]u(t, b)dt O.

Let c be the first zero of u(x, b) to the right of b. Then, from (11), we have u(x, b)
=< (X b)2 on [b, c].
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Replacing x by c in (11), we get

(c b)2 (c t)p(t)u(t, b)dt + - (c t)2[q(t) p’(t)]u(t, b) dt,

which implies

(c b)’(c- b)2 <
2 b (t b)2p(t) dt 4-

(c b)2 " (t b)2

2 J 2
[q(t) p’(t)] dt.

Therefore

(12)

1 <= (t b)p(t)dt + 5 (t b)2[q(t) p’(t)] dt

<= tp(t) dt + 5 t2q(t) dt- - t2p’(t) dt.

Integrating , tp(t) dt by parts yields

(13) tp(t) dt - t2p(t)lg - t2p’(t) at.

Substituting (13) into (12), we obtain the inequality

(14)
1

t2
1

1 <-- 2 tp(t) dt + - q(t) dt+ -b2p(b).
Now since f2 tp(t)dt < m and 52 t2q(t) dt < m, we may assume that b was

chosen large enough such that 21"; tp(t) dt < 1/3 and (1/2)52 t2q(t) dt < 1/3. Also,, tp(t)dt < oe implies that lim inf,-.oo x2p(x)= 0. Thus we may assume that
(1/2)b2p(b) < 1/3. Hence, from (14), we have

1 foo 1 1 1 1
1 <= 2 tp(t) at + - t2q(t) dt+ -b2p(b) < - + - + - 1.

Therefore (E) is nonoscillatory and is disconjugate on some subinterval [b,
of [a,

As in the previous section, we have, as a corollary, the equivalent of Theorem
2 giving a necessary condition for the oscillation of (E).

COROLLARY. Let the coefficients of (E) satisfy (H). If (E) is oscillatory, then

I2 xp(x) dp oo or I2 x2q(x) dx
Our final result has been stated by Hanan [6, Thm. 5.13] but there is a mistake

in sign in case (ii), p. 943, lines 15 and 16, of his proof invalidating his result. We
present an alternative proof.

THEOREM 3. Let the coefficients of (E) satisfy (H) and assume that the second
order equation y"+ p(x)y 0 is nonoscillatory. If , x2[q(x)- p’(x)] dx <
then (E) is nonoscillatory.

Proof. By a result of Hanan [6, Thm. 2.3], the nonoscillation of y" + p(x)y 0
together with the fact that q(x) >__ O, implies that (E) belongs to class Cf, i.e., if
y(x) is a solution of (E) such that y(x) has a double zero at x b, b >= a, then
y(x) - 0 on [a, b).
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Now, by assumption,

(15) lim x[q(x) p’(x)] dx < oe
b--’

Integrating j’. xp(x) dx by parts, we obtain

(16) xp(x) dx -xZp(x) - xZp’(x) dx

Substituting (16) into (15) yields

lim X2 q(x) dx + 2 xp(x) dx x2p(x < .
Since y"+ p(x)y 0 is nonoscillatory, we have liminf x2p(x) 1/4.

Thus there is a sequence {b.} such that b. m as n m and bp(b.) < 1 for all
n. Hence

lim x2q(x) dx + xp(x) dx <

and we can conclude that ]= xp(x)dx < and ]= xq(x)dx < . The proof is
now completed by applying Theorem 2.

Again, we have the equivalent result.
CoroLLary. Let the coefficients of (E) satisfy (H), and let y" + p(x)y 0 be

nonoscillatory, ff (E) is oscillatory, then ]= xZ[q(x) p’(x)] dx .
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ON CONVERGENCE OF PADI APPROXIMANTS*

WILLIAM B. JONES AND W. J. THRON"

Abstract. Three theorems are given concerning the convergence of sequences of Pad6 approxi-
mants. The first shows that in a neighborhood of the origin uniform boundedness of the approximants
is necessary and sufficient for uniform convergence. The other two results give sufficient conditions
to insure that uniformly convergent sequences of Pad6 approximants have as their limit the value of
the expanded function. The first two theorems are proved along the lines of analogous results in con-
tinued fraction theory. The third theorem is based on a recent result of Pommerenke on convergence in
capacity.

1. Introduction. Pad6 approximants have recently been employed in a variety
of problems in theoretical physics, chemistry and engineering [2], [3], [6], [7],
[103. Although, in practice, numerical computations frequently indicate that Pad6
approximants converge satisfactorily, the general theory of convergence is still
incomplete [1], [2], [5], [13], [15], [18]. We provide here some additional results
in this area. In Theorem it is shown that uniform boundedness is both necessary
and sufficient for uniform convergence of a large class of sequences of Pad6
approximants ( 3). In Theorems 2 and 3 we present sufficient conditions to insure
that when a sequence of Pad6 approximants is uniformly convergent, its limit is
equal to the value of the expanded function ( 4). The proofs of Theorems and 2
are similar to those of analogous results in the theory of continued fractions
113, [17]. The proof of Theorem 3 is based on a recent result of Pommerenke [153
on convergence in capacity. Pommerenke’s theorem (stated in 4) does not imply
pointwise convergence of the sequence {Rv(z)} of Pad6 approximants at any point,
but asserts that the error of approximation tends uniformly to zero as v-* ,
except on sets of arbitrarily small capacity. Wallin [18] has given an example of
a sequence of Pad6 approximants which converges in capacity but diverges and
even is unbounded at each point in the complex plane. In spite of this, the appli-
cation made of Pommerenke’s theorem to obtain Theorem 3 shows that conver-
gence in capacity is a useful property.

Before stating and proving these theorems, we shall give in 2 some
definitions and terminology that are employed in the sequel.

2. Preliminaries. For a given formal power series

(2.1) P(z) CO -- 1z + C2z2 -- "’’, (CO :)/: O)

and for nonnegative integers rn and n, the (rn, n)-Pad approximant Rm,.(z) is
defined to be the (uniquely determined) rational function

(2.2) Rm,n(Z Am’n(Z)

* Received by the editors July 5, 1973, and in revised form January 27, 1974.
f Department of Mathematics, University of Colorado, Boulder, Colorado 80302. This research

was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF,
under AFOSR Grant AFOSR-70-1888.
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satisfying the formal identity

(2.3) p(z)Bm,n(z Am,n(z Kzm+n+ _+_ (terms of higher degree),

where Am,n(z and Bm,n(z) are polynomials in the complex variable z of degrees
not exceeding n and m, respectively. It is well known [17] that for each m, n 0,
1, 2,... the (m, n)-Pad6 approximant exists and is uniquely determined by the
conditions stated above. The Pad table of (1) is the doubly infinite array of
approximants

(2.4)

Ro,o R0,1 Ro,2

Rl,o Rx, R1,2

R2,o R2,1 R2,2

A power series (1) is said to be normal iff each entry in its Pad6 table occurs exactly
once. In that case the polynomials Am,.(z) and B,,,,(z) in (2) have degrees equal to
n and m, respectively.

If f is a function and A is a subset of the complex plane, we shall mean by
f(A) the set {wlw f(z), z A}. By the symbols , comp A and diam A we shall
mean the closure, complement and diameter of the set A, respectively. A domain D
will mean an open connected subset of complex numbers.

A sequence of meromorphic functions {R,} converges uniformly on a com-
pact set K if and only if

(i) there exists N(K) such that R, is defined and consequently holomorphic
on K for every n >= N(K);

(ii) given e > 0 there exists N >__ N(K)such that

sup [Rm(z R,(z)[ < e when n, m => N.
zK

3. Uniform convergence.
THEOREM 1. Let {m} and {n} be sequences of nonnegative integers such that

for some e with 0 < e < 1,

(3.1)

For each v 0, 1, 2,... let Rv(z) denote the (my, n)-PadO approximant of a given
power series (2.1). Let D be a domain containing the origin. Then a necessary and
sufficient condition for {R(z)} to be uniformly convergent on each compact subset
of D is that for v sufficiently large {R(z)} is uniformly bounded on each compact
subset of D.

Proof. It suffices to prove the sufficiency of the condition in the theorem,
since the proof of its necessity is immediate. Let K denote an arbitrary compact
subset of D. Then clearly there exists an open connected set Ko containing the
origin such that the closure Ko is compact and such that K c Ko c Ko c D.
By hypothesis there exist positive numbers M and N such that

(3.2) IRv(z)l =< M for v >_ N and z e Ko.
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Thus for v => N, Rv(z) is holomorphic on Ko. Therefore there exists r > 0 such
that for all z with [zl -<_ r, z Ko and the Maclaurin expansion

(3.3) R(z) ,)z, v >= N,
k=0

converges. Cauchy’s inequality implies that

M
(3.4) I;g)l =< rk,

V >= N, k 0, 1,2,-...

From (2.3) it can be seen that for v >= 0,

(3.5) 7v) ck, k 0, 1,..., n.
Therefore, letting

(3.6) N min {n,n+l}, v >= O,

we obtain, for each v => N + and z with Izl < r,

(3.7)
IR + (z) (z)l

k=Nv+

< 2M
k=Nv+

2Mlz/rlU +

-Iz/rl
It follows that

(3.8) Ru(z) + [Rv+ l(z) R(z)]
v=N+l

is uniformly convergent on {z [Izl =< er} provided that

(3.9) eNv < .
v=O

But (3.9) is implied by (3.1) as can be seen from the inequalities

g.Nv " g.nv ql_ g.nv+ l.

We have shown that {R(z)} is uniformly convergent on {zllzl =< er}. To complete
the proof it suffices to apply Stieltjes’ theorem [9, p. 251]:A uniformly bounded
sequence of functions holomorphic in a domain Ko converges uniformly on K0
provided the sequence converges uniformly on some subdomain of Ko.

4. The limit of Pad6 approximants. When the power series (2.1) is normal,
for each k => 0 there exists a unique continued fraction of the form

k-1 a(ok)Zk a(lk)z a(2k)z
(4.1) c.iz’i + (ak) O)

=o 1+ 1+ 1+

whose approximants occur in the Pad6 table as the stairlike sequence Ro,k-1,
Ro,k, Rl,k, Rl,k+ 1, R2,k+ 1, R2,k+2, [17, Thm. 9.6.1]. For particular values of z
it is possible to have the continued fraction (4.1) and corresponding power series
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(2.1) both converge, or both diverge, or either one converge while the other
diverges [14, pp. 145-146]. However, an early result of VanVleck and Pringsheim
[14, p. 148] shows that when the continued fraction (4.1) converges uniformly for
Izl < r, the corresponding power series (2.1) also converges to the same limit for
Izl < r. The following theorem is an extension of the VanVleck-Pringsheim result
to more general sequences of Pad6 approximants. It is noteworthy that the con-
dition that the power series be normal is not needed. Our proof, though similar
to the earlier ones, is included here for completeness.

THEOREM 2. Let; {m} and {n} be sequences of nonnegative integers such that
{n} tends to infinity. For each v 0, 1, 2,... let R(z) denote the (m, n)-Pad
approximant corresponding to a given power series (2.1). Let D be a domain con-
taining the origin. If {R(z)} converges uniformly on compact subsets of D to a

function f(z), then f(z) is holomorphic in D and the power series (2.1) converges to

f(z) for all z in the largest circular disk with center at the origin lying entirely
within D.

Proof. Let K denote an arbitrary compact subset of D. Since {R(z)} con-
verges uniformly on K, there exists an index N such that, for all v >__ N, R(z) is
holomorphic in K. It follows that f(z) is holomorphic at each point of D.

Now let r > 0 be chosen such that the disk K {z[lzl =< r} is contained
in D. Let N(r) be chosen such that R(z) is holomorphic in K for all v >__ N(r).
Ifwe define f(z)} by

(4.2) fN(r)(z) Ru(o(z), f +x(z) R + l(z) Rv(z), v >= N(r),

then, for all z K, f(z) has the uniformly convergent expansion

(4.3) f(z)= f(z),
N(r)

each term of which is a holomorphic rational function for z Kr. Using the
notation (3.3), we obtain the Maclaurin expansions

(4.4)
Z
k=0

f +l(z) (?( +) ? ())z, v >- N(r),
k=O

each of which is uniformly convergent for Izl-< pr for each p with 0 < p < 1.
It follows from Weierstrass’s double series theorem [8, Thm. 8.1.5], that, for
Iz] < r, f(z) has the convergent Maclaurin expansion

(4.5) f(z) akzk,
k=O

where, for each k 0, 1, 2,..., ak is given by the convergent series

(4.6)
N(r)
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Since the ykv) satisfy (3.5) and by hypothesis nv --. , it follows from (4.6) that

(4.7) ak lim ytk) Ck, k O, 1,2,...

Thus

(4.8) f(z) Ckzk forzeKr.
k=0

Let F denote the largest circular disk with center at the origin lying entirely
within D. If z is an arbitrary point in 1-’, we have shown that there exists a closed
disk Kr such that z e K, c D and (4.8) holds. This completes the proof.

Before stating Theorem 3, we shall summarize a few basic facts about loga-
rithmic capacity that we shall use (see [4, Chap. VIII, [9, Chap. 16] and [16,
Chap III] for more details). If E is a compact subset of the complex plane, the
capacity of E, denoted by cap E, is defined by

(4.9) cap E lim 6,(E),

where, for each n 2, 3, ..., 6,(E) is defined by

(4.10) [6n(E)](n/z)(n-1)= max I-I [zj- Zk[.
zjE <-j<k<-n

The sequence {6,(E)} decreases to its limit and 62(E) diam E. If re(E) denotes
the two-dimensional Lebesgue measure of E, then

(4.11) re(E) <_ (cap E)2

A countable set has zero capacity, but an infinite connected set has positive
capacity. In particular, the capacity of a circle (or disk) is equal to its radius and
the capacity of a line segment is one fourth its length. The following lemmas will
be used.

LEMMA 1. Let E be a compact subset of the complex plane such that 0 E. Then

1
(4.12) cap _<_ max [w[ 2 cap E.

wel/E

Thus cap lIE 0 if and only if cap E 0.
Proof. The set liE is compact, since 0 E. For each n 2, 3,..., choose

Wl,,, "’", w,,, contained in lIE such that

_1 ./._(4.13) 6, 1-I Iwj,,- Wk,,I,
<__j<k<_n

and define -(") 1/ws,,, j 1, 2,... n. It follows from (4.10) and (4.13) that

(4.14)
<_j<k<_n

_(n) )]l 1/((n/2)(n- 1))

Iwj,w,l" Ij z

Imax [w[2] 6"(E)wl/E

Our assertion follows from (4.9) and (4.14).
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In order to deal with unbounded sets, we make the following definition.
DEFINITION. Let E be a closed subset of the extended complex plane and,

for each n 1, 2, ..., let E, be the compact subset of E given by

(4.15) E. E f) {z[Izl _<- n}.
We then define

(4.16) cap* E lim cap E,,

provided the limit exists.
LEMMA 2. Let E be closed and bounded. Then

(A) cap E cap* E,

(4.17)

(B) cap E 0 if and only if cap* lIE O.

Proof. (A) follows immediately from (4.16) and the fact that E, E for n
sufficiently large. To prove (B), first suppose that cap E 0. Let

F = {wl]w n}.

Then, for each n 1,2,3, ..., 1IF E Ci {zllz >__ l/n} is a compact subset of E.
Since the capacity of a set is never less than the capacity of a subset, it follows
that cap (1/Fn) <= cap E 0 and hence cap (1/Fn) 0, n 1, 2, .... Since 0 1/Fn,
F,, is compact and Lemma implies that cap Fn 0, n 1, 2, Therefore

(4.18) cap* lIE lim cap F 0

as asserted in (B).
Conversely, suppose that cap* lIE 0 and let Fn be defined as above. Since

(4.19) 0 cap* lIE lim cap Fn,

{cap Fn} is a nondecreasing sequence of nonnegative numbers whose limit is
zero; hence cap F,, 0, n 1, 2, .... Since 0 Fn and F is compact, Lemma 1
implies that cap(1/Fn) 0, n 1, 2, .... But

1
(4.20) E kJ Hn,

F.
where H, E f] {zllzl __< i/n} is compact and cap H, <= 1In. Also it is well known
[12, p. 127] that if cap A < , m 1, 2, M, then

(4.21) cap(Ax O U A.)<= m[diam (A O kl At)]-m.
It follows that cap E _< (1/n)l/2[diamE]l/2, n 1,2, Hence cap E 0 as
asserted. This completes the proof.

THEOREM 3. Let {m} and {n} be sequences of nonnegative integers such that
for somefixed 2 with 2 > 1,

(4.22)
1 < n <2 and moasv
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Let f(z) be a function holomorphic on an open connected subset G of the extended
complex plane such that 0 G and

(4.23) cap* (comp G) 0.

For each v O, 1, 2, let R(z) denote the (m, nv)-Pad, approximant corresponding
to the (convergent) Maclaurin expansion off(z). If {Rv(z)} converges uniformly on
compact subsets of an open subset D of G, then

(4.24) lim R(z) f(z) for all z e D.

Remarks. (a) The conclusion in Theorem 3 is similar to that of Theorem 2.
However, in the present case, it is not necessary to assume that the sequence
{Rv(z)} converges uniformly in a neighborhood of the origin. (b) If in Theorem 3,
the set G also contains infinity, then comp G is compact and hence, by Lemma 2,
(4.23) can be replaced by the condition cap(comp G)= 0. (c) Our proof of
Theorem 3 is based on the following theorem due to Pommerenke, which is stated
here in a more convenient but equivalent form.

POMMERENKE’S THEOREM [15]. Let {m} and {n} be sequences of nonnegative
integers such that for some fixed 2 with 2 > 1 (4.22) holds. Let f(z) be a function
holomorphic on an open connected subset G of the extended complex plane such
that 0 G and

(4.25) cap
comp G

For each v O, 1,2,..., let R(z) denote the (m,n)-Pad approximant cor-
responding to the (convergent) Maclaurin expansion off(z). Let > 0 and r > 1
be given. Then

(4.26) lim cap { wlw 1, 1
v-,oo Z r

--< Izl =< r, IR(z) -f(z)l >-- m}_ 0.

Remarks. In view of Lemma 2, conditions (4.23) and (4.25)are equivalent.
Thus Pommerenke’s theorem may be applied to the function f(z) of Theorem 3.

Proof of Theorem 3. For all sufficiently large v, R(z) must be bounded (hence
holomorphic) on D, since by hypothesis the convergence is uniform on compact
subsets. It follows that R(z) lim R(z) is holomorphic on D.

Assume that R(zo)4= f(zo) for some z0 e D. Then, by the continuity of f(z)
and R(z), f(z) v R(z) for all z on a closed disk A contained in D. Moreover, the
disk may be chosen so that 0 A. Again by continuity,

(4.27) M min If(z)- R(z)l > 0.
zA

Then there exists N such that

(4.28) IR(z)- R(z)l < M/2, v >= N,
Hence, for v >_ N and z e A,

z6A.

(4.29) If(z)- R(z)l If(z)- R(z)l- IR(z)- R(z)l > M
M M
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Now choose e such that 0 < e < min {1, M/2}, choose r such that

A {zlr- <= Izl =< r}
and let

(4.30) E {wlw= 1
-< Izl < r, lf(z)- R(z)l _>

z

Then by Pommerenke’s theorem,

(4.31) lim cap (E) 0.

But

v>O.

1
(4.32) -cE forv>=N,

A

and cap (l/A) > 0, since 1/A is a disk. Since the capacity of a set is not exceeded
by the capacity of any subset, (4.31) and (4.32) lead to a contradiction. This com-
pletes the proof.
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A MIXED PROBLEM FOR THE EULER-POISSON-DARBOUX
EQUATION IN TWO SPACE VARIABLES*

EUTIQUIO C. YOUNG"

Abstract. An explicit solution of a mixed problem for the Euler-Poisson-Darboux equation
utt + (k/Out u,x u,, f(x, y, t) is obtained in the quarter space x > 0, - < y < , > 0 for
k > 0, in which case uniqueness of solution holds. The uniqueness property is lost when k < 0 as a
nontrivial solution of the corresponding homogeneous mixed problem can be easily found. The method
used is similar to that employed by Davis [6] and Young [20], which is based on analytic continuation
of a generalized Riemann-Liouville integral developed by Riesz. Although only the case of two-
space variables is treated, the method is also applicable to the general case of n-space variables provided
k> n- l(k>n-2whenniseven, n>4).

1. Introduction. This paper is concerned with an explicit solution of the
mixed problem

k
(1) Lu utt +-tut Uxx uyy f(x, y, t),

(2) u(x, y, O) O, u,(x, y, O) O,

(3) u(0, y, t) g(y, t),

in the quarter space x > 0, - < y < , > 0, where k > 0 is a real parameter
and f and g are twice continuously differentiable functions such that g(y, 0)

g,(y, O) O.
Equation (1) is the well-known Euler-Poisson-Darboux (abbreviated EPD)

equation in two-space variables. While the equation for different numbers of
space variables and special values of k has occurred in many classical problems
for over two centuries, the general case of n-space variables and arbitrary values
of k was fully treated only twenty years ago by Weinstein [16], [17], Diaz and
Weinberger [8] and Blum [1]. Since then the EPD equation has been the object
of much investigation, see, for example, Diaz and Ludford [7], Walter [15],
Davis [6], Lions [13], Carroll [3] and just recently, Bresters [2]. A concise survey
of more recent work on the EPD equation can be found in Gilbert [10]. All of
these works, however, have been concerned with the Cauchy problem for the
EPD equation. Indeed, as far as the author knows, the only other mixed problems
considered for the EPD equation were done in one space variable by Weinstein
[18], Lieberstein [12] and Fusaro [9]. Copson [4] and Copson and Erd61yi [5]
solved a mixed problem for a generalized EPD equation but only in the case of
one-space variable.

When k 0, equation (1) reduces to the wave equation in which case the
problem (1), (2), (3) is then classical (see Hadamard [11, pp. 247-253]). We con-
sider here only the case k > 0 because, then, our solution is uniquely determined
by the use of Green’s formula. There is no uniqueness when k < 0 as evidenced

Received by the editors August 13, 1973, and in revised form January 7, 1974.
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by the existence of a nontrivial solution, u xtl-k, of the corresponding homo-
geneous mixed problem Lu O, u(x, y, O) O, ut(x, y, O) O, u(O, y, t) O.

As is well known, for points (x, y, t) such that x >= > 0, the boundary con-
dition (3) plays no role in the determination of a solution and, hence, it may be
ignored. In such a case, the unique solution of the problem (1), (2) was obtained
by Diaz and Ludford [7] who showed that

2k-fokf( rl,) k k-1 1 ;)(4) u(x y t) d drl dr1/2R,k/2
F

zt R 2’ 2 ’2’

where D is the domain bounded by the plane z 0 and the retrograde character-
istic cone

(5) g (t-z)2-(x- )2_(y_r/)2 =0, (t-z>0)

with vertex at (x, y, t), and where

(6) R’ (t -[- ,)2 (X )2 (y )2.
The solution (4) is no longer valid in the region 0 < x < t. Therefore, the basic
problem in (1), (2), (3) is the determination of a solution in the region 0 < x < t.
We propose to consider this problem by using a method due to Riesz as was
adopted by Davis [6] and Young [19], [20]. We remark that although we treat
here only the case of two-space variables, our method and procedure can be
applied to the case of n >_ 3 space variables as well, provided k > n 1 (k > n 2
when n is even, n >= 4).

2. The solution formula. The Riesz method consists essentially in finding a
kernel function V(x, y, t; , r/, z), depending on two points (x, y, t) and (,
and a parameter , such that V vanishes together with its first derivatives on the
retrograde cone (5) and satisfies the relation

(7) LV + 2(x, y, t; , q, z) V(x, y, t; , rl, z).

Moreover, with respect to the point (, q, z), it satisfies an analogous relation

(8) MV+ 2(x, y, t; , r/, z) V(x, y, t; , r/, z),

where M is the adjoint of L defined by

The kernel function for the operator L was determined by Davis [6] (also by
Young [19]) who showed that

(9)

2k.ck
V(x, y, t; , rl, z)

2_ ln/2F(/2)F[( 1)/2]

R,k/F 2 2

where R and R’ are defined in (5) and (6), respectively. For a fixed point (x, y, t)
in the quarter space > 0, z > 0, we note that the hypergeometric function F in
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(9) converges absolutely and uniformly with respect to (, q, z) for z e > 0,
because in that space IR/R’] < 1. Moreover, for > 3, V remains bounded at
z--0o

Now let us seek a solution u of the problem (1), (2), (3) at the point (x, y, t)
where 0 < x < t. Let D denote the domain bounded by the retrograde cone
R 0 with vertex at (x, y, t) and the planes 0 and 0. For > 3, we have,
by Green’s theorem,

V + 2Lu -umV + 2) d drl dz
(10)

fo v+ u v+ uV+
D On

u
On +kz v dS,

where Ou/On is the conormal derivative

Ou Ou Ou

with v, v,, v being the components of the outward unit normal vector on cD,
the boundary of D. Since V+2 and its first derivatives vanish on R 0, and in
view of (8), formula (10) yields

(11) I’u(xy’t)--U+2f(xy’t)-fr(V’+2Ou’ OV’+2)--0g drl dz

in which we have introduced the notation

(12) Uu(x, y, t) fD u(, rl, z)V(x, y, t; , rl, z) d drl dz

and substituted the data given in (1), (2), (3). The domain of integration T of the
last integral in (11) is that intercepted off the plane 0 by the cone R 0
(z > 0).

In order to eliminate the term Ou/O from (11), we consider the kernel function
V+ 2(_ x, y, t; , r/, z) corresponding to the point (- x, y, t) which is symmetric to
(x, y, t) with respect to the plane 0. Denote by D* the domain lying in the
quarter space > 0, z > 0 and bounded by the retrograde cone

R, _= (t z): (x + ): (y .)2 0

and vertex at (-x, y, t). Notice that D* is in the interior of D. For > 3, it is
clear that V+ 2 vanishes together with its first derivatives on R. 0, and satisfies
both the relations (7) and (8). Hence for V+2 and the domain D*, we obtain by
applying formula (10),

(13) I.u(-xyt)-U.+2f(-xy, t)-;T(V"+2Ou OV+2
* c t

g drldz.

Here U.u denotes the integral (12) over D* with the kernel function V. Now,
since V" V on T, it follows by subtracting (13) from (11) that

Uu(x, y, t) I.u(-x, y, t) U + 2f(x, y, t) U.+ 2f(-x, y, t)
(14)

+ j+Zg(y, t),
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where

(15) J’g(y, t) fT c3 - ]g(rl, z)drl dz.

For > 3, we observe that each of the integrals in (14) converges and defines
an analytic function of . Moreover, if we extend the function u as an odd function
of x for x < 0, that is, u(-x, y, t)= -u(x, y, t), then the integral I,u(-x, y, t)
over D* becomes the negative of the integral Uu(x, y, t) whose domain of inte-
gration is the reflection of D* with respect to 0. Hence the term Uu(x, y, t)

U,u(- x, y, t) (and also I + 2f i%+ 2f) can be expressed as the volume integral
over the domain extending into the quarter space < 0, z > 0, and bounded
simply by the retrograde cone R 0 and the plane z 0. Then, since V+2 and
its first derivatives vanish on R 0, the differentiation implied in the operator L
may be applied under the integral sign of each of the integrals in (14). In view of
relation (7), we then have

(16)

t) LU +LUu(x y t) LI,u(-x y, 2f(x, y, t) LU,+2/(-x, y, t)

+ Lj+ 2g(y, t)

IV(x, y, t) I,f(-x, y, t) + jag(y, t).

As will be shown in the next section, when u and g are continuously differ-
entiable, it is possible to continue analytically each of the integrals in (16) with
respect to into 1 < __< 3, and that

(17a) Iu(x, y, t) u(x, y, t),

(17b) I,u( x, y, t) O,

(17c) j0g(y, t) 0.

Then, by the principle of analytic continuation, (16) will yield the result

Lu(x, y, t) f(x, y, t),

thus verifying that lu(x, y, t) u(x, y, t) satisfies equation (1). Further, by per-
forming the analytic continuation of (14) to 0, we will obtain the explicit
solution

(18) u(x y, t) I + 2f(x y, t) I + 2f(_ x, y, t) + jo + 2g(y, t),

which will be shown to satisfy conditions (2), (3). It is in this sense that formula
(14) provides a solution of the problem (1), (2), (3).

3. The analytic continuation. We first establish the identity (17a). Let D
denote the conical domain bounded by R 0 (t z > 0) and z x >_ 0, and
set D2 D D1. Then, as was proved by Davis [6], the part of the integral Uu
over D yields the desired identity when it is continued analytically to e 0.
On the other hand, by the same procedure the other part of Uu over D2 and the
integral U,u both vanish when they are continued analytically to 0, since the
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domains of integration D2 and D* do not contain the points (x, y, t) and (- x, y, t),
respectively. We shall demonstrate here the technique for carrying out this
analytic continuation in connection with the integral

(19) Kg(y, t) f. V(x, y, t; O, rl, z)g(r/, z) dr/dz.

The result of this will be used to establish the identity (17c).
Let z Ro/R’o, where Ro and R denote the values of R and R’ on T, that is,

when 0. Since [zl < for > 0, we may expand the hypergeometric function
in V in infinite series and write

k +k-3 e- 1 F[(- 1)/2]F , 2 ;--f--; z/ +
F(k/2)F[(e + k- 3)/2]

(20)
z

F(k/2 + 1 + r)F[(0 + k- 1)/2 + r]
r=0 (r + 1)!F[( + 1)/2 + r]

zr"

The infinite series on the right-hand side of (20) converges uniformly for [zl < 1;
in fact, it may be written as

k) 3F2
k + 2 o + k-

__
+ 1.(21) C(

2 2 ,1;2,,z/,
where C is some factor depending on and k, and 3F2 is a generalized hyper-
geometric function (14, p. 73). Thus the integral (19) may be written as the sum
of two integrals, the first being given by

(22)

t" zkg(r/, qT)R(o 3)/2

U 1() A( k) R,ok/2
dr dr,

A(, k) dn
y- (t2 x2)/2 R/2

where

2k-+
(23) A(a, k) --/rl/zr,(/2)r,[(0 1)/2]

The integral (22) defines an analytic function of a for a > 1. In order to
continue it analytically into 0 <__ a __< 1, we introduce in the inner integral the
new variable s, where r s{t Ix2 + (y q)211/2}. Then (22) becomes

(24)

+ (t /2

U(oO A(,k) {t IX2 --]- (y //)2]1/2}(k+-1)/2
dy--(t2--x2)l/2

j G(x, y, t, s)sk(1 S)(- 3)/2 ds,
0

where G represents all the other factors in the integrand of (22). We consider the
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inner integral and integrate it by parts. We obtain

/ G(x, y, t,s)sk(1 s)(t-3)/2 ds

2- 1G(x y s)sk(1- S)( 1)/21
(25)

+ G(x y, s)sk)(1 S)t- )/ ds
-1

1
(G(x y, t, s)sk)(1 S)( 1)/2 ds

since the boundary terms vanish for e > 1. But now the last integral in (25) con-
verges for 1 < e __< 1 and defines an analytic function of e there. In view of the
factor 1/(F(e/2)) in (23), it follows that (22) vanishes when it is continued analytically
to =0.

The second integral of (19) is given by

2-+ 1C(_ fr’ckg(rl,’c)Rto-)/2(26) U2()= /2F(a/ )/23 RI + k/2 3F2(z) dq dz

involving the function (21). This integral converges for a > -1, and, again,
because of the factor 1/(F(a2)), it vanishes at a 0. Thus we have shown that
(19) can be continued analytically with respect to a into -1 < a 1, and that
Kg(y, t) 0. We shall use this result to verify that j0g(y, t) 0.

We observe that on T,
OV"OV OVa_ OV OVa_ -2 (x y t’O q z)

Since V vanishes on the intersection of aT with R 0 for large , we may write

Jg(y, t) 2 V(x, y, t; O, , r)g(, r) d

By the principle of analytic continuation and from the previous results, we see
that Jg vanishes as is continued analytically to e 0.

4. Te elidt slti. We notice that all the integrals on the right-hand
side of (14) converge for e > -1. Thus by analytic continuation to e 0, and
by (17), we obtain our explicit solution

2k- fD Zkf( q Z k k -1 1 ,) d dq dzu(x, y, t) F 2;

(27) .., ., 2’ 2 ’2’R,

Now, for 0 < N x, the domains of integration D* and T in (27) are both
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empty and, hence, (27) reduces to the formula (4) which solves the problem (1),
(2). On the other hand, as x tends to zero, the integrals over D and D* cancel
out since D* approaches D, and R and R’ coincide with R, and R, respectively.
Thus we need only show that

(28) lim jo+ 2g(y, t) g(y, t).
x0

To this end, we write

2k ’-x(y+[(t-OZ-x2l ’/2 zkg(l,.c)
jo + 2g(y t)

o
| F(Ro/R’o) drl dz

7 X /y-- [(t 1;)2 X211/2 R1/ER’ok/2

where, for convenience, we have omitted writing the parameters of the hyper-
geometric function. If we introduce the new variable s (y rl)/w/(t z)2 -x 2

in the inner integral and perform the indicated differentiation, we obtain
2k fx g(y, x)jO+ Eg(y, t)=--(trc x)k J._ [(2t Z )-2 xE]k/2

1 S2) -x/2 ds

,29,

2;i- f c3g,r/,z)
T.k F(Ro/R’o) (1 $2) 1/2 ds dz

rc Ox I R’ok 2

Now the differentiation with respect to x in the second integral on the right-
hand side of (29) gives rise to a factor x, and so, the integral vanishes as x tends
to zero. On the other hand, the first integral yields

2k ( g(y, x)
lim--(t- x)k

_
[(2t X)"--’v x2.k/2j

(1 $2) 1/2 ds g(y, t),
x0 7

thus establishing (28). This completes the verification that (27) indeed satisfies
the conditions (2), (3).
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NONLINEAR DEGENERATE EVOLUTION EQUATIONS AND
PARTIAL DIFFERENTIAL EQUATIONS OF MIXED TYPE*

R. E. SHOWALTERf

Abstract. The Cauchy problem for the evolution equation Mu’(t)+ N(t,u(t))= 0 is studied,
where M and N(t,. are, respectively, possibly degenerate and nonlinear monotone operators from a
vector space to its dual. Sufficient conditions for existence and for uniqueness of solutions are ob-
tained by reducing the problem to an equivalent one in which M is the identity but each N(t,. is
multivalued and accretive in a Hilbert space. Applications include weak global solutions of boundary
value problems with quasilinear partial differential equations of mixed Sobolev-parabolic-elliptic
type, boundary conditions with mixed space-time derivatives, and those of the fourth or fifth type.
Similar existence and uniqueness results are given for the semilinear and degenerate wave equation
Bu"(t) + F(t, u’(t)) + Au(t) 0, where each nonlinear F(t,. is monotone and the nonnegative B and
positive A are self-adjoint operators from a reflexive Banach space to its dual.

1. Introduction. Suppose we are given a nonnegative and symmetric linear
operator /from a vector space E into its (algebraic) dual E*. This is equivalent
to specifying the nonnegative and symmetric bilinear form m(x, y) (//x, y) on
E, where the brackets denote E* E duality. Since m is a semiscalar-product on
E, we have a (possibly non-Hausdorff) topological vector space (E,m) with
seminorm "x m(x, x) 1/2’’, and its dual (E, m)’= E’ is a Hilbert space which
contains the range of/. We let V(t, be a family of (possibly) nonlinear functions
from E into E*, 0 =< =< T, and consider the evolution equation

d
(1.1) d(u(t)) + l/’(t, u(t)) O, 0 <= <= T.

By a solution of (1.1) we mean a function u :[0, T] - E such that /gu :[0, T] E’
is absolutely continuous (hence, differentiable almost everywhere), with 4r(t, u(t))
e E’ for all t, and (1.1) is satisfied at almost every e [0, T]. The Cauchy problem
is to find a solution u of (1.1) for which //u(0) is specified in E’.

The plan of the paper is as follows. In 2 we use elementary linear algebra
to show that (1.1) is equivalent to an evolution problem essentially of the form

(1.2) -u’(t) - w(t, u(t)),

where //- denotes the (possibly) multivalued operator or relation that is inverse
to /. Our main results on the existence and uniqueness of solutions of (1.1) (or
(1.2)) are stated and proved in 3, and provide a natural application of nonlinear
evolution problems with multivalued operators. Section 4 gives some applications
of our results to various nonlinear boundary value problems which may contain
derivatives in time of at most first order. Each such problem is reduced to (1.1)
in an appropriate space. The examples include boundary value problems for

* Received by the editors September 11, 1973.
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equations of the form- mo x u x t)--x m x -x -x -x x O,

where too(X) >- O, re(x) >= O, and p >= 2. A first order time derivative may also
appear in boundary conditions such as in boundary value problems of the fourth
and fifth type. In 5 we study the abstract wave equation

(1.3) Bu"(t) + F(t, u’(t)) + Au(t)= O,

where A and B are self-adjoint with A strictly positive and B nonnegative and
each F(t,. is monotone. When the operators in (1.3) are realizations of partial
differential equations, we obtain results on the solvability of (e.g.)

3t2 mo(x)u(x t) mj(x)
c3u c3u P- Ou

Au f,+ - tj-’l

wherein each m is nonnegative and bounded, and i0 _-> 2, and boundary con-
ditions may contain second order time derivatives.

Abstract equations of the form (1.1) have been considered by C. Barrios,
H. Brezis, O. Grange and F. Mignot, H. Levine, J.-L. Lions, M. Visik and this
writer. Our results of 3 are closest to those in 5 of [3] and those of [14], while
in [4] it is assumed the leading operator in (1.1) is bounded from a Hilbert space
into itself. The writers in [21, pp. 69-73] and [29] consider linear equations with
time-dependent operators uniformly bounded from below by a positive quantity,
hence, nondegenerate, and this last assumption was removed in [28]. Each of the
preceding works has been directed toward the solution of boundary value prob-
lems, many of which have been studied by more direct methods. We refer the
reader to the extensive bibliographies of [26], [27] for the theory and application
of nondegenerate equations with mixed space and time derivatives (i.e., of Sobolev
type) and to [7], [28] for additional references to (degenerate) mixed elliptic-
parabolic type. See [24] for a treatment of (1.3) when B is the identity.. Two Cauchy problems. Let m denote the nonnegative and symmetric bi-
linear form given on the vector space E. Let K be the kernel of m, i.e., the sub-
space of those x E with re(x, x)= 0, and denote the corresponding quotient
space by ElK. Then the quotient map q’E - ElK given by

q(x) {y e E’m(x y, x y) O}
is a linear surjection, and it determines a scalar product rn on E/K by

(2.1) m(q(x), q(y)) m(x, y), x, y e E.

The completion of (ELK, m) is a Hilbert space W whose scalar product is the
extension by continuity of m, and we denote this extension also by m.

Let E’ denote the strong dual of the seminormed topological vector space
(E, m). E’ is a Hilbert space which is important in the discussion below, so we
consider it briefly. Letting (ELK)’ and W’ denote the duals of the indicated scalar
product space and Hilbert space, respectively, and noting that ElK is dense in
W, we have each f W’ uniquely determined by its restriction to ElK. This re-
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striction gives a bijection of W’ onto (ELK)’ and we hereafter identify these spaces.
Regard q as a map from E into W. Its dual is the linear map q*’W’ E’ defined
by

(2.2) (q*(f), x> (f q(x)), f e W’, x e E.

Since q(E) ElK is dense in W, q* is injective. Furthermore, each g E’ neces-
sarily vanishes on K, so there is a unique element f (ELK)’ with f q g. That
is, g q*(f), so q* is a bijection of W’ onto E’. It follows from (2.1) and (2.2)
that q* is norm-preserving.

We easily relate the linear map t"E --, E’ given to us by

(/lx, y) m(x, y), x, y E,

to the Hilbert space isomorphism ’o" W --. W’ of F. Riesz defined by

(/’oX, y) re(x, y), x, y e W.

For any pair x, y E we have (q*//oqx, y) (/oqx, qy) m(qx, qy) m(x, y)
(///x, y), and, hence,

(2.3) ’ q*loq.

The notion of a relation on a Cartesian product X Y of linear spaces
will be essential. A relation 1 on X x Y is a subset of X x Y. For each x X,
the image of x by is the set (x) {y Y: Ix, y] }, and the domain of is
the set of x X for which (x) is nonempty. The range of is U {(x):x X}.
The graph of every function from a subset of X into Y is a relation on X x Y,
and we so identify functions as relations. The inverse of is the relation- {[y, x] :Ix, y] } on Y X. If a is a real number, we define

a {Ix, ay] [x y] }
If 5e is a second relation on X Y, then

+ St {Ix, y + z]’[x, y] e and Ix, z] e 5a}.
If is a relation on Y x Z, then the composition of N and - is- {Ix, z]’[x, y] e and [y, z] e - for some y s Y}.
If is a relation on W X, then composition is associative, i.e.,

(-o )o -o (o ).

Also, we identify the identity function Iy on Y with its graph {[y, y]’y Y}, and
easily obtain the inclusion N N-

_
It. These sets are equal if (and only if)

is a function, i.e., each (x) is a singleton. Finally we note that

Suppose that for each e [0, T] we are given a (not necessarily linear) function
t/(t):E E*. Define a corresponding relation f0(t on W x W’ as follows:
[w, f] e fo(t) if and only if there is an x e E such that q(x) w and Y(t, x) q*(f).
Since q* is onto E’, it follows that the domain of -4o(t) is precisely the image
q(D(t)), where we define D(t) {x E:(t, x) E’}. Also, for each e [0, T] and
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x D(t), there is exactly one f W’ with /(t, x) q*(f), so we have

(2.4) vV’(t, x) q* o(t)o q(x), 0 <__ <= T, x D(t).

Finally, we define a family of composite relations on W W by (t)
,ff Uo(t), [0, T]. That is, Ix, z] (t) if and only if there is a y W’ for

which Ix, y] e ffo(t) and y #oZ. Since ’o is a bijection, (t) and ffo(t) have
the same domain, q(O(t)).

Remark 1. Note that ffo(t) is a function (as is (t)) if and only if V’(t, x)
V’(t, y) for every pair x, y E such that V(t, x) and V’(t, y) belong to E’ and

//x //y. This is frequently (but not always) the case in applications, even where
/is not injective.

We shall relate solutions of the evolution equation (1.1) to those of an
evolution problem determined by the relations ’(t), 0-< <__ T. A function
v’[0, T] W is called a solution of the evolution problem

(2.5) v’(t) + l(t, v(t)) O, 0 <_ <= T,

if it is (strongly) absolutely continuous (hence, differentiable a.e.), v(t) q(D(t)) for
every t, and (2.5) is satisfied at a.e.t. Since the domain of each (t) is contained
in ElK and since the maps #0:W W’ and q*:W’ E’ are linear isometries,
it follows that v is a solution of (2.5) if and only if v:[0, T] E/K, is absolutely
continuous, (hence, q*’oV [0, T] E’ is differentiable a.e.), v(t) q(D(t)) for every
t, and

(q*loV(t))’ q*o(t v(t))

at a.e.t. Let v be such a solution, and for each [0, T] choose a representative
u(t) D(t) from the coset v(t) ElK. Then q(u(t))= v(t), #u(t)- q*#oV(t) and
ff(t, u(t)) q*Uo(t, v(t)) for each t, so u is a solution of (1.1). Conversely, if u is
any solution of (1.1), then the function v q u is a solution of (2.5), so we have
the following result.

PROPOSITION 1. If V is a solution of (2.5) and for each [0, T], u(t) e D(t)
belongs to the coset v(t)e ElK, then u is a solution of (1.1). Conversely, if u is a
solution of (1.1), then v =_ q u is a solution of (2.5).

COROLLARY 1. Let Uo O(O). Then there exists a solution v of (2.5) with v(O)
q(uo) if and only if there exists a solution u of (1.1) with lu(O) d#Uo.
COROLLARY 2. Let Uo D(O). Then there is at most one solution v of (2.5) with

v(O) q(uo) if and only if for every pair of solutions ut, u2 of (1.1) with d/gut(O)
/u2(0) dC/Uo, we have d/gut(t) ,///u2(t)for all [0, T], hence

g’(t, u(t)) t(t, u2(t)).
Remark 2. In the situation of Corollary 2, uniqueness holds for solutions of

the Cauchy problem for (1.1) if for each [0, T] and each pair x, y E, //x ’y
and V’(t, x) A(t, y) E’ imply that x y.

Example. Take E 2 E* with (EX1,X2], [Yt, Y2]) xtYt + x2Y2. Let
’([x 1, x2]) Ix 1,0] and V’(t) Ix t, x2] Ix2, x 1]. Then the kernel of//+ V’(t)
is null, so uniqueness holds. Note, however, ffo(t) is not a function. This cor-
responds to the (trivial) evolution equation

u’x(t) 0, u2(t) 0, >= 0,

for u(t) Jut(t), u:(t)].
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3. Existence and uniqueness. Evolution problems of the form (2.5) have been
considered by many writers, and we refer to the recent work of M. Crandall and
A. Pazy [10] and J. Dorroh [12] for references in this direction. In particular, a
sufficient condition for uniqueness of solutions of Cauchy problems associated
with (2.5) is that each ’(t) be accretive.

DEFINITION 1. A relation on W x W is accretive if for every pair Ix1, wl]
and [x2, w2] in we have m(w w2, x x2) >= 0.

A related notion is that of monotonicity for functions (or relations) mapping
a subset of a vector space into its dual. Such a condition holds for many operators
associated with the variational formulation of (possibly nonlinear) elliptic bound-
ary value problems [5], [7].

DEFINITION 2. Let D be a subset of the vector space E and denote by E* the
(algebraic) dual of E. A function Y’D E* is D-monotone if for each pair x,
X2 D we have (V(xx) ,/[/’(x2), x x2) 0.

Because of our intended applications, it is essential that D-monotonicity of
each V’(t) imply accretiveness of the corresponding (t), where V’(t) and (t)
are the functions and relations of 2. This was our motivation for portions of the
construction in 2, and its success in this direction is reflected in the following
central result.

PROPOSITION 2. For each [0, T] let ,U(t) and (t) be the respective function
and relation of 2. Then l(t) is accretive if and only if V(t) is D(t)-monotone.

Proof. Let [xx, wl] and [x2, w2] belong to ’(t). Then there are ux,u2 in
D(t) such that xj q(uj) and (t, u) q*/loWj, j 1, 2. Thus we have

m(wx w2, x x2) (’o(Wx w2), q(ul u2))

(q*o(W w:),u

((t, u) (t, u), u u:).

Hence, if (t) is D(t)-monotone, then (t) is accretive.
Conversely, if u, u2 D(t), there is a unique pair wj (j 1, 2) in W with

V(t, uj) q*loWj. Then [q(uj), wj] (t) and, as above, (f’(t, u) (t, u2),
u u2) m(w Wz,Xl x2), so ’(t) being accretive implies 4/’(t) is O(t)-
monotone.

DEFINITION 3. If in the definition of accretive (or D-monotone) the inequality
is strict whenever x 4: xz, then we say that is strictly accretive (respectively,

is strictly D-monotone).
If u, u2 D(t), then (t, u) V(t, u2) E’, so there is a constant k such

that

[<4(t, ua) t(t, uz), e)l <= km(e, e) x/z e E

If #ux /u2, then setting e--u- u2 in the above identity shows that
(V(t, Ul) V’(t, u2), u u2) 0. Thus, if (t) is strictly O(t)-monotone then
u u2, and Remark shows that ’(t) is a function. The first part of the proof
of Proposition 2 shows then that (t) is strictly accretive. Conversely, if (t) is
a strictly accretive function, and if ((t, Ul)- (t, uz), ul- u2) 0 in the
second part of the proof of Lemma 1, then w w2, hence (t, u) (t, u2).
These remarks prove the following.
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COROLLARY 1. In the situation of Proposition 2, U(t) is strictly D(t)-monotone
if and only if it is injective and (t) is a strictly accretive function.

From Remark 2 and the preceding argument applied to //+ ff(t), we
obtain a sufficient condition for uniqueness.

THEOREM 1. Let V(t) be D(t)-monotone and let /// + V’(t) be strictly D(t)-
monotone for each [0, T]. Then, for each Uo D(O), there is at most one solution
u of(1.1)for which //[u(O) /[Uo.

We turn now to the considerably more difficult question of existence. Our
results in this direction will be obtained from recent results of M. Crandall, T.
Liggett and A. Pazy on the existence of solutions of evolution problems like (2.5)
in general Banach space [9], [10]. We shall present the special case of their results
as they apply to Hilbert space and obtain through Proposition 1 a corresponding
set of sufficient conditions for the existence of a solution of (1.1).

To begin, we shall describe the existence results of [10] that are relevant for
(2.5). We assume that (t) is accretive and that the range of I + (t) is all of W
for every [0, T] (Each ’(t) is m-accretive [16] or hyper-accretive [12]). It follows
that the range of I + 21(t) is W for every 2 > 0, so its inverse

Jz(t) (I -t- 2(t)) >0,

is a function defined on all of W. The dependence on will be restricted in two
ways. First, the domain of (t) is independent of t, and we shall denote it by
q(D). Second, there is a monotone increasing function L’[0,) [0, ) such
that

IIJz(t, x) Jz(, x)llw -_< lt "clL(llxllw)(1 / inf {llyllw’UX, y] (z)}),
(3.1)

t,z>=O, xW, 0<2__< 1.

It is shown in [10], under hypotheses somewhat more general than those above,
that for each Vo q(D) there exists a (unique) solution v of (2.5) with v(0) Vo.

The preceding result will be used to prove the following.
THEOREM 2. Let the nonnegative and symmetric linear operator /l from the

vector space E into its dual E* be given. Let E’ denote the dual of the topological
vector space E with the seminorm (lx, x>1/2; E’ is a Hilbert space with norm

Ilfll, sup {l<f,x>l’x E, </x, x> 1}.
For each e [0, T] let V’(t) :E E* be a (possibly nonlinear)function, and define
D(t) {x E :4(t, x) E’}. Assume the following: for each t, 4/’(t) is D(t)-
monotone and the range of /l + V’(t) contains E’; ?g(D(t)) is independent of t;
and there is a monotone increasing function L:[0, o) [0, oz) such that

(3.2)
IIW(t, w) W(, w)llz < It lL(<’w, w>)(1 -4- IIW(t, w)ll,),

t,z > 0 weD(t)

Then, for each Uo D(O), there exists a solution u of (1.1) with //lu(O) //lUo.
Proof From Proposition it follows that we need only to verify that the

relations (t) constructed in 2 satisfy the conditions listed above. Proposition 2
shows that each (t) is accretive, and /l(D(t)) being constant implies that the
domain q(D(t)) of ’(t) is constant. Since q*#o maps W onto E’, the identity

(3.3) (/ + 2/’(t))(x)= q*o ///o (I + 2zC’(t))o q(x), x e E,
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shows that I + 2(t) maps q(D(t)) onto W if (and only if) # + V(t) maps D(t)
onto E’. Thus, we need only to verify the estimate (3.1).

Before proceeding to the verification of (3.1), we obtain some identities and
estimates. First, we recall q*/0 is an isomorphism of W onto E’, and

(3.4) IIq*owll, Ilwllw, w w.
Also, we have from (2.1) and (2.3),

(3.5) IIxll, (//x, x) 1/2, x E.

From (2.3), (2.4) and (3.3) follow the identities

(3.6) l(t)q (q*/o)-

(3.7) I + 2(t)= (q*#o)-lq*(/[o + 2dffo(t)).

This last result with the properties of relations mentioned in 2 (e.g., q q-
IE/r) gives us

J(t) Eq*(/o + 2Wo(t))-I -q*//o

(3.8) q(# + Zdl/-(t))

(q*-#o)-1///(/, + 2dV’(t))- l(q*#o).

This shows that ?//(///+ 2.#’(t)) -1 is a function. Thus, if x l, x2 D(t) and
(//+ 2U(t))xl ( + 2C(t))x2, then ///xl /’x2. Furthermore, this shows
V’(t)xl V’(t)x2, so W(t)(# + 2/’(t)) -1 also is a function on E’. From (3.8)
we now obtain

(3.9) 2-1(1 Jz(t)) (q*//o)- lff(t)(# + 2dl/’(t)) l(q*’o).

Since /(,////+ 2V’(t))-1 is a function, we have

(3.10) (/+ 2dV’(t))-1(, + 2V(t))x //x, x D(t).

Also, ////+ 2dV(t) is a function and so follows

(3.11) (’ + 2dff(t))(//+ 2W(t)) -1 IE,.

We recall that each Jz(t) is a contraction on W, i.e.,

liJz(t)wl Jz(t)w2liw <= liwl Wzllw, wx, w2 W,

and this implies through (3.4) and (3.8),

(3.12)
X1, X2 t E’.

That is, ///(/+ 2dV’(t))-1 is a contraction on E’. Also, (3.6) shows that (t)q
is a function and

(3.13) II(t)q(x)[Iw IIV(t)xll,, x D(t),

and the identity [10]

IR-X(I Jz(t))w w inf {llyllw’Ew, y] (t)}, w q(D),



32 R. E. SHOWALTER

together with w q(x) and (3.9) gives

II(t)( / 2(t))-lx , <= II(t)xllz, x D(t),

so we have the estimate

(3.14) II(t)( / ;t(t))-lxl, <= inf{llV’(t)Ylle,’q(x y)-- 0}, xD(t).

After this lengthy preparation, we are ready to verify (3.1) and thus complete
the proof of Theorem 2. Let t, z [0, T], 0 < 2 =< 1, and x E. From (3.4) and
(3.8) we have

Ildx()q(x)- Jx(t)q(x)llw

Using (3.10), we have this quantity given by

Let we(/+ 2V’(z))-l//(x). Then from (3.12) it follows that the above is
bounded by

I1( / (t))(w)- x I,.

By (3.11), this is equal to

I(/+ 2V’(t))w- (//+ 2t/’(r))w I,

ll(t, w) 1(, w)ll,.

From our hypothesis (3.2), the estimate (3.14), and (3.5) we now obtain

IIJ(r.)q(x)- J(t)q(x)llw <= 2It- lL(llwll:,)

(1 / II()( / ,())-xx I,)
(3.15)

__< 2It- zlL(ll/(/+ ())-Xxll,)

(1 + inf

if q(x) q(D). In order to estimate the term involving L in the above, we pick Xo
with q(xo) q(D) and then use (3.10) and (3.12) to obtain

I1( /

=< x ( / ())Xo ,.
From (3.2) it follows that

KT =-- sup
and so we have

(// ())-

This estimate together with (3.13) and (3.5) show that (3.15) implies (3.1) with L
replaced by the monotone increasing function

L1() L(( + KT)2), >= 0.
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Remark 3. If each (t) is a function, then Theorem 2 follows from T. Kato’s
result [16]. This will be the case in many of the applications below.

4. Boundary value problems. We shall describe realizations of the abstract
evolution equation (1.1) as initial and boundary value problems for some partial
differential equations of mixed elliptic-parabolic-Sobolev type. Our intent is to
indicate a variety of such problems to which our results imply existence or unique-
ness of solutions, so we do not attempt to attain technically best results in any
sense. In particular, we shall limit consideration here to autonomous equations
with spatial derivatives of at most second order. After introducing the Banach
spaces which we shall use, we construct a quasilinear elliptic partial differential
operator following the technique of F. Browder [5], [7]. Then we deduce from
the appropriate surjectivity results of [5], [7] the information necessary to apply
Theorem 2 of 3. We illustrate the application of our resulting Theorem 3 to
boundary value problems through the methods of J.-L. Lions [20], [21], [23].

Let G be a bounded open set in Euclidean space R" with G locally on one
side of its smooth boundary c3G. The space of (equivalence classes of) functions
on G with Lebesgue summable pth powers is denoted by LP(G), and WP(G) is
the Sobolev space of those LP(G) for which each of the (distribution) partial
derivatives Djb belongs to LP(G), 1 <_ j <_ n. Letting Do be the identity on LP(G),
we can express the norm on WP(G) by

IIlw- (lIDjl)
j=0

There is a continuous and linear trace map y WP(G) LP(c3G) with dense range,
and it coincides with "restriction to OG" on smooth functions on G. (When it is
appropriate to mention the variable s e OG, we shall suppress the trace map by
writing, e.g., th(s)---(Ttk)(s) for tk WP(G).)Since t3G is smooth, there is a unit
(outward) normal n(s) [nl(s), ..., n,(s)] at each s OG for which we have

(4.1) l <= j <__ n,

for functions b W(G).
Let V be a Banach space continuously embedded in WP(G) and containing

the space C(G) of infinitely differentiable functions with compact support in G.
Suppose we are given a family of functions N.i’G R"+1 R, 0 <= j <_ n, for
which we assume the following:

Each N.i(x, y) is measurable in x for fixed y R/ 1, continuous in y for fixed
x G, and there are a C > 0 and g Lq(G) with q p/(p 1) and p > 2, such that

(4.2) IN(x, Y)I <= C lYkl"- + g(x), X G, y R"+ 0 < j < n
k=O

(4.3) (Nj(x, y) Nj(x, z))(yj zj) >= O, y, z R"+1 x e G
j=O

and there are a c > 0 and h Lq(G) such that

(4.4) Nj(x, y)yj + h(x) >= clyl’,
j=O

yR"+1, xeG.
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Letting Db {Djb :0 =< j _< n} for q e WP(G), we find that each Nj(x, Dck(x))
belongs to Lq(G), so we can define U:V V’ by

(4.5) (.Ab, ) f Nj(x, Dch(x))Djb(x) dx, dp, V.
j=0

Note that the restriction ofq to C(G) is the distribution on G given by

(4.6) N() (D)N)(., O)) + No(’, D).
j=l

This defines our quasilinear elliptic partial differential operator N:V ’(G),
the space of distributions on G. From (4.1) we obtain the (formal) Green’s identity

(4.7) ( N, 0)
0(s) ds V,
0N

whenever Y(O), and hence N(b), belong to Lq(G), and we have let

(4.8)
c3ck(s)
c3N j=l

denote the conormal derivative.
(Note that Lq(G) is simultaneously identified by duality with subsets of V’

and ’(G).)
One can use (4.2) and dominated convergence to show that is hemi-

continuous, i.e., continuous from line segments in V to V’ with the weak topology.
Also, (4.3) shows that U is V-monotone while (4.4) implies

(W4, 4) ->_ c(ll4llw,)- IhlLIIcklIL,, eke V,

so V is coercive: (4/’qb, 4)-’ oe as ll4llw,--’ o. These three properties are
sufficient to make surjective [5], [7].

Suppose we are given a continuous, linear and monotone /:V--, V’. Then
/+ is hemicontinuous, coercive and monotone, hence maps onto V’. Assume
also //is symmetric and let E denote the space V with the seminorm induced by
///. Then the injection V--, E is continuous, and hence E’ c V’, so the range of
//+ U includes E’. From Theorems 1 and 2 we obtain the following result.

THEOREM 3. Let V be a reflexive Banach space and [ V V’ a symmetric,
continuous, linear and monotone operator. Let 4/’: V V’ be hemicontinuous,
monotone and coercive, and Uo V with V’Uo E’, where E is the space V with the
seminorm induced by l. Then there exists an absolutely continuous u:[0, T) E,
such that ’u(t) E’ for all [0, T],

d
d(lu(t)) + u(t) O, a.e. [0, t],

and g(u(0) Uo) 0. The solution is unique if [ + is strictly monotone.
Remark 4. By our choice of V, we may obtain stable boundary conditions

from the inclusions u(t)e V, [0, T], or variational boundary conditions from
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the identity

(4.9) ((hu(t)) + ru(t),v)= {(d/lu(t)) + Cru(t)tv(x)dx,
vV, t[0, T].

We shall illustrate the application of Theorem 3 to boundary value prob-
lems by four examples. In the first two examples, we choose V- Wg(G), the
space of those b WP(G) for which ,(q) 0.

Example 1. Degenerate elliptic-parabolic equations. Let mouLt(G) with
too(X) >= O, a.e. x G, r p/(p 2), and define

(/Zdp, ) fc, m(x)dp(x)(x) dx, 49, O V.

Let u0 V Wg(G) be given with N(Uo)= m/2g for some gL2(G). Then
Theorem 3 asserts the existence of a solution of the equation

(4.10) (mo(x)u(x, t)) + N(u(x, t)) O, x G, > O,

with u(s,t)= 0 for sOG and >__ 0, and u(x,O)= Uo(X) for all xeG with
too(X) > 0. Such problems arise, e.g., in classical models of heat propagation, and
too(X) then denotes a variable specific heat capacity of the material.

Example 2. Degenerate parabolic-Sobolev equations. Let mo be as above, but
define

Since (’b, ) => (11411,.=)2, we have L2(G) c E’, and so Theorem 3 shows that
for each Uo Wf)(G) with N(uo) L2(G), there is a unique solution of the equation

c3t
u(x t)- Dj(mo(x)Dju(x + N(u(x t))= 0 x e G

j=l

with u(s, t) 0 for s e tgG, [0, T] and u(x, O) Uo(X) for all x G. Such equations
have been used to describe diffusion processes wherein mo is a material constant
with the dimensions of viscosity [11], [26]. Also see [8], [18], [25].

Many variations on the preceding examples are immediate. For example,
one can use Sobolev imbedding results to get a smaller choice of r in the first
example, and other choices of V could replace the Dirichlet boundary condition
(in part) by a condition on the conormal derivative (4.8). Such is the case in our
next two examples which consider equation (4.10) with evolutionary boundary
conditions.

Example 3. Parabolic boundary conditions. In order to simplify some com-
putations below, assume that OG intersects the hyperplane R"-1 x {0} in a set
with relative interior S. Let at L(S) be given with a(s)>= O, s S, and define
the space

V =- {dp WP(G)’dp(s) 0 if s OG S, al/2(s)Djflp(s)
_
L2(S) for 1 _< j _< n 1}
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with the norm

fS
n-1 )1/211411 11411 / a(s) (Dj(s))2ds
j=l

Let mo be given as in Example 1 and no U(S) with no(s) >- 0, a.e. s S. Define

and

(/gb, p) f modp + fs no(s)ck(s)(s) ds,

(Vb, 0) (4.5) + a(s) Ojck(s)DjO(s) ds.

For u0 as in Example 1, Theorem 3 asserts the existence of a solution of equation
(4.10) which satisfies the initial conditions

mo(x)(u(x, O) Uo(X)) O, x e G,

no(s)(u(s, O) Uo(S)) O, s e S.

Since for b e V we have b(s) 0 for s e OG S we obtain from (4.7), (4.9) and
(4.1) (applied to S)the variational boundary condition

o(no(s)u(s, t)) + (u(s, t)) Dj(a(s)Diu(s, t)), s e S, e [0, T].
j=l

Also, we have the stable condition u(s, t) 0 for s c3G S and [0, T]. Bound-
ary value problems of this form describe models of fluid flow wherein S is an
approximation of a narrow fracture characterized by a very high permeability.
Thus, most of the flow in S occurs in the tangential directions. See [6], [28] for
applications and references.

Example 4. The fourth boundary value problem. (This terminology is not ours,
but comes from [1].) Let V -_- { W(G) :(q) is constant on OG} with the norm
of WP(G), and define W by (4.5). Let mo be given as in Example 1 and define

(/,) -= f moq + 7(b). (), b, V.

Then from Theorem 3 it follows that for each Uo V, with N(uo) m/2g for some
g L2(G), there exists a solution of equation (4.10) which satisfies the boundary
conditions of the fourth kind

u(s, t) f(t), s c3G, [0, T],

Ou(s t)
f’(t) + ____k_’ ds 0

cN

as well as the initial conditions

mo(x)(u(x, O) Uo(X)) O,

f(O) Uo(S), a constant.

xG,
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Such problems are used to describe, for example, heat conduction in a region G
which is submerged in a highly conductive material of finite mass, so the heat
flow from G affects the temperature f(t) in the enclosing material. This problem
was introduced in [1], together with a problem of the fifth kind (to which our
results can be applied).

5. Two degenerate wave equations. We shall give results on existence and
uniqueness of two second order evolution equations with (possibly degenerate)
operator coefficients on the time derivatives and then indicate some applications.
As before, we illustrate the variety of potential applications through the simplest
examples.

THEOREM 4. Let A and B be symmetric and continuous linear operators from a

reflexive Banach space V into its dual V’, where B is monotone and A is coercive:
there is a k > 0 such that

<ad, 49) >= kllll, e v.
Denote by Vb the space V with the seminorm induced by B and let F V V’ be a

(possibly nonlinear) monotone and hemicontinuous function. Then, for each pair
u 1, u2 V with Au + F(u2) V’b, there exists a unique absolutely continuous

u’[0, T] V with Bu"[O, T] V’b absolutely continuous, u(O) ll, Bu’(O) Bu2,

(5.1) F(u’(t)) + Au(t)e V’, a.e. e [0, T],

and

(5.2) (Bu’(t))’ + F(u’(t)) + Au(t) O, a.e. e [0, T].

Proof. Define a pair of operators from the product space E V x V into
E*= V* x V’by

/’([,, 2]) [AI, Bb2],

f’([b,, b2]) [-A2, Ab, + F(b2)].

The symmetric and nonnegative /gives a seminorm on E for which the dual is
E’= V’ x V;. The operator A’V---, V’ is an isomorphism, so u is a solution of
the Cauchy problem for (5.2) if and only if [u, u’] is a solution of the Cauchy
problem for (1.1) with the operators above. Uniqueness follows from Remark 2
of 2, and existence will follow from Theorem 2 if we can verify that the range of

+ ff contains E’. Since A is surjective, an easy exercise shows we need only
to verify that A + B + F maps onto V’. This follows by [5], [7], since A + B + F
is hemicontinuous, monotone and coercive.

The Cauchy problem solved by Theorem 4 appears to ask for too much in
two directions. First, our previous results suggest we should specify (essentially)
F(u(O)) F(u) instead of u(0) u, since, e.g., we may take B 0 in (5.2). The
second point to be noticed in the Cauchy problem associated with Theorem 4 is
the inclusion (5.1). In applications, (5.1) can actually imply that a differential
equation is satisfied, so this Cauchy problem possibly contains a pair of differ-
ential equations.

In our next and final result, we obtain a considerably weaker solution of a
single equation similar to (5.2) subject to initial conditions with data that need
not satisfy the compatibility condition, Aua + F(u2)s V;.
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THEOREM 5. Let the operators A, B and F and spaces V and Vb be given as in
Theorem 4. Then for each pair Uo, u V, there exists a unique summable function
w" [0, T] V for which Bw" [0, T] V’b is absolutely continuous,

(Bw)’+ F(w)’[0, T] V’

is (equal a.e. to a function which is) absolutely continuous,

(Bw)(O) Buo, ((Bw’) + F(w))(0)= Aux,

and

(5.3) ((Bw)’ + F(w))’ + Aw 0

a.e. in [0, T].
Proof. The Cauchy problem above for (5.3) is equivalent to that of Theorem

4 as well as to that of (1.1) with the operators given in the proof of Theorem 4.
In short, if u is the solution of (5.2), then w =_ u’ is the solution of (5.3) and [u, w]
is the solution of (1.1).

We continue our listing of examples with references to their applications and
history.

Example 5. Degenerate wave-parabolic-Sobolev-elliptic equations. Take

v wg(),

the indicated Sobolev space introduced in 4, and define the coercive form

(Adp, > =- Dd?D, dp, V.
d j=l

Let mL(G) with m(x) O, a.e. x G, for 0 j n, and define the operator
B by

(B, O> m(x)Oj(x)DjO(x) dx, , 0 V.
j=0

Finally, let F be given by (4.5), where we assume (4.2), (4.3) and 1 < p N 2.
(This last requirement is quite restrictive but is relevant here since it gives the
continuous inclusions LZ(G) LP(G)and Lq(G) LZ(G). Then, Theorem 5 shows
there is a unique generalized solution w of the equation

z(oW(X, t) Dm(x)Dw(x, t)) + N(w) Dw(x, t) O,
(5.4) j= j=

xeG, te[0, r],

where N is given by (4.6), and w satisfies the boundary conditions

w(s,t) O, sOG, te[0, T],

and the initial conditions

B(w(. O) Uo) O,

where Uo V and w V’ are given.

(Bw)’+ N(w)l,=o- wa,
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Equation (5.4) includes the classical wave equation as well as the equation

--Aw -Aw=0,

which arises in classical hydrodynamics and the theory of elasticity [15]. Appli-
cations in which B is a homogeneous differential operator of order two include
the modeling of infinitesimal waves [22] by the equation

2 2 3

Dw(x,t)) + D]w(x,t)=OC3t2 j=l j=l

and the Sobolev equation

2
Dw(x, t)) + Dw(x, t) O,C3t2 j=

which describes the motion of a fluid in a rotating vessel [27], [29]. (An ele-
mentary change of variables will bring this last equation to the form of (5.4).)

Example 6. A gas diffusion equation. Taking the special case of (5.4) with
B _= 0, we can solve problems for the equation

i
j=l

in which N is given by (4.6). Setting Nj 0 for 1 __< j __< n and

No(x, s) =- mo(x)lsl- sgn (s),
where mo L(G), too(X) >= O, and I < p __< 2 gives us the degenerate and nonlinear

_(mo(x)[w[p- sgn (w)) Aw 0.

The change of variable u [w[p- sgn (w) puts this in the form [3], [4]

(5.6) c3cO (mo(x)u(x, t)) (q 1) Dj(lu[q- 2Du(x, t)) O,
j=l

withq-2=(2-p)/(p- 1)_>_0.
Note that (5.6) is not of the form suitable for the results of 3, since the non-

linear part is not monotone, but it can be rewritten as

(A- tmou) ]u[q-2u(x, t) O,

where A is given in Example 5. We also note that (5.5) includes one of the Stefan
free-boundary problems [4], [17], and the nonlinear term can contain spatial
derivatives.

Our final example illustrates an application of both Theorem 4 and Theorem
5 to a situation in which B acts only on the boundary cOG and F is multiplication
by a nonnegative function on G. Other combinations are possible and useful, but
the following is typical of higher order evolutionary boundary conditions.
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Example 7. Second order boundary conditions. Let S c tG and define V to be
the subspace of W2(G) consisting of those functions which vanish on tG S.
Let the operator A and the function mo be given as in Example 5, and define

(Fq), ) fa mo(x)q)(x)@(x) dx,

(Bq) ) fs q)(s)k(s) ds, q) k V.

Let Wo V, wl L2(G) and w2 L2(S). Since A is an isomorphism, there is a
u V with

(Au,, v) fa w,(x)v(x)dx + fs w2(s)v(s)ds"

From Theorem 5 it follows that there is a unique w’[0, T] -, V which is a general-
ized solution of the partial differential equation

(5.7) -(mo(x)w(x, t)) Aw(x, t) O, x e G, > O,

subject to the boundary conditions

w(s,t) O, secG S, >0,

dEw(s, t) OW(S, t)+ =0, sS, t>0,
t2 tn

and the initial conditions

w(s, O) Wo(S), s e S,

cw(s, O)
ct w(s), s e S,

w(x O) w (x), where mo(x) > O.

Since V; L2(S), the pair u, u2 e V satisfies Au + Fu V’b if and only if

--AU + moU2 0 in G,
and

cqu
0----- S L2(S).

These conditions imply a regularity result for u depending on the smoothness
of too. If u and u2 are so given, and if w denotes the solution of the Cauchy prob-
lem of Theorem 4, then (5.1) implies that w is regular (depending on too) and
satisfies (5.7) and the null boundary condition on 0G S. The equation (5.2)
implies the second boundary condition above, and the initial conditions in
Theorem 4 assert that w satisfies w(x, 0) ux(x), x G, and t?w(s, O)/& u2(s),
s e S. The data in this case are more restricted and the conditions stronger than
above, but we obtain a correspondingly stronger solution. Problems of the above
type (with too(X)=-0) originate from the equations of water waves or gravity
waves. See [13], [22] for additional results and references.
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AN INVESTIGATION OF STABILITY OF MOTION UNDER
CONSTANTLY ACTING DISTURBANCES*

J. R. WEISS" AND E. Y. YU

Abstract. This article discusses the total stability, or stability under constantly acting distur-
bances, of a system of nonlinear ordinary differential equations. Total stability differs significantly
from Lyapunov stability in that the former allows for a disturbance in the equations of motion, as
well as a disturbance in the initial condition. The purpose of this study is to extend the mathematical
theory for total stability into a form which can be used directly in applications. To do this, a specific
Lyapunov function is constructed. Then, using this Lyapunov function in a new total stability theorem
we obtain explicit expressions for maximum magnitudes of the initial condition and the disturbances
in the equations of motion. These maximum magnitudes are expressed in terms of the prescribed
bound of the motion from the equilibrium, and in terms of the parameters of the physical system
which the differential equations describe.

1. Introduction. Consider a set of first order ordinary differential equations

(1) 2(t) f(x, t),

where x is an n-vector and the dot denotes the total derivative with respect to
time, t. The vector function f(x, t) is zero at the equilibrium x(t)= 0, i.e.,
f(0, t) 0, continuous and in class E, i.e., it assures the existence of a unique
solution to (1) for all time. Let I1" be the norm of a vector. The equilibrium of
(1) is said to be Lyapunov stable [1], [4] if there exists for each e > 0 a function
l(e, to) > 0 such that [[X(to)[[ < 61 implies [[x(t)[[ < e for >__ to. If (1) is not the
precise mathematical model of the physical system that it is supposed to describe,
or if there exist disturbances acting on the physical system, then an additional
error term or perturbing force term would be added to (1), namely,

(2) c(t) f(x, t) + g(x, t),

where the perturbation function g(x, t) is assumed to be continuous and such
that the right-hand side of (2) is in class E. In general, it is not required that
g(0, t) 0, so the equilibrium of (1) may not be a solution to (2). To investigate
the effect of the perturbation term it is necessary to extend the concept of Lyapunov
stability to that of stability under constantly acting disturbances (or total
stability) as first introduced by Duboin [2]. The equilibrium of (1) is said to be
totally stable if for every e > 0 there exist two positive numbers 61(e) and t2(
such that if [ix(to)[[ < 61 and [[g(x,t)[[ < 62 in {(x, t)[ [[x[[ _-< e,t >__ to} then [Ix(t)[[ < e

for all __> to, where x(t) is the solution to (2). A major theorem on total stability
was given by Malkin [6], which is stated here" If there exists a function v(x, t)
such that in some bounded domain including x 0 it is positive definite, has its
first partial derivatives with respect to the components of x bounded, and has its

* Received by the editors February 19, 1974.
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total time derivative for (1) negative definite, then the equilibrium of (1) is totally
stable. The proof of Malkin’s theorem may be found in [3] and [6]. Nevertheless,
Malkin’s theorem cannot be put into use unless the expressions of the upper
bounds of 61(e) and 62(e) are found for a given e > 0. But these bounds of 61 and
62 cannot be determined unless a Lyapunov function is constructed, which has
its total time derivative negative definite along a solution of (1). Recent work by
Yoshizawa [7] also establishes the total stability of (1). However, his work does
not include the construction of a Lyapunov function for the actual calculations
of 61(e and 62(/3). It is therefore seen that in order to apply the theory of total
stability it is necessary to overcome two essential difficulties. The first is to find
a Lyapunov function for (1). The second is to incorporate into the actual physical
system an energy dissipation mechanism such that the total time derivative of
the Lyapunov function following the motion of the physical system, as represented
by the solution of (1), is negative definite. Such a damping scheme should be
realistic, as the motion of the physical system and its stability behavior depend on
the specific damping scheme. This is a key point often overlooked in stability studies.

The Hamiltonian of the physical system, which is sometimes used as a
Lyapunov function in stability analysis, cannot be used here as a Lyapunov
function in total stability. This is because the total time derivative of the Hamil-
tonian of a nonconservative system incorporated with damping can be shown to
be only nonpositive but not negative definite. Therefore, in the investigation of
total stability the class of Lyapunov functions is more restrictive than in stability
analysis. Due to these difficulties, little work has been done on obtaining explicit
expressions for 61(/3) and 62(/3 in terms of the parameters of the physical system
described by (1).

In this paper we first construct a Lyapunov function for (1) following a
method suggested in [4], and then develop some lemmas and a theorem for the
total stability of (1) which explicitly yields the desired bounds. In the work
presented here the use of a particular Lyapunov function permits the calculation
of upper bounds of 61(/3) and 62(/3 in terms of the physical parameters of the
system. The class of functions f(x, t) in (1) considered in this paper is such that
f(x, t) can be decomposed into linear and nonlinear parts such that

(3) or(t) f(x, t) Ax(t) + h(x, t).

Here, the n n constant matrix A is diagonalizable and its eigenvalues have
negative real parts, i.e., Re (2i) < 0, 1, 2, ..., n, (due to the damping mech-
anism provided in the physical system), and h(x, t)= o([[x[[), or

Ih(x,t)ll
lim 0.

Ilxll-0 ]X

The eigenvector of A corresponding to 2i shall be denoted by bi, i.e., Abi 2ibi.

2. Definitions. In order for this paper to be self-contained, a few necessary
definitions shall be stated here which may be found in some books on stability
(as, e.g., [33).

DEFINITION 2.1. A continuous real function, w(r), is in class K if it is defined
on 0 =< r =< R for some R > 0 such that w(0)= 0 and w(r) increases strictly
monotonically with r.
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DEFINITION 2.2. A continuous real function, v(x, t), is decrescent if there exists
a function q(r)in class K such that v(x, t) <= F(llxll) for Ilxll -< R and >__ to for
some to.

DEFINITION 2.3. A continuous real function, v(x, t), is positive (or negative)
definite if there exists a function tk(r)(or z(r)) in class K such that v(x, t) >=
(or __< -x(llxll)) for Ilxll =< R and => to for some to.

DEFINITION 2.4. A function which is positive definite, decrescent and which
has its total time derivative negative definite along any solution of (1) is a Lyapunov
function for (1).

Unless otherwise stated it shall be assumed that all n-vectors are written in
the basis {ei}= 1, where each element of the n-vector e is zero except for the ith,
which is unity.

If A is an n n matrix, (Ax, x) shall represent (Ax)r, where the superscript
T denotes the transpose and the bar denotes the complex conjugate.

Denote by S the matrix which transforms the basis vector ei onto the eigen-
vector thi, i.e., S ei )i, 1, 2,..., n.

3. The construction of a Lyapunov function. In [4] a technique is presented
which assures the existence of a Lyapunov function for an equation of the form

Ax if A is a matrix whose eigenvalues have negative real parts. However, it
is not possible in general to actually obtain such a Lyapunov function. If A is
diagonalizable then the method of [4] does explicitly yield a Lyapunov function,
as will be shown later. Such a Lyapunov function will be used in a revised form
of Malkin’s original theorem on total stability to obtain expressions for bounds
of 61 and 62

It is known that if the n n constant matrix A in (3) is diagonalizable then
its eigenvectors form a basis for n-space. In this new basis, D, the diagonal form
of A has 2i as the ith diagonal element. Now, rewrite the linearized part of (3) in
the basis {i}7= 1, i.e.,

(4) &(t) Dx(t).

Consider a diagonal matrix B, written also in the basis bi},".= 1, whose ith diagonal
element is 1/(2 Re 2i).

LEMMA 3.1. In the basis {(])i}7= 1, /)(X, t) (Bx, x) is positive definite, i.e.,

(5) v(x, t) (llxll),

and is decrescent, i.e.,

(6) v(x,t) (llxll),

where ck(ll x II)
2 max IRe 2i1’

where tp( x I)
2 min IRe/il"

Proof. The proof is trivial due to the definition of the matrix B.
It is known [1] that the existence of the function v(x, t) given by Lemma 3.1

establishes the asymptotic stability of the equilibrium of (4) and hence of (1). If
one wishes to calculate the bound for the norm of the initial condition so that
the norm of the solution to (1) is less than e, one could use this Lyapunov function.
Here, we are interested in the more realistic problem of total stability, and must
do more to obtain bounds for 61 and 6 2
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LEMMA 3.2. The function v(x, t) given in Lemma 3.1 has its total time derivative
negative definite along solutions of(l) and (3), expressed in the basis {i}7= 1.

Proof. Choose a constant 0 between 0 and 1. Select a number such that in
the basis {bi}7= 1,

Ih(x, t)ll
(7) 211BI < e whenever Ilxll _-< 6.

Ilxl
Such a 6 > 0 exists since h(x,t)= o(llxll). The total time derivative of v(x,t)
along a solution of (1) or (3) is (here, * denotes adjoint)

il(x, t) ((D*B + BD)x, x) + (Bh(x, t), x) + (Bx, h(x, t))

-Ixl + 2 Re (Bh(x, t), x).

It follows that

I IIh(x, t)I.-](8) I(X, t) - + 211BII i-_111xll 2.

Consequently, based on (7), l(X, t) is negative definite, i.e.,

(9) fal(x,t) <- -:(llxll), where z(llxll) (1 00llx[I 2

in a bounded domain Ilxll _-< 6. This completes the proof.
THEOREM 3.1. Let A in (3) have the properties specified in (3). Then the equi-

librium of (1) is totally stable, with upper bounds for X(to) and the perturbation
g(x, t) given, for any preassigned positive constant , by

-m{n IRe 2il 11/2
(10) al < _]_max IRe

(11) 62 <
e(1 a)-mn IRe ),il 1
211nil _max IRel-I"

Proof. Express (1) and (2) in the basis {bi}7= 1. With 6 determined as in the
proof of Lemma 3.2, choose e such that 0 < e, =< 6. Take the Lyapunov function
v(x, t) as established in Lemma 3.1. Let b min v(x, t) on the surface Ilxll
Since v(x, t) is positive definite as in (5), b _> b(e)= e2/(2 max/IRe 2il). Choose a
number between 0 and (e). Consider a solution x(t) to (2) such that v(x, t)
at some time, t*. Since v(x, t) is descrescent, if follows from (6) that

xll 2 21(min IRe

at x(t*). Then, (9) implies that

(12) t31(x,t* < -2(1 a)l min IRe 2il < 0.

Now, the total time derivative of v(x, t) along a solution of (2) is

b2(x, t) b(x, t) + 2 Re (Bx, g(x, t)).
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So at t* this means

62(X, t*)<= --2(1--)l/in IRe 21/ + 21BII Ilxll IIg(x,

By virtue of (5), IIx(t*)l =< [2/max/IRe 2il] a/z, so that

(x, t*) N -2(1 e)l min Re 2 + 2B g(x, t*) 21 max Re X
If, in the basis {4}= , there exists a positive number such that g(x, t) <
at x(t*), then

(13) (x, t*) < 2/(1 e) n Re 2 + 2B 21 mx Re 2

Since is an arbitrary number in the interval between 0 and 4(), it can be taken
arbitrarily close to 4(). Hence, (x,t*)< 0 if g(x,t*)l < , where can
easily be shown to have the upper bound given in (11).

Now, pick a positive number less than or equal to e such that in the basis
{i}= , v(x(to), to) < whenever llx(to)l < . By virtue of (6) and the fact that
has been taken arbitrarily close to (e), the maximum possible upper bound,, for lx(to)ll is such that ()= (e). That is, -[(e)] which is the

bound given in (10).
Let x(t) be a solution to (2) under an initial condition IIX(to)ll < . Suppose

that IIx(t)ll reaches the value e at some time t > to. Then v(x, t) () > l,
indicating that v(x, t) has increased and passed through the point v(x, t) I. But
this is impossible, since at any point x(t*) for which v(x, t*) it has been shown
that (x, t*) < 0. Therefore, if Ix(o) < and g(x, t) < in {(x, t) x N e,

to}, then x(t) < e for all to. This proves the total stability of the
equilibrium of (1).
Cooa 3.1. For any and satisfying (10) and (11) respectively, for

a given e > 0, the total stability d@ned in the original basis, {e}= , takes the form
IIx(to)ll < i 6x/llS-

and

imply
IIx(t)ll < d- llSll for all >= o.

Proof. The proof is trivial, as x in the basis {i}tn.=l is now replaced by
S-ax with x in the basis {ei},".= 1.

The corollary together with (10) and (11) indicate that in order to assure
Ilx(t) < e’ for all _>_ to for some given e’ > 0, it is sufficient to have I[X(to)ll < 6’
and I[g(x, t)ll < 3 in {(x, t)[ [Ixll -< e’, >= to}, where all vectors are written in the
original basis, {ei}’= , and 6 and 6 satisfy the inequalities

(14)

, -m/in IRe 2il
S S- 11 _max IRe 1

211BII IISII IIS- 11 t_aax IRe 1-1"
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In (7) a positive number 6 was defined such that whenever e <= 6, the theorem
is established. There is no reason for requiring to be greater than e. Thus (7)
becomes

IIh(x,t)ll
(15) 211Bl < e whenever Ilxll .
It is seen from (14) that the number may be made large by making small.
Hence, the optimal is the smallest value allowed by (15).

4. Concluding remarks. The foregoing result on the total stability of a non-
linear differential equation may be applied to many physical systems. While
there are theorems in the literature which establish that such a system is totally
stable [3], [6], [7], those works cannot be directly used. This is because these
theorems neither include expressions for bounds of 6’1 and z in terms of param-
eters of the physical system, nor indicate how to construct a Lyapunov function
so as to obtain such expressions. In this work, however, we have converted these
theorems to a form which can be used in applications and have obtained explicit
expressions for bounds of 6’ and

As stated earlier, the physical system must be incorporated with a damping
mechanism such that the eigenvalues of the constant matrix A in (3) have negative
real parts. It is not difficult to devise such a damping scheme in practice. For such
a given physical system, of which (1) or (3) is the mathematical model, the eigen-
values 2i of the matrix A, the matrices B and S, and the number are known
functions of the physical parameters. If a bound, e’, for the deviation of the motion
from the equilibrium is chosen, then one can compute from (14) the upper bounds
for the norms of the initial condition and the constantly acting disturbing force
in order for ]lxll not to exceed e’ at any time. On the other hand, if the magnitude
of the perturbing force or the estimate of the error term is known, then (14) will
allow one either to determine a bound of the motion for a given physical system
or to design the physical system for a desired bound of the motion from the
equilibrium.
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ON THE LAPLACE TRANSFORM FOR DISTRIBUTIONS*

DOUGLAS B. PRICE"

Abstract. A new characterization of the Laplace transform for Schwartz distributions is developed,
using sequences of linear transformations on the space of distributions. The standard theorems on

analyticity, uniqueness and invertibility of the transform are proved, using the new characterization
as the definition of the Laplace transform. It is shown that this sequential definition is equivalent to

Schwartz’s extension of the ordinary Laplace transform to distributions which he obtained from the
Fourier transform.

1. Introduction. The Laplace transform has been an important tool of
applied mathematicians and engineers for many years. The properties of the
ordinary Laplace transform have been well known at least since Widder published
his book, The Laplace Transform [12], in 1941. L. Schwartz [113 extended the
Laplace transform to distributions in 1952, and there have been many other
extensions since then; e.g., Zemanian [13], [14], [15] and Ishihara [9]. In this
paper we give another characterization of the Laplace transform for distributions
and use it to prove the standard theorems on analyticity, uniqueness and in-
vertibility of the transform.

The work which led to this study was motivated by a paper of E. Gesztelyi
on linear operator transformations [7]. Two classes of transformations he con-
siders are the dilatations U, and exponential shifts T -p which are defined for
ordinary functions f, complex numbers p and positive integers n by

U,,f(t) nf(nt),

T-Pf(t) e-Ptf(t).

Gesztelyi shows that whenever the sequence U,f converges (in the sense of
Mikusifiski convergence [10]), the limit is necessarily a complex number. In
addition, he proves that if f is a function which has a Laplace transform at p,
then the sequence of functions { U,T-Pf(t)} converges (in the Mikusifiski sense)
as n to the classical Laplace transform off at p. He then defines the Laplace
transform of a Mikusihski operator x as the limit (whenever it exists in the sense
of Mikusifiski convergence) of the sequence {U,T-Px}, and shows that this
definition generalizes the previous formulations of the Laplace transform for
Mikusifiski operators of G. Doetsch [4] and V. A. Ditkin [2], [3]. Since the
dilatations U, and shifts T- p may be defined on the space ofSchwartz distributions,
we were led to consider whether there might be results analogous to Gesztelyi’s
in this different setting.
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Denote by N(Rn) the space of all infinitely differentiable complex-valued
functions of the n-dimensional real variable (t l, t2,..., tn) with compact
support. Ifj Jl ,J2, "’", J, is a multi-index, then by tktJ(t) or t3Jq(t) we mean

dlJlt(t 1,"" t)
t t22... Ctn.

where IJl Jl + J2 -at- -k-j,. If {qk} is a sequence in @(R"), then we say that
{bk} converges to zero in @(Rn) as k if there is a fixed compact set K con-
taining the support of every bk; and for every multi-index j, {btk} converges to
zero uniformly on K as k .

Denote by ’(R") the space of all linear transformations f from (R") to the
complex field which are continuous in the sense that if {k} converges to zero in
(R), then the sequence of complex numbers {(f, tkk)} converges to zero as
k . Although there are several different ways to assign topologies to (R")
and arrive at the set N’(Rn) of continuous linear functionals on @(R"), we shall
not define a topology for N(R") explicitly, since the notion of sequential con-
tinuity is sufficient for our needs. The elements of N’(R") are the distributions
defined by L. Schwartz in [11]. In the sequel, when the dimension of the space
R" is understood, we shall write and ’ for N(Rn) and ’(R"). Following
Schwartz [11] and Zemanian [13], we associate a locally integrable function f(t)
with the distribution f which assigns to each test function b in @ the value

(f’ ) fg, f(t)rk(t)dt.

With this convention we have the result that for any infinitely differentiable
function (t),

(O(t)f(t), c(t)) (f(t), ,(t)ck(t)).
Let 6e(R") (or 5e) denote the space of infinitely differentiable complex-valued

functions of (t 1, t2,..., t,) which approach zero faster than any power of
1/[tl as It[ . Give the locally convex topology defined by the family {qk,}
of seminorms, where

qk,j() max (l(1 + t2)k3Jqb(t)l :t R)
for every positive integer k and multi-index j. The space St’ of weakly continuous
linear functionals on St consists of the tempered distributions, or distributions
of slow growth.

Let (R") (or ) denote the space of all infinitely differentiable complex-
valued functions on Rn. For each compact set K and each multi-index j, define
the seminorm qr,j by

qr,j() max {[OJ(t)[ :t K}.
Equip with the locally convex topology defined by the family {q/,j} of semi-
norms, and let f’(R") (or ’) denote the space of weakly continuous linear function-
als on . Then ’ is the space of distributions of compact support. Standard results
in the theory of distributions tell us that @ = 6e = , that @ is dense in both 5e

and with their respective topologies, and that ’ = 6’ = ’.
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In 2 we introduce the space M of bounded infinitely differentiable functions
and its subset ’o consisting of those functions in which converge to zero along
with each derivative as tl . We characterize distributions in ’, sometimes
called integrable distributions, as those which satisfy certain a priori bounds
when applied to test functions in , then show that each distribution in M may
be extended to all of . This allows us to prove that if f is in , then {Ujf}
converges in @’ as j to (f, 1)di. Using this result, we show that the Laplace
transform of a distribution f can be defined by

lim (UT-Pf,(1.1) &a[f] (p)

_
i

where tk is a testing function in such that th(0) :/: 0. Theorem 2.3 tells us that if

T-"f and T-fare both in 6’, then we may use definition (1.1) for all complex
numbers p with Re p < Re p < Re p. Thus we have all the machinery necessary
to show that definition (1.1) is at least as general as Schwartz’s definition of the
Laplace transform for distributions, and that the two are equal whenever f has a
Laplace transform in the Schwartz sense. This is done in 4, after we have defined
the transform by (1.1) and used the new definition to prove the standard properties
of analyticity, invertibility and uniqueness of the Laplace transform.

In trying to determine the generality of the new definition of the Laplace
transform, we characterize (in Theorem 3.2) those distributions h that are limits
of sequences of the form {Uif } as linear combinations of b(t) and p.v. (l/t). This
characterization gives an example (p.v. (I/t)) of a distribution f which is not in, but for which the sequence { Uif converges in @’.

The question of generality is finally answered by Theorem 3.4 which says that
if { Uff} converges, then f is in St’. Thus, our definition of [f](p) is valid only
if T-’f is in 6e’, and (1.1) can be no more general than Schwartz’s definition of
the transform. Hence the two definitions must be equivalent.

In 5 we extend the results of 3 and 4 to distributions in ’(R"). The ex-
tensions are, for the most part, straightforward; and we prove only those which
require basically new methods in n dimensions. The Appendix contains the con-
struction of a partition of unity used several places in the text and a lemma used
in the proof of Theorem 2.2.

2. The space 3. Denote by ’(R") (or, where R" is understood, by ’) the
space of all complex-valued functions of an" n-dimensional real variable

t= (t 1,t2,’’’,

which possess continuous and bounded partial derivatives of all orders. For each
multi-index j, define the seminorm q on M by

(2.1) qj(dp) sup {[tJdp(t)l :t nn}

and equip ’ with the locally convex topology determined by the family of semi-
norms {qj}. (For convenience, hereafter, sup f(t) or sup, f(t) will denote
sup {f(t):t Rn}.) A sequence {k} converges in ’ to a function b with respect
to this topology if and only if each derived sequence {dJCkk} converges uniformly
to .
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It is easy to see that c M g. The subspace is not dense in N, however,
for the constant function l(t) is in 9 but cannot be uniformly approximated by
functions in , since for any b in ,

qo[qS(t)- l(t)] sup It(t)- l(t)l >= 1.

For this reason the dual space ’ of N’ cannot be identified with a subspace of the
space ’ of distributions. In fact, Zemanian [14] demonstrates this by giving an
example of a nonzero generalized function in ’ whose restriction to is the
zero distribution.

Since we wish to work within the class ’ of distributions, we will consider
a subspace N’o of N’ consisting of those functions in each of whose derivatives
approach zero as tl o. To be more specific, we say that a function b is in
if and only if is in and for each multi-index j and each positive number e,
there is a compact set K# such that if is not in Kj, then ]cJq(t)l < e.

Give o the topology induced by N’, which makes N’o a locally convex
topological vector space. To see that N is dense in N’o, let {Tk} be a sequence of
functions in such that

1,
k(t)--

0, ]tl k+ 1,

sup I?’(kJ)(t)l --< sup [y()(t)l for every multi-index j.

If 4) is a function in o, then {7k4)} is a sequence in that converges in o to
which shows that N is dense in No. Therefore, the dual space N’ of o is a sub-
space of @’ and a distribution f in N’ is completely determined by its values on. The following theorem is a useful characterization of distributions in ;.

THEOREM 2.1. A distributionf in ’ is also in ’o if and only if there is a number
K such that

(2.2) I(f, 4)1 -< K max sup 1)1 for every ck in I.
IJI_-<K

Proof. To prove that condition (2.2) implies f belongs to N’, let (4k} be a
sequence in that converges to zero in the topology of N’o. Then sup 141--, 0
as k oe for every j and we have

lim I(f, bk)l =< lim K max sup I(kJ)l 0.
k--* IjI <= K

To show that f can be defined on all of o, let tk be a function in Mo and
a sequence in that converges in o to 4. Then the set (K maxll_< sup,
is bounded above and so {l(f, bkl} is also bounded above. Since {bk tkl} is
a sequence in that converges to zero in o as k and tend to infinity inde-
pendently,

lim (f, (Ilk (])l) 0

and (f, bk)} is a Cauchy sequence with a finite limit.
Define (f, b) limk_. (f, bk). If {Ok} is another sequence in that con-

verges in o to b, then {4k- Ok} converges in N’o to zero, so (f, 4) is well-
defined. Since ! is dense in No,fis extended to all ofo and the extension is clearly
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linear. To see that f is continuous on o, notice that

I(f, b)l -< K max sup
IJI<-K

holds even for b o. Thus f is in .
The proof that condition (2.2) holds iff is in proceeds by contradiction.

Suppose that {bk} is a sequence in Mo such that for each k,

[(f, k)l > k max sup 14kJ)(t)l
Ij<=k

k max qj(Ck),
IJl -<

and define Ok dpk/[k maxll_<k q(bk)]. Then Ok is in Mo for every k and

qm(m)
qm(Ok)

k maxll_< q(dPk)

<= 1/k ifk__>m,

so Ok 0 in Mo as k - o. Sincefis in M, this means that (f, Ok) -- O. However,
by the definition of Ok,

I(f,
I<f, 0>l > 1.

k maxl;l__< qj(ckk)

This contradicts the fact that <f, Ok> -’ O, and so there can be no such sequence
{bk}. Therefore, iff is in M, condition (2.2) holds, and the proof is complete.

Since o c and the topology of Mo is that induced by M, each element
of M’ has a restriction to Mo that is in M;. The next theorem shows that a con-
verse is also true, i.e., that each element ofM can be extended to all of ’.

THEOREM 2.2. Each distribution f in ’o has a unique extension f in ’ with
the property that (f, Ckk) converges to (f, ) whenever {qSk} is a uniformly bounded
sequence in that converges to dp with respect to the topology induced on by o.

Proof. Iff is in , then by Theorem 2.1 there is a number K such that for
every , in o,

I(f, ’>l =< K max sup I,(/)l.
IJI<=K

Let 4 be in ’ and suppose I is a finite set of nonnegative integers. Let {}?=
be the partition of unity defined in the Appendix. Then

=< K max sup c3J 7b (t)
IJl<=g

< ()(il )(k)tO-k)(t)__< K max sup
IjI<__K

<= KK"(K !)" max sup 17(t)l max sup
Ikl<-K IJIK

Now B is independent of the choice of the set I, so by the lemma proved in the
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Appendix we know that for any finite set I of nonnegative integers,

Therefore

i=0

and the series io (f, 7ib) converges absolutely.
Define an extension f off by

i=0

for every 4 in . To see thatf fon o, notice that if0 e o, theno (f, Y0)
is also absolutely convergent and the sequence {2=o 70} converges to 0 in

o as k . Thus

i=0 i=0

It remains to be shown that f is continuous on . This will follow from the
second part of the proof which shows that f is continuous even with respect to a
weaker topology than the one given to . To this end, let {} be a uniformly
bounded sequence in that converges to zero in the topology of g, and let

C max sup sup lOJ(t)l,

where K is the constant defined for f by Theorem 2.1. Let I be a finite set of non-
negative integers and for each e 1, let k be a positive integer. Then

KK"(K !)"C max sup laSTo(t)l
IJIN

B

Therefore, for every finite subset I of nonnegative integers and every choice of
the collection {ki} of positive integers,

(2.3) I<f, 2,4),}1 -< 4B’.

Now we already know that for each k,o (f, TiCk) converges absolutely.
We will show that this convergence is uniform with respect to k. Let e be a positive
number. Then for each k the absolute convergence ofo (f, 7ik) guarantees
the existence of a smallest positive integer Nk such that

(2.4) I(f, 7,4)k)1 <-.
i=Nk+ 2

Suppose that the set {Nk} cannot be bounded above. (Assume N > for every
k, choosing, if necessary, a subsequence of {k} for which this is true.)
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Since Nk is the smallest positive integer that satisfies (2.4), there must also be
positive integers {Mk} such that for each k,

Mu /3
(2.5) I(f, 4)1 >

i=Nu 2"

Pick a sequence {’k} in the following way. Let vl N1. Since M < , we can
pick v2 such that N2 > Ma. Similarly, for each k, pick vk such that N > M_,.
Then if M is a positive integer which is larger than 8B’/e, we have by (2.5)

M Mv
I(f,Y,bk>l => M > 4B’.

k i=Nvk
But this is a sum of the form

il

given in (2.3), where the finite set

I= U U {i},
<_k<_M Nvk<_i<_Mvk

and k v for N __< __< M. The assumption that the set (Nk} is unbounded
has led us to a contradiction; so we may assume there is a positive integer N such
that N N for every k, and we have

(2.6) I(f, ’idPk)l < - for every k.

Now {bk} converges to zero in the topology of , and the derivatives of 7
are uniformly bounded for all i; so there must be a positive integer N’ such that
ifk > N’,

(2.7) K max sup 74 <
IJIK i=o 2

Therefore limk_ (f, bk)= 0. This proves that f is sequentially continuous.
Since M is Hausdorff and the topology of M is defined by a countable family of
seminorms, , is metrizable. Thus sequential continuity off on guarantees that
f is in M’.
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The remarks at the beginning of this section show that there may be more
than one way to extend a distribution f in to all of . However, @ is dense in
g and, therefore, is dense in with the topology induced by g. Moreover, if

b is in , there is a uniformly bounded sequence {bk) in that converges to b
in this topology. Thus any two extensions of f which satisfy the property of the
theorem must also be equal on . That is, there can be only one such extension,
and f is unique. The proof of Theorem 2.2 is now complete.

In the sequel, whenever we apply a distribution f in to a test function b
in , we understand this to mean (f, 4), where f is the particular (unique) ex-
tension of J defined in Theorem 2.2. In particular, the constant functions are in, so if f is in ’, (f, c) c(f, 1) is then defined. Iff happens to be a regular
distribution in #3) determined by an integrable function f(t), then

(f 1) f f(t) dt.

For this reason, distributions in ) are frequently called integrable distributions.
There are two more results concerning ) which will be needed in later

sections. Recall that if a and b are in R", a < b means a < b, 1, 2,..., m,
and eat is the function exp [,".__ aiti]. Let C" denote the linear space of n-tuples
of complex numbers.

THEOREM 2.3. Iff is in ’(R") and a, b are in R" with a < b such that e-"tf(t)
and e-bf(t) are both in 5#’, then for every p in C" with a < Re p < b, e-Pf(t) is

in o.
Proof. Let p be in C" with a < Rep < b, and let e be in R" with e > 0 such

that

e < min {Repi ai, bi Repi:i 1,2, n}.
If 2(t) e*: / e -*:*, then 2(t)e-Ptf(t) is in 5’ and 1/2(t) is in 5. Also, for every
b o, (b/A)(t) is in 5, so we may write

(e-Ptf(t), th(t)) (2(t)e-P’f(t), (qg/2)(t)).

This expression clearly identifies e-Ptf(t) as a continuous linear transformation
on o as long as a < Re p < b, so the theorem is proved.

THeOReM 2.4. lff and g are in )(R"), then their convolution can be defined
and is also in ’o(R").

Proof. Recall that if f is in ’, then f is the distribution defined for every
b by

(f, ) (f(t), (-t)).

Using the tensor product (R) to formally define f* g, we have

(f * g, d)) (f(t) (R) g(z), th(t +
(f(t), (g(z), $(t +

(f(t), (,(z), c(t

(f(t), (, * dp)(t)).
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This string of inequalities will be .justified and the convolution f* g will be de-
fined as a distribution in if we can show that , q is in Y) when 4 is in o
and g is in , and that ( 4)k converges to zero in whenever 4’k converges to
zero in o. To do this, consider

sup Ic3( * )(t)[ sup

-sup IcJ(g(r), (t +

--sup l<g(r), dP(J)( + "r)>]

_< sup K max sup IOib(J)(t + r)l
lil<_g

K max sup Ib(i+)(t)l
Irl_<g

BK,j,

where K is the constant defined for g by Theorem 2.1.
Therefore * 4 is in Mo and if 4 converges to zero in Mo, then supt 14( + )(t)l

converges to zero, and * must converge to zero in . Thus (f* g,
(f, * 4’) defines f, g as a distribution in M, and the theorem is proved.
In the sequel we shall frequently use the fact that M is a subset of 5’. This

is easily seen to be true, since 5 c Mo and is dense in Mo with respect to the
topology of Mo. Another way of verifying that ’ c 5’ is to compare Theorem
2.1 with the corresponding result for ’ (Zemanian [13, p. 111]).

3. The transformations U and T-". In this section we define and give some
results concerning two linear transformations on the space ’(R"). Although the
definitions of the transformations will be stated for n-dimensional distributions,
the theorems proved in this section will concern only distributions in ’(R).
The generalizations to ’(R") of these results will be postponed until 5.

If a (al, ..., a,) > 0 in R", define the linear transformation Ua on ’(R")
by

(U,f(t), ok(t)) (a,a2 anf(altl, a,t,), (tl,
(3.1)

for every distribution f and every test function 4. By a > 0 where a R", we mean
{a > O" <= <= n} so Uaf is well-defined as a distribution. Also, Ua is continuous
and linear on (R"), as can be verified.

Another useful transformation on ’(R") is defined in the following way"
For each p p,, ..., p,, in C" let T -’ be defined by

< T-’f(t), (t)> <e-P’f(t),

xp Piti f(tl,’", t,,), b(tl,...,

for each distribution f and test function 4. The transformation T-p is clearly
continuous and linear on ’(R").
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The rest of this section will be devoted to proving results about these two
transformations applied to 9’(R), the one-dimensional distributions. We are
primarily concerned with the convergence of the sequences of distributions
{Uf} or {UjT-Pf} as j -. o. The first theorem is a direct corollary to Theorem
2.2.

THEOREM 3.1. If f is in ]’o, then

lim Uf (f, 1),

where the limit is taken in 9’.
Proof. Let b be in 9 and for each positive integer j let tk(t) dp(t/j). Then

b is also in 9 for each j and the sequence {} converges uniformly on compact
sets as j oe to the function b(0)l. Also, if k >_ 1, the sequence {qSk(t)}

{(1/j)kdp(k(t/j)} converges uniformly on compact sets to zero as j oe. There-
fore, the uniformly bounded sequence {q} in M converges with respect to the
topology induced on N’ by gr, and by Theorem 2.2,

lim (Uf, tk) lim (f, b)

< f, 4,(0)1

<<f, 1>6, q>.
Thus we have shown that

lim Ujf-- <f, 1>,
j

and the proof is complete.
An obvious question to ask is: Does the sequence {Uf} ever converge if

f is not in )? The answer is given by demonstrating a distribution f which is
not in M) but for which the sequence {Uf} does converge. This is done in the
following examples.

t(1)(t v). If 4 is in 9, thenExample 3 Let f(t) -=
<f, b>

and the sum is actually finite since b has compact support. In fact, if the support
of b is contained in {t’t <= K}, we have

lim (Ujf, qS> lim 6(t v), dp
joo joo v=l

=lim =1 1(,()
j-K (1)(t) dt (K) (0)
0

-(0) -<6,>.

Therefore, limj_, Uf 6.
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To see that f is not in , look at the function b(t) (sin 2rot)It. If we define
q(0) lim,_ o b(t), then b is in o since it is infinitely differentiable and each
derivative approaches zero like 1/t as Itl --, . However, (f, b) is not defined in
this case since

(f, b> 2rt -,
=11,

and this series does not converge. Thus f(t) b’(t v) is a distribution not
inM for which the sequence Ujf} converges.

Example 3.2. Recall that the one-dimensional distribution p.v. 1/t is defined
by

p ) If-’(t).v. 7’ b(t lim dt + dt
o

where e is always positive. This distribution is not in Mb (since it obviously can-
not be extended to all of M) but it is invariant on 9 under all transformations of
the type Ua, where a is a positive real number.

The next theorem characterizes all distributions which are limits in .’(R)
of sequences {Uf} as j .

THEOREM 3.2. If f is a one-dimensional distribution and { Ujf} converges in

’ to a distribution h, then

h(t) cl p.v. (l/t) + c2 6(t),

where c and c2 are constants.

Proof. Since Uaf h in 9’ as j m, it is easy to see that Uah h for every
positive real number a. Therefore, if a - 0,

(3.3) h(at) (1/a)h(t),

and we may differentiate (3.3) with respect to a and evaluate the result at the
point a 1, to get th()(t)= -h(t). Therefore (th(t))()= O, and by a familiar
result on the differentiation of distributions (Horvtth [8, p. 327]) there is a constant

ca such that

(3.4) th(t) c

But for any constant c, the constant distribution ca(t satisfies

(3.5) ca(t) tc p.v. (I/t).

So, from (3.4) and (3.5) we get

t[h(t) c p.v. (I/t)] 0,

which implies (Horvfith [8, p. 352]) that there is a constant c2 such that

h(t) c p.v. (l/t) + c2 6(t).

The proof is now complete.
The next theorem will show that in the cases of interest to us, ca must be zero.
THEOREM 3.3. If there are two complex numbers pl and P2 with Re Pa - Re P2

such that { UjT-’f} and { UT-’f both converge in 9; as j , then for every
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complex number p for which the sequence converges there is a constant c(p) such
that

lim UIT-Pf c(p) (t).
j-

Proof. We may assume without loss of generality that P 0 and that

P2 P has real part greater than zero. Let b be a function in 9 whose support
is contained in (0, oo), and for every positive integer j let bj(t) e-Vltqb(t). Clearly,
the sequence {bi(t)} converges to zero in

By Theorem 3.2 we know that {U2T-Pf} converges to

ca(p) p.v. (l/t) + c2(P) di(t)

and since does not have support at the origin, (6, qS) 0. Therefore

lim (UjT-Pf ok) (cl(p)p.v. (1/t), ok(t)).
j

But

lim (UT-f, b) lim (U.f(t),e-P1’qS(t))

lim (Ujf, b) 0
jo

since bi 0 in , .f} converges in ’, and convergence in ’ is uniform on
bounded subsets of . Furthermore, the support of p.v. (l/t) is the whole real
line, and the only way (Cl)p.v.(1/t), (t)) can equal zero for every with
support contained in (0, ) is for c1 to be zero. Thus limi UT-f c2) (t).

Now, let g(t) T-f(t); let a be a function in with support contained in
(- , 0); and for every positive integer j, let ai(t eVa(t). Then {a} converges
in to zero and as before we get

lim (Ugf, a) lim ( UjTPg, a)
j j

lim ( Ujg, oj>
j

But limj_. Ujf Cl(O p.v. (l/t) + c2(0 6(t) and (6, tr) O, so (ca(O) p.v. (l/t),
tr(t)) O. As before, this can happen for all tr in 9 with support contained in
(-, O) only if c1(0) is zero. Therefore, limj_ Ujf c2(0)6. Thus for every
complex number p where the sequence converges,

lim U T Pf c(p)6
j

COROLLAIY 3.1. If f is a distribution and there exist real numbers o and
such that {UiT-Vf converges in 9’ as long as < Re p </3, then for each such
complex number p,

lim UT-Vf c(p)6.
j--,

COROLLARY 3.2. If {U1f} converges in 9’ to c p.v.(1/t)+ c26(t where
c 4= O, then the sequence {UiT-Vf cannot converge in 9’ as long as Re p 4: 0.
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Our purpose is to use sequences of the form UsT-Pf} to define the Laplace
transform of f at p. Therefore, we would like to strengthen Corollary 3.1 by
showing that if there are two complex numbers Pl, P2 such that { UsT-P’f} and
{UT-P2f} both converge, then as long as Re pl < Re p < Re P2, {UT-Pf} also
converges. This will follow from the next theorem which shows that whenever
{ Uf} converges in ’, then f is in 5e’.

THEOREM 3.4. Iff is a distribution such that the sequence {Uf converges in

’ as j , then f 6 5’.
Proof. It is easy to show that if {fk} is a sequence that converges in @’ and

K is a compact set in R, then there is a constant C and a positive integer r such
that for every test function b with support contained in K,

[(fk, q)[ ----< C max sup
IJl --<

is satisfied. Therefore there are constants C and r such that if the support of
is in the interval [- 1, 1], then for every j,

I(Usf, ck)l <= C max sup
lil<=r

If q is in with support contained in the interval i--k, k], then the support of
ck(kt) is in [- 1, 1], so

I<f, >1 I< uf, b(kt)>l

(3.6) =< C max sup
lil<=r

<= Ck max sup 14i)1,
lil<-r

Now, let {Tk} be the partition of unity defined for R in the Appendix and let
0 be a function in 5e. Then the function kO has support contained in the set
{t’k =< Itl =< k / 1}; so by the properties of ’k and inequality (3.6) we have

I(f, ’O)l _-< C(k + 1) max sup
(3.7)

<= CL(k + 1) maxsup {lO(i)(t)[’k- < < k + 1},
Ii]-<

where L rr! maxl sup 17")[. Since 0 is in 5e, there is a constant C’ such that

C’
(3.8) max IO(i)(t)l <

lil__< (1 + ]t[2)r+2

for all t. So from (3.7) and (3.8) we get

{ (k +1)r(1+
I(f, ykO)l < CLC’ sup itl2)+2k < < k +

(k/ 1)< CLC’
(1 +lk- ll2y +2

CLC’
-(k+l
-<

)
as long ask_>_3.

Therefore the series =o (f, YkO) converges absolutely.
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Since 0 was an arbitrary function in 6e, f may be extended to 6 by defining
for any 0 in 6e

(3.9) (f O) (f kO).
k=0

If f were already in 6e’, then (3.9) would be satisfied for every 0 in 6e; so our
definition is consistent. It is easy to see that (3.9) extends f to 5e in a linear and
continuous fashion, so f is in ’, and the proof is complete.

COROLLARY 3.3. If there are two complex numbers Pa and P2 with Re pa < Re P2
such that {UT-Vf} and {UT-Pf} both converge in !’, then whenever
Repa < Rep < Rep2, {UjT-f} converges in !’ to (T-Pf 1)6.

Proof. If {UjT-Pf} and {UT-Pf} both converge in @’, then by Theorem
3.4, T-fand T-Pf are both in 5e’. Also, by Theorem 2.3, T-Pf is in M as long
as Re P < Re p < Re P2. Therefore, by Theorem 3.1,

lim UT-f (T-f,
j--,

and the corollary is proved.
4. The Laplace transform. In this section we give a new characterization of

the Laplace transform for one-dimensional distributions. We use it to prove the
standard theorems concerning analyticity, uniqueness, and invertibility of the
transform, then show that the new characterization is equivalent to Schwartz’s
definition of the Laplace transform for distributions. However, the development
given here is completely independent of Schwartz’s treatment.

We say that a distribution f is Laplace transformable if there is an open
interval (,/3) such that whenever p is a complex number with real part in (, fl),
T-Pf is a distribution in . If (, ) is the largest such open interval, then the set

f {p’Re p e (e, fl)}
is called the domain of definition of the Laplace transform for f. The existence
of the set f follows from Theorem 2.3.

If f is a Laplace transformable distribution whose transform has domain of
definition fL then for any p f, we define the Laplace transform off at p by

1
lim(4.1) o[f] (p)

where tk is a test function in with b(0) - 0. Theorem 3.1 guarantees the existence
of the limit in (4.1) and tells us what it is. Thus, we have another characterization

(4.2) a[f] (p) < T-f, 1 >.
By (4.2) we see that [f] is a complex-valued function of the complex

variable p with domain f. It also follows from (4.2) that the mapping is linear.
For, iffand g are distributions that are transformable at p and a and b are complex
numbers, then af + bg is Laplace transformable at p and

C[af + bg] (T-’[af + bg], 1)

a(T-’f, 1) + b(T-’g, 1)

a[f] (p) + b&’[g] (p).
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The next theorem shows that if f is Laplace transformable in fL then o[f] is
an analytic function of p in

THEOREM 4.1. Iff is a distribution that is Laplace transformable in , then
o[f] is analytic in and

d
--9[f](p) [-- tf(t)](p).
dp

Proof. Suppose that {p’ < Rep < fl}; pick Po in , and e in (0, 1)
such that e<min{Repo-,fl-Repo}. If 2(0=et+e -’, then 1/2 is in

o, and 2T-Pf is in . Also, as long as [p Po[ < e, we have

[f])- [f]) e-’ e-t
po P- Po

f(t),l(t

e-’f(t)’--, P Po

2(0 e-P’f(t), +

Now, each derivative of
2 [--- Po)t]J -2

2(0 j= 2 J
is bounded in absolute value by the corresponding derivative of (t2/2(t))e
and is therefore in . Thus, as p Po, (1/2(t))[(e-(v-)’ 1)/ Po)] converges
in 0 to -t/2(t), and we have

d
__o[f] (Po) lim
dp -o

"[f] (P) [f] (Po)
P-Po

(T-’[- tf(t)], l(t))

[--tf(t)](po).

This completes the proof of Theorem 4.1.
Much of the usefulness of the Laplace transform is a result of the way it

treats the convolution of two distributions. This important property of the trans-
form is given by the next theorem.

THEOREM 4.2. Iff and g are Laplace transformable distributions such that the
domains of their respective transforms have intersection , then f* g is Laplace
transformable in f and for every p in f,

[f g] (p) 5[f] (p)O[g] (p).

Proof. For p in f, T-Pf and T-’g are both in ’; so by Theorem 2.4,

T-Pf * T-Pg T-P(f * g) is in ’. Therefore f * g is Laplace transformable at
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p; and from (4.2) and the definition of convolution we get

a[f, g] (p) (T-P(f * g), 1)

(T-Pf* T-Pg, 1)

(T-Pf(t)(R) T-’g(z), l(t + z))

(W-V(t) T-g(z), l(t)l(z))

(W-f, 1)(W-Pg, 1
[f])[g]),

which completes the proof.
No theory of the Laplace transform would be useful without inversion and

uniqueness theorems. The next theorem has these results as corollaries. In what
follows we have as independent variables at various times the real variable and
the real and imaginary parts of the complex variable p. For this reason we some-
times indicate the particular independent variable for a space or an operation by
a subscript, e.g., (f(z), e-i), where f(z) is in and is a parameter.

THEOREM 4.3. Iff is a distribution in, then

lim e’f(),e-5 dm(4.3) f(t)

where the limi is taken in ’.
Proof. For each function 7 in the partition of unity {7} defined in the

Appendix, f(), ()e-) is a continuous function of m and, as shown in the
proof of Theorem 2.2, the sum =of()’7()e ) converges uniformly.

Therefore f(r), e-) is a continuous function of m and the tegral in (4.3) is
well-defined. Let be in and r be a positive real number. Then by standard
theorems on the integration of distributions and test functions with respect to
parameters, we have

eit(f(z), e-iO*), dm, (t) (eit(f(z), e-i*),, (t)) d

<f(), e-)<e, (t)) dm

(f(, <e"-, 4(0))

f(I, e’"-, (0)

f(z), e-i" ei’(t) dtd
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where -o9 and b() is the Fourier transform of b(t). Clearly, as r ct?,

-t eiP() d 2nqb(z) uniformly with respect to z, and similarly

dzk e’*() d (i) ei*() d + 2n()(r)

uniformly. So the limit in N of2e()d as r is 24(), and we have

lim eit(f(z), e-ir> din, 4(t z), lim (eiO-r), 4(t)), d

Thus, as distributions,

(f(t),

lim ei’t(f(’c) e-i’’ do9f(t) f ,.-oo

and the theorem is proved.
COROLLARY 4.1. If a is a real number such that e-"tf(t) is in ’ot, then

f(t) lim
1 rj"

+

eP’(e-Pf("0, 1(’)) alp,

where the limit is taken in t.
Proof. If e-tf(t) is in ,, then as long as Re p a, e-Ptf(t) is in t, and

Therefore

1
lim ei"(e e ,,do).-rf(Z -io"5e ’f(t) --t-.(R)

1
lim e"’ ei’(e-’f(’c) e-i*’ do9f(t) - t-o

ttr + ir1
lim ePt(e-P*f(z), l(z)), dp,

2

which proves the corollary.
COROLLARY 4.2 (Inversion theorem). Iff is Laplace transformable in

f= {p’a<Rep <fl},
then, as long as < a < fl,

1 r + ir

f(t) lim _1 ePt,[f](p) dp,
ir

where the limit is taken in !’t.
COROLLARY 4.3 (Uniqueness theorem). Iff and g are Laplace transformable

distributions such that C’[f](p)= &O[g](p) on some vertical line in the common
domain of the transforms off and g, then f g as distributions in !’t.
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The next theorem gives sufficient conditions that an analytic function F(p)
be the Laplace transform of a distribution f(t), and characterizes the distribution f.

THEOREM 4.4. If F(p) is analytic for p in {o. + io)’o < o. < fl} and is
bounded in by a polynomial in o) (or in IPl), then F(p)= [f](p), where the
distribution f(t) is defined by

fa+ ir

eP’F(p) dp(4.4) f(t) -lim.-,,
with the limit taken in ’ for any fixed value of such that o < < ft.

Proof. The proof will be accomplished in four steps. It will be shown that
(i) f is a distribution, (ii) f is independent of the value of chosen in (4.4) as long
as < o. < fl, (iii) e-’f(t) is in M;, as long as < < , and (iv) f(p) [f] (p)

(r-’f, 1) for every p in ft.
(i) To see that f is a distribution, let < o. < fl and let q be in @,. Then

(4.5)

+ ir

e’. eitF(a + io)) do) (td"F(p) dp, (t)- a--ir

F(o. + io))[e-’4(- t)](o)) do).
2n

Now e-t( t) is in t, so its Fourier transform is certainly in 5,o. Also,
since F(o. + im) is a function bounded by a polynomial in , it is a regular dis-
tribution in . Therefore, the limit as r of the last integral in (4.5) is well-
defined as the value of the regular distribution F(a + im) at the testing function
[e-tO( t)], and we have

(f(t), (t)) lim e’e) alp,
r a-ir

(4.6)

Clearly, if (k) is a sequence that converges to zero in t as k , then the
sequence ([e-tk(--t)]) converges to zero in as k ; so by (4.6),
(f, Ok 0 also. Thus (4.4) defines f as a distribution in ’t.

(ii) To see that f is independent of the choice of , choose , fiE such that
< x < 2 < fl; and for every positive real number r, let F be the closed path

in defined by the lines Rcp , Rep 2, and Imp r. Since F) is
analytic in fl, Cauchy’s theorem says that Yr ePtF) dp 0. Therefore

(4.7)

But

eP’F(p) dp eP’F(p) dp eP’F(p) dp + eP’F(p) dp.
ir ir ir + ir

e"F(p) dp, b(t (e+-i’F(a +_ ir), (t)> da
\1 + ir

(4.8) F(O. + ir)(e(+-i)’, (t))do.

F(a 4- ir)(e +-i’, e’(t))do’.
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Now (e +/-i’, e"k(t)) is a function in 6, for every value of a, and the integral (4.8)
is over a bounded interval; so as r the integral (4.8) approaches zero. Thus
by (4.7) we see that

_fa + ir

fa:
+ ir

lim eP’F(p) dp lim eP’f(p) dp
r--*

as long as<a <aa <ft.
(iii) In proving that e-"f(t) is in ’ whenever < a < fl, we use (4.6) andOt

the fact that F(a + io9)is in 6e, to get bounds on (e-"f(t), b(t)), where b is in
t. We have

(4.9)

I(e-tf(t), q(t))l F(a + io9)(ei’, ok(t)), do9

< Ca sup (1 + 0)2)r’
d*’

(ei’’, q(t)),
do

C1 sup k0
(1 2k(eit,(it)r(t))

C sup Iil

Crr max sup

Crarmax C max sup I(1 + tz)"[(it)(t)]+)l,

where the last inequality follows from the fact that e is a distribution in ’that is uniformly bounded with respect to w. It is clear that we may expand the
derivative of the product using Leibniz’s rule and consolidate the various con-
stants in (4.9) to get a positive number C and positive integer r which do not

depend on such that

I<e-f(t), (t)>l C max sup I(1 + tzY)(t)l.

This bound means that e-’f(t) is in ’ for all a such that < a < , and
so by Theorem 2.3, e-f(t) is in Mt for all such

(iv) Part (iv) of this proof can be verified by using the first three parts and
the uniqueness theorem for the inverse Fourier transform. However, it will be
proved here by actually showing that (T-Pf, 1) F). Let p a + iz, where
< a < , and let be a function in with (0) 1 and such that the support

of is contained in (- 1, 1). Then by Theorem 3.1, we see that

(e-"f(t), l(t)) lim (U e-’f(t), (t))

lim(e-’f(t)’))
1_ e
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Let F F + F2 where the support of F2 is contained in {a + ico’[co z[ < 1}
and F2 F in {a + io9"1o9 z[ < 1/2}. Also choose k 2 large enough so that
G() Fl(a + im)/[i(m )] is in L, that is, an integrable function of m. This
can be done since F(a + ira) is bounded by some polynomial in m for p in ft.
Then we have

lim
1

F(a + i) (-)’ d
j

lim
1

G() i(- )]*e-t d

(4.10) glim (-21) G() (-*)t,f.l() j do

=lim (-1) (t/j)
fl-

e -" G(m) ei dm dt
j 2

1) fJ 4()(t/j) _,
lim (fl_x j e -*" ff [G()](t)dt.

Now since G() is an L-function, its inverse Fourier transform is certainly
bounded in absolute value, say by B. Therefore, the integrand in (4.10) is bounded
in absolute value. We have

f ck()(t/J)
e-m 1[G(o9)] (t) dt

J <=-B f3_j d/k) ) dt

<= (B/j)(2j) sup

2B sup

Since k _>_ 2, we see that the limit in (4.10) must be zero.
The term we have neglected is

lim eJ--’
F2(o" + io9) i(-)’, b do9

(4.11)
lim e - ’[F(a + iog)](t) dt.

Now if-l[F2(o" + i09)] is in 5, so asj , {dp(t/j)-a[Fz(a + ico)] (t)} converges
in to if-[F2(o" + io)]. Also, e-" is a regular distribution in St’t, so the limit
in (4.11) is

e-it-l[F2(t7 -t" iog)](t) dt F2(a + iz)= F(a + iz)

F(p).

Thus we have shown that

{T-if, 1) F(p)

as long as a < Re p < fl, and the proof of Theorem 4.4 is complete.



ON THE LAPLACE TRANSFORM FOR DISTRIBUTIONS 69

The Laplace transform has been developed so far without any reference to
the extension of the classical Laplace transform to distributions as defined by
Schwartz. However, it is easy to see that the development given here is equivalent
to that of Schwartz. First, notice that by Theorem 2.3 and the fact that
a distribution f is Laplace transformable in our sense if and only if e-P’f(t) is in
9’, for every p in f. Therefore, the transformable distributions and domains of
the transform are the same for both definitions of the transform. Next, we see
that if there is an open interval (a, fl) such that e-"f(t) is in ;t whenever a is in
(, fl), then the Fourier transform of e-"f(t) is an ordinary function of co defined
by

(4.12) ,[e-"f(t)](o9) (e-"f(t), e-i")

The right-hand side of (4.12) makes sense as the application of a distribution in
M{) to a testing function in M. To see that (4.12) is true, let b be a function in 5ao,.
Then

([e-tf(t)](o9), b(o9))o (e-’nf(t), (t))

(el_ 09)-"’f(t), e-i’kk(o9) d

(e-’f(t), e-’),dp(co) doo

((e-"’f(t), e-’">,,
Thus, if f is Laplace transformable in and p a + ico is in ; by Schwartz’s
definition of the transform we have

5(’If](p) [e-"f(t)](o9) (e-’tf(t), e-i’t>t
(e-tf(t), l(t)), (T-V, 1),

and the two definitions of the Laplace transform are equivalent.
We will next derive some of the standard operation-transform formulas for

the distributional Laplace transform using the characterization of the transform
given in (4.1).

Let f be a Laplace transformable distribution whose transform has domain
of definition {p’a < Re p < fl}. Then f) is also Laplace transformable in. To compute the transform off), let b be a function in such that 4(0) 1,
4’(0) : 0, and let j be a positive integer. Then if p is in , we have

( UjT-’f’x,, ) ( fx)(t), e-’tdp( S))
(4.13) f(t),pe-"O -)e-

p(UjT-’f, c/)> I(UaT-’f,
J

As j --+ oo, the second term in the right-hand side of (4.13)converges to zero, and
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so by (4.1) we have

&o[f](p) lim p(UT-Pf, ) p&O[f](p).
j-*oo

By an inductive argument it is easy to see that for every positive integer k

(4.14) [ftk)](p) p[ftk-a)](p)= pk[f]).

Another operational formula is furnished by Theorem 4.1, which says that

d
[-- tf(t)]) [/]).

This formula can be extended by induction to get, for every positive integer k,

d
(4.15) [tf(t)]) (- 1)[f]).

If f is Laplace transformable in , then f(t ) is transformable in for
every real number z, and we have

(UjW-Pf(t- ), (t)) (f(t- ),e-P*(t/j))

(f(t), e-"+)((t + z)/j))

e-"(UjT-"f(t), (t +
Now, (t + r)is in ;and as long as (r) 0,

lim e-(UT-Pf(t), (t + )) =e-(T-Pf 1)(6(t), (t +
j

SO

(4.16) [f(t r)])= e-"[f]).

If q is a fixed complex number and f is Laplace transformable in , then
e-q’f(t) is Laplace transformable in fl’ {p’ Req < Re p < B Req}, and
we have

(UjT-P[e-qtf(t)], (t)) (UjT-(P+q)f

Therefore, as long as p is in ’,

(4.17) [e-f(t)]) [f] + q).

If k is a fixed positive integer and f is Laplace transformable in , then Ukf
is Laplace transformable in fl" {p’ ka < Re p < kfl}. For p " we have

(UjT-"[Uf], ) (Uf

(f(t), e-p/kO(t/jk))

(UT-p/kf, (t/k)).

As j , this converges to (T-p/kf, 1)(6, ), SO we get the formula

(4.18) [Ukf]) [f]/k).
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In order to demonstrate some of the theory developed so far, consider the
distribution

f(t)-- 6(1)(t- v).
v-l

Recall that in Example 3.1 we showed that f is not in , but that {Ujf} con-
verges in 9’ to -6 as j . Notice that if Re p > 0, then T-’f is in, so f has
a Laplace transform defined in { p" Re p > 0}. Also notice that

d
f t)

dt
6( v)

so by (4.14) if g(t) 6(t v),

[f]) -p[g]) for every p in .
If 2(t) is a function in such that 2(t) 0 for < 0 and 2(0 1 for ,

then by (4.2),

[g]) ( T-Pg, 1)= {: 6(t

Z e-" Z
v=l v=0

Therefore, for p in

1/(ep- 1), p.

[f] (p) -pg] (p) p/(1 eP).

5. The N-dimensional Laplace transform. In this section the results proved
in 3 and 4 for distributions in ’(R) will be extended to @’(Rn). At the beginning
of 3, the linear transformations U, and T -p were defined, where a is in R" with
a > 0 and p is in C". Here, as in 3, we are concerned with the limit of the sequence
of distributions {UjT-Pf}. However, in this section, j represents a multi-index,
J Jl ,J2, Jn, instead of a positive integer-valued index. Let j --. mean that
J , J2 --* ov,...,j, , and for each and k, =< =< n and 1 =< k =< n,
Ji independently of Jk. If {f} is a "sequence" of distributions in @’(R")
indexed by the multi-index j, then the statement

lim f h
j-

means that if b is in (R") and e > 0, then there is a positive integer N such that
whenever Jk >= S for every k, 1 __< k n, then I(f, q) (h, b)l < e.

The need for being very specific about what is meant by the limit of a sequence
indexed by multi-indices will be demonstrated by the following example. Let the
distribution h be defined by

X2 y2
h(x, y)=

(x2 + y2)2"

Then h(x, y) is a rational function of x and y with a removable singularity at the
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origin and can be considered a distribution in ’(R2). It is easy to see that for
every positive integer k,

h(x, y) k2h(kx, ky).

Therefore, if Ukh is defined by

Ukh(X, y) k2h(kx, ky),

then limk_,oo Ukh h. However, it is not true that lim_.oo Uh h, where j
represents a multi-index of order 2. To verify this, let Jk (2k, k) for every positive
integer k. Then

lim U,,h(x, y) lim 2k2h(2kx, ky)

lim 2k
k (4k2X2 + kEy2)2J
2(4X2 y2)
(4X2 + y2)2

h(x, y).

Thus, by our definition of the limit, h does not equal limj h.
Since the results in this section are n-dimensional analogues of results already

proved, we shall prove only those for which the one-dimensional proofs do not
generalize immediately. In particular, Theorem 3.1 may be generalized to n-
dimensions without changing the statement or the proof significantly, so we
accept it as an n-dimensional result without proving it again here.

The next theorem has a corollary which is the analogue in n-dimensions of
Theorem 3.2 and its converse.

THEORM 5.1. If h is in ’(R"), then Ujh h for every positive multi-index j

if and only if

h(0= 2 @ p.v.
ieI

for some constants c, v 2.
Remark. In words, the theorem says that any distribution h in ’(R) which

is invariant under each U is a linear combination of 2 terms, each of which is
the tensor product of n one-dimensional distributions of the form (t)or p.v. (1/t).
For example, if n 2, then

h(0 +

+ c (t)@ p.v.-- + c4 (t) @ (t).

Proof(of Theorem 5.1). The proof is by induction on n. If n 1, then Uh h
for every positive multi-index j if and only if there is a distribution f such that
h lim Uf. Therefore, the expansion (5.1) for k follows from Theorem 3.2 in
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this case. Let k be a positive integer and suppose that the theorem holds when
n k 1. Let h be a distribution in ’(Rk) such that Ujh h for every positive
multi-index j. If we let rk denote the multi-index (0, 0, ..., 0, r), where the r is in
the kth position, then

(5.2) Urkh h

for every positive number r. Equation (5.2) may be differentiated with respect
to r to get

or

d(rh(t rtk))=
d

d- -r h t) 0

h
(5.3) h(tl, rtk) + rtk-(t, rtk) O.

Setting r in (5.3) gives

(5.4) h(t) + tk-k(t (tkh(t)) O.

Therefore, the distribution tkh(t) is independent of tk, and there is a distribution
hk in ’(Rk-a) such that

tkh(t) hk(t, k_ l) (R) l(tk).

Since l(tk) tk p.v. (1/tk), we have

tk[h(t) hk(tl, "’, tk-1) (R) p.v. (1/tk) O.

By a standard result there must exist another distribution h, in ’(Rk-l)
such that

h(t) hk(tl, tk-1) (R) p.v. (1/tk) h’k(tl, tk-1) (R) t(tk)
or

h(t) h (R) p.v. (1/tk) + h’k (R) (3(tk).
NOW, since Ujh h for every multi-index j, hk (R) p.v. (1/tk) + h’k (R) (tk) must also
be invariant under each Uj. Therefore, if we let} Jl, "’", Jk- 1, we have

hk (R) p.v. (1/tk) 4- h’k (R) (3(tk) Uj(hk (R) p.v. (1/tk)) 4- U(h’k (R) (3(tk))

Uhk (R) Ujk p.v. (1/tk) + Ujh’k (R) Uj (3(tk)

Uh (R) p.v. (1/tk) + Ujh’k (R) (3(tk)
or

p.v. (1/tk) (R) (Uihk hk) + tS(tk) (R) (Ujh’k h’k) O.

This can happen for every multi-index j of order k if and only if U1hk hk
and U1h’k h’k for every ]. Since hk and h, are both in !’(Rk- 1), the induction
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hypothesis says that there must be constants b and b’, < v < 2k- 1, such that

and

Therefore

hk(ta,’’’,tk_X)= b () p.v. @ (6(ti)
ielv ilv

1,,c{1...’.k-1}

2

hk(tx, ", tk- i) b’
v=l ielv

Ivc{1,...,k- 1}

h(t) hk (R) p.v. (1/tk) + h’k (R) 6(tk)

rE1 Cv p.v. @ 6(t i)
ielv

Iv ,...,k}

where the sequence {c} 2k is a rearrangement of the union of the two sequences
{b}2 and {b}

Thus for every positive integer n, a representation of the form (5.1) holds for
h in ’(R") whenever Uh h for every positive multi-index j.

Conversely, if h has a representation of the form (5.1), then it is easy to see
that Uh h for every multi-index j. This completes the proof of Theorem 5.1.

By observing that h(t)= limj+oo Uf(t) for some distribution f in ’(R") if
and only if Ujh h for every multi-index j, we get an important corollary to
Theorem 5.1.

COROLLARY 5.1. If h is in ’(R"), then h limj+oo Ujffor some distribution

f in ’(R) if and only if there exist constants c, 1 <= v <= 2, such that

h(t)= c
v=l

Iv ,... ,n}
The following theorem is an extension to n dimensions of Theorem 3.3.
THEOREM 5.2. Iff is in ’(R") and there are two complex numbers Pl, P2 with

Re pl 4:Rep2 and a positive integer i, <= <= n, such that {Uje-V’"f(t)} and
{Uae-P2"f(t)} both converge in ’(R") as the multi-index j , then for every
complex number q for which the sequence converges, there is a distribution h(q) in
’(R"- 1) such that

(5.5) lim Uj e-q"f(t) tS(t i) (R) h(q).
j--+

Proof We may assume, without loss of generality, that p 0 and that

P2--P has real part greater than zero. Define h(0)= lima_ Uaf(t) and h(p)

limao U e-P"f(t). Let 4 be a test function in (R") with support of 4 in

{t’t > 0}. Then, if j- , clearly the sequence {e-Paa’c(t)} converges to zero
in (R"). Therefore we have

lim (Uae-"f(t), b(t)) lim (Uaf(t), e -pa’", dp(t))

(h(O), O)
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But by Corollary 5.1, there are constants c, <_ v =< 2", such that
271

(5.6) h(p)= cv
ielv

,...,n}

@ 6(ti))"ilv

A distribution of the form (5.6) can map every test function with support in
{t’t > 0} to zero only if the coefficient of every term in which the factor p.v. (1/t)
appears is zero. Therefore, h(p) 6(t) (R) h’(p), where h’(p) is in ’(R"- 1).

Using a similar argument, just as was done in the one-dimensional case, we
can show that h(0)= 6(t)(R) h’(O) for some distribution h’(0) in @’(R"-1). Thus,
for any q at which the sequence {Uj e-qt’f(t)} converges, its limit is of the form
given by (5.5), and the theorem is proved.

COROLLARY 5.2. If f ’(R") is such that limj_ Uif h(O) and for each i,
1 <__ <_ n, there is a complex Pi such that Re Pi 0 and lim_oo Uj e-Va’f(t) h(pi),
then there is a constant c such that

h(O)-- c6(t)-- crY(t l, ..., t.).

Proof. By Theorem 5.2 it can be seen that for each 1, 2,..., n there is a
distribution h(0) in @’(R"-1) such that h(0) 6(t) (R) h(O). This can happen only
if h(0) c6(t).

COROLLARY 5.3. Let f be an open set in C" with the property that if p is in ,
then the sequence {ujr-vf converges in ’(R") to a distribution h(p) as j oe.
Then for every p in f there is a constant c(p) such that

h(p) c(p)f( 2 t,)

Proof. Let p be in f) and pick e > 0 such that the set {q :lq Pl < e) is also
in f. Let g(t)= e-Pf(t). Then limj_. Ujg(t)= h(p) and for i= 1,2, ..., n,
limj Uj e-ti/2g(t) h(.tp), where, if p (Pl, P2, Pn), then

iP (Pl’ P2’ Pi + e/2, Pn)"

Therefore, by Corollary 5.2, limj_.oo Ujg(t) c(p)f(t), which completes the proof.
A generalization of Theorem 3.4 to ’(R") does not change the statement of

the theorem significantly; however, it is included here for completeness.
THEOREM 5.3. lff is a distribution such that the sequence {Uf} converges in

’(R") as the multi-index j --. o, then f is in 5’’(R").
The proof of Theorem 5.3 differs from that of Theorem 3.4 only in details

which are obvious. In particular, sets of the form {t:ltl _-< k} must be substituted
for intervals [-/,-,, ,], and the value of the constant L introduced in (3.18) must
be adjusted.

COROLLARY 5.4. If P and P2 are in C" with Re p < Re P2 and are such that
{UjT-Pf} and {UjT-mf} both converge in ’(R") as the multi-index j oe, then
whenever p is in C" with Re pl < Re p < Re P2,

lim UjT-Pf (T-Pf,
j

The proof of Corollary 5.4 follows from Theorem 5.3, Theorem 2.3 and
Theorem 3.1.
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We come next to the extension of the Laplace transform to distributions in
’(R"). Since the definitions and theorems in 4 were based on the work done in
previous sections, all of which has now been extended to n dimensions, the ex-
tensions of the results of 4 are, for the most part, straightforward. We will state
the n-dimensional results without proof but will comment on the differences
caused by going to ’(R").

We say that a distribution f in ’(R") is Laplace transformable if there are
two constants , fl in R" such that whenever p is in C" with < Re p < fl, then

’ff satisfying the same property,T-Pf is in ’(R"). If, for any other pair ,
’ >= and fl’ =< fl, then we call the subset of C"

f= {p’e<Rep<fl}
the domain of definition of the Laplace transform for f. The existence of the set
f again follows from Theorem 2.3.

The characterizations (4.1) and (4.2) of &o[f] in one dimension are also valid
in n dimensions, so we have

lim (UjT-Pf,(5.7) &o[f] (p)

where p e f and b is in (R") with b(0) 4: 0, and

(5.8) [f](p) (T-Pf, 1).

Formulas (5.7) and (5.8) are exactly the same as (4.1) and (4.2) but are interpreted
in n dimensions. Clearly, 5If] is a linear complex-valued function of the n-
dimensional complex variable with domain f.

Theorem 4.1 on the analyticity of the transform may be extended to give
the following theorem.

THEOREM 5.4. Iff e !’(R") is Laplace transformable in f, then &,o[f] is analytic
in f and

[f]) [-tif(t)3).
OP

The proof of Theorem 5.4 requires the use of Hartog’s theorem (Bochner
and Martin [1]) which says that a complex-valued function of n complex variables
is analytic if it is analytic in each variable separately with all other variables held
constant. The proof that [f] is analytic in each p separately is essentially the
same as the proof of Theorem 4.1.

The convolution theorem requires no change.
THEOREM 5.5. Iff and g are L@lace transformable distributions in ’(R") and

the domains of their respective transforms have intersection , then f * g is Laplace
transformable in and for every p in ,

[f g]) [f])[g]).

Taoz 5.6 (Inversion theorem). Iff is Laplace transformable in

f= {p’e<Rep<fl},
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then for any fixed o R" such that < o < fl, we have
+ ir

(5.9) f(t) lim } ePt.[f](p) dp,
(2rti)". ir

where the limit is taken in ’t(R") as r in R". The integral in (5.9) is taken over
the subset of n-dimensional complex space defined by

{p’Re Pi ’i, IIm Pil < ri, < <= n).
THEOREM 5.7 (Uniqueness theorem). If f and g are Laplace transformable

distributions in ’(R") such that the domains of their transforms have intersection
92 {p: < Rep < fl}, and there is a fixed tr R" with < a < fl such that
whenever Re p r we have &,o[f] (p) 5[g] (p); then f g as distributions.

THEOREM 5.8. If F(p) is analytic for p in f {p:e < Re p </3} and is bounded
in 92 by a polynomial in 1o1 (or in IP]), then F(p) ,o[f](p), where the distribution
f is defined as a limit in ’t(R") by

+ ir

ePF(p) dp(5.10) f(t) r-lim (2i)"._i
for any fixed o R" such that < tr < ft.

Theorem 4.4, which is the one-dimensional analogue of Theorem 5.8, was
proved in four steps, one of which required Cauchy’s theorem. An n-dimensional
analogue of Cauchy’s theorem can be found in Fuks [5].

The transform formulas developed in 4 also have n-dimensional analogues.
For completeness, we list them here. In the following formulas, k is a multi-index,
and z are in R", and p and q are in C". Recall that k tk’tk2 t,,kn

k
(kl+k2+"’+k3

and P___P__ P2 Pn.
cpklpk22 Opk,, k k k2

(5.11) 5o[ftk)](p)_ pk[f](p),

(5.12) ’[tkf(t)](p) (-- 1)lklck[f](p),

(5.13) L’[f(t z)] (p) e- P*q[f] (p),

(5.14) ’[e-qf(t)](p) (’[f](p + q),

(5.15) o[- Ukf] (P) a[f] (p/k).

Appendix. This Appendix contains a lemma which is used in the proof of
Theorem 2.2, along with the construction of a partition of unity for R" which
satisfies certain special properties. In order to construct such a partition of unity,
let (t) be a function in (R) that satisfies the following properties:

(A. 1) (t) >= 0 for every t,

(A.2) support of (t) c [-1
(A.3) (t) (-t) for every t,

l/2

(A.4) (t) dt 1.
-1/2
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An example of such a function is

where

(t)-- exp 4t2

0,

A exp dt.
1/2 4t2 1

Let the function a(t) be defined by

a(t)---- [(z + 1/2) (’c 1/2)-I dr,.

Then a (R), a(0)- 1, o-(J)(0)- 0 as long as j => 1, a(t) a(-t) for all t, and
support a c E- 1, 1]. Also, if (0, 1),

a(t) + a(t- 1)=

1,

z- dr +

wheres=r + 1.

ds

Now, for t R", define To(t) a(ltl). Clearly, /o is infinitely differentiable as
long as - 0. If we define /)(0) 0 for every multi-index j with ]Jl > 0, then
is in @(R"). For every positive integer k, define the function by

/k(t) a(Itl- k).

Then the support of k is contained in {t" k 1 __< it =< k + 1}, and ])k is in (R")
for every k. Aso, if k < It[ _<- k + 1, then

,(t) k(t) / Yk + l(t) a(I t[ k) / a([ t] k 1)
v=0

1,

since It]- k is in (0, 1). Therefore {7k}ff--0 is a locally finite partition of unity
which has the additional property that

sup,
for any multi-index j and any subset I of nonnegative integers.

Next, we prove as a lemma a fact about complex numbers which is used in
the proof of Theorem 2.2.
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LEMMA. If {j}jj is a set of complex numbers with the property that there is
a number B such that for every finite subset I of J we have

then it is also true that

for every finite subset I of J.
Proof. Suppose that there is a finite subset I’ of J such that jsi, IRe (Xjl " 2B.

Then there must be a subset I" of I’ such that all the numbers Re ej with j e I"
have the same sign and

But by the hypothesis of the lemma,

IRegl>B.
jI"

Rej <_ j =<B,
jel jel

so we have reached a contradiction. Therefore, for every finite subset I of J,
ji IRe czjl =< 2B, and similarly jt IIm jl =< 2B. Thus

Z IjI _-< IRe jl + Z IIm o91
jeI jI jeI

4B,

and the lemma is proved.
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TOTAL POSITIVITY PROPERTIES OF GENERATING FUNCTIONS*
M. S. A-HAMEED AND F. PROSCHAN

Abstract. In this note, we strengthen results obtained in Keilson (1972). Our main result is" Let
Po(z) ,i:opZ be the generating function of the sequence {Pi}:o, with Pi real for i= 0, l,-..,
N 1, PN > 0 and Pi 0 for N + 1, N + 2,.... Let pi(t) be defined by P(z + t) i:o pi(t)zi"
Then (a) there exists a smallest nonnegative value t* such that pi+j(t*,) has the sign reverse rule
property of order (RRr) in i,j 0, 1,2, (see Karlin (1968)) for 1,2, (b) p/(t) is RR, in
i,j O, l, 2, for each fixed >= t*, 1, 2, and (c) t’ __< t _< Binomial moment inequalities
for P61ya frequency functions are an immediate consequence.

1. Introduction. Keilson (1972) considers the generating function

Po(Z) Pi2i
i=O

for a set of nonnegative masses on the integers 0, 1, 2, ..., N, with Pu > 0. From
this, he defines the family of related generating functions

Pt(z) P(z + t)= Pk(t)zk.
k=O

He shows that the semi-infinite interval [0, ) has precisely one value t*, such
that {Pk(t)} is log-concave for >__ t*, and is not log-concave for < t*.

One interesting interpretation of the result is that starting with an arbitrary
set of nonnegative masses, a family of log-concave sequences is produced; this
differs from the usual situation in which log-concavity is shown to be preserved
under some standard mathematical operation such as convolution or integration
with respect to a kernel. Also, as a direct consequence of his result, Keilson ob-
tains inequalities on the binomial moments"

(1 1) a/,+ 1)_ 1/r
,+x B, r- 1,2,...,

whereB,=p ) is the binomial moment of order r.

Log-concave and log-convex functions have been shown to have many
applications in analysis, statistics, reliability theory, inventory theory, and many
other fields. (See, for example, Karlin (1968), Barlow and Proschan (1965), Arrow,
Karlin and Scarf (1958), and Keilson and Gerber (1971).) Actually, such functions
are special cases of the class of totally positive functions, which are treated
definitively in Karlin (1968); totally positive functions constitute a powerful tool
in developing inequalities, and have uses in many theoretical and applied fields.

In this note we show that total positivity properties for generating functions
hold not only for order two (corresponding to log-concavity treated by Keilson),

* Received by the editors October 15, 1973.

" Department of Statistics and Statistical Consulting Center, Florida State University, Talla-
hassee, Florida 32306. This research was sponsored by the Air Force Office of Scientific Research,
AFSC, USAF, under Grant AFOSR-71-2058.
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but more generally for each positive integer order. As a direct consequence, we
obtain inequalities on the binomial moments generalizing those of (1.1).

To state and prove our results, we need to recall relevant total positivity
definitions; see Karlin (1968). Pij, defined for integer and j, is TP if the ruth
order determinant IP,,bl ->- 0 for each choice of integer a <= <- am, b <=...
<_ b,,, m 1,..., r; we also call the infinite matrix (pij) TPr. If pj is TP and of
the special form p_j, then we say p is PFr. We say p,j is RR, if the mth order
determinant IP,bl => 0 for each choice of integer a <... < am, b < b,
m 1,..., r. We also note that p PF, implies that p+j is RR. In the special
case r 2 (corresponding to Keilson’s results), Pi +j RR is equivalent to pi PF2,

i.e., log concave.
In this note, we confine attention to sequences {Po, Px, P2, "} by definition,

P-1 --P-2 0.

2. Total positivity results. The following generalization of Theorem of
Keilson (1972) is the main result of this section.

THEOREM 2.1. Let Po(z) =o Pizi be the generating function of the sequence

{P}=o, with Pi real for 0, l, ..., N 1, PN > 0, and Pi 0 for N + l,
N + 2,.... Let the sequence {pi(t)} be defined for all >_ 0 by

(2.1) Pt(z) Po(z + t)= Pi(t)zi,
o

so that

(2.2) P(t)
k=O

k
tk -lpk"

Then (a) them exists a smallest nonnegative value t* such that p+j(t*) is RRr in
i,j---O, 1, 2,..., for each r-- 1, 2, ...; (b) pi+j(t) is RR in i,j O, 1, 2,... for
each fixed >= t*, r 1, 2, ...; and (c) t’ =< t =< t] __< ....

To prove (a), it will be helpful to first establish Lemmas 2.2 and 2.3 below.
LWMMA 2.2. Under the hypotheses of Theorem 2.1, there exists a finite value

t, such that pg(t) is PF, in integer ifor each >= t, r 1, 2,....
Proof. Write

(2.3) P0(z) 1-1 (z r,) I-I w )(z %)],

where the r are real zeros of Po(z) and the wj and j are complex zeros taken in
conjugate pairs. Hence

(2.4) Po(z + t)= Pu 1-I [z + (t- r,) l-[ [(z + ’j)(z + j)],

where, corresponding to wj xi + iyj, (t- xj) + iyj. Let Ag maxg.j{ri, xj}.
Then for >_ A Po(z + t) is a polynomial in z with nonnegative coefficients.

Consider the quadratic Qj(z) z2 + ( + j)z + [j12 z2 + az + bj, where
aj 2(t- xj) and bj (t- xj)2 + yj2.. To show that the coefficients of Qj(z)
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constitute a PFr-sequence, it suffices to :show that the infinite matrix

0

B= 0

0

aj bj 0 0

a bj 0

0 aj bj

0 0 aj

is TPr. (See Karlin (1968, p. 393).) As in Karlin (1968, p. 117), B is TP if
aj/(2x/-b) __> c, where c cos (rr/(r + 1)). Simplifying, B is TP, if

2 -1/2_>_ x + ycr(1 c)

2 1/2Let A2 maxj {xj + yjc(1 c,) }. Then for each _>_ A 2, the coefficients of
each Qj(z) constitute a PF,-sequence. Since the convolution of PF-sequences is
PF, we conclude that p(t) is PF in integer for each _>_ td max (A l, A2).
Q.E.D.

LMMA 2.3. Let p+j be RRj in i,j 0, 1,2,.... Then p+j(t) is RRr in
i,j 0, 1,2,...for each > O.

Proof. First note that the function in

i, k 0, 1, 2,..., and also obeys the semigroup property

(2.5) 4)(k, + j) c(h, i)O(k h,j).

(See Karlin (1968, p. 142).) From the representation (2.2) and Theorem 5.4 of
Karlin (1968, p. 130), the conclusion now follows. Q.E.D.

Remark. Note that Lemma 2.3 holds even when the support of {Pi} is

{0, 1, 2, ...}.
With the aid of Lemmas 2.2 and 2.3, we may now prove Theorem 2.1.

Proof of Theorem 2.1. (a) By taking t* as the infimum of nonnegative t for
which pi+j(t) is RR, in i,j 0, 1,2, ..., the desired conclusion is an immediate
consequence of Lemmas 2.2, 2.3, and the fact that a convergent RR,-sequence
has an RRr-limit.

(b) follows directly from Lemma 2.3.
(c) is an obvious consequence of the fact that RR,+I implies RRr, for

r= 1,2,.... Q.E.D.
The moment inequalities of Theorem 2 of Karlin, Proschan and Barlow

(1961) may now be obtained from Theorem 2.1 above; the argument is similar
to that used in proving Theorem 2 of Keilson (1972).

THEOREM 2.4 (Karlin, Proschan, Barlow). Let {p,,} be a PF,-sequence, with

binomial moments B,, p ,)" Then Bm+, is RR in m O, 1,2, and n O,

1,2,....
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ON EXISTENCE AND NONEXISTENCE IN THE LARGE OF
SOLUTIONS OF PARABOLIC DIFFERENTIAL EQUATIONS WITH

A NONLINEAR BOUNDARY CONDITION*

WOLFGANG WALTER"

Abstract. This paper deals with solutions u(t, x) of parabolic differential inequalities (a) u, <= Lu,
or (b) ut >= Lu, respectively, where L is a linear, weakly elliptic differential operator of second order.
The behavior of u for large is studied under the assumption, that on the lateral boundary a non-
linear boundary condition of the form (a) Ou/Ov <= f(u), or (b) Ou/Ov >= f(u), is imposed, where
f(z) as z . It is shown that the value of the integral j-o dz/f(z)f’(z) is crucial for the growth
properties of u. If this integral is infinite, then we have the case of global existence, i.e., any solution
u of (a) is bounded in bounded sets. If, on the other hand, the integral is finite, then all solutions u
of (b) with large initial valuesbecome infinite in finite time.

1. Introduction. Let D c En be a bounded open set and let G (0, T) x D,
R0 {0} x 1, R1 (0, T) x cOD. We consider functions u(t, x), x (x l, xn),
satisfying inequalities

<=f(u) onRx(1) u, <= Lu inG cv
or

(2) u, >= Lu in G, -v >= f(u) on R,

where

(3) Lu aij(t, X)Ux,xj + bi(t, X)Ux, + c(t, x)u + d(t, x).
i,j=l i=l

It is assumed throughout that the matrix a (ai3) is positive semidefinite in G
and that f: [ [ is continuous. Let Z be the class of functions u which are
continuous in [0, T)x b, which have continuous derivatives u,, u (u,),
u (u,,) in G and for which the outer normal derivative

uv(t, x) lim [u(t, x) u(t, x av)]/a, (t, x) R,
o- + 0

exists (we assume that an outer normal v , Ivl 1, satisfying x v D for
small z > 0 exists at every point x D).

The functions f(z) we have in mind are positive and tend to infinity as z
Thus, in the heat flow interpretation, the condition u f(u) is an absorption
law which makes heat flow into the body. Our objective is (i) to find growth con-
ditions on f under which solutions of (1) are bounded in any bounded set G, and
(ii) to find conditions on f such that solutions of (2) become infinite in finite time.

* Received by the editors December 10, 1973.
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In particular if solutions of a boundary value problem

(4) u,=Lu in G, uv=f(u on R1, U=Uo(X) on R0
are considered, case (i) leads to global existence (for all positive t), while in case
(ii) there is no global existence.

Our research was initiated by a recent paper of Levine and Payne [1]. In
this paper it is proved that in the case of the heat equation, u, Au, (4) has no
global solution if f(z)= Izl +h(z), h increasing, e > 0, and if Uo is sufficiently
large. Similar results are given or indicated for several other types of parabolic
and hyperbolic boundary value problems.

By using the theory of parabolic differential inequalities, we are able to give
a rather complete characterization of the two cases (i) and (ii), depending on
growth properties off. It turns out that for a wide class of parabolic differential
equations (strong parabolicity is not assumed, and "heating" or "cooling" terms
are permitted) the behavior of solutions for large can be described in terms of
the integral

dz

f(z)f’(z)"
If this integral diverges, we have case (i) (global existence), if it converges, we have
case (ii). To illustrate the result, the function f(z) zx//log z belongs to case (i),
while f(z) z(log z) +)/2, e > 0, belongs to case (ii).

2. A monotonicity theorem. The following theorem on parabolic differential
inequalities is basic for our treatment. It is a special case of Theorem 31.IV in
[2]. There are no assumptions on the coefficients in L or on f (except that the
matrix (aij) be positive semidefinite).

THEOREM. Let v, w Z and
(a) v Lv < w- Lw in G,
(b) Ov/Ov f(v) < Ow/c3v f(w) on R1,
(c) v < w on Ro.

Then
v<w inG.

3. Upper bounds. We shall use the above monotonicity theorem in order to

obtain lower bounds v(t, x) for solutions u(t, x) of (2) and upper bounds w(t, x)
for solutions u(t, x) of (1). In this section, we are dealing with the latter case, i.e.,
we assume that u satisfies inequalities (1). We try to find an upper bound w of
the form

w(t, x)= (s), where s g(t) + h(x).

Using the notation hi Oh/Oxi, hij O2h/Oxit;3xj, hv Oh/Ov, we are led to the
following inequalities:

" cq, + d
(a) g’ > aij hij + -Z;,,hih + bihi + in G,,,
(b) ’h, > f()on Rx,

(c) O(g(0) + h(x)) > u(O, x)on Ro.
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The functions ff we consider are positive with positive derivative q’ (thus the
division by if’ in (a) is justified).

TI-mOlM 1. Let f(z) and f’(z) be continuous, positive and increasing for z >= Zo
and let

(5) fz dz

f(z)f’(z) "
Furthermore, let

lajI--< A, Ibl < A, c =< A, d __< A

and let condition (H) be satisfied"
(H) There exists a function h(x) C1() f’l C2(D) such that

h
.aijhij <_ A in G and v >=6 >0
i,j

on c3D.

Then there exists a function w(t, x), continuous in [0, oe) x D and tending to as
c uniformly in x, such that for any u Z satisfying inequalities (1),

u(O, x) < W(to, X) (to >=0) implies u(t, x) < w(t + to,X) in G.

The function w(t, x) depends only on f, A, 6 and max Ihl, max Ihxl.
Proof. The proof is very simple if f(z) Bz or f(z) Bzx/log z. In the first

case conditions (a)-(c) are satisfied by putting q(s) e, g(t) fit + 7 with an
appropriate choice of a, fl, 7; in the second case one might take (s)= e"2,
g(t) fle’.

In the general case we assume that h(x) > 0 in D and h > 1 on cD. This is
justified since h may be replaced by Bh + C. We define @(s) by

@’ f(@), @(0) Zo,

thus satisfying condition (b). Since f’ has a positive lower bound, it follows from
(5) that the integral from Zo to o of the function 1If is divergent. Therefore (s)
exists for 0 _< s < and grows at least like e", a > 0. Now we consider the
function p(s) ff"/ff’. From the differential equation for k we get p(s) f’((s))
and hence (substitution (a) z)

(6) f da =f da
p(a) f’(k(a))

Therefore the solution g(t) of

fo(s) dz

-zo f(z)f’(z)
--.oe as s ---, c.

(ax) g’= B + Cp(g + N)

with initial value g(0) 0 exists for 0 =< < o for any choice of B, C, N > 0.
If we choose these constants in such a way that

a,h, + bih, + (ck + d)/qt’ <__ B, O <= a,jh,h < C, O <__ h < N,
i,j i,j

then the function g(t) obtained from (a) satisfies (a), and the same is true for the
function g(t + to), where to > O. Note that p(s) is increasing, hence p(g(t) + h(x))
< p(g(t) + S), and that ,/ff’ __< k/f(k) <__ 1/f’(zo).



88 WOLFGANG WALTER

If, for a given u e Z satisfying (1), to is determined in such a way that

u(O, x) < O(g(to) + h(x)) for x e b,

then the function W-- q/(g(t0 + t) + h(x)) is an upper bound for u. This follows
from the monotonicity theorem, applied to the functions u and W (instead of v
and w). The conditions (a)-(c) are satisfied. Hence, the function w O(g(t) + h(x))
has the properties stated in Theorem 1.

4. Lower bounds. It is assumed that u s Z satisfies inequalities (2). Using
again the monotonicity theorem, we shall construct lower bounds v for u, which
tend to infinity as - To < oe. The next theorem gives conditions under which
such a construction is feasible.

THEOREM 2. Let f, f’ be continuous, positive and increasing for z >__ Zo and let

(7) fz dz

o f(z)f’(z)
< "

Assume that there exist a unit vector e R" and two positive constants 6, A such that

aijiy >= 0 in G, [bi] <_ A, c >= -A, d >__ -A in G.
i,j=

Then there exists a function v(t, x), continuous in [0, To) x (0. < TO < ) and
tending to infinity as - To, uniformly in x, such that for any u e Z satisfying (2),

u(O,x) > v(to,X) (O < to < To)
implies

u(t, xj > v(t + to,X) in G and T <_ To- o

The function v depends only on 6, A, f and the diameter of D.
Proof. The function

v(t, x)= (s), s g(t) + h(x),

is, according to the monotonicity theorem of 2, a lower bound for u if the three
inequalities (a)-(c) of 3 are satisfied, but with > replaced by <.

Let

h(x) fl + e, Yixi,
i=1

where is given by the hypothesis on (a0 and where fl and e > 0 are determined
in such a way that h > 0 in D and hv < 1 on 0D. The function O(s) is defined
exactly as in the proof of Theorem 1, as solution of ’ f(O), (0) Zo. Then
(b) is satisfied. Let us assume for the moment that the solution exists for
0 __< s < o, i.e., that the integral from Zo to oe of l/f(z) is divergent. Again, we
have p(s) "/’ f(), but this time the integral from 0 to of the function
1/p is finite, according to (6), (7). Therefore the solution g(t) of

(a2) g’ Cp(g) B, (B, C > O)

with an initial value g(0)= go > 0 satisfying Cp(go)- B >__ 1, exists only in a
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finite interval 0 =< < To, and g(t) - as To. Since in the present case (a)
reads

e2q/, c + a
i,j

we choose C te2 and B > 0 in such a way that

e , biT, + (c$ + d)/$’> -B.

Using these constants, the solution g(t) of (a2) satisfies condition (a) with the
< sign, and the same is true for g(t + to), 0 < to < To. It follows as in the proof
of Theorem 1 that the function v(t, x) (g(t) + h(x)) has the properties stated
in Theorem 2.

If the integral from Zo to oz of l/fis convergent, we may replacefby a function
fl -< f in such a way that the integral of l/f1 is divergent and the integral of
1/flf’ is convergent, and proceed as above. Or, what amounts roughly to the
same, we determine (s) from the inequality ’ =< f() for 0 _< s < , (0) z0
in such a way that the integral from 0 to of 1/p(s) ’/" is convergent. Then
(b) is again satisfied, and the rest of the above proof goes through.

5. Remarks. The above theorems can be generalized in various ways, using
essentially the same method of proof.

(a) The boundary condition involving the normal derivative may be pre-
scribed only on part of the lateral boundary of G. To fix our ideas, let
R (0, T) x D1, where D1 is a subset of OD, and let R be the union of Ro and
R1 R]. The monotonicity theorem of 2 remains true if Ro, R1 are replaced
by R, R]. The same holds for Theorem 1. Naturally, the condition involving
the initial values of u, u(0, x) < W(to, x), has to be modified. In the present case,
it reads

u(t,x) < w(to + t,x) onR.
Also, Theorem 2 remains true if the condition involving u(0, x) is replaced by
u(t, x) > V(to + t, x) on R. But the theorem obtained in this way is of little use
since the condition of Rb cannot be satisfied if the boundary values of u on Rb
are bounded. We mention only that a "useful" theorem ox5 lower bounds can be
proved if, e.g., f(z) z(log z) + (e > 0) for large z. Here, one works with a lower
bound of the form v(t, x) /(g(t)h(x)), where h(x) < 0 on OD D1 and h(x) > O,
hv > 0 on D1, and g(t) 1/(To t).

(b) The monotonicity theorem, and, as a consequence, the theorems on
upper and lower bounds can be carried over to infinite regions D. In this case,
growth conditions on the coefficients a, b, c, d for large values of ]xl have to be
imposed. See, e.g., [2, 31.XIII]. Once the monotonicity theorem is established,
the proofs of Theorems 1 and 2 carry over with minor changes.

(c) It is clear that the above results apply also to nonlinear equations. For
example, let us consider the quasilinear case,

Lu air(t, x, u, u,)u,,,x + b(t, x, u, u,).
i,j=
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If we assume that

]b(t,x,z,p)l <- L(1 + Iz[ + ]p]), ze [, pe

and that the matrix (riO, where fi2(t, x) a(t, x, u, ux), satisfies the conditions of
Theorem [Theorem 2], then Theorem 1 [Theorem 2] holds with respect to the
quasilinear operator L.

(d) Condition (H) used in Theorem 1 is not very restrictive. If, for example,
the a2 are bounded and D is convex with 0 e D, then h(x) x2 (= x. x) serves our
purpose. Also, if u(t, x) is any solution of ut i, aUx,xj in G, uv > 0 on R1,
then one may take h(x) U(to, x), to fixed.

REFERENCES

[1] H. A. LEVlNE AND L. E. PAVNE, A nonexistence theorem jbr the heat equation with a nonlinear
boundary condition and for the porous medium equation backward in time, MRC Tech. Sum-
mary Rep. 1296, Mathematics Research Center, University of Wisconsin, Madison, 1972.

[2] W. WALa’ER, Differential and Integral Inequalities, Ergebnisse der Mathematik und ihrer Grenz-
gebiete, Band 55, Springer-Verlag, New York-Heidelberg-Berlin, 1970.



SIAM J. MATH. ANAL.
VOI. 6, No. !, February 1975

A BOUNDARY VALUE PROBLEM FOR A TWO-DIMENSIONAL
SYSTEM WITH A PARAMETER*

JACK W. MACKI"f AND PAUL WALTMAN:

Abstract. We consider the problem Jz’ [Q(t) + 2A(t) 2F(t,z)]z, a. z(0, 2) 0, b. z(1,2) 0,

where J ,2 is a real parameter, a, b and z are 2-vectors, while Q, A and F are 2 x 2 real
0

matrices. We assume the linear problem (F--0) has a countable sequence of real eigenvalues
0 < 21 < 2 < accumulating at infinity, and that the corresponding eigenfunction has a certain
nodal property. 2 is said to be a bifurcation point for the nonlinear problem if there are nontrivial
solutions for 2 near 2k. We establish sufficient conditions for each 2, j 1, 2, ..., to be a bifurcation
point. We also establish global results. We use a relatively simple polar coordinate argument.

1. Introduction. Recently there has been a great deal of mathematical interest
in nonlinear eigenvalue problems for both ordinary and partial differential
equations. Such problems occur in a variety of applications (see the collection of
articles in [3]). Most of the work in ordinary differential equations has been con-
cerned with second order scalar equations, for example, Crandall and Rabinowitz
1], Hartman [2], Rabinowitz [5], Turner [6] and Wolkowisky 7]. Such problems
are also of interest for arbitrary systems of equations and have been studied by
Keller in an article in [3]. In an earlier paper [4] the authors investigated a non-
linear eigenvalue problem for a second order scalar equation, using relatively
simple geometric arguments in contrast to the degree theoretic approach of
Crandall and Rabinowitz and the fixed-point arguments of Wolkowisky in the
papers cited above. The elementary nature of our arguments makes the theory
accessible to those in applied areas, without requiring a command of sophisticated
mathematical tools.

In this paper we use these geometric arguments to obtain results for two-
dimensional systems, analogous to those in 4]. Although we have no specific
application in mind, this appears to be the next logical step in the development of
a theory of nonlinear eigenvalue problems for systems of ordinary differential
equations. All of the conditions are stated as matrix conditions, i.e., positive
definiteness of certain matrices replaces positivity of corresponding coefficients in
the scalar case. The nature of these conditions is such that the results of [4] are
not directly included (see Remark 2 below the proof of Theorem 1).

2. Preliminaries. For given 2 2 real matrices Q(t), A(t) and F(t, z), map-
ping from 0, 1] and [0, 1] R2 respectively, and given nontrivial 2-vectors a
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and b, with respective components ai, bi, 1, 2, we consider the problem

(1) Jz’ [Q(t) + 2A(t)- 2F(t,z)]z, z J

a. z(0, 2) 0 (. is the scalar product),

b. z(1,2) O.

(2a)
(2b)

Here Greek letters represent real-valued functions or constants, lower-case italic
letters represent 2-vectors and II" will denote both the Euclidean norm of a
vector and the associated operator norm of a matrix. A > 0 will mean that the
matrix A is positive definite. As in [4], we introduce polar coordinates
p (2 _.[_

[cos 0(t, 2)z(t, 2) p(t, 2) =-- p(t, 2)u(t 2).
L sin (t, 2) d

Our basic hypotheses are as follows.
(H1) The linear problem (F 0) is regular, in the sense that its eigenvalues

form a sequence 0 < 2o < 21 < and if (k, r/k) is the eigenfunction (unique up
to.a constant factor) corresponding to 2k, then k has exactly k zeros in (0, 1).

(H2) The matrix functions A, Q and F are continuous on the respective
domains [0, 1] and [0, 1] x R2, and solutions to the IVP (initial value problem)
(1), (2a) are unique.

(H3) A(t) > O, F(t, O) =- O, F(t, z) > 0 for 0 :/: Ilzll small.
Remart. Wolkowisky has pointed out the uniqueness of the trivial solution

of (1), in the sense that 2(t, 2) + r/z(t, 2) > 0 for 2 R, [0, 1], for any nontrivial
solution. This implies in particular that p > 0 is differentiable in on [0, 1].

If we substitute the polar coordinate functions into (1) and (2), and note that
u’ O’Ju, then some simple matrix manipulations yield:

(3) O’(t, 2) -u*Mu, p’ pu*JMu, M Q + 2A 2F

(4a) 0(0, 2) arctan (- al/a2) , arctan e (- r/2,

(4b) 0(1,2) arctan (-ba/b2) nrc

where n is an integer. If either of a2 or b2 is zero, then the corresponding arctan
is re/2; the star denotes transpose.

LEMMA 1. If (H2) holds and 2 is restricted to a compact interval I [0, A],
then there are constants 6(A) > 0, K(A) > 0 such that for any solution of (3) with
2I,

p(0,2)-<f=p(t,2)=< Kp(0,2), t6[0,1].

In particular, solutions with sufficiently small initial data are extendable.
Proof. Since p’ __< JM(t, 2, p, 0)lip,

p(t, 2)_< p(0, 2) exp Ill (AliA(s) + IQ(s)ll + llF(s, z(s, A))ll)ds1
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Since F is continuous, there is an m such that IIFII m for e [0, 1], IIz(s, )11 1.
Then as long as p(s, 2) =< 1 on [0, t], we have

p(t, 2)__< p(0,,)exp [fj (Allall / .QII +mA)dsI
Clearly we can choose p(0, 2) so small that this last implies p(t, 2) _< 1 for [0, 1],
2 [0, A], which in turn implies the desired conclusion.

Let (, b) be the polar radius and angle, respectively, for the associated linear
problem. The equation for b ((3) with F 0) does not involve , so 4) does not
depend on (0, 2). For the nonlinear problem, however, 0 is a function of (t, 2, #),

p(0, 2).
LMMA 2. Let (H1), (H2) and (H3) hold. For each > there exists p(2) > 0

such that
0 < # < P => 0(1,2, #) < qb(1,2j) flj

for every solution of (3) with p(O, 2) , 0(0, 2, #) .
Proof. Let 2 > 2j be fixed, and consider any solution of (3) with p(0, 2,/) a.

By further restricting p if necessary, we can assert that if # < p 1, then F(t, z(t, 2))
>= 0 and Eli < , where e(2) is so small that (2 2j)A 2F > 0 on [0, 1]. Then

O’(t, 2, la)= -u*[Q + 2A 2Flu < -u*[Q + 2jA]u.

Since b’(t, 2j)= -u*[Q + 2jA]u (with 0 replaced by b in the vector u) and
0(0, 2, #) a b(0, 2j), a standard comparison theorem gives

0(1,2, #) < 4)(1,2j) flj.

3. The local and global theorems.
THEOREM l. Let (H1), (H2) and (H3) hold. Then for each 2j, there is a non-

degenerate interval Ij (2j, Aj) such that for each 2 Ij, the problem (1), (2) has
at least two solutions. The first component of each solution vanishes at least j times
in (0, 1).

Proof. Lemma 1 implies that solutions of (1), (2a) are extendable if # is
sufficiently small, say # < #o, and the uniqueness assumption in (H2) implies
that extendable solutions of (3), (4a) depend continuously on (#, 2). We assume
/ < #o.

According to (H3), for # sufficiently small we have

O’(t, 2j, #)= -u*[Q + 2jA 2jF]u > -u*[Q + 2jA]u.
If ((, b) corresponds to the jth eigenfunction pair of the linear problem, then
ok’ -u*(Q + 2jA)u; therefore, for #o sufficiently small and 0 < # < #o,

0(1,2j, #) > b(1,2j)= flj.

Continuity in (2, ) implies 0(1, 2, #)> flj in some interval 2j < 2 < A(#) for
fixed #. We define Ij [,.J o tt .o (/j’ A(#)) (/j, Aj).

If 2 l is fixed, then 2 (2j, A(#)) for some #, 0 < # < #o, hence 0(1, 2, #)
> flj. On the other hand, Lemma 2 implies there is a # such that 0(1, 2, #1) < flj.
Continuity of 0(1, 2, #) in (2, #) implies the existence of/2, # =< #2 #, such
that 0(1, 2, #2) flj, and this in turn implies the existence of a solution (j, r/j)
of the original problem (1), (2).



94 JACK W. MACKI AND PAUL WALTMAN

Noting that j(t, 2) 0 if and only if Oj(t, 2, #) rr/2 kr, k 0,

___
1,...,

the nodal properties follow easily from a counting argument. The second solution
is obtained by taking arctan (rt/2, 3r/2] which is equivalent to using the new
initial values -j(0, 2), -r/j(0, 2) in (1), (2) (or, equivalently, replacing a and flo
by0+r,flo+

(H4) qz2(t)/ [a22(t)-/22(t, z)] > 0.
Remark 1. If (H4) holds for all z, e [0, 1], 2 >= 2o, then j(t, 2) will have

exactly j zeros in (0, 1). This follows from the fact that 0 if and only if
0 rt/2 krt, which in turn implies

0’= -u*[Q + 2(A F)]u < O foru=
(- I

Thus 0(t, 2, #) can cross each line 0 /2- k at most once. One can also
estimate the number of zeros of (t, 2) using similar arguments.

Remark 2. The above theorem does not reduce to the corresponding result
in [1] or [4] when the second order scalar equation

-y" [q(t) + 2a(t) 2f(t, y, y’)]y

is written as a system in the usual way. Even if a(t) and f(t, y, y’) are positive for
y2 / (y,)2 small and [0, 1], the matrices A and F will only be semidefinite. The
reason one can still obtain the desired conclusion is that A and F interact in a
special way to make the right side of the differential equation for 0(t):

0’ -sin2 0 [q + 2(a f)] cos2

"nearly positive definite" in the same sense as in the proof of the above theorem.
(See [4] for details.)

We now turn to the question of a global theorem, that is, an assertion that
for every 2 > 2j, there is a solution zj(t, 2) of the original problem such that
has j zeros (equivalently, Aj + oe for j 0, 1, 2, ...).

(H5) For each 2 > 2o, there is a solution of (1) such that 0(0,2,#)=
0(1, , #) >_ flo.

THEOREM 2. Let (HI), (H2), (H3) and (H4) hold and assume that solutions of
(1), (2a) extend to [0, 1]. Then (H5) is a necessary and sufficient condition that there
exist, for each k and each 2 > 2k, k O, 1, 2,... two solutions of (1), (2) such that
(t, 2) has exactly k zeros in (0, 1).

Proof. Let k and 2 > 2k be fixed, and suppose (H5) holds. Let p, 0 solve (3),
(4a). By Lemma 2,. there is a #1 such that 0(1, 2, #1) < ilk" By (H5), there is a #2
such that

0(1, , #2)

The assumption that solutions to (1), (2a) are unique and extendable implies
continuity of 0 in #; therefore there exists a/ such that 0(1, 2,/) ilk, and this
solution will generate the desired solution of (1), (2).

Now suppose (H5) does not hold and let 2 > 2k >= 2o. Then there is no
solution of(l), (2a) for which 0(1, 2, #) flo. Thus each solution of(l), (2) satisfies
0(1,2, #)= ilk, k _>_ 1, which implies that O(t, 2, #) crosses the line 0 -rr/2.
Therefore there is no zero-free eigenfunction, yet 2 > 2o.



A BOUNDARY VALUE PROBLEM 95

Remark 3. The continuity of 0(1, 2,/) in (2, #), used several times in this
paper, is the sole reason for the extendability assumption in the above theorem
and the uniqueness assumption in (H2) (for small/, extendability follows from
Lemma 1). One can completely remove the uniqueness assumption at the expense
of more complicated arguments, by using funnel sections, as in [4].
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A NOTE ON THE VAN WIJNGAARDEN TRANSFORMATION*

H. A. LAUWERIER-

Abstract. Theory and applications are given of the van Wijngaarden transformation by means
of which slowly convergent or even divergent series may be converted into rapidly convergent series.
Using the technique of generating functions it is shown that by the van Wijngaarden transformation
the Borel sum is kept invariant. The van Wijngaarden transformation is shown to be the Laplace
transform of the Euler transformation.

Introduction. In a paper on a transformation of formal series van Wijngaarden
[3] suggested the following method for summing a slowly convergent or even
divergent series ak .1 Introduce a sequence of nonvanishing multipliers 2 and
transform the series 2ka by means of the Euler method. If the transformed
series is denoted by bk, there exists a sequence of conjugate multipliers/k such
that /tkbk has the same (generalized) sum as ak. In particular, van Wijngaarden
takes the special case 2 2k/k! and finds that

/tk 2k+12 e-at(1 + t) -k- ltk dt.

In a number of interesting cases the new series turns out to be rapidly convergent
which makes this process particularly well adapted to numerical computations.

In view of recent interest the problem is taken up again and considered from
a different point of view. The first section deals with the main properties of the
Euler transformation of a formal series ak. The analysis becomes very trans-
parent by using the generating functions akXk and akxk/k !. The second section
shows the importance of the Borel summation and the concept of the Borel sum

oo e-X( akxk/k dx.
o

For convergent series the Borel sum equals the ordinary sum. For a wide class of
divergent series the Borel sum exists and can be taken as the generalized sum.
The importance of the Borel sum is that it is invariant for an Euler transformation.
In the third section it is shown that the use of generating functions permits a
rather simple treatment of the van Wijngaarden transformation. It is shown also
that this transformation leaves the Borel sum invariant. The properties of the
multipliers /k of the special van Wijngaarden transformation given above are
the subject of a paper [2] by N. M. Temme who concentrates in particular on
their numerical computation.

In many applications one wishes to compute a Laplace integral

o e-XF(x) dx

by termwise integration of some series expansion of the integrand function F(x).

* Received by the editors April 24, 1973, and in revised form March 6, 1974.

" Mathematical Institute, University of Amsterdam, Amsterdam-C., the Netherlands.
In all summations denoted by E, the index runs from 0 to infinity unless stated otherwise.
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Sometimes the resulting series is slowly convergent or even divergent. One might
consider subjecting this series to an Euler transformation or a van Wijngaarden
transformation. However, the same result can be obtained in a much more direct
and simpler way. It suffices to expand F(x) akxg as suggested by the generating
function of ag when subjected to an Euler transformation. We write

X
F(x) 2 + bg

(1 +x)g+l’

where bg is the Eulerized series of ag. Termwise integration of the latter
expansion gives at once pgag. This result may be formulated by saying that the
special van Wijngaarden transformation is the Laplace transformation of the
Euler transformation.

1. The Euler transformation. We consider a formal series ak and introduce
the forward shift operator S and the weighted mean operator M by means of

Sag ag +

M =p+qS with[p[ < and q= -p.

Then we have formally

ao qaoag Sgao S- M- qMga"

This suggests the so-called Euler transformation E(q),

bg qMkao,

or explicitly

(1.1) bg
j=O

+1
aj.

In numerical practice one uses the Euler method preferably with p q- 2.

According to the folklore of the numerical analyst the Euler transformation turns
slowly convergent series into rapidly convergent series and transforms divergent
series into less divergent or even convergent series.

In order to get a better insight into what is really going on we consider the
generating functions

(1.2) a(z) agzg+ b(z) bgzg+ 1.

We restrict our discussion at first to those series for which a(z) has a nonvanishing
radius of convergence Ra. This enables us to handle divergent series such as

2 + 3 -4 + but a series like 1!- 2! + 3!-4! + falls outside this
class.

It is easily seen by comparing equal powers of z that the relation (1.1) is
equivalent to

(1.3) b(z) a i
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The radius of convergence of a(w), where

qz w
(1.4) w z-pz’ q +pw’

is determined by the singularities w s of the holomorphic function a(w) as

(1.5) R inf ]s].

Then the radius of convergence of b(z) is given by

(1.6) R inf ps"
The Euler method is most effective if Rb/R is as large as possible.

Example 1.1. If a(w) is singular at w -1 and w , then b(z) is singular
at z (p q)- and z p-. The ordinary method with p q 1/2 gives R,
and R 2. However, the method with p 1/2 gives even e 3. If this is applied
to a(w) w(1 + w)-1/2, for example, we find indeed that b(z) 2z(9 z2) 1/2.

Example 1.2. The ordinary Euler transformation changes the divergent series
2 + 3 4 + into the convergent series 1/2 1/4 + 0 + 0 + of which

only the first two terms differ from zero. This rather surprising phenomenon is
explained by the fact that a(z)= z(1 + z) -2 is singular only at z -1 which
gives Rb . Indeed, b(z) 1/2z(1 1/2z).

If ak converges with sum A, then we know that R, => and that a(1) A.
It follows from (1.3) also that b(1)= A. Hence it is tempting to conclude that

bk converges with the same sum A. However, it is not a priori obvious that b
is convergent. But if this series converges, Abel’s theorem states that its sum must
be A. When the singularities of a(z) are distributed in such a way that Rb >
there is no problem. However, when Rb also some further analysis is needed.

A summation method which sums every convergent series to its ordinary
sum is called regular. Hardy [1] gives necessary and sufficient conditions for the
regularity of a wide class of summation methods. The regularity of the Euler
transformation then follows by checking the conditions. We shall give here a direct
proof.

THEOREM 1.1. The Euler method E(q) is regular.
,-1 "-1 b A, A. Since (1.4) implies z/(1 z)Proof LetA,=y’, oa,B,=k=o

w/[q(1 w)], the relation (1.3) may be replaced by

z w
b(z) --a(w).
1-z q 1-w

Expanding both sides into a power series we have

Taking the coefficient of z + we obtain

(1.7) B pk-qA.
j=l j

pz

j+l
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If Aj A for all j, then B (1 pk)A. Thus also B A since ]Pl < 1. Hence-
forth we may assume A 0. The relation (1.7) will be written as

j=l j=m+l

=U+V.

Given an e > 0 we can choose m m(0 so that IAjI < e for j > m. Then

(k)pk-jqIWl _-<

For fixed m we have U --, 0 as k o since each term of U tends to zero. Hence
for k sufficiently large [U[ < e so that IBkl < 2e. This means that Bk 0 which
proves the theorem.

2. Borei summation. In an alternative way the Euler method may be dis-
cussed by considering the generating functions

(2.1) a(z) az/k!, fl(z) bz/k!.

The relation (1.1) is easily seen to be equivalent to the functional equation

(2.2) e-Zfl(z) qe-qZa(qz).

It clearly suffices to consider the coefficient of z in the expansions of qa(qz) exp (pz).
From (2.2) we obtain the following interesting result.
THEOREM 2.1. The Euler methods E(q) form a commutative semigroup with

E(ql)E(q2) E(qq2).

We shall now extend the discussion of the Euler method to those series a
for which 0(z) is holomorphic in a domain which contains the positive real axis. If

(2.3) A e-e(x) dx

exists, then the series is said to be Borel summable with A as its Borel sum. From
(2.2) and (2.3) the next theorem follows at once.

THEOREM 2.2. The Euler transformation E(q) with q real and positive does not
change the Borel sum.

Further we have the following property which is proved in Hardy [1, 8.5]
in a more general context.

THEOREM 2.3. The Borel method (2.3) is regular.
Proof. We put for k 0, l, 2, ...,

e-ttk dt e
X2 xk)+x+.,+... +

and

@,(x) e-xxk/k
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Ifa =Aand ak=A thenj=k k,

e ’(t).dt oe dt ak(1

A 2 akCk-- A (A Ak+ 1)()k--" A AkOk.

Hence it remains to prove that

lim e Akxk/k! O,

but this is an elementary matter.
In many applications a series which has to be summed is derived from some

integral expression. We consider in particular the integral

(2.4) e-F(x) dx,

where F(x)is holomorphic in x 0, say F(x) y’, akxk/k !. One may have the idea
of applying an Euler transformation to the series y’,a which is obtained by
termwise integration of the power series expansion of F(x). However, the pre-
ceding analysis shows that the final result could be obtained in a shorter way
by writing the integral in the form

o’
e-U{e-l-u)F(x)} dx

and termwise integrating the power series expansion of F(x)exp {-(1 -p)x}.
Comparing this expression with (2.2) it appears that implicitly an Euler trans-
formation with q 1/p has been applied.

3. The van Wijngaarlen methol. In his paper [3, van Wijngaarden advocates
the following method of summing ak. Introduce nonvanishing multipliers
and subject 2ka to an Euler transformation. Let the resulting series be b
Then there exist conjugate multipliers t such that tkb has the same sum as

a. The formal analysis is very simple. According to (1.3) and (1.4) we have

(3.1) bk -t)k+ 2kaktk+ l.

We suppose that there exists a moment generating function qS(t) such that

(3.2) ,/-1 4)(t)t dt.

Then formal integration of (3.1) after multiplication by dp(t)/t gives

(3.3) Z kbk Z ak,

where

(3.4)
tk

/t
(q + pt)+, 4(t)dt.
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van Wijngaarden considers, in particular, the multiplier set ;k--skik!" Then
b(t) s exp (- st) so that

(3.5) k pk + (1 + [)k +
exp dr.

The general case of an arbitrary Euler transformation with the multiplier param-
eter s is seen to be equivalent to the special Euler transformation with p q
and the multiplier parameter qs/p. Therefore without loss of generality we may
put p q -.

If this method is applied to the power series

(3.6) akco
-k

with 09 either real or complex with Re co > 0, we take 2 cok/k! and compute

2-- s(o)b,(3.7)

where

tk
(3.8) Sk(CO) 09 e -’t dt

(1 -+- t)k+

The functions sk(co) are studied from a computational point of view in a pub-
lication [2] by N. M. Temme.

THEOREM 3.1. The functions sk(co) have for k---} oo, co <<1 the following
asymptotic’ behavior:

(3.9) sk(co) l/2k-1/40,.)3/4 exp (1/2co 2x).

Proof. Writing

e-kS’)co(1 + t)- dt

with f(t) log [(1 + t)/t] + (co/k)t we apply the saddle-point method. The positive
real axis is the line of steepest descent with a saddle point to determined by
cZt(1 + t) 1, where c2 co/k, c > 0. Explicitly,

This gives

to --1/2 + (1/c2 + 1/4)1/2 c-1 1/2 ._ O(c).

and

f(to) 2c- 1/2c 2 + 0(3)

f"(to)-- 2c3 + 0(c4).
Using these expressions it follows that sk(w) is asymptotically equivalent to

Sk(O) CO)exp {-k(2c 1/2c2)) e-kc3u du,

which can be written in the form stated above.
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THEOREM 3.2. The van Wijngaarden transformation with ’k skik! does not

change the Borel sum.

Proof. The relation between the generating functions of ak and ,kak is
given by

where

a(x) f(xt)dp(t) dt,

kakXkf(x) Z k!

According to (2.2) the generating function of bk is given by

fl(x) q ePXf(qx).
Thus we have

a(x) e- P’Xfl(xt)dp(qt) dr.

On the other hand, we have for the generating function

labxq(x) . k!

the expression

b
g(x)

q + pt Xq@pt (t)dt
or

g(x)
+ pt

fl Xpt) dp(qt)dt.

Substitution of the expressions derived above for e(x) and g(x) into o e-Xo(x)dx
and .f e-g(x)dx shows their equality. The formalities are certainly justified if

a is such that

ax O(x")

for x with some constant m. The general problem can be treated in a similar
way.

Example 3.1. The rapidly divergent series (-1)kk!m -k is treated by the
multipliers 2 ok/k!. This gives the formal series (-1)k. If the latter series
is subjected to the ordinary Euler method E(1/2) we find

1/2+o+0+o+ ....
Accordingly, the Borel sum of the given series equals simply 1/2Po or

e -t
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Indeed, the Borel sum of the original series as derived from the generating series
(x) (-1)g(x/co)k CO(X + CO) -1 agrees with the above given integral ex-
pression.

If we wish to compute an integral of the type

(3.10) dp(x)F(x) dx,

where F(x) is holomorphic in x 0, say F(x) agxk, we may subject the series
which is obtained by termwise integration to a van Wijngaarden transformation
with multipliers (3.2). This means that an Euler transformation is applied to

ak. According to (1.3) the result of expanding xF(x) in powers of x(q + px)-1 is

(3.11) F(x) b
X

(q + px)k+l"

In view of (3.4), the effect of the van Wijngaarden transformation is merely the
substitution of (3.11) into (3.10) followed by termwise integration. Thus

(3.12) dp(x)F(x) dx t2kbg.

Of particular interest is the case of a Laplace integral where (3.10) takes the
form

(3.13) f(o) co e-OF(x) dx.

The usual treatment of termwise Laplace transformation of the power series

F(x) akx gives the asymptotic expansion

(3.14) f(co) k!ake)-k.

If, however, F(x) is expanded as in (3.11) we obtain the expansion

(3.15) f(o) bkp-gsg(coq/p),

where bg is the Euler transform of ag and the sg are given by (3.8). The same

expansion would be obtained by applying the special van Wijngaarden trans-

formation with 2g cog/k! to the asymptotic expansion (3.14). This result may be
phrased as follows.

THEOREM 3.3. The special van Wijngaarden transformation is the Laplace

transformation of the Euler transformation.
The expansion (3.15) may be convergent even if (3.14) is divergent for all

If, for example, the generating function akx
g and bkx both have a finite

radius of convergence, the asymptotic behavior (3.9) shows that (3.15) converges
for all co. On the other hand, it shares with (3.14) the asymptotic character for
co since for fixed k,

(3.16) Sk(O0 [’;!03 -k.
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Example 3.2. We consider the Laplace integral

xe’ erfc x/ o e-’(1 + t)-1/2 dt.

To the integrand function (1 + t)-1/2 we apply the Euler transformation E(2/3)
since by this choice the radius of convergence of bkxk takes the optimal value
of 3. In fact, bkx (1 X2/9) 1/2 SO that finally

(1/2)kx e’ erfc E s2k(2c)

is convergent for all o.

Example 3.3. An interesting generalization is indicated in the following
integral for the modified Bessel function:

e/aKo(1/2Co) e- l/a(1 -!- )- 1/2 d.

Applying the same transformation as in the previous example, given by

3 + bktk(1 + t)-1/2 =(2+ t)

we obtain the expansion

tk- 1/2

e/2Ko(1/2co 2- 1/2 bk3k + e-2 dt
(1 + t)+

Introducing the following variant of (3.8):

/k.- 1/2

ak(O 0 e -’’ dt
(1 + t)+

we see that the final result may be written as

(1/2)k
o’2k(2o

The asymptotic behavior of Ck(O) for k o can be obtained in the same way as
for Sk(O). The (obvious)result is

k(CO) rl/Zk-3/4o5/4 exp (1/2co 2 x)"
This shows that also in this case a convergent expansion is obtained.
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ZERO DISTRIBUTION AND BEHAVIOR OF ORTHOGONAL
POLYNOMIALS IN THE SOBOLEV SPACE W’2[ -1, 1]*

EDGAR A. COHEN, JR.]-

Abstract. The distribution of the zeros of the polynomials orthogonal in the Sobolev space
I4’1’2[- 1, 1] with constant weights is established within a certain range of values of the parameters by
relating the zeros to the zeros of the Legendre polynomials. In addition, as the weights vary, properties
of the expansion of one set of orthogonal polynomials in terms of the other set are established.
Monotonicity of the roots as the weights vary and interlacing properties of the zeros are established
in several cases.

1. Introduction. In recent years, there has been some interest in studying
the nature of polynomials which are orthogonal in the Sobolev space whose
norm is given by

(1) f 2 No(X) If(x)] 2 dx + P (x)[f’(x)] 2 dx,

where a and b may be either finite or infinite and po(x) and pl(x) are nonnegative
weights. Althammer [1], Gr6bner [7] and Schifke I11] have studied the properties
of these polynomials in some detail when a 1, b 1, and P0 and P are con-
stants. In this case, the polynomials can be thought of as generalizations of the
classical Legendre polynomials. Lesky [8] and Brenner [4] have, in addition,
considered the weights po(x) exp (- x), p(x) y exp (- x), a 0, b + oc,
with 7 a positive constant. In both of these special cases, the zeros of the
orthogonal polynomials are shown to lie within the open interval (a, b). The
present paper is devoted in part to a study of the distribution of the zeros for the
case when a -1, b 1, Po and p y => 0, and to their behavior as 2
varies. In addition, as the weight is varied, properties of the expansion of one set
of orthogonal polynomials in terms of the other set will be established. Wilson
[15] and Askey [2], [3] have established results of a similar nature for classical
orthogonal polynomials.

2. Preliminary results and notation. The polynomials to be studied are those
of degree n orthogonal in the sense of the inner product

(2) (f, g) f(x)g(x) dx + 2 f’(x)g’(x) dx.
-1 -1

We shall denote these polynomials by R,(x;2) to indicate their dependence on
both n and 2. It will be convenient for our purposes to think of R,(x; 2) as a per-
turbation of the integral of the Legendre polynomial P,_ (x):

(3) R.(x) P._ (t) dt, n >= 2.
-1

* Received by the editors June 18, 1970, and in revised form February 22, 1974.
]- Naval Surface Weapons Center, White Oak, Silver Spring, Maryland 20910.
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We shall also define Ro(x) --- and Rl(X) x. As noted by Schifke [11], since

R,,(x) S,,(x)/(2n 1)

(P.(x) P,,_ 2(x))/(2n 1),

such polynomials are almost orthogonal in the sense that (R.(x),R,.(x))= 0
when In ml a 2 and n 4= m. In a manner parallel to his construction of the
orthogonal polynomials, we form

Ro(x; 2) Ro(x) 1,

(4) R l(x 2) R l(x) x,

R.(x 2) R,,(x) + o,,(2)R._ 2(x; 2), n >= 2.

One finds directly from the definition (2) that 0{2(2 1/3. By comparing
(4) with Schifke’s form (1.7), one sees that

(5) z.(2)
a._ 2(2n 5)
a,,(2n 1)

n _>_ 3.

Schifke is also able to show that

(6) a,
(2j) (n 2j 1)"

n l,

and that a,+ 2/a, is a strictly increasing function of 2 on [0, ). From (5) and (6),
it follows that ,(2) is O(1/2) for large 2, so that ,(2) tends monotonically to 0 as
2 + . Also, from (5) and (6),

(7) e.(0) (2n 5)/(2n 1), n 3.

It is clear that ..(2) is to be determined from the condition

(R,(x; ), R,_ (x" )) 0.

This leads directly to the recurrence relation

(8) %(2) -(R,,(x), R,,_ 2(x))
n>4.[(R._ 2(x), R._ 2(x)) + 0._ 2(2)(R._ 2(x), R._4(x))]’

Schifke’s equations (1.4) and (1.5) lead immediately to the relations

2[2 + 2/(2n + 1)(2n- 3)]
(9) (R.(x), R.(x))

2n
n >= 2,

and

-2
(10) (R.(x), R._ 2(x))

(2n 1)(2n 3)(2n 5)’
n _>_ 3.

From (7), (8), (9) and (10), it follows that, when 2 > 0 and n __> 3,

(11) 0 < 0.(2) <
2(2n 1)(2n 3)"
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Inequality (11) shows the behavior of ,(2) for large n and 2.
Using (8), (9) and (10), one can also show that

(12)

2n- 9

(2n- 3)(2n- 5)(2n- 9)2 + 2(2n- 3) 2(2n 1)(2n 3)

< 0,_ 1(2)- %(2) <
2(2n 3)(2n 5)’

n >= 6.

Inequality (12) shows, in particular, that, for a given 2 and for all n _>_ no(2), ,(2)
must decrease with n. It is clear that, as 2 decreases, no(2) increases, since ,(0)
is an increasing function of n. From (7) and (11), we see that

0 2>0,
lim ,(2)=
,oo 1, 2---0.

From the definition, we have seen that 02 1/3, and from either (5) or (8), it
follows that

5(32 + 1)’
3

e4=7(152+ 1)’

s 9(1052z + 452 + 1)"

It is important to realize that R,(x) is directly related to dP,_l(x)/dx and
thus to the ultraspherical polynomial Pl-z)(x). To see this, integrate the differential
equation satisfied by the Legendre polynomial of degree n [10]"

(13) (1-xZ)x +n(n- 1)y=0

to obtain

d2R,,(x)
(X2 1) dP. -1 (x)(14) n(n 1)R,,(x) (x2 1)

dx2 dx

Therefore 12, 4.21.7, p. 62],

(x
(15) R,,(x) n >_ 2.

2(n 1)

In particular, R,,(x) satisfies the following homogeneous second order differential
equation"

(16) d2y/dx2 + n(n- 1)(1 x2)-ly--O.

3. Zero distribution. This section is devoted to establishing a result on
distribution of zeros of orthogonal polynomials. We have the following theorem.
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THEOREM 1. The zeros of the polynomials R,(x" 2) orthogonal with respect to
the inner product (2) are interlaced with the zeros of the Legendre polynomials of
degree n whenever 2 >= 2/n.

Proof. We first demonstrate, for all n and 2 _>_ 0, that

(17) ]R,(x 2)] <

whenever x e [- l, 1]. From the definition (4), one sees that the statement is valid
for n 0, 1, 2. It is well known [10, p. 200] that

2
(18) ]R,(x)] <= n l/2(n 1)3/2’

n _> 2.

Assume now that
Ig,,_2(x"/],)1 1.

From (4), (7), (18) and the fact that e,(2) is maximum for 2 0,

2 2n 5
]R,(x" 2)] < n > 3

7zl/2(?/- 1)3/2
+ 2n- 1’

Therefore, the assertion is correct for all n; and, from (4), (11) and (18), it follows
that

(19) IR,(x" 2) R,,(x)[ =< ,(2) <
2(2n 1)(2n 3)’

n >= 3.

Inequalities (18) and (19) allow us to improve the bound on R,(x" 2). We have

2
(20) IR.(x" 2)1 < 1/2(g/ 1)3/2 + n > 3.

n 2(2n 1)(2n 3)

Reapplying (4) and using (11) and (20), one finds that

IR.(x" X) R.(x)l
(21) [2 )1<

2(2n 1)(2n 3) lr, I/2(n- 3)3/2
-t-
2(2n- 5)(2n- 7

n >= 5.

From (15), one sees that all the zeros of R,,(x) are real and simple and lie in
[-1, 1], from which it follows that the relative maxima and minima of R,(x)
must alternate in sign. Applying Sonin’s theorem [12, 7.31, p. 161] to (16), we
find that the relative maxima of IR,(x)I decrease as x increases from 0 to 1. Thus
the smallest maximum in [0, 1] is that relative maximum which is closest to x 1.
Furthermore, by definition of R,,(x), at any of its critical points, P,_ (x)= 0.
The distribution of the zeros of the Legendre polynomials is well known. For
example, we can use the well-known inequalities of Markov and Stieltjes for the
positive zeros x; cos 0; of P,_ (x) [12, 6.21, p. 118]"

(22) (j 1/2)n/(n 1) < Oj < fit/n, <= j <= [(n 1)/2].

Buell [5] has shown that no such interval as given by (22) can contain a zero of
dP,_ l(x)/dx, hence, by (14), a zero of R,(x). By Sonin’s theorem, it is clear that
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x cos 01 is the abscissa of the smallest maximum of ]R,(x)], so that

(23) ]R,(xj)l >= IR,(Xl)] > ]R,(cos (g/n))].

Therefore, to obtain a lower bound on IR(xj)l, we shall bound ]R,(cos
from below. To obtain this bound, we employ the method of Liouville-Steklov
[12, 8.63, pp. 208-210], which has been used by Gatteschi 6] to obtain infor-
mation about the Legendre polynomials. From (15), it follows that

_/ -sin (rein)sin (c/2n)cos (/2n)P},l’z)(COS (rein))
(24) R, cos ] n-1

By (4.24.2) of Szeg6 I12, p. 66], the differential equation

d2u{ sin- 2 (0/2) + cos- 2 (0/2)}(25)
dO2 4- N2 3

16
u O,

where N n 1/2, is satisfied by

u [sin (0/2)]3/2[cos (0/2)] 3/2P._l’z)(cos 0).

By (1.8.9) of Szeg6 [12, p. 17], the differential equation

dZu
N2

3
(26)

dO2 t- -] u 0

is satisfied by

and by

U O1/2JI(NO

u 0 a/2 YI(NO),
where J1 is the Bessel function of first kind and order and Y1 is a Bessel function
of the second kind and order 1. Now (25) can be written as

(27)
d2u

N2 3) I 3 31 )1dO2 4- - u
16 COS2 (0/2) 4 02 4 sin2 (0/2)

u.

Using an argument given by Szeg6 [12, 8.63, pp. 208-210], one sees that

[sin (0/2)]3/2[COS (0/2)3/2P152)(c0s O)

2-1/2N-l(n 1)01/2jl(NO

(28) - .,o
[JI(NO)Y(Nt)- YI(NO)JI(Nt)]t 1/2

16 cos2 (t/2) 4 2 4 sin2 (t/2

sin (t/2)]3/2[cos (t/2)]3/2p12)(cos t)dr.

Suppose now that 0 /n in (28), and define

A(t, n) =_ J1 (Ng/n) Y1 (Nt) Y1(N/n)J1 (Nt).
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Then the important quantity to appraise is

3z 21/2 frr/ne,(n) -.,o A(t n)tl/214 cos2 (t/2)

(sin 3/2 (1,)(cost) P._ t) dt

37r’21/2 f ’</"

5 o
A(t,n)

By (1.71.4) of Szeg6 [12, p. 15],

Yl(x) 2

Pt,,’_:’ (cos t)dt.

[log (x/2) + )"]J1 (X) 1/X X

(29) (- 1)i(x/2)2i+1

4sin2 (t/2)) 1

--[1/1 + 1/2 + + 1/i

+ 1/1 + 1,/2 +... + 1/(i + 1)].

The series in (29) is an alternating series, and the absolute value of the ratio of
its ith to its (i 1)st term is given by

x2 [ l/i + l(i + l)
ri--4i(i+ 1)

+
1/1 + 1/2 + + 1/(i-1)+ 1/1 + + 1/i

The ratio ri is seen to be a decreasing function of i, so it attains its maximum when
2. One finds that r2 X2/18 < 1, 0 =< X 7C. From (1.71.1) of Szeg6 [12, p.14],

it is seen that the series representation for J is also alternating and that its terms
are decreasing in 0 =< x N rc whenever v _> 1. We have, for example, the following
inequality, valid for 0 __< x _<_

X X3 X X X X3 X X X9

< J (x) <=(30)
2 16 384 18432 2 16 384 18432 1474560

It has been pointed out by R. Askey in a private communication that such
inequalities indeed hold for all x _> 0. We shall suppose now that n >__ 6, so that

rc/12 =< N/n <= re. Since J1 decreases in this range, we have, using tables of
Bessel functions [1Y],

(31) J,(Nz/n) < J(11/12) <= 0.384

and

(32) Jl(Nr/n) >_ J(rc) _>= 0.284.

Also, when n >= 6, and 0 < <= run, one sees that

(33) (t/sin t)2 < 0.359t2,

since (sin t)-2 f-2 is an increasing function for 0 __< _<_ re/2. Finally, it is well
known [12, 7.32, p. 163] that on [- 1, 1],

(34) IP(x)l _< n 1.
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If we use the first few terms of the expansions for Jl(x) and Yl(X) to bound
IA(t, n)l and apply (31), (33), (34), and elementary formulas for integrals of powers
of and of the type

/n

log (nt/rc) dt,

we find that

]el(n)l _< 3.036/n2.

From (28), we have that

sin (g/2n)cos (g/2n)P(, )(cos (/n))

(35)
(n 1)(n 1/2)-

/sin(/n)] J1

Now

Defining

one finds that

g/n 6

sin (g/n) 6 (g/r/) 2

1.048, n >= 6.

:(n) 21/2
1/2

(36) I:(n)l =< 4.397/n2

Therefore, using (32), (35) and (36), one finds, for n >__ 6, that

(37) Isin (7c/2n)cos (g/2n)P2)(cos (re/n))[ __>_ 0.1359.

From (24), we conclude that

(38) IR,(cos (rc/n))l >= 0.407/n2, n>_6.

Now one can verify that the second member of inequality (38) will exceed
that of (21) for n 6 and 2 => 2/n, provided that

n 0.407(n- 3)(2n- 1) tlz(rl- 3)
(39) rcl/2(r/ 3)1/2(2n 3) rt2 4(2n 3)(2n 5)(2n 7)

That (39) is valid for n 6 can be verified by substitution. Furthermore, it is
seen that the left member is a decreasing function of n, the first term in the right
member an increasing function of n, and the second term in the right member a
decreasing function of n. It follows that the inequality holds for n > 6 as well.

Putting (21), (23), (38) and (39) together, we see that

(40) IR,(x," 2)- R,(xi) < IR.(x,)l, n >= 6, 2 >= 2In,
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at every critical value xi, _< < n 1, of R,(x). Thus, at the maxima and minima
of R,(x), R,(x; 2) and R,(x) are of the same sign. Since we have already shown
that the maxima and minima of R,(x) are of alternating sign, it follows that there
is a zero of R,(x; 2) between any two zeros of P,_ l(x), the Legendre polynomial
of degree n 1. This accounts for n 2 of the zeros of R,(x ;t). We can account
for the remaining two roots as follows" Since R,(1) 0 and R’,(1) P,_ 1(1) 1,
it follows that R,(xl) < 0 and by (40) that R,(Xl; 2) < 0 also. But it can be seen
from the work of Althammer [1] that R,(1 ;2) > 0. This fact can also be established
by applying (4), from which ve conclude that, when n => 2,

R,(1 2) {""- 2 (2 > 0, n even,

OnOn-2 "’’3 > 0, n odd.

It follows that R,(x; 2) has a zero between x x and x 1. By symmetry, there
must also be a zero between x x,_ and x -1. We want now to show that
(40) remains true when n < 6.

First of all, for n 0 and 1, it is vacuously satisfied. For n 2, we find that

(41) Rz(x; 2) (3x2 1)/6,

a multiple of the Legendre polynomial of degree 2. In contrast,

Rz(x) (x2 1)/2.

In this case, the origin is the only critical point, and

IR2(0" ,)- R2(0)I--1/2 < IR2(0)I- 1/2.
When n 3, one finds lhat

x3 3x(52 + 1)
(42) R3(x; 2)

2 10(32 + 1)
and that

R3(x) x(x2 1)/2.

The latter has critical values at x + x//3.
By symmetry, we need only check what happens at the positive value. We

find

IR3(x//3; R R3(x/-/3)l < x//9 IR3(x/#/3)l, 2 >= 0.

For n 4, it is seen that

(43) R4(x 2)
5X4 3X2

8 2 2 7(152 + 1) -t-g- 14(152 + 1)

and that

R4(x) (5x4 6x2 -t- 1)/8.

We must check the critical points x 0 and x x//5. It is found that

IR4(0; 2)- R4(0)I < -IR4(0)I, 2 0.
14(152 -+- 1)
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Also,
2’/lR4tx/;it)-R4tx/5,.’ / 35(152+ 1)

< fa6-

(44)

and

The last case to be considered is that for n 5. For this case,

R5(x’2), =7x5
8 5X3[2

32+
9(10522 + 452 +
52+1

3( o5 

Rs(x) x(7x’- 10x2 + 3)/8.

We have critical values at x2 (15 + 2x)/35. It turns out that (40) is again
valid. This proves the theorem.

4. Positivity results. The second major result is the relation between the
sets of orthogonal polynomials as the parameter /l varies. We have indeed the
following.

THEOREM 2. Whenever Pc < p,
In/2]

R,(x )t) a(k, n)R,_ 2k(X
k=0

where a(k, n) > 0 for all values of k when n is odd. For even n, a(n/2, n) 0 and
a(k,n) > O whenever 0 <=k <=n/2- 1. For 2 > /a, a(O,n) > O and a(k,n) < O
whenever n is odd and <= k <= (n- 1)/2. In case n is even, a(k, n) < 0 for <= k

<= n/2 and a(n/2, n) O.
Proof. It is clear, first of all, that for any 2, the set {Ri(x;/t)} of orthogonal

polynomials forms a basis. Thus there exists a unique representation of any
polynomial R,(x 2) in terms of the set {Ri(x t)}. Since R,(x; 2) is an even function
for even n and an odd function for odd n, only those polynomials of even degree
or odd degree respectively enter the summation. Furthermore, one can use (4)
to expand R._ 2k(X; /2) and R,(x; 2) in terms of the set {Ri(x)} of the integrals of
the Legendre polynomials. Clearly, from (4), a(0, n) 1.

Also, using (4), we have

R,,(x 2) a(k, n) R,,_ 2k(X) + ._ 2k(ll)R 2k- 2(X)
k=0

"[- (Xn- 2k()On 2k- 2(fl)gn 2k-4(X) "["

"+- 0{n- 2k(l’/)0{n 2k- 2() 0{n- 2k- 2j+ 2(//)Rn 2k- 2j(X)

(45) -" -[" 0n- 2k(J’/)0{n- 2k- 2(1/)

(Xn- 2k- 2[(n- 2k)/2] + 2(J’/)/n 2k- 2[(n- 2k)/2](X)l
R,,(x) + ,(2)R,_ 2(X) "t’- O{n()O{ 2(/].)Rn_4(x)

3r- -]- O{n(I],)O(’n- 2(/) 0{n- 2i+ 2(2)R. 2i(X)

.Af_ + n(,,)O{n 2(/) 0{n_ 2[n/2]+ 2()Rn 2[n/2](X)"
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We can now compute the coefficients a(k, n) recursively. For example, from
(45), since {Ri(x)} also forms a basis, we find, on comparing coefficients of

Rn- 2(x),

(46) a(1, n) 0%(2) 0,(12).

Since 0,(2) is strictly decreasing in 2 for n >= 3, (46) is positive for n >= 3 when
2 < # and negative when n _>_ 3 and 2 > 12. Similarly we obtain, comparing co-
efficients of R,_g(x),

(47) 0%(#)0,_ 2(i./) -- a(1, n)%_ 2(12) + a(2, n) 0,(2)e,_ 2(/].).

Using (46) in (47), we see that

(48) a(2, n) ,(2)[z,_ 2(/].) 0{._ 2(12)],

which is positive for n >= 5 when 2 < 12 and negative when 2 > 12 and n >= 5.
We now prove by induction that, when k >__ 2,

(49) a(k, n) 0,(2)0,_ 2(2)... 0,_ 2k + 4(2)[0,_ 2k + 2(2) ,- 2k + 2(12)].

First of all, the result is valid for k 2 as is seen from (48). Suppose that (49) is
correct for j < k. If we form the coefficient of R,_ 2k(x) on both sides of (45), we
see that

On(12)(Zn- 2(12) (Zn- 2k + 2(I2) "]- a(1, n)0,_ 2(12)0{n_ 4(12) 0{ 2k + 2(12)

(50) + a(2, n)0,_(12)0t,_6(/ 0,_2k+2(12) +
+ a(k 1, n)o,,_ 2k + 2(12) -lt- a(k, n) ,(2)0,_ 2(/].) 0{ 2k + 2(/)

By the inductive hypothesis, we may substitute into (50) for a(j, n), when j < k,
the expression given by (49), and we find that (49) follows for j k. From (49),
it follows that, for k 1, a(k, n) is positive when 2 < 12 and negative when 2 > 12
unless k n/2, when it vanishes on account of the fact that 2(2) 1/2 for all 2.

We say that, for 2 < l, the polynomials R,(x; 2) are above the polynomials
R,(x; 12) and that, for 2 > 12, the polynomials R,(x; 2) are below the polynomials
R,(x; 12). For results of this nature in another context, see Wilson [15]. There are
several immediate corollaries of this theorem.

COROLLARY 1. For 2 -# 12, R,(x; 2) R,(x; 12), n >__ 3.
COROLLARY 2. Rn(X /].)/tx lies above {R,(x 12)} for every value of 12.
Proof. Expanding R,(x;2) in terms of the integrals of the Legendre poly-

nomials and differentiating the sum with respect to x, we have the derivative
expressed as a finite positive expansion in terms of Legendre polynomials. How-
ever, from Theorem 2, the Legendre polynomials lie above {R,(x; 12)} for any 12,

from which fact the result follows.
COROLLARY 3. cR,(x 2)/c2 lies above {R,(x" 12)} when 2 < 12.
Proof. From (46) and (49), a(k, n) is a product of nonnegative decreasing

functions of 2, so the result is immediate.

5. Concluding remarks and observations. There are several interesting open
questions. These are"

1. For any 2 > 0, are the zeros of R,,(x; 2) interlaced with the zeros of
R.+ l(X ;/].) 9.
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2. Are the positive zeros of R,,(x; 2), when n >= 3, monotone functions of 2,
passing from the zeros of the Legendre polynomials to the zeros of the integrals
of the Legendre polynomials as/l increases from 0 to ’?

3. There exists a reproducing kernel for all polynomials whose degree does
not exceed n, that is,

Qi(x; 2)Qi(y; 2),
i=0

where Qi(x; 2) is the orthonormal polynomial in (2) with positive leading co-
efficient. In this regard, see Lewis [9]. Is there a Christoffel identity here as there
is in La-spaces?

The first question could be answered in the affirmative, provided it could be
shown that

(51) R’,+ x(x; 2)R,(x; 2) R,+ ,(x; 2)R’,(x 2) > 0

in the closed interval [-1, 1]. In this connection, see Videnskii [14] and Szeg6
[12, 3.3, pp. 43-45]. For n 1, (51) is obvious, since Rl(x;,) is the Legendre
polynomial of degree and Rz(x;2 a positive multiple of the Legendre poly-
nomial of degree 2. Suppose that n 2. Then, by (41) and (42), it is seen that
(51) becomes

Xz X2

(52)
4 10(32 + 1) 12 30(32 + 1)"

The term (52) has a negative discriminant, so that it is positive for all x. Inequality
(51) cannot be justified, as it is in L2, by considering the limit of the reproducing
kernel as y x, as simple examples show.

The second question is also unresolved; although, for a few such values of n,
the positive zeros have been shown to be monotone. Suppose, first of all, that
n 3, so that there is only one positive root, x x(2), to be considered. If x(2)
were not monotone in 2, there would exist two different values of 2, say 2o and
2, such that x(20)= x(2). Since there are only three roots and the zeros are
symmetric with respect to the origin, it would follow that R3(x; 2o) R3(x; 2).
By Corollary to Theorem 2, however, this is impossible. When n 4, there is
the possibility that, for two different values of 2, one of the positive roots could
be the same. By (43), the roots of R(x 2) are given by

4{3[ 4202+ 19
(53) X2(2) = 7(152 + 1) 196(152 + )2
From (53), one sees, by differentiation, that both positive roots are strictly in-
creasing functions of 2. The roots of the quintic polynomial (44) are x 0 and

x(X)
9(lO5 + 45x + 1)

[ 28350+85952-12002-1
+ 324(1052a + 452 + 1)
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Upon differentiation and a laborious computation, it can be shown that both
positive roots, as given by (54), are strictly monotone increasing.

REFERENCES

1] P. ALTHAMMER, Line Erweiterung des Orthogonalitiitsbegriffes bei Polynomen und deren Anwendung

auf die beste Approximation, J. Reine Angew. Math., 211 (1962), pp. 192-204.

[2] R. ASKEY, Orthogonal expansions with positive coefficients, Proc. Amer. Math. Soc., 16 (1965),
pp. 1191-1194.

[3] ,Jacobi polynomial expansions with positive coefficients and imbeddings ofprojective spaces,
Bull. Amer. Math. Soc., 74 (1968), pp. 301-304.

[4] J. BRENNER, f.)ber eine Erweiterung des Orthogonalitiitsbegriffes bei Polynomen, Proc. Conference
on the Constructive Theory of Functions, Akademiai Kiado, Budapest, 1969, pp. 77-83.

[5] C. E. BUELL, The zeros ofJacobi and related polynomials, Duke Math. J., 2 (1936), pp. 304-316.

[6] L. GATTESCHI, Limitazione dell’errore nella formula di Hilb e una nuovaformula per la valutazione
asintotica degli zeri dei polinomi di Legendre, Boll. Un. Mat. Ital. (3), 7 (1952), pp. 272-281.

[7] W. GR/bBNER, Orthogonale Polynomsysteme, die gleichzeitig mit f(x) auch deren Ableitung f’(x)
approximieren, International Series of Numerical Mathematics, Bd. 7, Birkhiuser-Verlag,
Basel, 1967, pp. 24-32.

[8] P. LESKY, Zur Konstruktion yon Orthogonalpolynomen, Proc. Conference on the Constructive
Theory of Functions, Akademiai Kiado, Budapest, 1969, pp. 289-298.

[9] O. C. LEWIS, Polynomial least square approximations, Amer. J. Math., 69 (1947), pp. 273-278.
[10] G. SANSONE, Orthogonal Functions, Interscience, New York, 1959.
I11] F.W. SCH,VKE, Zu den Orthogonalpolynomen yon Althammer, J. Reine Angew. Math., 252 (1972),

pp. 195-199.
[12] G. SZEG/), Orthogonal Polynomials, Colloquium Publications, vol. 23, American Mathematical

Society, New York, 1939.
[13] HARVARD U. COMa. LAB., Tables of the Bessel Functions of the First Kind of Orders Zero and

One, vol. III, Harvard Univ. Press, Cambridge, Mass., 1947.
[14] V. S. VIDENSKII, On zeros oforthogonalpolynomials, Soviet Math. Dokl., 4 (1963), pp. 1479-1482.
[15] M. W. WILSON, On a new discrete analogue of the Legendre polynomials, this Journal, 3 (1972),

pp. 157-169.



SIAM J. MATH. ANAL.
Vol. 6, No. I, February, 1975

ON A CLASS OF WEIESTRASS ELLIPTIC FUNCTIONS
AT HALF AND QUARTER PERIODS*

CHIH-BING LING’

Abstract. The evaluation of a class of Weierstrass elliptic functions and their allied functions at

half and quarter periods is considered in this paper. The double periods of the functions are restricted
to and 2kci, where k is an integer and c 1, xf or 1/x/. The functions are found expressible in
closed form in terms of two special coefficients. The results are tabulated for k 1, 0, 1.

1. Introduction. In the present paper, we are concerned with the evaluation of
a class of Weierstrass elliptic functions and their allied functions, namely, the
derivative of the functions and the Weierstrass zeta function, at half and quarter
periods or their combinations. The double periods 2co and 20)’ of the functions are
restricted to and 2%i, respectively, where k is a positive or negative integer includ-

ing zero and c 1, x/ or 1/x//.
It is known 1] that the Weierstrass elliptic function W(z) at the half periods

co, co’ and co + co’ satisfies the cubic equation

(1) W3(Z) 15a,W(z)- 35a 0,

where a and 66 are the particular cases of the following double series"

(2) a Z’
,,m=- (2ram + 2n’)2s’ s 2.

The prime on the summation sign denotes the omission of simultaneous zeros
of m and n from the double summation. In this paper, we are concerned with the
case 2 only. When there is a need to emphasize the period 2’, we write

(3) W(z) W(zl2’), a a2(2 ).

Further, define two special coefficients a4 and 66 by

(4)

The values of these two coefficients are given in a recent paper by the author [2].
It is found that when 2’ 2kci, the class of Weierstrass elliptic functions and their
allied functions, at half and quarter periods or their combinations, can be expressed
in closed fo in terms ofa when c and in terms of 66 when c or 1/.
A method of evaluation is first described and then the functions are evaluated and
tabulated for k 1, 0, 1.

It may be noted that some relations used in evaluation are existing relations
but some are new. The present investigation is motivated by a need raised in
summation of series involving hyperbolic functions. It is thought that it deserves
a separate consideration on its own merit.

Received by the editors October 17, 1973, and in revised form March 15, 1974.- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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2. a] and r] and W at half periods. Denote the three roots of the cubic
equation in (1) when 209 by

(5) e1(2o9’ W(1/212o9’), e2(2o9’ W(co’12co’), e3(2o9’ W(1/2 + co’12co’).

When 209’ 2kci, the coefficients o and o’6 and the functions e 1, e2 and e3 in the
case k 0 have been evaluated in terms of a4 for c and in terms of 06 for
c x/- or 1/x/ [2]. Furthermore, it can be shown [1, p. 379] that for any integral
k including zero,

(6)
a,(2kci) _2,.,- ci 1...,,.,,- ci)

11 , k-10.’6(2gC)" -0.*(24 lci)ex(2 1i) + -0.6(2 ci).

Similarly, it can also be shown that

(7)
a.(2kci) e2(2 +lci) 4a.(2 + ci),
, lci)ez(2t{+ lci) + 22 6(2 + ci).0"6(2 ct)= 60.*.(2k+ 0.*

The first pair of recurrence relations can be used to evaluate the coefficients for
k >__ from those of k 0, while the second pair can be used to evaluate the
coefficients for k < 1.

It is mentioned that when 209 and 2o9’ 2ci, the cubic equation in (1)
possesses three distinct real roots such that e > e3 > e.. To facilitate the solution
of the cubic equation in this irreducible case, it is found that one of the roots is
given by

(s)

or

e2(2%i)= e1(2 ci)

(9) el(2kci) 2e2(2 + lci),

so that the cubic equation can be solved without difficulty.

3. W at quarter periods.The Weierstrass elliptic function Wat quarter periods
can be found from the following relation [1, p. 376]"

W(z) W(2z) + { W(2z) e2} 1/2{ W(2z) e3} 1/2

(10) + {W(Zz)- e3}1/Z{W(2z)- el} 1/2

+ {W(2z) el}l/Z{W(2z) e2} t/2.

At quarter periods when z 1/4, 1/2o9’ and o9, respectively, we have

W(1/4)=e +(e1-e2)l/z(e -e3)1/2

(11) W(1/2og’) e2 -(e ez)l/Z(e3 e2) 1/2,
1/2(o e2) 1/2W(1/4 +__ 1/2og’) e3 -T- i(e1- e3) ’-3

Here the amplitudes of the functions under radicals are considered in the manner
as described by MacRobert [3, pp. 13-15-] so that the resulting functions under
radicals are all positive.
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4. W’ at quarter periods. The function Iv’(z) or the derivative of IV(z) vanishes
identically at half periods. At quarter periods, it can be found from the following
relation 1, p. 367]"

(12) W’(z) =-2{W(z)- el}l/2{W(z) e2}l/2{W(z) e3} 1/2.

We have at quarter periods by similarly considering the amplitudes ofthe functions
under radicals,

W’(1/4) =-2(e e2)(e e3) 1/2 2(e e3)(e e2) 1/2,

(13) ez)X/2 2i(e ez)(e3 ez)X/2W (709) -2i(e3 ez)(e

W’(1/4 + 1/2o’)= 2(e e3)(e3 /2 e3)/2"2, ----- 2i(e3 ez)(e

5. Weierstrass zeta function at half periods. From the results in a previous
for the three values of cpaper [2], the Weierstrass zeta function at the half period

is, respectively,

c

N/ (35o.6)1/3(350.6) 1/3 3

2

The function at other half periods is given by

(15)
(1/2cilci)-- ci(1/2lci)- zri,

(1/2 -+- 1/2cilci)-- (1 + ci)(1/2lci) ri.

It can be shown from the double series definition of the function that

(16) {(1/212kci) 2k-, -(1 ci) + -el(2k ci),

so that the function at the half period g can be evaluated recurrently. This relation
is convenient to use when k >= 1. When k =< -1, the following relation may be
used instead"

(17) k lci).(1/212kci) 2(1/212k+ ci) q-- 2e2(2 +

The function at other half periods can be found from (15) by replacing c with 2kc.

6. Weierstrass zeta function at quarter periods. From the pseudo-addition
theorem of the Weierstrass zeta function [4, p. 446], we find that when two of
the arguments are equal,

(18) {2(z) (2z)} 2 2 W(z) + W(2z).

Consequently, by taking the positive sign,

(19) ((z) 1/2(2z) + 1/2{2W(z) + W(2z)} /2.

Here the positive sign is chosen on a consideration of the behavior of the function
near the origin. Hence, we have at quarter periods by similarly considering the
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amplitudes of the functions under radicals,

(1/4) =1 + 2(e -ez)l/Z(e 1/2 1/2g(7) + /{3el e3)

(1/209,) =17(09 - {_ 3e2 + 2(el ez)l/Z(e3 e2)1/2} 1/2,
(20)

’(1/4 + -e2)’-(7 + 60’) + g{3e3 2i(e e3)112(e3 12}

( + o’) (09’) + 2{3e3 + 2i(e?i09) e3)l/Z(e3 e2)/2 1/2

The last relation is obtained on account of pseudo-periodicity of the function.

7. Functions at combined half and quarter periods. From the following
relations 1, p. 365],

{W(z + 1/2)- e} {W(z)- el} (e ez)(e e3),(21)
{W(z + 09’) e2} {W(z)- e2} (e2 e l)(e2 e3),

respectively,we find when z is at quarter periods 1/209’ and ,
(22) W(1/2 + 1/209’)= e2 + (e3 ez)l/Z(el e2) 1/2

W(1/4 + 09’) e (e ez)l/Z(e e3) 1/2

Likewise, from (12) and (19), we find

(23)

ez)(e e2)1/2W’(1/2 + 09)= 2i(e ez)(e 3 e2) 1/2 2i(e 3

)1/2 2(e e3)(e e2) 1/2W’(1/4 + 09’)= 2(e ez)(e e3

(1/2 + 1/209’)= ’(1/2)+ 1/2(09’) {-3e2 2(e ez)1/Z(e e2) 1/2 1/2
3

(1/4 "t- 09’)__ ()1 ._.p. (09,)-’t- 1/2{3el 2(el e2)1i2(el ’3) 1/2} 1/2

8. The results. As a check of the amplitude of the function in the foregoing
expressions, a direct method is to compare the resulting value of the function with
that given by the series expansion of the function whenever practicable. In case no
such series expansion is available, an indirect check may be made with the aid of
the following relations:

(24)
(zlilc)- ic(cizlci),

W(zli/c) c2 W(cizlci),
W’(zli/c) ic 3 W’(cizlci),

where c is written in place of 2kc for convenience.
From the foregoing results, it is seen that the functions under consideration

are expressed in terms of e 1, e2 and e3. It follows therefore that when 209 and
209’ 2kci, they can be expressed in terms of rr4 for c and in terms of a4 for
c x/ or 1/x/. For convenience of reference, the values of the functions are
shown for k -1, 0, in the accompanying tables, where the following abbre-
viations are used:

(25) u (15rr4) 1/2 v (35rr6) 1/3
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and

(26)

A l= 6x/ + 2x/ + 2x/ + 1, A 2

A 3 --6x/-} + 2x/- 2x/- 1, A4

B1 (6w/ + 6x/ + 2x/- + 3) 1/2 B2

B3 --(6x//- 6x/ + 2x/- 3)1/2 B4

C 2x/-5(7V/ + 8x/ C2
+ 9@ + 16) 1/2,

C 2x/(Vx/ + 8xf C4
9V/ 16) 1/2,

D 2(3x// + x//) x/z, D2

6v/- 2V/ + 2V/ 1,

6v/- 2x/-- 2x/’ + 1,

(6x/ + 6x/- 2- 3)1/2

(6 6 2 + 3) 1/2

2(7-8
-9+ 16)12

9. Checking formulas. The following relations may be used for further
checking purposes’for 2co 1,

a(i/c) c’a,(ci),
a(i/c) --C60"(ci),
e + e2 + e3 --O,
2 2e + e2 + e 30a,,

ele2e3 35a,
(1/2) + (o’)- (1/2 + ’)= o,

W(1/4w(1/4) + w(1/2o’) + w(1/4 + 1/2o’) + w(1/4 1/2o’) + w(} + o) + + o’)= o,
W(1/4)W(1/4 ql_ o)) 1w (oo)w ( +

(27) W’(1/4 + 500 )W (- 1/2oo’)
4(e e2)(e ea)(e3 e2)

2w(1/4) + w(1/2o’) + w(1/4 + o {(1/4) + (o (1/4 + o )}

w(1/2 + 1/2o’)+ w(1/4 + o’)+ w(1/4 + 1/2o’)
{(1/2 -}- (O nt- (1/4 -+- 0.)’)nt- (1/4 Jr- 1/2(D’)- 2(1/2 -}- (_O’)} 2,

w’(1/4) w(1/4)
-3V" W’(1/2(D’) w(-) o
-w’(1/4 +_ 1/2o’) w(1/4 +_ 1/2’)

and

w’(21- + 1/2o’) w(1/2 + }o’)
w’(1/4+oo’) w(1/4+o’) =o.
w’(1/4 + 1/2o,’) w(1/4 + 1/2o’)

Note that in the first two expressions, c stands for 2kc in general.
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ON SUMMATION OF SERIES OF HYPERBOLIC FUNCTIONS. II*

CHIH-BING LINGY

Abstract. This paper extends the method of summation of series of hyperbolic functions presented
in the previous paper to two alternating series of an even degree and also to four series of an odd degree,
two positive and two alternating. The series are likewise summed in closed form in terms of two special

coefficients a4 and a when the parameter c involved in the series takes on the special values 1, x/ or

1///.
1. Introduction. In a previous paper of the same title 1], the author presented

a method of summation of four positive series of hyperbolic functions of an even
degree. The method is based partly on partial fraction decompositions ofhyperbolic
functions and partly on values of the Weierstrass elliptic function at half periods of
double periods and ci.

The purpose of the present paper is to extend the method of summation
first to the following two alternating series of an even degree:

(1)
(__ 1)n-1

I(c) sn-w 1/4c’
(__ 1)n-

II(c) cosh2S nncn=l

and second to the following four series of an odd degree, two positive and two
alternating"

(2)

II2_1(c) cosh2S- n7

(_1).-1
II._l(C) Z co;h--- nncn=l

IV2-1(c) cosh2- (2n 1)nc/2’n=l

(- 1)"-’
IIIs_l(c) Z sinh2S-- i i-- 1)nc/2’n=l

where s > and c 1, x/ or 1/x/.
To sum the series in (1), essentially the same method ol summation is em-

ployed. However, the sums involve values of the Weierstrass elliptic function at
half periods of double periods and 2ci instead. To sum the series in (2), different
partial fraction decompositions of hyperbolic functions are used. It turns out that
the sums involve values of the Weierstrass zeta and elliptic functions at quarter
and half periods. The functions involved in both cases have been evaluated in a
recent paper [2]. With these values, the sums of the series can also be expressed in
closed form in terms of the coefficient a4 when c and in terms of the coefficient

a6 when c x/ or 1/x/. The reader may consult the author’s previous paper
for the values of these two coefficients.

2. Summation of the series when s 1. Using the partial fraction decomposi-
tions in the previous paper [1, and further decomposing the resulting alternating

Received by the editors October 17, 1973, and in revised form March 15, 1974.- Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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(3)

2 m2 4n2c2

l(c)---12c2 -+-5 2 E (m2 + 4n2c2)2n=l m=l

2 w m2-(2n- 1)2c2
n=l =1 -[- (2n 1-}c-) 2’

8 i ml (2m- 1)2- 4(2n- 1)2c2
II(c) =- {(2m- 1)2 q-4(2n--ii-’-} 2

n=-I

8 (2m 1)2 16r122

7.g2 E E {(2m 1)2 2C2}2"n=l m=l / 16n

When the double series are expressed in terms of the Weierstrass elliptic function,
the preceding relations become

(4)

I* e2(2ci2(C)
6 2g2

II* e(2ci) + e3(2ci),2(C) 2 2/1:2 2---2

where el(2ci), e2(2ci and e3(2ci are the Weierstrass elliptic function of double
periods and 2ci at the half periods, 1/2, ci and (1 + 2ci)/2, respectively.

Again, from the following partial fraction decompositions [3],

(5)

li (1 )+- (-1)" m+ ix m-ixsinh rtx rtx rt

cosh
2
(1) 2m- + 2ix

+
7r,

\

2m- 1-2ix]’

we similarly find

(II(c)
2 E E (- 1)m
T(, 2m + 2nci 2m- 2nci

(6)
{IV,(c)

2 E Z (- 1)m
TC lm= 2m- + (2n- 1)ci

+
2m- 1-(2n- 1)ci

//2II’(c) _2 E (- 1)m +n
n=l m=l /T/ + 2nci

2i
(_l)m+ 2m+(2n-1)ci-2m-(2n- 1)ci

III’(c) 2c r

The double series involved can be expressed in terms of the Weierstrass zeta
function. Denote the function by {(z[2co’), where 200’ signifies one of the two periods
of the function whereas the other period is 200 1. We find from the usual double
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series definition of the function that when 209’ ci,

(1/4]ci) rt + 5(lci) 4.=1 ,.=1

(- 1),. 2m 4- 4nci

(1/4 + 1/2cilci) 1/2(1 + 2ci)(1/2]ci)
oo

2 (--1)m{4.Z=t ,.= 2m + (4n 2)ci

(7) (1/4ciJci)
xi ci
+ (1/21ci)

{-4.2 (- 1)"
=,.=1 4m+(2n- 1)ci

(1/2 + -cilci) +1/2(2 ci)(1/21ci)

2m- -(4n-2)ci

4m-(2n- 1)ci

_4.Z Z (_ 1).
=x,.= 4m-2+(2n- 1)ci 4m-2-(2n- 1)c

By writing c/2 in place of c, the first two relations give, respectively,

( i) 111. 11’4. (12c/), ’, (--1),. 2m- + 2nci
+
2m 2nc

7t 4- 5((-l-C1)
=1 m=l

(8) 4,, (-1)
ira= 2m- 4-(2n- 1)ci

4-
2m- -(2n- 1)ci

l1/2ci)1/2(1 4- ci)(1/211/2ci) (1/4 4- -ci
The differences of the first two relations and the last two relations give, respectively,

(4 Z Z (-1)m+" 2m- + 2ncin=l m=l

(9)

{4 Z Z(-1) 2m + (2n 1)ci

These relations lead to

IIl(C

)+ 2m- 2nci
rc ci((1/21ci) + (1/4 + 1/2ci) ’(1/4]ci),

}2m (2n 1)ci

ci
(1/2[ci) + (1/2 + 1/4cilci)- (1/4ci]ci).

C

2 4rt
11 11((-lcO + ((zlcO,

(10)

IV1( 4
(1 + ci)(1/211/2ci) + f (1/4 + -Cl[-Cl),

ci
’(1/2lci)4- (1/4-II’(c)- 2 2rt

+ 1/2cilci)- --- (1/4lci),

i(1/4cilIII’(c) (1/2lci) (1/2 4- 1/4cilci) 4- ci)
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It is noted that the order of summation of the various double series in this
section is not interchangeable. With the values of the Weierstrass zeta and elliptic
functions at quarter and half periods given in the paper [2, the sums of the six
series in (4) and (10) can be expressed in closed form in terms of o4 when c and
in terms of 0-6 when c x/ or 1/f. The results are shown in Table 1, in which the
following abbreviations are used"

U (150"4) 1/2 V (350"6) 1/3

(11) B (6, + 6w/ + 2- + 3) 1/2, B2 (6,,f + 6w/- 2w/ 3) 1/2,
B3 (6x/- 6w/ + 2w/- 3)1/2, B4 (6V/ 6v/ 2w/ + 3)1/2

TABLE
Values of series in (1) and (2) for

111(c IVl(c ll(c)

+ - 2re 2 2t

Ill(c) I(c) II(c)

2,,f3 + v/(3 + w/)
(B2 B3)/

6 1----6rt--T-- v
2 8rt

(BI B’Ox//3v
6 16t

3v
2 8rt

3v

3. Summation of the series when s >__ 2. Define, for double periods 209
and 209’ ci,

(12)

0-’(ci) ’
1

n,m=- (m + nci)as’

W(zlci) (z m nci)’

s>2,

s>=3,

where the prime on the first summation sign denotes the omission of simul-
taneous zeros of m and n from the double summation. The function W thus
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defined is an elliptic function of double periods and ci. Furthermore, denote
fors >__ 1,

(2re)s
S2s 2 n2S 2(2s) B2s’

n=l

t/2s (2s) B2s’
n=l

(13)
Uzs= (2n- 1)= 1- Szs

n=l

vL_ Y (n -)- 5 ( ,’n=l

where B2s and E2s_ 2 are Bernoulli and Euler’s numbers, respectively. The first few
values are B2 1/6, B4 1/30, B6 1/42; and Eo 1, E2 1, E4 5. Note that
B2 and B, in (11) have different meanings.

To sum the desired series in (1), the same method as in the paper 1] is em-
ployed. The resulting alternating double series is further decomposed into positive
double series. We find for s >= 2,

(14)

A 2s,2kI’k(C (c)

+(_1) [.
n=l m=l

(- 1)/ 1Azs,zklI*(c)
k=l

+ 2nci)2

+ (2n 1)ci} 2

2-- 2 (2m- -+- 4nci)2"
+

n=l m=l

(m -2nci)2;

+
{m (2n 1)ci}

}(2m 4nci)2

(_1)22s [n=l m=l {2m + 2(2n 1)ci}2s ]{2m- 1-2(2n- 1)ci} 2

where the coefficients A2s,2 have been tabulated in the paper [1]. In particular,
A2s,2 1. Similarly, it can be shown that the preceding double series can be
expressed in terms of the function Wz(Z[2ci at half periods. The results are, for
s>=2,

(15)

I*
(-1)s (-1) s-1

2s(C) 2s $2 + {W2(cil2ci a,(2ci)} A2s,2,I,(c),
7 2 k=l

22s

II ,(c) U2s -1- W2s(1/2 -t- cil2ci) W2,(1/212ci)

s-1

2(--1)s+kA 2II(c)2s,
k=l
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in which cr, can be expressed in terms of W2 as follows" For s >= 2,

(16) cr2"(2ci) 22
{ Wzs(1/212ci) / W2(cil2ci) / W2(1/2- / cil2ci)}.

To proceed further, let

(17)

d2S- 2

(2s 2)! /x2- 2 sinh rex
-1 + A2s 2k-1

7.C
2s ,

,= n-h-i rtx

d2, 2
7 7.g2s-- 1)k +

A 2s- 1,2k-

(2S 2)! dx2s- 2 cosh rtx k= cosh2k 7X’

where A 2,- 1,2k- are coefficients to be determined. It is easy to see that A2_ 1,2s-

1. Using the partial fraction decompositions in (5), we similarly find for s >= 2,

)k + a 2s- 1,2k- 1II 2k- 1(C)
k=l

1)22. .,{72s-1 Z 1) (2m / 2nci)2s-’
+ }(2m 2nci)’-

(--1)+lA2s_l,2_1Iv2k_1(

(-- 1)’22.-1 Z E (-l)m
{2m + (2n 1)ci} 2"-

k=l

+ {2m (2n 1)ci}2s-

(-- 1)k+ 1A2s-1,2k- 1II 1(C)
k=l

(2m + 2nci)2-
/

(2m 2nci)2-

(2)1A2s 1,2k-lIIlk (c) \-C/I Us-1
k=

i(- 1)s22s-
+

,= = {2m + (2n 1)ci}2-

{2m (2n 1)ci}a-

These double series can be expressed in terms of the function W;_ . By decom-
posing the double series representing this function, we have for s 2,
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42,__1 W2-1(1/41ci) U-a

{(2m / 4nci)2"- }(2m 4nci)2"-1

(19)

W2 (1/4/1/2cilci): (-1)42s--

"_{2m / (4n 2)ci}-1

W2. (1/4cilci)
i(- 1y

42s c2S_- Os_

]{2m (4n 2)ci}2-

{4m + (2n 1)ci}2s-1 {4m (2n 1)ci}2’-1

W2, (1/2 / 1/4cilci)= (-1)42s- n=l m=l

_{4m 2 / (2n 1)ci}2’- {4m 2 (2n 1)ci}2-

Consequently, the following relations are obtained for s >__ 2"

22,- W2__ x(1/411/2ci s-1

U* / -Z(--l)s+ka2s 1,2k lIIik 1(c)II2_ 1(c) rt2.-1 2- (2rt)2- k=l

iV2s l(C)
W2s-1(1/4- -It- 1/4cil1/2-ci)

(2g)2s-1
(-1)+A2, 1,2k-l|V2k-

k=l

(20)

22s-1
II,-1(c) 2s-1 Us-1-

%s-I(1/4Ici) W._ (1/4 / -cilci)+(27C)2,-1 (2rc)2s-I
s-1

(--1)’+A II, (c)2s- 1,2k-
k=l

i(-1)
IlI._ I(C) (27)2s- {W2s_. l(1/4cilci) W2_ 1(1/2- "it" 1/4cilci)}

s-1

2 A2s--1,2k- lIIIk l(C)
k=l

It is noted that, unlike those in the previous section, the order of summation
of the various double series in this section is interchangeable. To evaluate the
coefficients A 2,-1,2k-1, we differentiate both sides of either equation in (17) twice
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and equate the coefficients. The following recurrence relation is obtained for
s> landl <k<s"

(21)

Azs+l’Zk-1 2s(2s- 1){(2k 2)(2k 3)A2s-1, k-a + (2k 1)2A2s_l,zk_l}.

In particular, for s => 1,
(22) A2s_ 1,2s- 1.

It is thus seen that the desired series in (1) and (2) can be evaluated recurrently
from (15) and (20) by using the values of the series in Table and the values of
W2(z]2ci at half periods or the values of W2_ l(z]ci) and W2_ l(Z]1/2ci) at quarter and
half periods. In general, the function W can be evaluated successively from the
values of W2, W3 and W, by using the following recurrence relation"

(23)

(s- 2)(s- 3)F FzFs_ 2 + F3Fs_ 3 + F4F_ 4 +... + Fs_2F2, s >= 5,

where

(24) Fs (s 1)W(z[2co’), s > 2.

Note that W2 is the Weierstrass elliptic function, W3 is equal to Wz/2 and W4 is
given by

(25) W4(z[2o’) W 22(z12co’) 5ry(2co’).

With the values of W2, W and tr given in the previous paper [2], all the
desired functions of W2 and W2_ can be evaluated. Note that at half periods,
W2_ 1(z[2co’) 0 for s >= 2. Therefore, the sums of the desired series in (1) and (2)
can be expressed in closed form in terms ofr when c and in terms of 0-6 when
c or 1/x/. The values of the series for s 2 and s 3 are shown in Table 2,
in which the same abbreviations as in (11) are used. Table 3 shows the values of

A2s- 1,2k-

Postscript. It is noted that the expressions of B B and B2 B3 involved

TABLE 3
Values of Azs_ 1,2k-

1/3,62880 7381/18,14400
1/40320 41/1008
1/720 91/360
1/24 5/6
1/2

2497/15120 121/120
161/280 3/2

7/6

11/6
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in some summations of the series as shown in Tables and 2 can further be sim-
plified to the following form:

B -k- B4 4.3 /4, B B4 3/42/2(x/ nt- 1),
(26) B2 + B3 4.3 ’/4, B2 B3 3’/’2’/2(w/- 1).
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ASYMPTOTIC EQUIVALENCE OF NONLINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACES*
S. R. BERNFELD," T. G. HALLAM AND V. LAKSHMIKANTHAM

Abstract. New concepts of asymptotic equivalence of differential equations in Banach spaces
are introduced. Our techniques use the comparison theorem and a result on asymptotic equilibrium in
Banach spaces. As an application we extend a nonlinear perturbation result of A. G. Kartsatos.

1. Introduction. Many results have been obtained on the asymptotic re-
lationship between the solutions of a differential equation and a perturbation of
that equation (see the references). One technique that is often employed in con-
nection with this problem is to utilize a variation of parameters formula in con-
junction with a fixed-point theorem. The articles [4], [5], [7]-[9], [12], [13] treat
linear perturbation problems using this approach, while the papers [1]-[3], [11]
employ the Alekseev formula as a tool for discussing nonlinear perturbation
problems.

Another procedure employed in asymptotic behavior problems for differ-
ential equations is the comparison principle. It has also been used coupled with
fixed-point theorems; see [4], [7], [9], [12]. In this paper, we present a new ap-
proach to the asymptotic equilibrium problem in differential equations. Our
technique uses the comparison principle and employs a known result on asymp-
totic equilibrium in a Banach space. This observation coupled with the new
concepts introduced in the definitions presents a new view of asymptotic equiv-
alence.

As an application of our work, we present an extension of a nonlinear per-
turbation result of A. G. Kartsatos [8]. Recent extensions of Kartsatos’ work in
different directions may be found in [14] where a Lyapunov-like function approach
is used and in [6] where the concept of admissibility is used in conjunction with the
Schauder fixed-point theorem.

2. Definitions and preliminaries. Let R+ denote the half-line [0, oo) and B
denote a real Banach space with norm II" I[. We consider the differential equations

(1) dx/dt F(t, x),

(2) dy/dt G(t, y),

where F and G are in C[R+ B, B]. It will be tacitly assumed that solutions of (1)
and (2) exist locally. If B is locally compact, then local existence follows from the
continuity of F and G.
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ASYMPTOTIC EQUIVALENCE 4

We now introduce the terminology associated with the equilibrium problem.
Let A and Yo denote subsets of B.

DEFINITION 1. The differential equations (1) and (2) possess an A-terminal
correspondence with respect to Yo provided for each a e A and Yo Yo, there exists
a ro to(a, Yo) with the property that corresponding to any solution y y(t, o, Yo)
of(2), there isan xo e B such that the solution x(t, to, Xo)of(l)is defined on [zo, )
and satisfies

lira x(t, ,o, Xo) y(t, o, Yo) a.

(This is the strong limit in B.)
DEFINITION 2. The equations (1) and (2) possess an A-convergent correspon-

dence with respect to Yo provided for each a e A and Yo e Yo, there exists a To
To(a, Yo) >-- 0 with the property that corresponding to any solution y(t, o, Yo)

of (2) with o >= To, there is a solution x(t, o, Xo) of (1) valid for e [to, ), with

Xo Yo a, and which satisfies

lim x(t, o, Xo) y(t, o, Yo) c for some c e B.

If Yo B, the qualifying phrase--with respect to Yo--will be omitted.
DEVINITIOY 3. The equations (1) and (2) are in A-asymptotic equilibrium

with respect to Yo if (1) and (2) possess an A-terminal correspondence with respect to

Yo and an A-convergent correspondence with respect to YD.
DEFINITION 4. If (1) and (2) possess an A-terminal correspondence with respect

to Yo and ro ro(Yo) for all a A, then (1) and (2) possess a uniform A-terminal
correspondence, with respect to YD.

DEFINITION 5. If (1) and (2) possess an A-convergent correspondence with
respect to Yo and To To(Yo) for all a e A, then (1) and (2) possess a uniform A-
convergent correspondence with respect to YD.

DEFIYTOY 6. If (1) and (2) possess a uniform A-terminal correspondence
with respect to Yo and a uniform A-convergent correspondence with respect to
Yo, then (1) and (2) are in uniform A-asymptotic equilibrium with respect to YD.

The above definitions are "eventual" in the sense that ro and To need not be
zero. However, we will not clutter the definitions by adding this qualifier.

Some examples are given to demonstrate that the above concepts are distinct.
Example. Let n > denote an odd positive integer. Consider the differential

equation

(3) dx/dt a(t)xn;

in (3), x e R, R+ and a(t) is a positive continuous function defined for R+
with a(t) dt < . The structure of the solution space of equation (3) for initial
positions in Yo R + {0} is as follows. There is a solution 05 OS(t) of (3) that is
valid on R + with the property that lim,_ p(t) . This function p separates the
bounded solutions of (3) from the solutions with a finite escape time.

If A is any compact subset of R+ {0}, then (3) and

(4) dw/dt 0

are in uniform A-asymptotic equilibrium with respect to YD. To verify this let
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Xo e Yo; then, choose To(xo)= Zo(Xo) such that q(t)- xo > d(A), >= To(xo),
where d(A) denotes the diameter of A. This choice of To is possible because
limt_oo qS(t)= oo. The solution x(t, to,Xx), where o >= To x xo + a, a eA,
of (3) satisfies lim,_ x(t, to,X1)= x for some x. Thus, (3) and (4) possess a
uniform A-convergence correspondence with respect to Yo.

Given any terminal value x e Yo, there is a solution x(t, ro, Xo) of (3) with
limt_ x(t, zo, Xo) x. If a A is prescribed, then any solution w of (4) can be
written as w w(t, ro, xoo + a) =- xo + a for some x. Therefore, corresponding
to any solution w of (4), there exists an xo e R such that

lim x(t, zo, Xo) w(t, zo, x + a) a.
t--

This shows that (3) and (4) possess a uniform A-terminal correspondence, which in
turn shows that (3) and (4) are in uniform A-asymptotic equilibrium.

If A R+ {0}, then, as may be demonstrated by using similar arguments
as those above, equations (3) and (4) are in A-asymptotic equilibrium with respect
to Yo; however, neither the A-terminal nor the A-convergence correspondence
involved in the equilibrium is uniform.

3. Main results. For a prescribed set A, it is convenient to define the set
Ao {p R’p Ilall for a A} and to consider Ao as a subset of the Banach
space R. We will denote by Boo the ball,

Boo {b e B" lib _-< Po}.
We will discuss the A-convergence correspondence. The basic tool used here

is Theorem 5.6.1 of [10, p. 161].
THEOREM 1. Assume that for each p > 0"
(l i) There exists a T T(p) >__ 0 such that

IIF(t, x) =< fo(t, xll) (t Er(p), oo), x Bo,

where fo e C[[T(p), ) x [0, p),R+] and fo(t,r) is monotonically nondecreasing in
rfor eachfixed e IT(p), ); and

(lii) For each ro, 0 < ro < p, there exists a o to(ro) >__ T(p) such that the
maximal solution r(t, o, ro) of the initial value problem

dr/dt fo(t, r),
(50) r(to) ro

satisfies r(t, o, ro) < p, > o
Thenfor any set A, equations (1) and

(6) du/dt O (t R+ u B)

possess atl

(liii) A-convergence correspondence and
(l iv) a uniform A-convergence correspondence.
Proof We will establish (liii) first. Let uo e B and a e A be given and define

p- Iluoll / Ilall / 1. Select TO to(lluoll / Ilall), where to(.) is defined in
hypothesis (lii).
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To establish that (1) and (6) possess an A-convergent correspondence, it
suffices to show that limt. x(t, o, Xo) x exists where o > To and xo uo
+ a. Once the existence ofx is demonstrated, then it follows that the asymptotic
limit c is determined by c uo Xo.

Theorem 5.6.1 of 10, p. 161 implies that x exists; this completes the proof of
conclusion (liii).

Conclusion (liv) is obtained in an analogous fashion as (liii). In this situation,
xo B and a A are prescribed. Result (l iv) can be demonstrated by choosing
To to(llXol and using the relationships uo xo + a andc xo + a- x.This
completes the proof of Theorem 1.

Next, we obtain some sufficient conditions for A-terminal correspondences.
A terminal analogue (Theorem 5.6.2 of [10, p. 164]) of Theorem 5.6.1 will be em-
ployed in the proof.

THEOREM 2. Assume that
(2i) hypotheses (li) and (lii) are satisfied,
(2ii) F maps bounded sets into relatively compact sets.

Then, for any set A,
(2iii) equations (1) and (6) possess an A-terminal correspondence, and
(2iv) equations (6) and (1) possess a unijbrm A-terminal correspondence.
Proof First, we indicate the proof of (2iii). Let a A and uo B be given; con-

sider p 2[[lUol + lall]. Corresponding to ro IlUol + Ilall, there exists a
function o to(to) such that the maximal solution r(t, to, to) of (5) is bounded on
[to, oo). Let roo limt_oo r(t, to, ro).

Choose J sufficiently large so that jjo fo(t, 2roo) dt < roo. The existence of such
a J is demonstrated in the proof of Theorem 5.6.2 of [10, p. 164].

We now select :o to(a, Uo) max [to(ro), J]. For such a ro, the proof of
Theorem 5.6.2 can again be used to show that there exists an xo B with the pro-
perty that lim_oo x(t, %, Xo) "uo + a. This establishes the conclusion (2iii).

The conclusion (2iv) is obtained through an application of Theorem 5.6.1.
The details are omitted.

We now turn to equations (1) and (2) and the A-asymptotic equilibrium
problem.

THEOREM 3. Assume that
(3i) F, G C[R + x B, B] and maps bounded sets into relatively compact sets;
(3ii) for each p > 0 there exists a T T(p) _> 0 such that for >_ T, v Bp,

and each z(t) B, IT, oo),

(7) liE(t, z(0 + v)- G(t, z(t))ll hp(t, Ilvll),
where ho C[[T, oo) [0, p], R +], ho(t, r) is monotonic nondecreasing in r for each
tR+;

(3iii) for each p > 0 and each ro, ro < p, there exists a o to(ro) > T(p)
such that the maximal solution r(t, o, ro) of the initial value problem

dr/dt hv(t, r),
(8,) r(to ro
satisfies r(t, to, ro) < p, [to, oo). Then, for any set A, equations (1) and (2) are in
A-asymptotic equilibrium.
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Proof For any solution y(t) of (2), we consider z x y(t). If x satisfies (1),
it follows that z satisfies the equation

(9) dz/dt V(t, z + y(t))- G(t, y(t)).

The equations (8) and (9) are of the type considered in Theorems and 2. By
virtue of the hypotheses (3i), (3ii) and (3iii), Theorems and 2 imply that the
equations (9) and (6) are in A-asymptotic equilibrium. Recalling that z x y(t),
a direct verification shows that (1) and (2) are in A-asymptotic equilibrium.

We now consider the situation when the hypotheses of Theorems and 2 are
not satisfied globally. The restrictions that this specification places upon the sets
A and Yo are of special interest.

THEOREM 4. Assume that
(4i) for (fixed) p > 0 and T > O,

F(t, x) <__ fo,(t, Ilxl) (t >= T, x B,),
where f,C[[W, ) [0, pl],R/] and f,(t,r) is nondecreasing in r for fixed
6 IT, );

(4ii) Let 0 < Po < P l;Jbr each ro, 0 < ro < Po, there exists a o to(ro) > T
such that the maximal solution r(t, o, ro) of the initial value problem (50,) with
r(to) ro satisfies r(t, to, ro) < Po.

Then,for the sets A B, and Yo B where a + 2 ( /90, equations (1) and
(6) possess an A-convergence correspondence with respect to Yo. Furthermore, if, in
addition to the above hypotheses, F maps bounded sets into relatively compact sets,
then (1) and (6) possess an A-terminal correspondence with respect to Yo.

Proof The proof follows readily from the arguments given in Theorems 3 and
4. One difference is in the choice of J in Theorem 2. In this instance choose J
sufficiently large so that

fjf(s, Px) ds < Pl Po.

An analogue of Theorem 3 with restricted domains can be readily composed.
THEOREM 5. Assume that
(5i) condition (3i) is satisfied;
(5ii) for (fixed) P > 0 and T >= O, the inequality

F(t, z(t) + v) G(t, z(t)) <= ho,(t, Ivl
is satisfied for >= T, v Bo,, and each z(t) B, >= T. The function ho, C[[T, )

[0, pl],R+] and hp,(t,r) is monotone nondecreasing in r for each 6R+.
(5iii) Let 0 < Po < P x; suppose that for each ro, 0 < ro < Po, there exists a

o to(to)>= T such that the maximal solution r(t, to,ro) of (8,) satisfies r(t,
to, to) < Po.

Then,for A B, and Yo B where ax + a2 < Po, equations (1) and (2) are
in A-asymptotic equilibrium with respect to Yo.

4. Application. As a corollary to Theorem 5, we shall indicate a result on the
nonlinear perturbation of a nonlinear system of differential equations. Consider
B R" and F(t, x) G(t, x) + H(t, x). Suppose that y y(t), a solution of (2)
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defined on IT, oe), and p, a positive constant, are given. Let

]H(t, y(t) + v)ll _-< 2(t) (t __> T, Ilvll =< Pl)
and

]lGft, yft) + v)- Gft, yft))ll =< (t)g(llvll) (t >__ T, ]lv <= p).

We assume that 2 and a are in C[[T, oe), R+] f’l L[[T, oe),R+]. Define for
0 <= r <= p, G(r) SUPo_<,_< g(u)and K =_ G(p).

Choose z sufficiently large so that for st)me Po, 0 < Po < P a, we have
[Ka(s)+ 2(s)] ds < p- Po. This property implies that the maximal solu-

tion r(t, o, ro) of

dr/dt a(t)G(r) + 2(t)

exists and is bounded on Jr, ) by p provided ro < Po. For >__ 0 and 2 0
with + t2 < Do, Theorem 5 implies that equations (1) and (2) are B-asymptoti-
cally equivalent with respect to B.

The above application extends the previously mentioned result of Kartsatos
[8] who considered an A-terminal correspondence with A Bo {0}.
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BOUNDS FOR THE SOLUTIONS OF POISSON PROBLEMS AND
APPLICATIONS TO NONLINEAR EIGENVALUE PROBLEMS*

CATHERINE BANDLE3"

Abstract. Pointwise upper bounds for the solutions of Poisson problems are given. These bounds
together with the method of lower and upper solutions are then used to estimate the spectrum for a
class of nonlinear eigenvalue problems.

1.1. Introduction. The first part of this paper deals with two-dimensional
Poisson problems. Sharp pointwise bounds for solutions satisfying different kinds
of boundary conditions are constructed. The results extend a theorem by P61ya
and Szeg6 [9, p. 115] for the torsion problem Au -2 in , u 0 on . It
states that 0 =< 2u =< A, where A stands for the area of the domain. Equality
holds on the right if and only if @ is a circle and u is taken at the center. Other
results in this direction were also obtained by Payne [8]. Our results are based on
geometrical isoperimetric inequalities by Alexandrow 1 and some generalizations
announced in [5]. Theorem 2.1 is already mentioned in [5] without proof.

The second part is concerned with nonlinear boundary value problems
of the type Au + 2p(x)f(u)= 0. This kind of problem arises in the theory of
thermal ignition ofa chemically active mixture ofgases. With the help ofthe method
of lower and upper solutions [103 and the results of 1 and 2, we give estimates for
the least upper bound 2or of the values of 2 for which the nonlinear problem has a
solution. The value 2or is the critical explosion parameter for the unsteady problem,
that is, for 2 < 2r there exists a stable solution of the time-dependent equation [7].
The problem of estimating /cr has been studied by many authors [3], [4], [6],
[7], [11]. For other properties of 2r, especially those concerning the uniqueness of
solutions and their stability, we refer to [6], [7]; see also [3].

1.2. Bounds for the solutions of Poisson problems. Let be a simply con-
nected domain in the plane whose boundary consists of piecewise analytic arcs.
Let x (x l, x2) stand for a generic point in R2. Consider in a positive function
p(x) satisfying the differential inequality

(1.1) A log p + 2Cp > 0 in 9.

Here, C denotes an arbitrary real number. We define

M f p(x)dx (dx dxl dx2).

This section deals with the Poisson problem

(1.2)
Aq(x)=-p(x) in@,

cp(x) 0 on

Next, we shall introduce the complex variable z X + ix2 and interpret problem
(1.2) in the complex z-plane. We set q(x) q(z). Let w(z) be an analytic function

* Received by the editors November 29, 1973.
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which maps the domain @ conformally onto the domain w(@) of the complex
w-plane. By z(w) we denote the inverse function of w(z). Problem (1.2) is equivalent
to the problem

(1.2’)
AwO(W)=-(w) in,

0(w) 0 on

where

Co(w)-- qg(z(w)) and 3(w)-- p(z(w))l dz/dwl 2.

Since log Idz/dwl 2 is a harmonic function, it follows that (w) satisfies the differen-
tial inequality Aw log 3(w) + 2CtS(w) >= 0 in @.

DEFINITION. We shall say that (9, p) is conformally equivalent to (, P) if
there exists a conformal mapping z(w)’ 5 such that z() and P(w)

p(z(w))ldz/dwl 2.
Remark. Let / be a piece of a Riemann manifold given in the following

isothermic representation. In the domain D of the x-plane, a Riemann metric is
defined by the line element da2 p(x)[dx2 + dx2]. In this parameter system the
Beltrami operator is given by L (1/p(x))A. For the Gaussian curvature of //we
have K(x)= -[A log p(x)]/2p(x). Problem (1.2) can now be written as L[qg(x)]

in , qg(x) 0 on c%#. Condition (1.1) means that K(x) <_ C on #.
THEOREM 1.1. IfCM < 4rc, then

1 4re(1.3) qg(x) =< log
4t CM"

Equality holds if and only if (9, p) is conformally equivalent to (S, ), where S is the
circle r < R (r, 0 polar coordinates) and 3 (1 + Cr2/4) -2. In this case qg(x)
takes its maximum at the center.

Proof Let D(t) {x D; qg(x) > t} and let F(t) {x D; qg(x) t}. Because
of the boundary condition it is clear that 8D(t)= F(t). We shall write A(t)
,)p dx and L(t)= r(,)x//-fi ds, where ds denotes the Euclidean line element

w/dx2 + dx2. By the Schwarz inequality we have

(1.4, vc3qglfv p [Iv ]2
Here n is the outer normal. Because of (1.2) it follows that

(1.5)

Observing that

we conclude that

ds A(t).

dAP--Y-- ds (t)
(t) ]cq)/cn] dt

(1.6)
dA(t)

A(t)--d-- >= L2(t).
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Applying Alexandrow’s geometrical inequality [1, p. 514],

LZ(t) >= (4r CA(t))A(t),(1.7)

we get

(1.8)
dA(t)

> 4x CA(t).
dt

Therefore, e
follows that

-Ct[A(t)- 4/C is a nonincreasing function of t. If CM < 4re, it

4r
max

C
.o,

4re CM x#
.,x,,

which yields (1.3). We now observe that in (1.7) the equality sign holds if and only
if (D(t), p(x)) is conformally equivalent (isometric) to a geodesic circle on a surface
of constant curvature C. A parametric representation of the extremal case is given
in the following form. Let S(t) be the circle

and

4A(t)
r2
_
4 CA(t)

d#2 #(r) ds2

be the Riemannian metric. If D S S(0) and p(x)= #(r), a straightforward
calculation yields for the solution of (1.2)

4
O(r) log

(4n CM)(1 + Cr2/4)

where M zR2(1 + 1/4CR2) . At the origin we have

1
b(0)- log

4r CM’

which completes the proof of the theorem.
A slightly different proof of this theorem is found in [3]. If C 0, we obtain

q(x) <_ M/4n, which is an extension of results in [8], [9]. For other properties of
(1.2), especially energy estimates, we refer to [2].

2. Generalizations. Let @ and p satisfy the same assumptions as in 1. We
now suppose that c is given in its parametric representation x(s), where s denotes
the length of 8 between the points x(0) and x(s). 8 is oriented in the positive
sense. By x(s) we denote the curvature of t?. It is defined everywhere except at
the corners where it has to be interpreted as a Dirac measure, n stands for the
outer normal to 8. t? is subdivided into two connected arcs

r, {x(s) 0 __< s __< a}
and

Fo C F
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Let

f,[ 18 1/(r/) to(s) + nn log p ds

for each set r/G F1. Clearly, #(r/) defines an additive measure on F1. We write
/
+ (F 1) max,=_ r, #(r/) for its positive component.

The geometric interpretation of is as follows. Consider the Riemann mani-

fold//described in 1. Then (1/x//-){t + 1/2(/c3n) log p} represents the geodesic
curvature of the boundary arc
Consider the Poisson problem with mixed boundary conditions

Aq -p in

(2.) P
n 0 on F1,

cp =0 on Fo.

For this problem the following theorem holds.
THEOREM 2.1. Let/t+(F1) z x =< 7t and let CM < 2. Then

2cz
(2.2) q(x) <= log

2 CM"

Equality holds if and only if (, p) is conformally equivalent to (, ), where is the

circular sector (0 < r < R, 0 < 0 < o} with the boundary arcs F $1 =- {0 0

and 0 z} and Fo o =- {r R}, R2 4M/(2z Gin), and t3 (1 + Cr2/4) 2.
In this case qg(x) achieves its maximum at the origin.

Proof. Using the same notation as in the proof of Theorem 1.1, we show that
(1.6) holds also in this case. Here, F(t) is not necessarily a closed level line. Alexan-
drow’s inequality (1.7) has therefore to be replaced by the inequality [5]

(2.3) L2(t) __> (2 CA(t))A(t).

Equality holds if and only if (D(t), p) is conformally equivalent to (,(t), 3), where

N(t)= r <= R(t) 2c-CA(t)_]
,0=<0__<

with F(t) C3o(t {r R(t)}. The remaining part of the proof is the same as

for Theorem 1.1. It will therefore be omitted.
If C 0, inequality (2.2) yields the estimate p(x) =< M/2a. If F , then

a , and (2.2) leads to o(x) __< (I/C)log 2rc/(2rc CM), which is weaker than
(.3)

3. Nonlinear eigenvalue problems. In this section we are concerned with a

class of nonlinear Dirichlet problems of the following type:

Au + 2p(x)f(u) 0 in ,
(3.1)

u 0 on



150 CATHERINE BANDLE

@ and p are defined as in 1. We suppose f(t) to satisfy the following conditions"

H 0 f(t) is continuous and positive for e R +,
n 1 f(0) > 0,

H 2 f(t) > 0 and is continuous for R +.
Several authors [6], 7] were able to show that problem (3.1) has a positive solution
for all 2 (0, 2or). 2or is the least upper bound such that problem (3.1) has a solution
for each 2 < ’er whereas it is not solvable for 2 > ’r. 2er is called the critical
explosion parameter 11 ].

Let

(3.2)
Ark + vpch 0 in 9,

b 0 on c3

be the problem of an inhomogeneous membrane with mass density p(x). With v
we denote its lowest eigenvalue. As Hudjaev [6] showed, Barta’s simple argument
using Green’s identity can be used here and yields

(3.3) ’cr < inf f(t)/t]"
t>o

Let

m inf [f(t)/t] <
t>0

Then we have the following result.
THEOREM 3.1. Under the assumption CM < 4zt, 2r is bounded from below by

the expression

(3.4) C
log <

m 4zt M
Proof It suffices to prove the existence of a solution of (3.1) for the value

2o (C/m){log 4zt/(4zt CM)} -1 For this purpose we use the method of upper
and lower solutions [6], [10]. (x) is called an upper solution to problem (3.1) if

(3.5)
A +

>=0 onS.

If there exists a positive upper solution then problem (3.1) has a solution [6], [10]
such that u _< ft. Consider the problem Aq5 + 2p(x)f(t) 0 in 9, b 0 on ,
where is an arbitrary, but fixed positive real number. By Theorem 1.1 we have

dp(x)<=2f(t)log(4ZtC 4n- CM =-B(t)"

If B(t) <= t, i.e., if 2 <= (t. C/f(t)). {log 4n/(4n CM)}-1, then (x) satisfies (3.5)
and there exists a solution of (3.1). Since was arbitrary, we can set t/f(t) m-1,
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which is the optimal choice. By the maximum principle, tk(x) is positive. For each
2 =< 20 we have constructed a positive upper solution. The assertion is therefore
established.

Example. Let {x;Ixl =< 2/v/-, C > 0} and p (1 + Cr2/4) -2. In this
case CM 2n and v 2C. It then follows from (3.3) and (3.4) that 1.4427(C/m)
-<- 2r <= (2C/m).

Remark. Iff(t} is convex, then ko cannot coincide with 2r. We shall prove this
statement by contradiction. Let us assume that 2o 2. Then by the previous
remarks on upper solutions, u (= solution of (3.1) corresponding to 2r) exists
and u _<_ 4). It is known [7], [6], [3] that in this case 2r is equal to the lowest
eigenvalue/9 of the linearized problem

Av+ppf(ucr)v=O in, v=0on

The eigenfunction v corresponding to p 2or does not change the sign. We shall
assume that v(x) >= 0 in . From the construction of b it follows that the domain
where Ab + 2pf(b) < 0 has a positive Lebesgue measure. By Green’s identity
we have

0= f vk(b- u)dx- (t- /2or)A/)dx

<--2er f vp(f()-- f(Uer))dx-t- 2er vpf(Uer)(-- Uer dx < O.

For the last inequality we used the convexity off. We have obtained a contradiction.
Hence 20 4: 2r.

4. Generalizations. We now suppose that , p, Fo and F1 satisfy the assump-
tions of 2. Consider the nonlinear problem

ku + 2p(x)f(u) O in,

(4.1) u=0 onFo,

+ a(x)u O onF1,

where f(t) satisfies the conditions H-0, H-1 and H-2, and where a(x) is a nonnega-
tive H61der continuous function on F1. This problem, too, is solvable in an
interval I (0, ’r) but for no 2 > ’cr. Let denote the lowest eigenvalue of the
linear problem

A+p=0 in, =0onFo,

+ a 0 on

In analogy to (3.3) we have ’cr /m.
In exactly the same way as Theorem 3.1, except that we use inequality (2.2)

instead of (1.3), we prove the following.
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THEOREM 4.1. Let #+(F1) r e __< rc and CM < 2. Then the following
estimate holds for cr"

C(log 2 t -1

m 2 -M
The remark at the end of 3 applies also to Theorem 4.1.
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DEPENDENCE OF A NONLINEAR INTEGRODIFFERENTIAL
SYSTEM ON PARAMETERS*

T. A. BRONIKOWSKUf

Abstract. In this paper we study the dependence on parameters of the solutions of a class of
nonlinear systems of integrodifferential equations arising in nuclear reactor dynamics. Continuity
with respect to a small parameter (physically, the thermal conductivity), a large parameter and initial
conditions is established.

1. Introduction. We consider the following real, nonlinear integrodifferential
system for 0 __< x =< c;O __< < "

(1.1)
u’(t) a(x)T(x, t) dx,

T,(x, t) (b(x)T(x, t))x q(x)T(x, t) + rl(x)a(u(t)),

together with initial and boundary conditions

(1.2) u(O)=uo, T(x,O)=f(x),

(1.3) a 1T(0, t) + a2Yx(O t) bl T(c, t) + b2Tx(c t) 0

in a number of settings. In this system e, r/, f, a, b and q are given functions; Uo,
al, a2, b, b2, c are constants with u0 arbitrary, c > 0,
> 0, the prime indicates differentiation with respect to t. This system is of physical
interest as a dynamic model of a one-dimensional continuous medium nuclear
reactor. For the physical significance of the quantities in (1.1), the reader should
consult the references and their bibliographies.

Systems similar to (1.1) have been studied in a variety of settings by Levin
and Nohel [4], [5], [6], [7], Bronikowski [1], [2] and more recently by Bronikowski,
Hall and Nohel [3]. Most results in these papers concerned the existence and
asymptotic behavior of solutions as --. oe. Here our prime concern is the de-
pendence of solutions on various quantities appearing in the system.

We will assume throughout this paper that b, b’, q e C[0, c], b(x) > O, q(x) >= 0
for all x e [0, c], and thataaa2 =< 0, blb2

>_ O. Then the Sturm-Liouville problem

(1.4)
(by’)’ + (2 q)y O,

ay(O) + a2y’(O O, by(c) + b2y’(c O,

which is associated with (1.1b) in a natural way, has a countable set of simple
nonnegative eigenvalues, 2,, n 0, 1,2, ..., satisfying 2, =/T27zZL-2 + O(1)
(n ), where L j’ b(x)-1/2 dx. We will assume that the corresponding eigen-
functions, y,,(x), are normalized and will denote by g, the Fourier coefficients of
any suitable function g; thus g, j’ gy,,. The smallest eigenvalue will be positive
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if either q 0 or ]al[ -k- ]bll > 0. If neither condition is true, then 0 is an eigen-
value, denoted by 2o, with corresponding yo(X) c-1/2. In any event, 21 denotes
the smallest positive eigenvalue. The principal effect of 0 as an eigenvalue is in
the asymptotic behavior of solutions as . It is of only very minor concern
here.

Regarding existence and uniqueness of solutions of (1.1), we have the fol-
lowing theorem [3, first conclusions of Thms. and 2, based on Lemma 1].

THEOREM A. Let the following conditions be satisfied:
aC’(-, ), ua(u) > Oifu :/: O,

S(x) a(u) du as lxl o,

(1.6)
a, rl, f, (brl’)’, (bf’)’ L2(O, c), f C(O, c),

f, r satisfy the boundary condition (lAb),

(1.7) z,q, > 0, n 0, 1,2,

there exist constants <= 1, " >__ such that

(1.8) a _< z,/rl, <= for all n for which a,q, > O,

(1.9) ,r/, 0 , q, 0.

Then (1.1) has a unique solution u(t), T(x, t) existing for 0 <__ < o, 0 <= x <= c
satisfying (1.2) and (1.3). Moreover if (1.4) does ndt have 0 as an eigenvalue, then
for some constant K > O,

(1.10) lu(t)[ =< K, sup IT(x, t)[ =< K (0 =< <
O<x<c

If 0 is an eigenvalue of (1.4), then for some constant K > O, u(t) satisfies (1.10a) and

(1.11) sup IT(x, t)l <= K + (u(s)) ds
O<x<c

There are certain modifications of these hypotheses under which (1.10) and
(1.11) may be established [3, Lemma 2], [8]. We will not utilize them, however, to
obtain our results.

The continuity of solutions of(1.1) with respect to u0, a, r/and f(the functions
regarded as points in the appropriate L2 space) is established in 2. All that is
required is to point out several modifications in the proof of our former result for
the linear system [1, Thm. 4]. In 3, in order to relate some of our results to those
in [4], we consider (1.1) where b(x) b > O, q(x) O. In the physical setting b,
the thermal conductivity of the reactor medium may be small, and one is thus
led to consider the behavior of solutions as b ---, 0 +. The linear version of Theorem
2, which describes this behavior was established in [2]. Finally, in 4 we study the
dependence of solutions as c ov in the linear case and relate limits of these
solutions to those of [4] in Theorem 3. The extension of this result to the non-
linear system is discussed after the proof is given.
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In [33 it was shown that u(t) and T(x, t) satisfy certain relations which we list
here for future reference. In these equations,

kl, z,f,, k2,

and the sums are from n to av unless otherwise noted. First, u(t) satisfies the
Volterra equation

(1.12) u(t) uo + K l(t) + K2(t z)(u(z)) dr,

where, if (1.4) does not have 0 as an eigenvalue,

(1.13) Ki(t) kg,,22 l(e-’"t 1).

If 0 is an eigenvalue of (1.4), the formula for Ki(t) must be modified by the addition
of the term -kgot. The uniform convergence of the formally differented series in
(1.13) for >__ 0 shows that u(t) satisfies the following integrodifferential equation"

(1.14) u’(t) K’(t) + K’z(t z)a(u(’c)) dr,

where

(1.15) K;(t) - kg,, e -’"t.

It has also been found convenient to express the temperature component of a
solution in the form T(x, t) Tll(x, t) + Ti(x, t), where

(1.16) Tll(x t) f,y,(x) e- "’
(1.17) Ti(x, t) rl,y,(x) e-a""-a(u()) d.

2. Dependence on uo, a, q and f. Using the notation of [1], we let Z denote
the product space (- , ) L2(0, c)3. The norm of a point

P (uo, , r/,f)Z is P luol + 2 + 112 + tlf 2,

where the subscript denotes the usual L2-norm. If for 1, 2, Pg (U/o (Xi, /i, of/)
e Z, then A 2 denotes 11 2]12, and

IP1 P2I lUlo u20l + Ae 2 + Iml12 + lIAr 2.

Also, ug(t), T/(x, t)= Tin(X, t)+ T/i(x, t) will denote solutions of (1.1)-(1.3) cor-
responding to Uo, 0g, r/g, f.

THEOREM 1. Let b, a, og, rl, f satisfy the hypotheses of Theorem A. Let
and U2o be arbitrary real numbers, and let 0 < 6 v 3/4, T > 0, 0 < r < 21. Then
for some constant K > O,

(2.1)

(2.2)

(2.3)

lul(t)- u2(t)l KIIP1 P211 (uniformly for 0 <= <= T),

IZlll(x, t) Z2ll(x, t)l =< g(t)llAf 2 (0 <= t, uniformly for 0 <= x <= c),

]T11(x, t) T2t(x, t)] =< h(t)IP P211
(uniformly for 0 <= x <= c, 0 <= <= T),
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where, if 0 is not an eigenvalue of (1.4),

(2.4) g(t) K e-rtt -(1/4+6), h(t) Kt3/’-6,

whereas, if 0 is an eigenvalue of (1.4),

(2.5) g(t) c- 1/2 + K e-rtt-(l/4+6), h(t) tc- 1/2 + Kt3/4-.

Discussion of proof. The proof is nearly the same as that of [1, Thm. 4]. It
is necessary to replace ui(z) by a(ui(r)) in the integrals and to utilize the fact that,
by (1.10a), both ul(t) and u2(t) are bounded. If B denotes an upper bound for
lu(t)l (i 1, 2, >= 0) and if L suPlyI__<B la’(y)l, then

la(u(t))- a(u(t))l _-< Llu(t)- u(t)l.

The insertion of this Lipschitz condition on a at the appropriate step in the
calculations yields (2.1), where the constant K now depends on L. There is no
change in the derivation of (2.2), but to obtain (2.3), the introduction of the above
estimate must be made as before.

3. Dependence on b. In this section we consider (1.1) when b(x) =- b > O,
q(x) O, and we determine the limiting behavior of solutions as b 0 /. We
explicitly indicate the dependence on b in our notation u(t, b), T(x, t, b) for a
solution. Thus the system we study is

u’(t, b) (x)T(x, t, b) dx,
(3.)

T(x, t, b) bTxx(X, t, b) .+ rl(x)a(u(t)),

subject to initial conditions (1.2) and boundary conditions (1.3) in which

a2 b2 0. In this case, then,

2 bn2re2c- 2 ,/2_ sin
y,(x) n 1,2,

V c c

Our starting point is the "degenerate" system obtained by setting b 0 in (3.1),
solutions of which will be V(t), S(x, t). Thus

(3.2)
V’(t) a(x)S(x, t) dx,

s,(x, t) (x)(v(t)).

The following lemma is immediate.
LEMMA. Let (1.5a) and (1.6) be satisfied. Then (3.2) has a unique solution satis-

fying (1.2) and (1.3).
Proof. Let V(t) be the unique solution of the initial value problem

(3.3) V" .+ (a, r/)a(V) O, V(O) uo, V’(O) (a, f),

where (.,.) is the usual L2-inner-product, and let

(3.4) S(x, t) f(x) + tl(x) a(V(r)) d’.
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In view of

(3.5) V’(t) (, f) (, r/) a(V(’c)) dr,

the pair V(t), S(x, t) is easily verified to be the desired solution of (3.2).
Clearly the smoothness hypotheses were not necessary to establish this

lemma. We also note that if a satisfies (1.5b) and if (0, r/) > O, then it is well
known that the solution V(t) of (3.3) is periodic. In particular, if the system is
linear, letting 09 (a, r/)1/2, we obtain

V(t) sin ot + Uo cos ot,

S(x, ) f(x) + (x) f).(cos cot 1) + sin cot
0)

2.
O9

This is, incidentally, the same as the solution of the degenerate system in [4]
where, of course, the inner product is an integral over (-

We now describe the limiting behavior of solutions of (3.1) as b 0 /. Note
that since b > 0, the hypotheses concerning (1.4) are still satisfied.

THEOREM 2. Let a, , tl, f satisfy the hypotheses of Theorem A. Then

(3.6) lim u(t, b) V(t), lim T(x, t, b) S(x, t)
bO b-O

for each 0 and 0<= x <= c. If O < T< , 0 < x < x2 < c, the limits are

uniform over [0, T] and Ix, x21 [0, TI, respectively.
Proof. Notingthat (,f) kl,and (, r/) k2,by Parseval’stheorem,

we obtain from (1.14), (1.15), (3.5),

(3.7)

where

u’(t,b)- V’(t)= ka,(1 -e -"’) + J1 nt- J2,

J k2,(1 e- .(t-))a(V(z)) dr,

J k e-x,-((V(:)) (u(r, b)) dr.

Let e > 0, T > 0. Because of (1.6) the series ki, both converge absolutely. Let
N be such that

Iki,I < e, 1,2.
n=N+l

Using this estimate, the inequality e < min (1, x) (x >__ 0), and the formula
for 2,, we obtain for 1, 2,

(3.9) I k,(1 e-X"’)l __< Kb + (0 <_ <_ T),

where K1 max/_ 1,2 EnN= Iki,,I N2n2c- 2T. If M > 0 denotes a bound on la(V(t))l
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(0 =< =< T) and K2 Ik2,1, then from (3.8) and (3.9) we have

[Jl (Klb + )MT,

(3.10)
Id2l K2 Io’(V(z))- a(u(z, b))l dr.

Now, in [3, Lemmas and 4, Thm. l(i)] it was shown that the bound on lu(t)l in
(1.10) depends only on a, uo, a, r/and f but is independent of the function b(x)
(the constant b in our setting). In particular lu(t, b)[ _< 2f2, 0 =< < m, b > 0,
where

f= max[x/W-c,max[lxl’S(x,<_ Wo1,
(3.11)

Wo max S(uo), S( Uo)) + - f

(S(u) o a, O, and " were defined in (1.8).) Now let L sup [.a’(y)[ for

lyl -<_ max (M, 2f).

Then for all >__ 0, b > 0,

(3.12) [a(V(t)) a(u(t, b)[ _< L]V(t) u(t, b)[.

Combining (3.7)-(3.12) we obtain for 0 __< __< T, b > 0,

[if(t, b)- V’(t)[ __< K(1 .4- Mr)b .+ (1 + Mr)e,

(3.13) f0.+ K2L ]u(z, b)- V(’c)l dr,.

Integrating (3.13) and applying Gronwall’s inequality we obtain for such and b,

(3.14) lu(t,b)- l/(t)l <-_ (C .4- C2b)exp(K2LT2),

where C (1 + MT)T, C2 K1C1. Since is arbitrary, (3.14) implies (3.6a).
Turning our attention to T(x, t, b) we first recall that under hypothesis (1.6),

(3.15) lim Tn(x,t,b) lim f,,y,,(x)exp(-n2rc2c-2bt) f(x)
t-,O tO

for all x (0, c), uniformly on any closed subinterval. Interchanging the roles of
b and in (3.15), an examination of the quantifiers involved establishes

(3.16) lira T(x, t, b)= f(x) (9 < x < c, > 0),
b-O

the limit being uniform for 0 __< =< Tand 0 < x =< x _< x2 < C. In the same way,

(3.17) lim rl,y,(x) e -:’ rl(x).
bO

In view of (3.16) and (3.4), th proof of (3.6b) depends only on showing

(3.18) lim T/(x, t, b) r/(x) a(V(’c)) dr.
bO
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To this end we write

(3.19). T(x, t, b) q(x) I
where

a(V(r‘)) dr I HI-" 12,

I1 Z rl,y,(x) e- ,c, )[a(u(’c b)) a( V(r‘)] dr,,

I 2 [ rl,,y,,(x) e-’"" -) rl(X)]a(V(z)) dr‘.

Let0=< t=< T, 0<Xl -<x_-<x2 <c, and let e > 0 be given. LetM>0denote
a bound again for la(V(t))l on [0, T] and also for Ir/(x)l on Ix1, x2]. Because of
(3.6a) and (3.17) we can find a 6 > 0 so that the bracketed differences in both 11
and I 2 are, in absolute value, smaller than e when 0 < b < 6 uniformly in and
x as described. Also, the series in 11 is majorized by M + e and so we obtain

IX,I <= (M .+ e)Te, II1 _-< MTe,

which establishes (3.18) and the proof is complete.

4. Dependence on c. Levin and Nofiel have studied linear and nonlinear
versions of (1.1) on the x-interval (-, ) in [4], [5], [6]. In this section we will
show that the solutions on the infinite interval are, in fact, pointwise limits of
solutions on the finite interval as the length increases. One difficulty is that our
interval has been (0, c). There are two possibilities" to restate our results for
(-c/2, c/2) or to restate theirs for (0, ). We have chosen the latter approach.

Because of the nature of the problem considered in [4], namely constant
coefficients in the heat equation and linearity, we consider the same problem on
the finite interval and state Theorem 3 for this special case. The extension to the
nonlinear case will be discussed after the proof of this theorem.

It will be noted that our hypotheses are much milder than in the nonlinear
case. We will denote by W(t), R(x, t) Rn(x, t) + Ri(x, t) a solution of the system
on (0, ). The system and side conditions now are

W’(t) a(x)R(x, t) dx,
(4.1)

Rt(x, t) bR(x, t)+ rl(x)W(t),

(4.2) W(O) uo, T(x, O)- f(x) (0 < x < ),

(4.3) r(0, t) 0 (0 < <. ).

It should be noted that a positive constant a which occurred in (4.1b) in [4] has
been incorporated into b and r/. This has simplified all of our expressions, and
nothing essential has been lost. The following theorem concerning (4.1) is true,
the proof being essentially as in [4].

THEOREM B. Let

a, r/, f L2(0, ), f C(0, ),
(4.4)

satisfy a local Holder condition on (0, ).
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Then (4.1) has a unique solution satisfying (4.2) and (4.3).
In the proof of this theorem certain relations satisfied by W(t) and R(x, t),

analogous to (1.12)-(1.17), can be derived. One writes down a formal solution of
(4.1b) using the fundamental solution of the heat equation for 0 < t, x <

G(x, , t) (4bt)-
(x ) (x + )

exp exp
4bt 4bt

or equivalently, and better suited for our purposes,

G(x, {, t)
2

sin y{ sin yx e -br2t dy

This formal expression for R(x, t), (4.7) below, is substituted into (4.1a), and the
resulting equation integrated. These formal calculations eventually are .justified.
We now list these equations in forms suitable for future use.

(4.5) W(t) uo + K I(Y, t) dp(y) + K2(y, "c) dp(y)W(r) dr,

where, if ,s(Y) j’ff g(O sin y d, the Fourier sine transform of g e L2(0, o),

Kl(y, t) &s(Y)fs(y)a(y, t), K2(y, t) s(Y)Os(y)a(y, t),

(4.6) a(y,t)=(e -br2’- 1)/by2 if y>0, a(0, t)= -t,

p(y) 2y/rc.

Moreover, the temperature components Rn and R are given by

y0Rn(x, t) Ha(y, x, t) do(y),

(4.7)

RI(X, t) H2(y, x, z) dp(y)W(’c) dr,

where
H I(Y, x, t) fs(Y) sin yx e -brzt,

(4.8)
n2(y, x, t) s(Y) sin yx e -bye’.

Our notation for a solution of (1.1) will be u(t, c), T(x, t, c). In the special setting
of this section, the original system now takes on the form

u’(t, c) a(x)T(x, t, c) dx,
(4.9)

T(x, t, c) b T,(x, t, c) + rl(x)u(t, c).

The side conditions are still (1.2) and (1.3) with a- b 0. Note the exact
analogy between hypotheses (4.10) and (4.4) in the following theorem proved by
Bronikowski in [1].

THEOREM C. Let

a, r/, f L2(0 c), f e C(0, c),
(4.10)

rl satisfy a local Holder condition on (0, c).
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Then (4.9) has a unique solution satisfying (1.2) and (1.3).
In order to compare solutions of (4.9) with those of (4.1), it is convenient to

rewrite the series representations of u and T which occur in (1.12), (1.16) and
(1.17) as Riemann-Stieltjes integrals. To this end we recall the formulas for 2,
and y,(x) after relation (3.1) and define

f(y) f() sin y d,

K lc(Y, t) ac(Y)fc(Y)a(Y, t), K.c(y, t) c(Y)17c(Y)a(Y, t),

2n nrc
< y < (n.+ 1)

rc
-, n=0,1 2(4.11) Pc(Y) c c c

0, y=0,

H c(Y, X, t) fc(Y)(sin yx) e- by2t,

H2c(y, x, t) 17c(y)(sin yx) e -by2t

Then (1.12), (1.16) and (1.17) can be rewritten as

iou( t, c) uo .+ K It(Y, t) dpc(y

(4.

+ Kc(y, r)u(r., c) dpc(y dr.,

(4.13) T(x, , c) gc(y, x, t) dpc(y),

(4.14) T(x, t, c) gc(y, x, r)u(r, c) dp(y) dr.

We can now state and prove the following theorem.
THEOREM 3. Let o, 17, f satisfy (4.4) on (0, oo) so that their restrictions to (0, c)

automatically satisfy (4.10) there. Let u(t, c), T(x, t, c) be the solutions of (4.9) which
result when the restrictions of o, 17, f appear in (4.9) and (1.2). Let 0 < o, T < oo,
O< x < x2 < . Then

(4.15) lim u(t, c) W(t)
C---

(4.16)

(4.17)

(t >- 0, uniformly for 0 <= <= T),

lim Tu(x, t, c) Ru(x, t)
C--

(0 < x, < oo, uniformly for x <= x <_ X2 o < < oo)

lim Tt(x, t, c) RI(x, t)

(0 < x, 0 <= t, uniformly for x <- x <= X2, 0 __--< =< T).

The proof of this theorem follows the sequence of lemmas below. The lemmas
are much simpler if in addition to (4.4) (and, therefore, (4.10)) we further assume
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that

(4.18)

and thus the restrictions of these functions to (0, c) are in L(0, c). These hy-
potheses will not be stated explicitly in each lemma for brevity. The first lemma
lists some elementary properties of the functions listed in (4.6) and (4.11).

LEMMA 1. Let Q be the quadrant 0
0<_ < T. Then

limc- f(Y) fs(Y) uniformly for 0 y < v.
(4.19) Moreover, f and fs are continuous and bounded (by

Similar statements hold for zc, s, lc, Os.

(4.20) limc- Pc(Y) P(Y) uniformly for 0 <__ y < since
0 <__ p(y) Pc(Y) <= 2/c for such y.

(4.21)
a(y, t) is continuous on Q and bounded on any S(T) since
--t -<- a(y, t) <= O.

For i= 1,2 it follows from (4.19) and (4.21) that Ki(y, t),Kic(Y, t) are
(4.22) continuous on Q for all c > O. Moreover limc_ Kic(Y, t)= Ki(y, t) on Q

uniformly on any S(T) since, for example, if (y, t) S(T), using (4.21),

[Klc(Y, t) Kl(y, t)l <= TlCc(Y)fc(y) s(Y)fs(Y)].
The result now jbllows from (4.19).

For 1, 2 it is easy to show that Hi(y, x, t), Hie(Y, x, t) are continuous for
O < y,x,t < oe, uniformly continuous on O < y < Y< o, O < x < x(4.23) <= x2 < o, 0 <= < o. Moreover limc_o Hc(y, x, t) H(y, x, t) uniformly
for 0 <= y, x, < o since, for example,

]H at(Y, x, t) H a(y, x, t)] =< fc(Y) -f(Y)l,
and now use (4.19).

LEMMA 2. For 1, 2,

(4.24) Ki(y, t)dp(y),

converge uniformly for 0 <__ < T, 0 < c.

Kic(y, t) dpc(y

(4.25) lim Kc(y, t)dpc(y K(y, t)dp(y)

(t >- O, uniformly for 0 <= <= T).

Proof. We consider the case 1. From the definitions in (4.6) and (4.11)
and from the boundedness conclusion of (4.19), we have

(4.26) [KII,IKlc <= b-l[iO[l[Ifl[ly -2 (0 < y,c < ,0 <= t).

This together with (4.21), (4.22) and the definition of a(0, t) establish (4.24) for
K. To establish this result for KI we use (4.26), integration by parts and
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Pc(Y) <= (2/r0y to calculate for any 0 < Y < Y2,

K lcdpc <= b- f , [y, +
2 pc(y)y -sdy

<_ --]z fl-b y

This establishes the result. The proof is the same if 2 with q replacing f.
To prove (4.25), let e > 0 be given. Now because of (4.24), we can choose

Y so large that

Kidp, Kdp <e for0N tN T, 0< c.

Then

Kidp Kic d,o Kid Kicdpc

.4-

Using the uniform continuity of K for 0 __< y __< Y, 0 _< =< T, and a slight modi-
fication of a well-known convergence property of Riemann-Stielt.jes integrals,
there exists cl > 0 such that if c >= cl, the first term on the right side of the estimate
above is smaller than e uniformly for 0 =< =< T. From (4.22) and the fact that the
total variation of Pc(Y) over [0, Y] is no more than 2Y/re, there exists c2 such that
the second term is also smaller than e for c _>_ c2. Then for c >= max (Cl, c2), the
left side is less than 4e uniformly for 0 __< =< T.

LEMMA 3. For 0 <= t, uniformly for 0 <= <= T,

(4.27) lim u(t, c) W(t).

where

Proof. Let e > 0. Using (4.5) and (4.12), we may write

W(t)- u(t, c)= J1 + J2 + J3,

J1 K dp- Kc dpc,

 ifoJ2 K2 dp- K2c dpcW(t r‘) dr,,

J K dp(W( r) u( -c c)) dr.

By (4.25) if c is sufficiently large, c ca, say, and if M > 0 is a bound for ]W(t)[
on [0, r], then IJ] < , IJ2l MT for 0 N N r. From (4.22) and (4.24) it follows
that K dp is continuous for 0 N < and thus bounded, say by M > 0, on



164 T.A. BRONIKOWSKI

[0, T]. Using (4.25) again it follows that for c C2, say,

dpc <= M + e M1.

Thus

J31

for such c and 0 =< =< T. Combining these estimates on the J’s we obtain

IW(t)- u(t, c)l <= (1 .+ MT)e-t- MI IW(r)- u(r, c)l dr,

which implies (4.27) after Gronwall’s inequality is applied.
LNNa 4. Let 0 < x < x < oe and 0 < to < co. Then for 1, 2,

(4.28) Hi(y, x, t) do(y), Oic(Y, x, l) dpc(y

converge uniformly for 0 < x, c < , o t.

(4.29) H(y, x, t) dp(y) H(y, x, t) dp(y) N Mt /

for 0 < x, t, c < , for some constant M > O.

fo(4.30) lim

for 0 < x, < , uniforml for X x x2, to t.

Proof. Relation (4.28) is immediate rom the estimate

(4.31) Hi], Hi] Mie- (0 , < ,0 < x, c < ),

where M I[f[, M2 = . To obtain (4.29) for Ki, we use (4.31) and the
change o variable Z bt so that

H dp e dZ.

We get (4.29) for H using (4.31), integration by parts and the inequalities
Pc() (2/), e X- 1/2 for 0 < x, c, y < . The details, which we omit, show
that M can be taken as the larger of

-Z2+4M Z2 e dZ nb, i= 1,2.

The convergence relation (4.30) is established just as (4.25) in Lemma 2.
The procedure is again to "chop off the tails" of each integral and use the uniform
continuity of H and H as described in (4.23) together with the convergence
property of Riemann-Stielqes integrals.
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Taking in (4.30) and recalling the representations of Rn(x, t) in (4.7)
and Tn(x, t, c) in (4.13) we see that conclusion (4.16) of Theorem 3 is true (but still
with the L1 hypothesis (4.19)). The next lemma establishes (4.17) with this
restriction.

LEMMA 5. Let 0 < T, 0 < xl < x2. Then convergence relation (4.17) is true
as described.

Proof. From (4.7) and (4.14) we may write T(x,t,c)- Rx(x,t J + J2
when

Ja H2c dpc(u(t "c, c) W(t r)) dr,

foJ2 H2c dp H2 dp W(t r) dr.

Let e > 0, and, without loss of generality, we assume e < xf. From (4.27) there
exists ca such that lu(t, c) W(t)l < e if c => ca for 0 __< =< T. This, together
with (4.29), yields

(4.32) [Jl[ =< Me r-1/2 dr __< 2MT1/2g

uniformly for 0 < x, 0 __< =< T.
To estimate J, let 0 < to _-< e 2 and break up the interval of integration

into two parts’from 0 to to and from o to t, letting J21 denote the integral over
the first interval and J22 the integral over the second. If M denotes a bound on
W(t)[, 0 __< __< T, as well as the constant in (4.29) we obtain by (4.29),

(4.33) J21 -< 2M2 z-1/2 dr 4MZt/2 <= 4MZe

uniformly for 0 < x, c < , 0 _< __< T. Now in the case of J22 we apply (4.30)
and pick c2 so that c >__ c2 implies

H2c dp H2 dp

Then for such c, x, t,

for X X < X2, to <

(4.34) IJ221 -< M(T- to)e.

Combining (4.32), (4.33) and (4.34) for c >= max (cx, C2) now produces the desired
result.

Before proceeding to the proof of Theorem 3 we must state another result
of Levin and Nohel proved in [5] for the case where - < x < oo, but easily
shown to be true if 0 __< x < oo. It is closely related to our Theorem 2.

THEOREM D. For 1, 2, let oi, rli, fi satisfy (4.4), let u lo and lg2o be arbitrary,
and let Wi(t), Ri(x, t) be the corresponding solutions of (4.1). Then if T > O, re-
lations (2.1)-(2.4) are true with r 6 O, and the estimates are uniform for
0<x<oo.
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Proof of Theorem 3. We describe a sequence of steps which establishes
(4.15)-(4.17) without the L1 hypothesis (4.18). Let e > 0, and let

g2 g2g{ 2,c g

Given 0, q, f satisfying (4.4) on (0, oo) we first pick , 0,fcontinuously differentiable
and of compact support on (0, oo) so that 112. < e and similarly for r/, /,
f, f. This is possible because, as is well known, the set of such functions is dense
in L2(0, oo). Each such function is obviously in LI(0, oo). If W, R denote the
solution of (4.1) corresponding to the barred functions, then by Theorem D we
have ]W(t)- W(t)l and IR(x, t)- R(x, t)l smaller than a constant multiple of e

as described in (2.1)-(2.4). Now, we restrict 4, 0, f to (0, c), and, letting R(t, c),
T(x, t, c) denote the corresponding solution of (4.9), we can apply Lemmas 3, 4
and 5 so that for c sufficiently large we have W(t) a(t, c)l, IR(x, t) T(x, t, c)l <
as described. Observing that ]lg 2, < Ig 2,oo and therefore e- 2,c < e and
similarly for rt, f/, f, f, we now apply Theorem 2 to , g, and u, T, the solution of
(4.9) corresponding to 0, r/, f restricted to (0, c). Thus lu(t, c) R(t, c)], IT(x, t, c)

T(x, t, c)l are smaller than a constant multiple of e. The conclusions of Theorem
3 now follow by the triangle inequality. For example,

lu(t, c) W(t)l <- lu(t, c) O(t, c)[ + IS(t, c) W(t)[

+ IW(t)- W(t)l MI q- M2g -t- M3g

uniformly for 0 __< =< T, where M1 3K (from (2.1), Theorem 2), M2

(from 4.27), Lemma 3), M3 3K (from (2.1), Theorem D). The T(x, t, c) and
R(x, t) estimates are done in a similar way. This completes the proof.

Theorem 3 can be extended to the nonlinear case as well. Here, the systems
whose solutions are compared are (4.1) and (4.9) with a(W(t)) replacing W(t),
a(u(t, c)) replacing u(t, c) in each heat equation. The proof of existence and
asymptotic decay to 0 of solutions in the nonlinear infinite interval case was
done in 6] with a C(-oo, oo) as the only smoothness requirement on a. The
additional assumption that a e C’(-av, oo) or that a satisfies a Lipschitz con-
dition permits the proof of Theorem D in this case. Then Theorem 3 can be
established in the nonlinear case by modifying the proofs of Lemmas 1-5 above
in the manner described in 2 regarding Theorem 1. The full set of hypotheses
will not be listed here, but the reader is referred to [6] for the details.
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ASYMPTOTIC BRANCH POINTS AND MULTIPLE
POSITIVE SOLUTIONS OF NONLINEAR

OPERATOR EQUATIONS*

THEODORE LAETSCHt

Abstract. We study the large positive solutions of the nonlinear operator equation u A au in a
partially ordered Banach space, where A is a positive, asymptotically linear operator depending on a

real parameter 2. We show that large positive solutions exist for 2 near a number t determined by the
asymptotic derivatives A a; more specific assumptions about the asymptotic behavior of A enable us
to ascertain that the large solutions exist only for 2 > / or only for 2 < p. The latter result is applied to

prove the existence of at least two positive solutions of certain problems with isotone operators for
which A0 > 0.

1. Introduction. In this paper, we discuss the behavior of the positive fixed
points of large norm of a family {A(2): 2 J} (where J is an interval of real numbers)
of asymptotically linear positive operators A(2) on a partially ordered Banach
space g with a positive cone ,;(. We are interested in the existence of a number kt
such that, for each 2 sufficiently close to t, the operator A(2) has a positive fixed
point u(2) such that Ilu()l] as 2 1. We call such a number an asymptotic
branch point; as is known, under certain conditions on the asymptotic derivatives
of the A(2), the number # is determined by the eigenvalues of these asymptotic
derivatives. We are specifically interested in circumstances under which it can be
asserted that the large fixed points u()0 exist only for 2 on one side of #.

Very roughly, our results are as follows: Suppose that the operators A(2) A
have the following behavior on positive vectors of large norm:

Au A’(ov)u + Cu + o( [u s) as lull , u > 0,

where A() is a positive, compact operator which is differentiable with respect
to/l at 2 , and C is homogeneous of degree s < 1. Then # is an asymptotic
branch point (if and) only if A’u() has an eigenvalue corresponding to a positive
eigenvector 4. (We shall prove the "if" assertion only when Cu b; i.e., s 0.)
Moreover, the large fixed points exist only for 2 > if Curb < 0 and only for
2 </ if Cb > 0, if A() increases with 2.

These results will be applied to prove the existence of at least two fixed points
in certain cases when {A(2):/l J} is an increasing family of forced, isotone
operators. The method used is the following: Suppose there is an increasing family
{u(2): 2 A} ofpositive fixed points in an interval A and that there is an asymptotic
branch point # A. If there exist fixed points u(2) for 2 >/ such that ]lu(2)]]---,
as 2 , then clearly u(2) - u(2), since {u(2):2 A} is an increasing family.

In 2, we introduce the notation and definitions. Our results for the special
case Au g + 2Au are presented in 3, mostly without proofs. The theorems
and proofs for the general case are given in 4. We conclude in 5 with the applica-

* Received by the editors May 29, 1973, and in revised from October 26, 1973.- Department of Mathematics, University of Arizona, Tucson, Arizona 85721. This research
was supported in part by the National Science Foundation under Grant GP-33652.
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tion to the existence of multiple solutions. In [9, we will apply these results to
nonlinear integral equations.

Related work on asymptotic branching and multiple solutions can be found
in Krasnosel’skii [6, Chap. 5], [7, IV.3], Amann Ill, 21, Bazley and McLeod [3]
and the author [10], [12].

2. Notation. Let do be a partially ordered Banach space witha closed positive
cone ,X# {x e do’x > 0}. We assume that ,U is normal [6, p. 20]; we can then,
without loss of generality, assume that the norm on g is such that 0 _<_ u =< v
implies Ilu =< ]lvll.

We definer= {udo" u =<r}and;Kr=,fffl.
Let @ be a subset of do, with fl ,X -. An operator A’ do is positive on

if A(6 fl ,()
_

,;K; isotone on if u, v e and u =< v imply Au <= Av; forced
if 0 and A0 > 0; ;K-compact on if, whenever 0@ is a set whose closure is a
bounded subset of @ fl ,;K, then A(61) has compact closure; ,;K-bounded on
if A(o@l) is bounded for any 1 as above.

The ,;K-spectral radius of a ,;K-bounded positive linear operator T on d is
defined as lim,_, T"I 1/, where TI,, sup Tu "u , u < 1}" for such
T, we define to[-T] I]T I[,,. so that 0 < #o[T] =< + or. According to a generaliza-
tion of the Krein-Rutman theorem due to Bonsall [4_], if kto(T < + or, then a
,;K-bounded ,;K-compact linear operator T has a positive eigenvector b cor-
responding to the characteristic value #0(T)"

0 # ol)74, e .
(A characteristic value of a linear operator T is a number t such that there exists
h do with #Th h =/= 0.)

If A is an operator defined on a set @
_

,X containing elements of arbitrarily
large norm, then A is ;K-asymptotically linear [6] if there exists a ,;K-bounded

linear operator A’(o):do do such that

Au A’(o)u
lim 0;

A’() is the ,;K-asymptotic derivative of A. If A is positive, then A’() is a positive
operator [6, p. 109].

3. The results for a special case. Let g e ;K, and let A be a positive operator
on ,;K. In this section we consider the equation

(3.1) u =g + 2Au,

where 2 is a positive real parameter. We denote by A the set of positive numbers, for which (3.1) has a positive solution u ,;K, and set 2" sup (A).
Most of the results of this section can be obtained as corollaries of the more

complicated theorems of 4, where we state and prove the results for the general
case of a family {A:2 J}.

The standard result on the value ofan asymptotic branch point is the following
(cf. [6, p. 159], [7, p. 207]).
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THEOREM 3.1. Let A be a continuous operator on .;U with a ,Yt-compact
asymptotic derivative A’(c). Suppose that there is a convergent sequence {2,} in A
corresponding to positive solutions {u,} of (3.1) such that lim,_ Ilu,,ll-- c. Then
lim,_. 2, is a characteristic value of A’(oo) corresponding to a positive eigenvector
q5; there exists a subsequence of (u/llult converging to , and every convergent
subsequence of (u/llull converges to such a positive eigenvector.

The theorem asserts, in particular, that under the stated conditions, we must
have lim,. 2, > 0. Furthermore, A’(oo) has a positive spectral radius i.e.,
/oIA’(c)] < + oo---and therefore A’(c) has a positive eigenvector corresponding
to the characteristic value #o[A ’( oo )l Thus, if every positive eigenvector of
corresponds to the same characteristic value, then we have lim,_ 2, #o[A’(oo).

Under certain circumstances, it is possible to say that the points ofthe sequence
{2,} in Theorem 3.1 must all lie on one side of # .-_ lim,_ 2, when the correspond-
ing solutions {u,} have sufficiently large norm, and this information can be
helpful in predicting the number of positive solutions of (3.1).

THEOREM 3.2. Let A be a positive, continuous,’-asymptotically linear operator
on , which has the form

Au A’(oo)u + Cu + ogu

for u > O, where A’(oo) is a ,-compact, bounded linear operator which has a unique
positive eigenvector dp of norm 1, the corresponding characteristic value is simple,
and C is a continuous operator on ,\{0} which is homogeneous of degree s < 1.
(If g 0 in (3.1), then we assume that C is not the zero operator; if g > O, then we
allow C to be zero, in which case the .following conditions hold fir some s < 0.)
The operator satLfies

(a) for some positive number Po, the set {llo)uil/l[ull:u ,, Ilull > Po} is
bounded, and

(b) for all positive numbers p >= Po,

(3.2) lim fi--lloKfi + flh)ll 0
14, +/,h o

uniformly on the set

{h: Ilhll p, + h > 0 for all sfficiently large fi}.

Let () oA’()], and let be a positive eigenvector of the adjoint of A’(
corresponding to the characteristic value p(), normalized so that ()= 1. Let
{2,} be a bounded sequence in A corresponding to solutions {u,,} of (3.1) with
lim._, u.

Then,

(3.3)

lim 2.

lim (/4 oo) 2.)II u.
((_)2(C(/)) sg > O,

/(o)2(Cq5 +/z(oo)-g) /f sg O,

l(o)(g) if sg < 0
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and

(3.4) u. (oo)- ,. 4 / o(l(c)- ,.1 -’)

as n -, c, where s’ (1 s)-a.
COROLLARY 3.3. Let the conditions of Theorem 3.2 be satisfied. Then any ofthe

following conditions imply that, for any number la > #(oo), there exists a positive
number r such that (3.1) has no positive solution u with Ilull > r for 2 e [#(oo),/],
and for any number 6 > 0 there exists p > 0 such that (3.1) has a positive solution u
with u > p .for some 2 e [#(o) 6,/(o)):

(i) 0 < s < and (C4) > O;
(ii) s 0 and (Cq5 +/z()-Xg) > O;

(iii) s < O, g 0 and (Cq5) > O;
(iv) s<O,g>Oand((g)>O.
On the other hand, if any of the conditions (i)-(iii) holds with the last inequality

in that condition reversed, then there exists a positive number r such that (3.1) has
no positive solution u with Ilu > r for 2 e [0,/(oo)], and for any number 6 > 0 there
exists a positive number p such that (3.1) has a positive solution u with Ilull > p for
some 2 (t( oo ), g( oo + 6).

The conditions (a) and (b) on co of Theorem 3.2 are implied by the following
seemingly more natural condition on the remainder cou:

(3.5) lim Ilull-llcoull 0;

however, for the integral equations considered in [9] there are cases, particularly
when s 0, when (3.5) is not satisfied, while (a) and (b) are. The results of Corollary
3.3 for the case g 0 are illustrated in Fig. 1.

There is a partial converse to Theorem 3.1 and Corollary 3.3 when Cu b
is a constant: Under appropriate conditions on the remainder co, if A’(oo) has a
simple characteristic value/ to which there corresponds a positive eigenvector,
then for each 2 sufficiently close to/z with

0 4= sgn (/ 2) sgn (/b + g),

equation (3.1) has a positive fixed point u, and for any sequence {2,} of such
numbers 2, these corresponding solutions u, satisfy

/(/b + g)
u. as n ---,

For details, see Theorem 4.4 below and 7, pp. 207-208.
4. Behavior of fixed points of large norm. Our first theorem gives a necessary

condition for the existence of fixed points u(2) such that Ilu(2)ll --* oo as 2 approaches
a number #. The proof is straightforward.

THZORZM 4.1 Let {Ax:2 J} be aJhmily ofcontinuous operators on;f". Suppose
that there is a sequence {2,} in J converging to l J such that the operators Az, have

fixed points u, in 2/ with lim,_. [lu,[[ oo, and A, has a ,-compact -asymptotic
derivative A,(oo) such that
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FIG.

(4.1) lim
A,u A’,()u O.

u,

Then is an eigenvalue of A,() corresponding to a positive eigenvector dp of unit
norm. There exists a subsequence of {/llull converging to c, and every convergent
subsequence of u/llu.ll converges to such an eigenvector.

The next theorem describes in more detail the behavior of a sequence
of fixed points with Ilull .

We shall use the following definition. Let b be a positive eigenvector of a
bounded linear operator T corresponding to a characteristic value /. We say
that (q5, P) completely reduces T if is a bounded, positive, linear functional on
with (qS) 1, and P is a bounded projection on g such that every u may be
written in the form

u (u)4, +/’u,

where TP PT, and (I #T) restricted to P(g) has a bounded inverse on P(g).
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It follows that Pb 0 and (Pu) 0 for all u e g, and the functional is a
positive eigenvector of the adjoint of T corresponding to the characteristic value

It is well known that if T is compact on eg and g is a simple characteristic
value, then there exist (, P) such that (0, P) completely reduces T. More generally,
there exist (, P) such that (0, P) completely reduces T if and only if/ is an
isolated, simple characteristic value of T (cf. [5, III-6]). (We call a characteristic
value simple if the corresponding spectral projection has a one-dimensional
range.)

If, in the preceding definition, we replace "bounded" by ",X-bounded"

everywhere, and require that u (u)4 + Pu hold for all u e ,X, then we say that
(0, P).-completely reduces T. We do not know whether there exists a
complete reduction (b, P) of a -compact linear operator T whenever T has a
characteristic value/t corresponding to a positive eigenvector 4.

THEOREM 4.2. Let {A, :,,1. J} be afamily ofpositive continuous operators on2,U.

Suppose there is a la J and a sequence {,,1.,,} in J converging to la such that the
operators Az, have fixed points u, in . with lim,,oo ]]u,,I] oo. Let the operators
A have theform
(4.2) Axu Auu + (2- l)Buu + Cxu + Dxu + cozu, u > O,

where the ,-asymptotic derivative A, A,(o) of A, is ,:U-bounded, ,;-compact,
and has a unique positive eigenvector 4) of unit norm. Also, the characteristic value
#o[A’,] is simple, B, is a continuous linear operator, {Cz} is a family of operators
on .X#\{0} homogeneous of degree s (i.e., for h > O, 2 e J, > O, Cx(ah) asCh)
for some number s < 1, the mapping (2, u) --. Cxu of J x . into f is continuous.
In addition, the family {D4} of continuous linear operators satisfies

(4.3) lim
[IDzlI

0,

and the family {co,} satisfies" For all 2 in a neighborhood N (relative to J) of la in J,
(a) the set {llcozull/ lullS’u > O, 2 N} is bounded, and
(b) for any positive number r, the limit

(4.4) lim /Y-slloox(/30 + fiSh)l[ 0
/---, +

/4,+/.h 0

exists uniformly for all 2 e N and all h such that c + fish > 0 for all sufficiently
large fl > 0 and [Ih[I -_< r.

Let be a positive linear functional and P be a projection such that (4, P)
.X-completely reduces Au(oe); suppose (Buc) 4: O. Let s’ (1 s) 1.

[A’]Then =#o u,

(C,4)(4.) lira (, ) u, --- ( 4,)

(4.6)
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and, with R [1 A’,], P,

(4.7) lim
Pu,

Note that for 2 near g, equation (4.2) implies that

so that
COgOLAgV 4.3. Let {Ax" 2 e J} and g e J sai@ the conditions of Theorem 4.2.

U" (B,4)(C,4) O, then there are positive numbers r and such that jbr all 2 with

0

the operator A a has no fixed points in . with norm greater than r.

Proof Since equation (4.1) of Theorem 4.1 is satisfied by the operators A a and
A, A’u(m), is an eigenvalue of A, corresponding to the positive eigenvector
4 lim,+ u/llull. From (4.2) we obtain

0 (. )(B,u.) + (C,.u.) + (,.u.) + (o,.u.).
Dividing by (2, g) [u,]] and letting n m, we have

0 {(B,4) + ,lim (2, g) u, -* { Can +
u, {(*nu")

If g(B,4)
Similarly, if we divide

Pu, R{(2,-

by Ilu, *, we obtain

+

SO

Pu
lim sup

Since lim._oo (u.)/ u. 1, we also have

lim sup-
.-o (u.)

Let ft. (u.), h. Pu./fl. Then there is a positive number r such that
__< r for all n. In view of the uniformity of the limit in (4.4), we have

lim u. -scox.u. lim fi,scoxn(fi.4)+ flh.)= O.

Equations (4.5), (4.6) and (4.7), and Corollary 4.3 follow from the equations above.
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We next show that if Cxu is a constant bx for u e , and if the operators cox
satisfy the asymptotic condition (4.4) with s 0, then we can establish a converse
of the preceding results for operators of the form of equation (4.4)" If A’, has the
simple characteristic value to which there corresponds a positive eigenvector,
then the operators Ax have fixed points of arbitrarily large norm for 2 near #.

THEOREM 4.4. Let {A x" 2 J} be afamily ofcontinuous operators on a cone2U
containing ,Y, withA ,{ Jbr 2 J, and let the operators A have the form
of (4.2) jbr some J, where A, and Bu are continuous linear operators, Cxu bx
for all u and all 2 J, the mapping 2 bx of J into is continuous, Dx is a continuous
linear operator which satisfies (4.3), and the operators satiy conditions to be
specified later. Let A, have the simple eigenvalue corresponding to the positive
eigenvector interior to , let (, P) be such that (, P) completely reduces A’u.

Let satisfy the following conditions for any sufficiently small number r > 0
and for 2 in an open subset N (relative to J) of J containing "
(4.8) lim cox(O + h)l 0

unformly for h e N {u g" u < r} and 2 N and

(4.9)
q(, ; h, h; X) ( + h) (4 + h)

where q(fl, f12; hi, h2; 2) is a real-valued positive function of the numbers [1, f12,
the vectors h , h2, and the number 2, such that

(4.10) lim q(fl, fl2"h, h2"2) 0
f12+
>

unormly for h 1, h2 e and 2 N.
Then there exists a number 6 > 0 such that for each 2 J with

(4.11) 0 < (/ 2)sgn [(bu)(B,4)] <

Ax has a fixed point u(2).;f, and .[’or any sequence {2,}, the elements of which
satisfy relation (4.11), the corresponding fixed points u(2,)=-u, of A xn satisfy
(4.5), (4.6) and (4.7), with s O.

Proof The proof consists of a standard Lyapunov-Schmidt technique.
We seek a solution u of the equation Axu u 0 in the form u y + fib by
first attempting to solve

(4.12)

for y in terms of ]3, and then choosing/ so that the equation

(4.13) (Axu u)= [Ax(y + tic/)) -(y + ]b)] 0

is satisfied. Then u y +/4 will satisfy Axu u O.
Equation (4.12) is equivalent to

(4.14) z T(e, 2)z,
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where

and

z (2 -/)fi, z Pu k,z,
0(/ /2)-1R[(/ #)B, + Dx]cfi + Rb,

R {[I- A,]p} 1p

T(a, 2)z R[(2 #)Bu(z + k,x) + Dx(z + k,x)
(4.15)

+ (z + k, + ( )-

For any positive number 0 and sufficiently small positive , it is possible to find
a neighborhood N of p in J such that for lal N 0, 2 e N, and (2 p) > 0,
T(, ) is a contraction mapping of , into itself. Thus, (4.14) has a solution z,x,
which depends continuously on for each e N1.

Setting y,x z,x + k,x and substituting for y in (4.13), we find that for N
sufficiently small, lal 0, fi a( )- > 0, equation (4.13) has a solution a(2)
for 2 N with 1(2)1 0 and

sgn a(2) sgn (2

for an appropriate choice of 0. Thus, there is a positive number
satisfying inequality (4.11), the operator A has a fixed point

From (4.8), (4.9), (4.10) and (4.3), the solution (2) of(4.13) may be taken arbitrarily
close to -(b,)/(B.O) for 2 suciently close to . Then

lim [u(2)](2 )= lim a(2)=-(b.)/(B.O).

Similarly, (4.7), and thence (4.5) and (4.6), may be obtained from (4.13). Let
Since is interior to and

+ Pu,/(u,) is in W for all sufficiently large n; since , is a cone, u, , for all
large n. Thus u, A,u, for all large n. This completes the proof.

5. Multiple positive solutions. The preceding theorems will now be applied
to obtain results on the existence of more than one positive solution of equation
(3.1) or the more general equation u A

Our results on multiple positive solutions are based on the following result
concerning the existence of minimum positive solutions of u A

LZMMA 5.1. Let J be an interval in 0, +) with 2_ inf (, and let be an
isotone, compact operator on J x , such that the operators Az (Azu (2, u))
are jbrced. Suppose the set A is nonempty. Then A is an interval with inf (A) 2_

for every 2 A, there is a minimum positive solution u(2). The map 2 u(2) is
a nondecreasing, left-continuous .function on A, and if we set 2" sup (A), then
either 2" sup (J) or exactly one of the Jbllowing conditions holds"

(i) limz., u(2) =+;
(ii) 2" A.
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This result is actually valid for a much broader class of operators than
compact operators; cf. 11].

The next theorem is an example of the results on multiple solutions which
follow from the preceding theorems.

THEOREM 5.2. Let g and let A be aforced, isotone, compact, ,’-asymptoti-
cally linear operator on which sati,fies the conditions of Theorem 3.2 and Ag > O.
Let A be bounded. Suppose that either s > O and (Cdp) < O, or s=O and
(b + la()-g) < O. Then la() A and there exists (5 > 0 such that (3.1) has at
least two positive solutions for each

Proof The assertions follow from Theorem 3.2, Lemma 5.1 and the fact that
under the stated conditions, (3.1) has solutions of arbitrarily large norm 6, p. 161],
[13], since (3.1) is equivalent to v 2A(v + g), with v u g.

Remark. If A is Fr6chet differentiable, then it can be shown (by using the
implicit function theorem) that under the hypotheses ofTheorem 5.2, equation (3.1)
has at least two positive solutions for all 2 e (/(oe), 2*).
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ASYMPTOTIC BRANCH POINTS AND MULTIPLE
POSITIVE SOLUTIONS OF NONLINEAR

INTEGRAL EQUATIONS*
THEODORE LAETSCH

Abstract. The values of 2 for which there exist large positive solutions of a nonlinear Hammerstein
integral equation with an eigenvalue parameter , are determined from the asymptotic behavior of the
nonlinearity f(w). With the assumption that the nonlinearity has the asymptotic form f(w) mw

+ cw + o(w) as w + oo, with m > 0 and 0 =< s < 1, the asymptotic branch point/ for positive
solutions is determined by m, and the sign of 2 t for values of 2 corresponding to large solutions is
determined by the sign of c" If c > 0, then < /, and if c < 0, then 2 > /. The latter condition,
c < 0, implies that iff(0) > 0, then the Hammerstein equation has at least two positive solutions for
some values of 2 > /. If the nonlinearity f(w) is convex, then the last result stated is sharpened by
assuming only thatJ(w) mw is negative for large w.

1. Introduction. We consider the behavior of the large solutions of the
nonlinear integral equation

(1.1) u(x) 2 J[ K(x, y)f(u(y), y) dy + g(x),

where K(x,y)is a positive weakly singular kernel, the nonlinearity f(w,x) is
nonnegative, and g > 0. Knowing the asymptotic behavior of f(w, x) as w + oo,
we are able to predict, the values of 2 for which large solutions do or do not exist.
When f(0, x) > 0, and f(w, x)is nondecreasing in w, these results give sufficient
conditions for the existence of at least two positive solutions of (1.1) for certain
values of 2. Our results are based on the results for abstract operator equations
obtained in [10].

If, in addition, f(w, x) is convex in w, we are able to state conditions which are
"almost" necessary and sufficient for the existence of multiple solutions of (1.1);
in particular, when f(w, x) is independent of x, our conditions are precisely neces-
sary and sufficient.

In 2, we give some preliminary lemmas which enable the results of [10] to
be applied to (1.1). The results for the nonconvex case are given in 3; here it is
indicated how the asymptotic behavior of f(w, x) determines the values of 2 for
which (1.1) has large solutions, and we give the asymptotic form of these solutions.
We also indicate how, under certain circumstances, these results imply the exist-
ence of multiple positive solutions of (1.1). Section 4 contains the stronger result
on multiple solutions for the convex case. Finally, the Appendices contain a
summary of the useful properties of linear integral equations with weakly singular,
positive kernels and a general lemma used in the proof of Theorem 4.2.

It is to be expected that our results apply also to the nonlinear elliptic bound-
ary value problelns (cf. [6], [15])

Lu(x) f(u(x), x), x ,
Bu(x) g(x), x 63,
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for a sufficiently smooth domain fL uniformly elliptic operator L, and boundary
operator B.

The existence of multiple positive solutions of such equations with L and
B self-adjoint has been discussed by Keener and Keller [5], where a result similar
to, but weaker than, our Theorems 3.7 and 4.2 is proved in a different way.

2. Lemmas. The following elementary proposition, whose proof is omitted,
lists some relations between the asymptotic properties of f(w, x) which are useful
in applying our results.

PROPOSITION 2.1. Let f be a subset of R". Letf(w, x) have a continuous partial
derivative Dlf(w x) with respect to w for each pair (w, x) (p, + oo) d, where

m(x) < exists (uniformly for x f) thenr f(w, x, +p > O. If limw_+
limw- + f(w, x)/w exisi [uniformlyfor x f) and equals re(x). If, for some number

Ws e [0, 1), limw. + w- If( x)- wDf(w, x)] (1 s)b(x) exists (uniformly for
x f) and is finite, then limw_ + D lf(w, x) =_ re(x) exists (uniformly for x f)
and is finite, and limw_+ w-[f(w,x)- m(x)w] b(x) exists (uniformly for
x f) and is finite.

The functions

fl(w) w + -} sin (w),

f2(w) w2 + w[1 + sin (2w)] + 1/2 cos (2w),

w fO’’ sin (v)
dv, O < s <f31w) w +-

are continuously differentiable increasing functions which show that the converses
of the assertions of Proposition 2.1 are not valid" limw. + f(w) does not exist for

and 2, but limw_ + f,(w)/w and limw_ +

limw- + f3(w)/w limw_. +o f3(W) m,

limw- +o w-sir3(w) row] rr/4, but limw_.+o w-[f3(w)- wf’3(w)] does not
exist.

Throughout the rest of this paper, f denotes a bounded open set in n-dimen-
sional space R" whose boundary c3f has zero n-dimensional measure, and
f U c3f. We denote by K(x, y) a weakly singular kernel (see Appendix A) defined

for (x, y) e f x f. All integrations are over unless otherwise noted. The Banach
space of continuous functions on f is denoted by C(f).

LEMMA 2.2. Let a be a nonpositive number, and let f be a continuous function
on [a, + ) x . Define the operator A on a subset of C()) by

Au(x) K(x, y)f(u(y), y)dy.(2.1)
d

Suppose that for some number s [0, 1),

lim w-f(w,x) O,
W-- q-

uniformly for x f. Then for any continuous function q5 which is positive almost
everywhere on f, andfor every positive number p, we have
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(2.2) lim [-A(f149 + fih) 0
+

flb + fish

(in the sense of the usual maximum norm [[. on C(f)), uniformlyfor h in the set

{h C(f)" h <= p and there exists v such that vdp + vhh > a}.

Proof Let

L(r) max {If(w, x)l’x , a w r},

Ig(x, Y)I /Ix yl

for some [0, n) and x > 0, and let

?=sup{falK(x,y)ldy’x}.
Assume, without loss of generality, that 4 1.

Let e and r be given positive numbers and choose r’ > 0 such that If(P, x)l
N pse[7(1 + r%- for p r’ and x e . Choose 6 > 0 such that

(x;)

for all x e , where B(x; 6) {y e O’IY xl N 6}, and choose o > 0 such that

r’
meas xefl’4(x)< r <o J=f(r’)"

If fl flo and hll r, then 4(Y) + h(y) r’ implies

4(y) -[r’- h(y)] g r’ + g +st.

Thus, setting u 4 + flh and

n {y e n. u(y) r’, Ix .vl 6},

we have

< f(
f(r

+ [f,,(r’)]--.-__,, + fld + flh 7fro(r) ’( + r)

<= 2, + efis + efis:,
since tick + flSh<= fls+ rfl2. Thus (2.2) holds uniformly for Ilhll-<_ r with
/4 +/h > .
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LEMMA 2.3. Let the kernel K, the function, f, and the operator A have the
properties described in the first sentence of Lemma 2.2. Suppose that there exists a
number p > 0 such that for each x f, f(w,x) is a continuously differentiable
function of w for w (p, + ), the partial derivative D f(w, x) is measurable and
bounded on (p, + x f, and there exist functions rn and b on f such that

and

lim D1f(w, x) m(x)

lim f(w, x)- m(x)w] b(x)

uniformlyfor x f. Define the operator co by

fK(x, y)[f(u(y), y) m(y)u(y) b(y)] dy.cou(x)

Then for any sufficiently small number r > 0 and for every function 49 C(f)
such that dp(x) > 0 almost everywhere on f, we have

(2.3) lim co(/4 + h)[= 0
/+
/4,+h>r

uniformlyfor h r {h C(f)" hi <= r}, and

(2.4) co(//lq5 + ha)- co(/2b + h2) < q(/3a,/2; h,h2) /ab + ha -/2q hzll

if h , and flidp + h > afor i= 1, 2, where

(2.5) lim q(fl,fl2;h,h2) 0

uniformlyfor h and h2 .
Proof The proof of the preceding proposition, with f(w,x) replaced by

f(w, x) m(x)w b(x), shows that co satisfies (2.3). Condition (2.4)-(2.5) is proved
in a similar way: Let

M(Wl, W2;X Df(w + (w2 Wl),X)d.

Then for any functions u l, u 2 C(’-) and any y f, we have

If(u(y), y) m(y)ul(y) f(uz(y), y) + m(y)uz(y)l

IM(u(y), uz(y); y)- m(y)llua(y)- Uz(y)l.

Using this inequality, we can show, as in the proof of the preceding proposition,
that given ; > 0 and a sufficiently small r > 0, there exists/o such that whenever
/ >/2 >/0, h <r, and hzl <r, wehave

co(/q5 + ha) co(/zq5 + h2) =< ll(fia + h)- (//2 + h2)

Thus (2.4) and (2.5) are satisfied.
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3. Asymptotic branch points. We now begin our study of the integral equation
(1.1). Let be a bounded open set in n-dimensional space, whose boundary cfl
has n-dimensional measure zero, and let K be a weakly singular kernel defined
on fl ft. We make the following assumptions on f and g"

(CP1) g is a continuous, never negative function on
(CP2) f is a continuous, never negative function on (-
(AL) f is asymptotically linear; i.e., there exists a function m on such that

lim w- if(w,, x) m(x) uniformly for x e .
Then, because of (CP2), the operator A defined by (2.1) maps C(f) into the

positive cone .;f of never negative functions in C(f), and A is compact (completely
continuous). The operators u g + 2Au, for 2 0, are compact, positive
operators on C(), and all solutions of(1.1) for 2 0 are in .

In addition to the assumptions above, we may impose one or more of the
following conditions on f:

(I) For each x , f(w, x) is an increasing (i.e., never decreasing) function of w.
(F) For some x e , f(g(x), x) > 0 (the forced case).
(UF) For all x , f(g(x), x) 0 (the unforced case).
(L) There exist positive numbers p and M such that for all x e fl and all

W2 W p, we have

[f(w2,x -f(wl, x)[ M[Wl w2[.

We distinguish the forced and unforced cases because in the latter (1.1) has
the trivial solution u =g for all . > 0, whereas in the forced case u g is a
solution only for 2 0.

In connection with (1.1) and assumption (AL), we also consider the linear
eigenvalue problems

(3.2)

and

dp(x) g fK(x, y)m(y)(y) dy

(3.3) =/a JK(y, x)m(y)O(y) dy.

These equations each have a unique normalized positive eigenfunction, which we
denote by b and , respectively, corresponding to the same eigenvalue gl [v]
> 0 (Appendix, A.3, A.4).

Because of (AL), the linear operator

(3.4) A’()h(x) fK(x, y)m(y)h(y) dy

is the .;U-asymptotic derivative [103 of the operator A, b is a positive eigenvector
of A’(c), and the positive linear functional on C(f) defined by

is a positive eigenvector of the adjoint of A’(o).
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An asymptotic branc.h point for (1.1) is a number/ for which there exists a se-
quence {u,} of positive solutions of (1.1) with lim,_+oo u, + such that the
corresponding sequence {2,} converges to/.

Our first theorem is valid in both the forced and unforced case; however, we
shall obtain a stronger result for the forced case below (Theorems 3.3 and 3.6).
This theorem is a restatement of the general Theorem 4.4 of [10] for the case of
equation (1.1).

THEOREM 3.1. Assume (CP1), (CP2), (AL) and (L). Suppose there exists a

function b’Q (-, +) such that

lim If(w, x)- m(x)w] b(x)

exists unormlyfor x ), and m(x) > Ofor some x . Let , be, respectively,
the positive eigenfunctions ofthe linear equations (3.2) and (3.3), corresponding to the
eigenvalue 1[], normalized so that ]] and @(x)(x)m(x)dx 1. If

f@m(X)[l [@]b(x) + g(x)] dx # O,

then there exists a number a having the same sign as 7 such thatfor each 2 between
gl[m] and gl[m] 6, there is a solution u(2) of(1.1) such that lim)., u(2), and there is a positive number r such that for each 2 between #l[m] and
gl[m] + 6, there are no solutions of(1.1) with norm greater than r. The solutions
u(2) satisfy

u(X; x)= (x) + o(11()- xl-)

as 2 , unormlyfor x .
Proqfi Because of the assumed uniform Lipschitz continuity in w of f(w, x)

for large w, we can apply Lemma 2.3 above and Theorem 4.4 of[10] to obtain the
desired result.

We now consider the case that u g is not a solution of(l.1).
Suppose that fig(x), x] > 0 for some x e ft. The equation u g + 2Au is

equivalent to v 2A(v + g), with v u- g, and v 0 is not a solution for
2 > 0; it follows from [18] that there exists an unbounded continuum of solutions
(2, v) in [0, + m) x ,Y’ containing (0, 0). Thus there is an unbou.nded continuum
of solutions (2, u) of (1.1) in [0, + m) x , containing (0, g).

Let
A {2 > 0"(1.1) has a positive solution u}.

If A is bounded, then, in the forced case under consideration, there must be
solutions of arbitrarily large norm; conditions guaranteeing that A is bounded are
given in Theorems 3.4 and 3.5 below.

LEMMA 3.2. Suppose that f satisfies (CP2), (AL) and (F). If m(x) 0 jbr all
x f, then A (0,+

Proof For any w0
> 0, define

J,ax(W0) max {f(x, w)’x 1,0 < w <__ Wo}.

If m(x) 0 for all x e f, then for any _-: > O, there exists p > 0 such that

f(w, x) <= :w +
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Define

Fu(x) fK(x, y)u(y) dy.

Then we have Au <= eFu + Ffmax(P). For any 2 > 0, choose e < (21IF I)-1, and
then choose a (Ig + 211Ffmax(P) )(1 eR F )-1. If u satisfies u >__ 0, u] _<_ r,
then so does g + 2Au. By the Schauder fixed-point theorem, (1.1) has a solution.
Thus, when m(x) O, A (0, + c).

In Theorem 3.5 below, we show that the converse of this lemma holds iff also
satisfies condition (I).

THEORE 3.3. Suppose that f satisfies (CP2), (AL) and (F). Suppose that A
is bounded. Then m(x) > O for some x , and there exists exactly one asymptotic
branch point #aloe]; #11oo] is a positive finite number, the smallest eigenvalue of the
linear equation (3.2). If{u,} is any sequence ofsolutions of(1.1) such that lim,_ +

+ oo, then the corresponding sequence {2,} converges to #1[0], and

lim
u,

where qbo is the positive eigenfunction of (3.2) corresponding to the eigenvalue
Ia Joel, with ch(x) > Ofor all x f.

Proof This is Theorem 3.1 of[10], which is applicable because of Lemmas 2.2
and 3.2 above (cf. [8, p. 209]).

We now give two conditions for A to be bounded.
THEOREXi 3.4 (cf. [6, Cor. 3.3.4]). Suppose there exists a never negative, not

identically zero, continuous function p on f such that f(w,x) >__ p(x)w for all
(w, x) f) x [0, + oo). Then A is bounded above by the smallest eigenvalue of the
linear integral equation (A.1).

Proof Any solution u of (1.1) is strictly positive on f and satisfies

u(x) >= fK(x, y)p(y)u(y)dy =_ ,Tu(x)

for all x e f. It follows from A.5 in the Appendix that 2 =</o[T].
THEOREM 3.5. Suppose that, in addition to the usual assumptions, f satisfies

(I) and (F). Then there is one and only one number # oo]for which there is a sequence
{2,} converging to ll[oo such that (1.1) has positive solutions {u,} satisfying
lim,_+oo ]u,I +oo. If m(x)=O for all xef), then lul[oo] +oo and
A (0, + oo). If m(x) > 0 for some x f), then A is bounded, ll[oo] is positive and
finite, and Theorem 3.3 applies.

Proof Under the stated conditions, the set A is an interval, and for each 2 e A,
there is a smallest positive solution u(2), which is an increasing function of 2
(see [10, Lemma 5.1]). From u g + 2Au >= ;tAg, it follows that if A (0, + ),
then as 2 --, + oo, we have u(2; x)--, + oo for all corresponding solutions u(2) of
(1.1), uniformly on any closed subset of f.

Suppose that A were unbounded and m(x) > 0 for some x e f. There exists a
closed ball rio f such that m has a positive lower bound, say 2kt, on f)o, and
there exists a positive number p such that f(w, x) >= #w on fo, since f(w, x)/w

re(x) uniformly on f. For some 21, the corresponding u(21)= u satisfies
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ul(x) ->_- p for all x eo. Therefore, for every 2 > 21, any corresponding solution
u(2) satisfies

u(2; x) _>_ 2 I_ K(x, y)lau(y) dy 2Tu(2; x),

where T is the compact positive linear operator given by

Th(x) ;n K(x, y)p(y)h(y) dy,

with p(y) 0 for x e ti\t)o, p(y) =/ for x e flo. The operator T has a positive
spectral radius/o[T], and u >__ 2Tu implies that 2 __</o[T], which contradicts our
assumption that A is unbounded. Thus A is bounded and we can apply Theorem
3.3.

THEOREM 3.6. Suppose, in addition to the conditions of Theorem 3.3, that there
exists a continuous realfunction b on t)and a number s e [0, 1) such that

f(w,x)= m(x)w + b(x)ws+ o(w) as w---} +o

uniformly for x . Let dgoo be the positive eigenfunction of (3.3) normalized so that
Ooo(x)qboo(x)m(x)dx 1. Then

lim (,- pl[OO)llUn 1-s

where

{/lEOO] j d/(x)b(x)dp%(x)dx, s > O,
(3.6) 7o

, Oo(x)[#l[c]b(x + g(x)] dx, s O.

If 7 =/= 0 (in particular, if s 0 and g(x) is not identically zero, or if b(x) is not
identically zero and does not change sign on fl), then

u.(x) .,[] ,. 4(x) + o(1 ,.1- s,)

as n oo, uniformly for x efl, where s’ (1 s)-1. If 7o > 0 (or Too < 0), then
there is a number r > 0 such that (1.1) has no positive eigenfunctions with norm
greater than r corresponding to eigenvalues 2 in [/1[o0], oo) (or [0, #1[oo]], respec-
tively).

Proof If re(x) > 0 for some x e gl, then we have

where

and

Au A’(o)u + Cu + cou,

Cu(x) K(x, y)b(y)[u(y) dy

co(u) Au A’( )u Cu

By Lemma 2.2, co satisfies the hypotheses of Theorem 3.2 of [10]. The conclusions
of the present theorem are then exactly those of Theorem 3.2 and Corollary 3.3
of[0].
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We continue the discussion of the forced case under the additional assumption
(I). A complete description of the smallest positive solutions u(2) in this case is
given in Lemma 5.1 of 10]. From Theorem 5.2 of 10] or directly from Theorem 3.6
above, we obtain the following condition for the existence of a second positive
solution for some values of 2.

THEOREM 3.7. Suppose thatf satisfies (CP2), (AL), (I) and (F). Suppose that
m is not identically zero, thatfi)r some s [0, 1),

lim W-LIf(w, x)- m(x)w] =_ b(x)

exists uniJbrmly for x f, and that 7o < 0 (where 7o is defined in (3.6)). Then for
every 6 > O, there exists 2 e (121[1,121[] + 6) such that (1.1) has at least two
positive solutions.

4. Convex nonlinearities. When the nonlinearity f(w, x) in the integral
equation (1.1) is convex in w, Theorem 3.7 can be improved considerably. We recall
that, in general (whether or not the nonlinearity is convex), if f(w, x) is forced and
increasing in w and f(w, x)/w is decreasing in w in a sufficiently strict sense, then
the solutions ot(1.1) are unique for each 2, and thus lim_._ u(2) + (for
details, see [7, Chap. 6], [11]; for the corresponding results for partial differential
equations, see [15]).

For second order ordinary differential equations in which f(w, x) is independ-
ent of x, the condition that f(w)/w is decreasing in w is not only sufficient but also
necessary for the uniqueness of solutions [13] in the convex case.

We now show that this is very nearly true also for the general integral equation
(1.1) when f(w, x) satisfies (AL).

Our discussion will use the following fact about convex functions [2, 1.4.4,
Ex. 7b]" If F(w) is a convex function of w on an interval 1, with limw,inr(t)F(w) > O,
then either F(w)/w is strictly decreasing for all w e I, or there exists w0 e I such
that F(w)/w is strictly decreasing for w < wo and constant for w > wo, or there
exist wo, w e I such that F(w)/w is strictly decreasing for w < wo, constant for
wo w __< wl, and strictly increasing for w > Wl.

Thus the limit lim_+ + f(w, x)/w re(x) exists for each x e f; if this function
m is bounded on f, then the operator defined by (3.4) is a bounded linear operator
on C()), and we again denote by 12[mJ the reciprocal of its spectral radius.

From the convexity of f(w, x) in w, it follows that

(4.1) f(w2, x) -f(w, x) <= m(x)(w2 w1)

whenever 0 /42 142 2 Thus from [11, Chap. 1.4, [1, Thm. BI, [12, Thm. 3-6]
we obtain the following Theorem.

THEOREM 4.1. Assume conditions (CP1), (CP2), (AL), (F) and (1), and that
f(w, x) is convex in w. Then the integral equation (1.1) has a unique positive solution

for each/l (0, 12 ).
If strict inequality holds in (4.1) for all x e , then the solution of (1.1) for

2 121[]--if there is one--can be shown to be unique. The situation is more
complicated if we merely assume (4.1); the results in this case are the same as the
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corresponding results for partial differential equations presented in [14], and we
omit them here, except for the special case described in Theorem 4.4 below.

It follows from (4.1) that if m(x) 0 for some x e f, then f(w, x) f(O,x)
for this x and all w > 0. Thus if m(x) 0 for all x f, then we have essentially a
linear problem; under assumptions (F) and (I), it is in this case, and only this case,
that A is an unbounded interval.

Our major result in this section is the next theorem and Corollary 4.3.
THEOREM 4.2. Assume that conditions (CP1), (CP2), (AL), (I) and (F) are

satisfied, and that f(w, x) is convex in w for (w, x) [0, + c) x f. Let 0/ be a
positive eigenfunction of (3.3) corresponding to the characteristic value /zl[oo ].
Define

W(f; w) Oo(y)[m(y)w -f(w, y) m(y)g(y)] dy.

If either of the following two equivalent conditions is satisfied"
(a) There exists wo > 0 such that (f; Wo) > 0, or

(b)
(4.2) lim tp(f; w) > 0,

then"
(i) There exists a positive number r such that (1.1) has no solutions with ]lull > r

corresponding to 2 (0,/t c ]).
(ii) For all positive numbers p and 6, there exists 2 (lal [, lallOC + 6) for

which (1.1) has at least two positive solutions, one of which has norm greater than p.
Proof Hypotheses (a) and (b) are equivalent since the convexity of f implies

that (f; w) is an increasing function of w. These hypotheses imply that m is not
identically zero on fL so by Theorem 3.5, A is bounded. Hence there exist solutions
of arbitrarily large norm, and by Theorem 3.3,/1[c is the asymptotic branch
point. Thus, according to Lemma B.1 of Appendix B, it suffices to show that

A’(c)(u -g)- Au] > 0

for sufficiently large solutions u 2Au + g, where is the linear functional (3.4).
Let qS be the normalized positive eigenfunction of(3.2). Since cX has measure

zero, there is an open subset fo c_ fo c_ f and a positive number fi such that
(cf. hypothesis (a)) (fl; Wo) >= fi for all open subsets fl with fo - fl f.
Since qo is strictly positive on fo, we can choose -: > 0 so small that

f {x e f" 4) o(x) > 2d - oand

n
o(Y) {m(y)g(y) +. f(O, y)} dy < {-fi.

By Theorem 3.3, we can find p>0 so that ifu =2Au +g and u >p,
thenu Ilul (qS :)onf;thusonf.,u >__ Ilu] .. Letf(w, y)= m(y)g(y)+ f(w, y);
then ifu =2Au +gand u > p,
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pl[c][A’(oo)(u g) Au] J b(y)[m(y)u(y) f(u(y), y)] dy

(4.3) >= I_ O(y){m(y)l u e f(I u , y)} dy

(y)f(O, y)dy,
/:

where we have used the fact that m(y)w f(w, y) is an increasing function of w,
since f(w, y) is convex in w. Then ull max {p, Wo/} in (4.3) implies

[][A’()(u g)- Au] > O,

as desired.
For sufficiently small w, f(0, x) > 0 implies fa(w, x) m(x)w; the condition

(4.2) means that for sufficiently many x and sufficiently large w, f(w, x) < m(x)w.
Now the relation f(w, x) < m(x)w for some x is true if and only if f(w, x)/w is
strictly increasing for all sufficiently large w, since otherwise we would have
f(w, x)/w limo, + f(p, x)/p re(x) for all w > 0. In particular, we have
the following corollary.
Cooa 4.3. The conclusions of Theorem 4.2 hold if we replace assumption

(4.2) by the following" For all x , If(w, x) + m(x)g(x)]/w is eventually increasing
in w, and there exists a subset o of of positive measure and a number p > 0
such that If(w, x) + m(x)g(x)]/w is strictly increasing in w for all x o and all
w>p.

If the nonlinearity f(w, x) is independent of x, the preceding results can be
expressed more elegantly as follows.

THZOZM 4.4. Let f be convex, nonnegative, and increasing on [0, + ), with
f(0) + g > 0, where g is a nonnegative constant. Let m limw + f(w)/w, with
0 < m < + . Let K(x, y) be a weakly singular kernel on x , and consider the
equation

(4.4) u(x) g + 2 K(x, y)f(u(y)) dy.

Let be the eigenvalue of the linear equation

h(x) ! f K(x, y)h(y) dy

corresponding to a positive eigenfunction.
Then (4.4) has a unique positive solution u(2) for each 2 (0, /m). If

Img + f(w)]/w is eventually strictly increasing in w, then (4.4) has at least two
solutions for some values of 2 > t/m. Otherwise, 2* =- sup (A)= f/m, and either

(a) there is no solution for 2 2* and limx_x,_ Ilu(2)ll + c, or
(b) there are infinitely many solutions jbr 2 2*, and there is an o > 0 such

that all solutionsfor 2 2" have theform u(2*) + odpfor o >= oo
Case (a) occurs !f[mg + f(w)]/w is strictly decreasing in w for all w > O,

or iJ" there exists x c3f such that K(x, y) 0 for all y e fL
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Proof If [mg + f(w)]/w is eventually strictly increasing in w, the result follows
from Corollary 4.3. In the other case, the assertions are proved in the same way
as the corresponding assertions for partial differential equations in [14], [15].

COROLLARY 4.5. Let f be convex and increasing on (0, + o), with f(O) > 0
and m lim,_. + f(w)/w < + v. Suppose there exists x cf such that K(x, y) 0

for all y f. Then the following statements are equivalent:
(i) f(w)/w is eventually strictly increasing in w.

(ii) f(w) wf’_(w) is eventually negative.
(iii) Equation (4.4) has more than one positive solution for some ) > t/m.
(iv) 2" > [t/m.
Another way of describing the nonuniqueness result of the last theorem is to

say that if f(w)/w is eventually strictly increasing in w, then the integral equation
(without the parameter ;3

u(x) fn K(x, y)f(u(y)) dy

has at least two solutions if/t < m.

Appendix A.
A.I. We consider the linear integral equation with a weakly singular kernel

(A.1) h(x) 2 fn K(x, y)p(y)h(y) dy,

where fl is a bounded, open, connected subset of R", K(x, y) is continuous in
(x, y) on f x f except possibly when x y, there exists a constant > 0 and a
number e [0, n) such that

I/(x, y)l _-< /Ix 1
for all (x, y) e f x f, x - y, and p is a bounded, measurable function on f. For a
general description ofthe analysis and properties ofthis equation, see [3], [16], 17].

A.2. The operator T: C(f) --, C(f) given by

Tu(x) n K(x, y)p(y)u(y)dy

is a compact linear operator on C(f) by Arzela’s theorem and is positive if N(x, y)
=_ K(x, y)p(y) >= O. We define Fu(x)-- j K(x, y)u(y) dy, so Tu Fpu. The mth
iterated kernel N,, is defined in the usual way; N,, is the kernel of T". Each kernel
N,, is bounded on f x f for m > n/(n e) [17, Chap. III]. It is possible to choose
m > n/(n ) so that the eigenfunctions of N corresponding to any eigenvalue
2 of N are precisely the same as the eigenfunctions of N,, corresponding to the
eigenvalue 2" (the eigenvalues ) of N, that is, of equation (A. 1), are the characteristic
values of T’h 2Th 4: 0). For such m, # is an eigenvalue of N,, if and only if one
of the mth roots of/ is an eigenvalue of N [17, III.3]. In general, there may be no
eigenvalues.

A.3. We assume henceforth that K is strictly positive on f x f, that p > 0
on fL and that there exists an open subset fl of f on which p is strictly positive.
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Then there is an eigenvalue" We choose m > n/(n ) as described in the preceding
paragraph. The iterates of N have the form N,,(x, y) g,,,(x, y)p(y), where/, is
strictly positive on fl x fl, and therefore ja N3,,(x, x) dx > 0. Since N,, is bounded,
it follows from the Fredholm theory for integral equations with bounded kernels
that N, has an eigenvalue [17, p. 178] and hence (by choice of m) N does also. The
Krein-Rutman theorem [9] implies that N has a nonnegative eigenfunction b
corresponding to the eigenvalue o[T] (the largest positive eigenvalue of N and
the reciprocal of the spectral radius of T); it is easily verified that b is strictly
positive on ft.

The arguments of Jentzsch ([4], cf. [3, 17.5]) applied to the bounded kernel
N,, imply that #o[T] is a simple eigenvalue of N (the simplicity of (#o[T])" as
an eigenvalue of N, implies the simplicity of #o[T] as an eigenvalue of N); #o[T]
is larger than the absolute value of all other eigenvalues of N, and the positive
multiples of b are the only positive eigenfunctions of N.

A.4. Similarly, the integral equation

h(x) 2 f K(y, x)p(y)h(y) dy

has a "unique" positive eigenfunction , and the corresponding eigenvalue is
easily seen to be kto[T]. The linear functional " C()) R defined by

f /(x)p(x)h(x)(h) dx

is a positive eigenvector of the adjoint of T corresponding to the characteristic
value /o[T]; i.e., lto[T][Th h for all h 6 C(). This follows from the easily
verified fact that, for any v 6 C(),

oT(r) f (x)(x) dx.

Note that (h) > 0 if h >__ 0 and there exists x Da such that h(x) > O.

A.5. The operator T has the following property, as can be verified using the
functional . Suppose that for some h C(), h => 0, we hive h 2Th >__ 0 on .
If h(x) > 0 for some x fl, then 2 __</o[T]; if h(x) 2Th(x) > 0 for some x 1,
then 2 < #o[T] (cf. the property (PA) in [11] and "regularly solvable" in [1]).

Appendix B. In this appendix we state and prove the lemma used in the proof
of Theorem 4.2. We use the notation and terminology of [10, 3.

LEMMA B.1. Let be a partially ordered Banach space with a positive cone
f Let A be a positive operator on ,( which has a continuous f-asymptotic deriva-
tive A’(). Suppose that there exists a solution (2, u) of u g + 2Au with u /:If
2 > O. Let # be a positive characteristic value of the adjoint of A’(o) to which there
corresponds a positive eigenvector (that is, is a positive linearfunctional such that
#[A’(o)h] h for all h ) such that (u g) :/: O. Then

sgn (# 2)= sgn ([Au A’()u + #-lg])

sgn ([Au A’()(u g)]).
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Proof We have

0 < l(u g)= #2[Au A’(oe)(u g) + 2(u g),

so that

#2
(u g)

[Au- A’(o)u +

The desired result follows immediately.
Lemma B.1 is of particular interest when we combine it with Theorem 3.1

of [10] and take # to be an asymptotic branch point.
We assumed the existence of the positive linear functional in Lemma B. by

theorems of Krein and Rutman [9], such a exists if A’(o) is compact on ,X, if
/ =/t0[A’(oe)], the reciprocal of the spectral radius of A’(oo), and if either ,# ,
is dense in g or ,X/ has interior points.
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SOLUTIONS TO A PROBLEM
IN POWER SERIES REVERSION*

A. J. GOLDSTEIN AND A. D. HALL*

Abstract. This paper presents the general solution of the following problem in two forms.
Let f(x, y) be defined by the formal power series f(x, y) =o ,oJ’m,Xmy" with foo 4: 0.

If v satisfies v(x, y) f(x/’, yvb), where a and b are constants, then find the formal power series ex-
pansion of v"(x, y), where c is also a constant.

A special case,of this problem, which occurs in a paper by R. A. Handelsman and J. S. Lew [1 ],
has been proposed as a problem to be solved by computer using a symbolic algebra system [2].

1. Introduction and summary. In this paper we give two formulations of the
answer to the following problem.

Let f(x, y) be defined by

with foo :/: 0. If v satisfies

(1)

f(x,y) Z Z fm,,xmy"
m=0n=O

v(x, y) f(xv", yvb),

then find the formal power series expansion of vC(x, y) for arbitrary c.
First, we show that

(1 + c.ln f)m,,, am + bn + c O,

(2) (1)C)mn C
(fam+bn+C)mn, am + bn + c =/: 0

am+bn+c

where the notation (g)m. denotes the coefficient of xmy" in the series expansion of
g(x, y).

Equation (2) is conceptually simple but computationally difficult. To provide
a formula more amenable to computation we show that (2) can be rewritten as

f;o, m= n=O,
m+n(3) (v ),,,

cfo+b’+c Fk(m, n)(am + bn + c 1)k_ lf0,- rn + n > 0,
k=l

where (w)k is the falling factorial defined by

(W)o 1,

(W)k W(W-- 1)...(W-- k + 1), k >0,

and F is defined by the generating function

(4) E E E Fk(m,n)xmy’zk=e(f(x’’)-f(’))z
m=0 n=O k=O
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We then derive the following recursive formula for the computation of
F,(m, n) for all k, m and n:

Fo(0,0) 1,

Fo(m, n)= O,
m+n>0,

(5) F,(m, n) O,
m+n<k,

Fk+ l(m, n)- (i + j)fijF,(m i, n -j), m + n > O.
m + n i=o j--0

2. Derivation of formula (2). In order to illustrate a technique that may be
applicable to other similar problems, we give a derivation based on the residue
operator for formal power series given in [3]. Proofs based on complex variable
theory can be obtained for the one-variable case from Lagrange’s theorem [4,
7.32], and for the two-variable case from the generalization of that theorem
by I. J. Good in [5].

We shall briefly summarize the relevant results of [3]. Let h(xl, ..., xr) be a
formal power series in r variables (i.e., no convergence restrictions) of the form

h hn...nrxl xr

where 1,’", arc fiitc bt may bc cativc. The sum, difference, woduct
and partial derivatives of formal power series are defined in the usual way and
have the usual properties. For exponentiation, let h have a nonzero constant
term ho and no negative exponents. Thus

(6) h ho(1 + H(x1, ..., xn)),

where H has a zero constant term and no negative exponents. Then h can be
defined by

h= h; kO /
and this exponentiation has all the usual properties. For h as in (6), we define

lnh=lnho+ln(1 +H)

=lnho +(-1) +Hk/k
k=land

e ehoehon

ehO (hoH)/k!.
k=O

These have the usual inverse and differentiation properties.
The basic requirement in the manipulation offormal power series is a finiteness

condition: If the manipulation of the operands g, h, (which are formal power
series) results in a formal power series f, then the coefficient of any term in f may

I. Niven gives an excellent survey of formal power series in [61.
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not involve more than a finite (but possibly unbounded) number of coefficients
of the operands g, h, ....

The residue operator applied to any h is defined by

-1 X-1 in hR(h) coefficient of x

As a consequence,

(7) R(h/x] + Xr"r + 1) coefficient of x]’ Xr"r in h.

The main result for this operator deals with substitutions [3]. Let

"’. "’Gi(x x,.)gi Xl Xr 1, i=l,...,r,

where Gi has no negative exponents and a nonzero constant term and mij >= 0
with = mj > O. Then

(8) det (m,j) R(h) R h(gl, g)
(X1, Xr)j

where the Jacobian is defined by

(gl’ "’"’ gr)
det (cgi’]

c(x, xO
The fact that h(g 1, ..., g) is well-defined can be shown by observing that each

coefficient in its formal series will involve only a finite number of the coefficients
from the gi (see [7] for a detailed proof).

For our problem, let us first make a change of variable from x, y to s, t, so
that (1) becomes

v(s, t) J(sv"(s, t), t?(s, t)),

where foo :P 0 and therefore Voo foo. If

x sv"(s,

y trY(s, t),

then

giving

v(s, t) f(x, y)

s xf-(x, y),

yf-(x, y),

v(xf-(x, y), d-(x, y)) f(x, y),

which is the dual of equation (1).
Now by (7),

(VC)mn R(v(s, t)/s" +1 t" +
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and so the substitution theorem (8) yields

.v x -b) c(xf-, )Xm+ 1..Ff[ a(X,, y)
(v )m,, R( :f--" S"m+’+b’+b

ys-b)

["fam+bn+a+b+c c?(xf-O, yf-b))
The Jacobian has the value

giving (with d am + bn + c)

(V)m" R(fa( axf- c?fcx bYf- )/x"+ y"+ )

Now for any h,

(c3h/ 1) mR(h/x ly,+1).(9) R xx x y + +

Thus if d 0, the second term is

-a (cfa/ 1) -am

d R\63x/xmyn + - R(fa/xm + lyn+ 1)

and similarly the third term is bn/d)R(fd/x + ly,, + 1). Replacing d by am + bn + c
and adding, we have

C
(l)C)mn (fam+bn+C)mn,

am+bn+c

which is the second part of (2).
If d 0, the second term is

-aR f-1 fx/x y +1 _aR

-amR(ln fixm+ ly,+ 1),

and similarly the third is

-bnR(ln fixm+ lyn+ 1).

Therefore, since d 0 we have c -am bn and

(VC)mn (1 --1- C" In f)mn,

which is the first part of (2).
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3. Derivation of formulas (3) and (5). Formula (3) is a special case of the
following more general result: If h(x, y) g(u) and u f(x, y) where f is a given
formal power series with no negative exponents and g(u) has a series expansion
around the point uo f(0, 0) foo, then the coefficients of the formal series for h
are given by:

(10)
hoo g(f(0, 0)),

h.,. Fk(m, n)
dkg

f(O,O),

m+n>0,

where, as before, the Fk(m, n) are defined by

(11) E E E Fk(m,n)xmY"z’=e(f(x’y)-ft’))z
m=O n=O k=O

Using (10) we obtain (3) in the case am + bn + c :/= 0 by just specializing
g(u) to (c/7)u so that h(x, y) (c/7)f. Then (10) gives

oo
f o,

f’ c Fk(m,n)(7)_lfo-,
k=

m+n>O.

Setting 7 am + bn + c and substituting these into the lower part of (2), we arrive
at (3).

To obtain (3) for the case am + bn + c 0, we specialize g(u) to + 7" In u,
so that h(x, y) + 7" Inf. Then (10) gives

(1 + 7"ln f)oo + 7"ln foo,

(1 + 7" In f),.. 7 Fk(m, n)(-- 1)k__ lf,
k=l

m+n>0.

Setting 7 c =-am- bn and substituting these into the upper part of (2),
we obtain

l)C)mn
c Fk(m, n)(-- 1)k_ lfg,
k=l

m=n=c=O,

m+n>0,

which agrees with (3) when am + bn + c O.
Now to prove (5) and (10), we first equate the coefficients of z in (11) to obtain

(12) Z Z Fk(m, n)x"y"= (f(x, y)- f(O, 0))k
k--0,

k>0.
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From this, we see immediately that

Fo(0, 0) 1,

Fo(m, n) O,

Fk(m, n) O,

m+n>0,

m+n<k,

which are the first three parts of (5).
If we expand h(x, y) in a series around the point uo, we have

dkg
k=O u=uo

(U UO)
k

If u f(x, y) and uo f(O, 0), then

0
ukdkglh(x, y)

k= f(O,O)

whence by (12),

(f(x, y) f(O, 0))
k

dkg
h(x, y) 7"o )Fk(m, n)x"y"

u=f(O,O) m=O n=O

Interchanging the order of summation and equating coefficients of x and y we
obtain (10).

It remains to prove the last formula in (5). First differentiate (11) with respect
to x to obtain

Z Z Fk(m, n)mx"-ly’zk e(f(x’y)-(’)) z x f(x, y)
tn=O n=0 k=O

)Fk(m n)xmynz + E f,,,,mx"- y,
m=O m=O n=O

Equating coefficients of z + we have

(eE E fk+l(m, n)mx yn Fk(m n)xmyn fmnmxm-- yn
m=O n=O m=O m=O

Applying the convolution formula for the product oftwo power series and equating
the coefficients of x"-ly,, we obtain

mFk +l(m, n) iJijFk(m i, n j).
i=0 j=O

Similarly, differentiating (11) with respect to y, we obtain

nFk +l(m, n) jfijFk(m i, n j).
i= o .i= o

Finally, adding these two equations and dividing by m + n we obtain the last
formula in (5).
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ON AN EXPANSION PROBLEM OCCURRING IN THE THEORY
OF DIFFRACTION*

D. NAYLOR? AND D. W. BARCLAY

Abstract. This paper considers an eigenfunction expansion arising in certain problems in diffrac-
tion theory involving an impedance-type boundary condition. The expansion in question is usually
convergent only in part of the domain of interest and involves an infinite set of orthogonal functions
which do not form a complete set, in the sense that it is not in general possible to expand a given
function in terms of them no matter how well-behaved the function may be. A theorem is established
which asserts the validity ot" the expansion whenever it converges. Also a more general expansion
formula is obtained which is valid for all sufficiently general functions and which reduces to the basic
expansion whenever the latter converges.

1. Introduction. This paper is devoted to an investigation of the validity
of an expansion involving the orthogonal functions H(,1,)(kr), where ul, u2,...
are the zeros of the function

(1) g(U) [t(u )’(/a)+ iZH(u )(ka).
Here k, a > 0 and Z is a given complex constant.

The expansion in question can be expressed in the form

uH(ul )(kr)g (u)F (u)
(2) f(r) irc

,, g’(u)

where

(3) g a(u) J’,(ka) + iZJ,(ka),

(4) F(u) f(r)H )(kr)
dr

The zeros u,, which are discussed in [! ], [2], are neither real nor purely imaginary
and are located in the first and third quadrants ofthe complex u-plane. The summa-
tion in (2) includes only those zeros which lie in the first quadrant. Series of this type
are not valid in general [6] no matter how smooth the function f(r) may be or how
well-behaved it is at infinity. In practice such series arise as the solutions of certain
problems in diffraction theory and are frequently convergent only in part of the
domain of interest, being divergent elsewhere, a phenomenon which has not been
satisfactorily explained. Since many functions exist which can be represented in
the form (2) it is not sufficient to argue that the above eigenfunctions are generated
by a singular non-self-adjoint problem and therefore do not form a complete set.
Under what conditions will the expansion (2) converge and equal the function f(r)?
This paper provides a partial answer to this question by constructing an expansion
which is valid for all sufficiently general functions and which reduces to (2) when-
ever the latter converges.
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In an earlier paper [4, the authors discussed the similar series involving the
functions Hl.)(kr), where u 1, u 2 are the zeros of H,1)(ka). The series in this case
takes the simpler form

uH (kr)J.(ka)F (u)
(5) f(r) irc

(c3/u)n )(ka)
The principal result obtained in 4 established th validity of (5) whenever

the series appearing on the right-hand side is convergent. Hitherto there had been
no guarantee that a formal series like (5), even if convergent, would represent the
function fir) since a set ofsucient conditions to justify (5) had not been discovered.

The object of the present paper is to extend the earlier results to cover the
more general expansion (2) and to obtain suitable conditions under which the
series appearing in (2) does in fact represent the function f(r). These conditions are
stated in the following theorem.

THEOREM. Suppose that f(r) is twice continuously d!fjorentiable for r >= a,
r-/2(rfrr + fr + k2rf)6L(a, ), f(r) and f’(r) are O(r -/2) as r cc and
rl/2(j ikf) 0 as r, where k is real and positive. Then, if the parameter 2
tends to zero through positive values,

(i) for r >= a,

e’U2qu k, r)F (u)u du
(6) f(r) lim |

-*o 3w 2g(u)

where

(7) q,,(k, r) J(kr)g(u)-H’(kr)g,(u);

(ii) for r >= a,

"2H{.)(kr)g (u)F (u)
(8) f(r) -in lim

ue

-o .=.. g’(u)

(iii) equation (2) is valid whenever the series appearing therein is convergent.
The path W appearing in (6) is illustrated in Fig. 1. It lies to the right of the

zeros u, of(l) and is asymptotic, to the lines arg u _+ if, where ff is a fixed angle
in the interval re/4 < ff < rr/2. This choice of W is possible since it is known that
the zeros u, situated in the first quadrant are such that arg (u,) t/2 as n .

2. The integral theorem. This section describes the method of derivation ofthe
integral formula (6), the expansion (8) being readily deduced from (6) by deforming
the path W onto the imaginary axis and taking the residues at the poles. The
formula (6) is constructed by following the procedure developed in [5]. Let f(r),
the function to be expanded, satisfy the conditions of the theorem and define

(9) r2frr + r + (k2r2 v2)f h(r), r > a,

where v > 0. The expansion problem of interest here is that associated with (9)
when the quantity f’(a) + ikZf(a) is prescribed and the function f(r) satisfies the
radiation condition

(10) lim rl/Z[.f’(r)- ikf(r)] O.
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W

FG.

(11)

To obtain the formula (6), equation (9) is inverted by means of the relation

f(r) h(p)G(r, p)
dp

+ [f’(a)+ ikZf(a)]
P

H)(kr)
kg(v)

where G(r, p) denotes the Green’s function defined by the equations

(12) G(r, p)

rcHl)(kp)(k, r)
2ig(v)

rcH’)(kr)tP(k, p)
2ig(v)

a<=r<=p,

a<p<r

The Green’s function as defined by the above composite expression must now
be represented by means of a single formula, which will be inserted in (11). In this
paper the following representation will be adopted:

eaU2tu(k
(13) G r, p) irn fw r)Hu )(kp)u du

2(u2 vZ)g(u)

In this formula, which is proved in the Appendix to the paper, the term ezu2 is a
summability factor, the parameter 2 tending to zero through positive values.
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The path W is chosen so that the point v lies to the right of it. The insertion of (13)
into (11) yields the formula

f, fw e,Hl)(kp)tg.(k, r)u du
f(r) h(p)

dp
lim

p -o 2(u2 v)g(u)
(14)

+ [f’(a)+ ikZf(a)]
kg(v)

The limit 2 --. 0 is now taken outside of the repeated integral. This step can be
justified by verifying that the p-integral is uniformly convergent for 2 >= 0, and
for this purpose use will be made of the following bound"

14(1)(kp)1 < [2/(rckp)] /2 elSlF(t + 1/2)[2’-1/2 _[_ x//-F(t)(4/kp)t-1/2].(5) Ir(u + ,..
In this result, which was derived in [5, p. 118], u + is and > 1/2. The

asymptotic behavior on W of the functions W, and g(u) may be estimated with the
aid of the relations

(16) J,(x) F(u-- 1-- (x/2)", H(,1)(x) F(u)trc (2/x)"

giving

(17)
P,,(k, r) a [(r/a)" + (a/r)"],

g(u)
F(u + 1) (2/ka),+

2ire
where, by Stirling’s formula,

(18) IF(u)[ (2zr/R)/2 exp [R cos 0 log (R/e) RO sin 0],

where u Rei, and 101 < re. It is then found that as R o the integrand in (14) is

(19)0 -/2R-2exp 2R2cos20+R(+20)sin0-Rcos010g sec20

=O{p- 1/2R- 2 exp [2R 2 cos 20 R cos O log (P/Pl)]},

where P 2rcos2O exp [(g + 2O)tan ]. The bound (19) holds as R
on W, uniformly for 2 0, p a. Since cos 2 < 0, the expression in (19) is
O(p-1/2R-2) for p p and the contour integral in (14) is O(p-/2) uniformly for
2 0. The p-integral in (14) is uniformly convergent for 2 0 since by hypothesis
p-3/2h(p) L(a, ). The limiting operation in (14)can therefore be placed outside
the repeated integral. Finally the order of integration can be changed since it is
evident from the above bounds that for 2 > 0 the repeated integral is absolutely
convergent, the dominant term in the exponentials being the O(R2) term. The
formula (14) now takes the form

e,(k, r)u du
h(p)H)(kp) dpf(r) 2(u2 vZ)g(u P

(20)

+ [/’(a) + ikZf(a)]
kg(v)
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The formula (6) may now be obtained from (20) by substituting the expression

(21) h(p)H.(kp d__p (u2 v2)F(u) + kaf(a)H,(ka)_af,(a)H.(ka)"
P

This relation follows from (9) by multiplying by r-H)(kr) and integrating by
parts. The insertion of (21) into (20) gives the equation

eX":.(k, r)F(u)u du
(22) f(r) lim + 2 f(a)+ 22af’(a

-,o 2g(u)

The definitions of the quantities 21 22 appear below. It will be shown immediately
that 21 22 0 so that equation (22) reduces to formula (6) of the theorem.

iZH(l)(kr) ( ka eX"2,(k, r)Ht,,1)’(ka)u du
21 g(v) + lira Jw-o 2g(u)(u2 v2)

fw " )(ka)u due ,(k, r)HH)(kr)
lim22 kag(v- -o 2g(u)(uz vz)

The quantity 21 defined by the first of the above equations can be shown to
be zero by the following device, which starts with the identity

fw e’U2[ku(k, r)H’ )’(ka) H’ (kr),(k,a)]u du

(u2 v)g(u)
(23)

( k e"2[J,(kr)H1)’(ka) J,(ka)H, )(kr)]u du
U2 )2

This equation follows immediately from the definition (7) of ,. The path W
appearing in the integral on the right-hand side of (23) may be deformed onto the
imaginary axis since it can be shown with the aid of the definition

H(u1)(X) i[J_ ,(x) e-iunJu(x)] cosec un

and the first of the relations (16) that the integrand is O{u- eZ"[(r/a)" + (a/r)"]}
as u oe. Since the integrand on the right-hand side of (23) is also an odd function
of u the value of the integral along the entire imaginary axis is zero. Furthermore
it follows from the definition (7) in conjunction with the Wronskian identity
W(J,, H,) 2i/(rcka) that tP’a(k, a) 2Z/na. When this expression is inserted into
the integral on the left-hand side of (23) and the resulting expression equated to
zero we find the equation

(24) fw n r)Hl)’(ka)u du 2Z fw ez’H’l)(kr)u du

(U2 vZ)g(u) na g vZ)g(u)

As u oc on or to the right of W the integrand appearing on the right-hand
side of (24) is O[u-2 eX,(a/r),] and on W itself this is O(u-2) uniformly in 2. The
limiting value of the expression on the right-hand side of (24) as 2 ---, 0 can therefore
be obtained by setting 2 0 in the integrand and evaluating the resulting integral
by closing the contour on the right and taking the residue at the pole u v. It is
then found that the limit equals -2iZH)(kr)/ag(v) so that 21 0 as required.
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To show that 22 0 it is only necessary to note that the integral appearing
in the expression for/2 is the same as that appearing in the formula (13) for the
Green’s function G(r, p) with p set equal to a therein. Since G(r, a) can be obtained
from the second formula in (12) it follows that

H,’ )(kr) rctP,(k, a)H[,’ )(kr)
/2

kag(v) 2ig(v)

Finally from the definition (7) of qJ, and the Wronskian W(J,, H,)= 2i/(rcka)
it is seen that W,(k, a) 2i/(rtka) and hence that/2 0.

3. The expansion theorem. In this section the expansion (8) of the theorem
is obtained from the formula (6) already established by deforming the path W onto
the imaginary axis and taking the residues at the poles that are crossed. Since
n),(x) eiu n(,1)(x) it follows from the definitions (1), (4) that g(-u) ei"g(u)
and F(-u) eiu F(u) while on expressing the Hankel functions appearing in (7) in
terms of Ju and J_, it can be shown that W_, W,. The integrand appearing in (6)
is therefore an odd function ofu and the value ofthe integral along the imaginary axis
is zero. The expansion (8) follows on evaluating the residues at the poles u, situated
in the first quadrant.

To justify the above procedure it is necessary to form a suitable sequence of
paths which recede to infinity and which avoid the zeros of g(u). The asymptotic
behavior of this function can be obtained from (1) by expressing the Hankel
functions in terms of Bessel functions and using the first relation in (16) in conjunc-
tion with Stirling’s formula (18). This gives the relation

so that

g(u) (----) e’/’(2u/rc) /2 cosh u log [2u/(kae)] + - + 0

(25) u, log [2u,/(kae)] (n + 1/4)ire + O(u[

If we set u Rei and define the functions

(26) g2 R{cos 0 log [2R/(kae)] 0 sin 0},

(27) go R{sin 0 log [2R/(kae)] + 0 cos 0},

then the large zeros occur when g2 0 and go (n + 1/4)re, where n is a sufficiently
large integer. The equation go (n 1/4)re defines a path C. which avoids the zeros.
On C, it can be shown by analogy with [5, p. 120] that H,l)(kr)/g(u) is
O[R-(r/a)Rcs] and that

(28)

uW,(k, r)et"2

g(u)
O[R /2 exp {/R2 cos 20 + RO sin 0

R cos 0 log [2R/(ker)]}].

This bound applies in the sector ff _<__ 0 _<_ rt/2, a similar bound holds in the sector
r/2 _<_ 0 < ft. Suitable asymptotic bounds on the function F(u) can be obtain-

ed from equations (22), (28) of 4] where it is shown that
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OEexp {(rc + 101)IR sin 01 + R cos 0 log [(4R cos20)/(kae)]}],
(29) F l(u) Re (u) >

O{exp [(r + 101)IN sin 01 R cos 0 log (R/e)]}, 0 =< Re (u) __< 1/2,

as R oe in their respective domains.
An inspection of the bounds (28), (29) shows that the deformation of W onto

the imaginary axis is permissible, the dominant term in the exponential being
2R2 cos 20 which is negative in the region crossed.

4. The convergence theorem. With the aid of formula (8) just established
it is now possible to proceed to a proof of the main result of the paper, to the effect
that the function f(r) can be represented by equation (2) whenever the series
appearing there is convergent. The method used depends on an Abelian-type
argument to show that the series in (8) will be uniformly convergent for 2 >__ 0
whenever the series appearing in (2) is convergent. In these circumstances the
validity of equation (2) itself will follow from (8) on taking the term by term limit
as 2 --, 0.

The uniform convergence property of the series in (8) can be proved by
writing this equation in the form

f(r) lim a.v.,

where v. exp (2u.2), and verifying that the series Iv.+ v.I is convergent
and that its sum is bounded uniformly in 2. With this aim in view we note the
identity

(30) v.+l-v.= 2 exp I (u,2+1 + u,Z,l sink I (u,2+ 1- u,2,1.
The asymptotic behavior of u, R,e can be obtained from (25). Equations of
this type have been investigated in [2], [3, [1]. The sequences R,, R, cos 0,,
R, sin 0, tend steadily to infinity as n - oe. The angle 0, is also steadily increasing
and tends to re/2. With this notation (30) becomes

(31)
Iv.+1- v.[ 2 exp [ (R.2+1 cos 20.+1 + R.2 cos 20.)1

[sinh2 (1/22x) + sin2 (1/22y)] 1/2,

where

x R.2 cos 20. R.2+ cos 20.+ 1,

y R.z+I sin 20.+ R.2 sin 20..
It follows from the identities sin 20 2 sin 0 cos 0, cos 20 2 cos2 0

together with the monotone properties of the sequences R. cos 0., R. sin 0., that
y > 0 and x < R.2+ R.2. Also since 20. ---, rt then

0 < sin 20.+ =< sin 20. < cos 20. =< cos 20.+
so that

y =< (R.2+ R.z) sin 20. =< (R.2 R.2+ 1)cos 20. =< x.
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Hence

O < y < x < R2 2 R.)R..+1 R. < 2(R.+ +1"

therefore

sin (2y/2) =< sinh (2y/2) =< sinh (2x/2) <_ sinh [2(R.+ R.)R.+ 1].

In addition since cos 20. - the argument in the exponential function
appearing in (31) is evidently less than --2R.12/ for n large enough. Equation (31)
may then be written as

(32) Iv.+1 v.I < 2x/ exp R.+ sinh [2(R.+1 +1

for n >__ N say. This expression can be simplified further by using the fact that the
difference (R.+ R.) tends to zero as n oo. To obtain this property we take
the modulus of (25) which gives the equation

(33) R._0. + log
\kae]

1).

On replacing n by(n + 1)and using the fact that 0. 0.+ ,R. R.+ , we find that

(34) R.+ + log
kaeJ

1).

From (33) and (34) by subtraction we deduce that

(R.+a R.) 0 + log
kae]

+ O(R2 )

so that (R,+ R,) tends to zero as n. If this property is used together with
the inequality sinh (bx) b sinh x (which applies whenever x 0 and 0 N b N l)
to modify the argument appearing in the sinh function in (32), we find that

( 2 2 )sinh(R. 1)5  .)exp +

or

Iv.+1 v.I 2x/ (s.+ s.)h(s.+ 1),

where s. x/ R. and h(s) exp (-1/4s2) sinh s. By differentiation it can be shown
that the function h(s) is increasing for 0 < s < so and decreasing for s > so, where
so is the positive root of the equation s 2 coth s.

Hence

2 Iv.+1 v.[ <= 2w/ 2 h(s.+ 1)(s.+1 s.)

<= 2w/ soh(so) + 2@ h(s) ds.
sO

This inequality shows that the series Iv,+ v,I is convergent and that its sum
is uniformly bounded for 0 __< 2 =< 1. It follows from an Abel type of criterion that
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the series a,v,, where a, is independent of 2, will be uniformly convergent
for 0 <_ 2 <__ whenever the series a, is convergent. In particular, the series
appearing in (8) will be uniformly convergent whenever that appearing in (2) is
convergent and in this event the validity of the representation (2) follows from (8)
on letting 2 0.

Appendix. It remains to establish the formula (13) for the Green’s function.
To this end we note from (16) and (17) that

as u oe in larg u[ _<_ /< re/2. If r < p, the above expression is O(u-z) uniformly
in 2 as u --. oe on W, since [eZ"2[ __< thereon. For such values of r, p the integral
(13) is uniformly convergent for 2 >= 0 and the value of the limit may be obtained
by setting 2 0, closing the contour on the right and taking the residue at u v.
The expression (13) then reduces, for p _>_ r, to the first of the expressions appearing
in (12) as required.

The above procedure cannot be used directly when p < r for then the integral
in (13) is not convergent without the summability factor. The validity of (13) for
such values of r, p may be established as follows. On using the definition (7)
it follows that

eZU2 ju(kr)H(ul )(kp) J,(kp)H(,l )(kr)]u du
G(r, p) G(p, r) irn Jw 2(u2 v2)

The integrand here is an odd function of u and is

O R- exp 2Rcos20+ Rcos0 log
as R c. The path W may be deformed onto the imaginary axis whereupon it is
seen that G(r, p) G(p, r) for all values of r, p since the integral along the entire
imaginary axis is zero. The value of the integral in (13) when r > p can therefore
be obtained by interchanging r, p. The resulting integral is uniformly convergent
and may be evaluated as before by setting 2 0 and taking the residue at u v.
This procedure shows that the value of the expression (13) when r > p is equal to
the second of the expressions in (12).
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ON THE SOLUTION OF AN INTEGRAL EQUATION OF
CONVOLUTION TYPE*

E. H. DE GROOT" AND E. M. DE JAGER{

Abstract. The solution Q of the integral equation

is considered as a transform of the function f; f is a function of the real variable x, and 2 and/ are
real-valued parameters with 2 positive.

The functions Q[f withffixed form a group under the convolution operator.
The functions F(x)= F())xl-Q[f](x), occurring in elementary particle physics, exhibit

properties, such as their analyticity and behavior at the origin and at infinity, similar to those of the
input function f(x).

Besides several applications concerning hypergeometric functions, a table is presented giving
various input functionsfand their transforms F{.

1. Introduction. In this paper we consider the convolution equation

(1.1) xq(x) (k q)(x), 0 < x < o,

where k is a given function of the real variable x, analytic in x 0 with k(O) > O.
Moreover, we assume that k(x) is the restriction of a function k(z) k(x + iy),
which is holomorphic in a sector So in the complex z-plane with So defined as

--t- 0 < argz < +- 0, 0 < 0 < .
The function k(z) k(0) O(e’Z), uniformly in arg z, for some complex number co,
as z oe in So.

The symbol stands for the convolution operator

(1.2) (k q)(x)= k(x y)q(y)dy k(y)q(x y)dy.

Because the solution of (1.1) is uniquely determined apart from a multiplicative
constant, we use a suitable boundary condition. As will be shown in 2, the function
q behaves near the origin as

.x;k(0)-
q(x) C-

r(k(0))’
and we shall specify our solution of(1.1) by demanding that C 1.

The boundary condition then reads

(1.3) lim U(k(0))x -q(x) 1.
xO

The most interesting aspect of (1. l) is not so much its explicit solution as the relation
between solutions for different functions k, which differ only by a real linear

Received by the editors September 7, 1973.
f Theory Division, CERM, 1211 Geneva 23, Switzerland.
Mathematical Institute, University of Amsterdam, Roetersstraat 15, Amsterdam, the Nether-

lands.

2O8



SOLUTION OF INTEGRAL EQUATION OF CONVOLUTION TYPE 209

transformation, viz., ek + fl with and fl real parameters. Therefore, without loss
of generality, we put

(1.4) k(x) 2- #(1 f(x)),

with f(0) 1, 2, # real numbers and . > 0.
We consider the set of solutions Q[f] of (1.1) for different values of 2 and

# and the same function f In this way one generates from each function f a class
of functions Q"z[f]. It will be shown that in a certain sense these Q[f] form a
group with respect to the index # and that the Qx[f], -oe < a < + c, form
a half-group with respect to the index 2; the group operation is again the convolu-
tion. Furthermore, we consider the set of functions

F(x) F(2)x 1- Q[f] (x).

Owing to the boundary condition (1.3), the functions F(x) are bounded at x 0
with F(0) 1.

These functions occur in the theory of many particle production phenomena
in elementary particle physics (see [1], [2.]). It will be proved that the functions
FUa(x) are also restrictions of functions FUa(z), holomorphic in So, and that they have
in a neighborhood of x 0 and in a neighborhood of infinity a behavior similar
to that of the input function f.

In the following, we call F the (/, 2) shadow transform of the function f a
name we have chosen to suggest the similarity between f and the F. Writing
# a2, we denote by the symbol S[f] the set of all F,z with a, 2 real and 2 > 0.
If we take the "closure" of this set by taking the limits 2 + 0 and 2 - oo we obtain
the following interesting results:

(1.6) lim F(x) (1 0) + of(x)

and

(1.7) lim F1(x) exp [af’(0)x].
2-+oo

FI and lim F,a will be calledThe set S[f] together with the functions lima+o
the shadow class S[f].

Hence the functionfitself as well as its linear transforms (1 a) + zfbelong
to S[f]; the same is true for the exponential functions e as long asf’(0) -= 0.

The solution of (1.1) is constructed in 2.1, while in 2.2 the common proper-
ties of the input function and the transform F are deduced. Moreover, some formu-
las are given which express the transforms of related input functions, such as
(1 fi) + flf(Tx) and etf(x), in terms of the transform of the function f In
3 we prove the above-stated group properties of the functions Q and Q,*;
the closure $[f] of the class S[f] is constructed in 4, and in 5 we present several
examples of shadow classes S[f]. Finally, in 6 we give applications of the group
properties of the functions Q; in particular, convolution integrals involving
shadow transforms can easily be calculated. Another application is the solution
of a generalization of Abel’s integral equation.
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The motivation for the present investigation is mainly the occurrence of the
shadow transforms F in the context of calculations concerning many particle
production phenomena in elementary particle physics as dealt with by the first
author [1 ], [2 ].

2. The solution of the convolution equation and some properties of the shadow
transformation.

2.1. The transform f. In this section we look for solutions, locally
integrable and exponentially bounded at infinity, of the convolution equation

(1.1) xq(x) (k q)(x), 0 < x <

where k is a given function of the real variable x, analytic in x 0 with k(0) > 0.
Defining the sector So in the complex z-plane as

(2.1) -,+0<argz<-0, 0<0<,
we assume also that k(x) is the restriction of a function k(z), holomorphic in So, with
k(z) k(0) O(e’=) uniformly in arg z, for some complex number co, as z - m
in So.

Under the hypothesis that (1.1) indeed possesses solutions which are locally
integrable and exponentially bounded at infinity, we can solve (1.1) by using
the Laplace transformation. By means of the convolution property of this trans-
formation, we obtain for the transform

(2.2) 5a [q] (s) O(s) q(x)e-x dx

the differential equation

(2.3)
dgt(s) (s)gt(s),
ds

with

k(s) [k](s) k(x)e dx

(2.4)

f) k(0){k(x) k(O)}e- dx +
S

Because of the assumptions for k(x), the transform k(s) is holomorphic in the sector

(2.5) -rc + 0 < arg (s oo) < + rt 0,

with the possible exception of the point s 0, (see, for instance, [3, p. 33 if.I),
and (2.3) can be solved in this sector. Hence, we have

{ }(2.6) (s) A exp (s’) ds’
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with s a fixed complex number and A the constant of integration; the path of
integration lies inside the domain (2.5), but the point s 0 is avoided.

In order to reduce (2.6) we write

O(s) As]) s-k) exp fc(s’) as’

where s-k0) is uniquely defined by exp,-k(0)log s] for s > 0 and by introducing
a cut along the negative real axis in the complex s-plane; the path of integration
lies again inside the domain (2.5) but outside the cut. Since k(x) is analytic at
x 0, we may apply Watson’s lemma (see, for example, [3, p. 34]), and we have

uniformly with respect to arg s’ as s’ in the sector (2.5).
Hence c(s) may also be written in the form

where C is still an arbitrary constant and where the path of integration is situated
inside the domain (2.5) but outside the cut.

With the aid of a well-known formula from the theory of Laplace transforma-
tion, the latter expression can be reduced to

(2.7) c(s) Cs-) exp

The integral

is uniformly bounded for Re s => ao > Re ea with ao any arbitrary real
number larger than Re o. Using again the abovementioned lemma of Watson, we
see it is clear that

(2.8) e-t
n=l H

uniformly in arg s as s - @ in the sector (2.5).
Therefore, we have in this sector for s sufficiently large the uniform estimate

(2.9) exp e k(0) k(t)
dt + + 0

Since k(0) > 0, the function 0(s) is the Laplace transfo of the locally integrable
function

es-(exp e_ (0) (t)
dt ds, x > 0(.o q(x -
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the path of integration lies in the domain Re s => ao > Re o), and c may be any
positive real number with c > Re

Equation (2.10) may be written in the form

C fc+ ioo

eSXs- ,(o) dsq(x) i

(2.11)

Cxk(O)-
+ eSXs e

valid for x > 0; because the path of integration lies in the domain (2.5) and because
in this domain the estimate (2.9) is valid, the integral in the right-hand side of
(2.11) converges uniformly with respect to x.

Using the estimate (2.9), we see immediately that

(2.12) q(x) O(ecx)

The function q(x) given by (2.10) is locally integrable and exponentially
bounded at infinity, and therefore it is indeed the solution of the integral equation
(1.1) for 0 < x < oo.

Alternative forms for the solution q(x) are

xk(O)- [q(x)-- C (((f) 1+
r(k(O))

2rci

(2.13)
xk(O)- IC o-)i 1+

r(k(O))
2ri

es-ktO) exp e- ’ dt ds

with x > 0 and c > max (Re co, 0). We remark once more that the integrals in the
s-plane converge uniformly with respect to x.

Because of this convergence, one verifies easily that F(k(O))xl-ktq(x) is
continuous for x >= 0" taking the constant C equal to 1, we find that

(2.14) lim F(k(0))x -k()q(x) 1.
x$0

Introducing

(1.4) k(x) . /,{ f(x)}
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with f(0)= and 2, p real numbers and 2 > 0, we obtain for the image
under the transformation induced by (1.1) the formula

X)t-11 I-"’)cx+iO {elf) 1--f(xt) 1 }eSs- xp p e-St dt -1 dsQ[f](x) - +
i

(2.5)
where c is any positive number larger than Re ; x > 0.

For practical purposes we sometimes prefer the equivalent expression

(2.16) Q[f(x)= -1{- exp [-p -f(Y)(s)}(X),y x> O.

2.2. The shadow transform F. The (#, 2) shadow transform of the function f is
defined as

(1.5) F(x) F(2)x Q[f](x), x >_ O,

with x x real for x > 0.
According to (2.15) we have the formulas

F(2) cx + i)eSs ,
FPR(X) -- i I e- st

es exp -p(2.17) +-n/,c.-i o

with c any positive number larger than Re co.
x>0,

The function F"(x) is continuous for 0 _<_ x < o with F(0) (see (2.14)).
At this stage it is not difficult to show that F(x) is the restriction of a function

F(z), holomorphic in the segment So. For this purpose we define

z-So,

with d max {Re (z(co + e)), Re ez} and e arbitrarily small and positive.
The expression

exp -,u e_t/ -_tf(t)
dt

is holomorphic in (s/z) in the sector

(2.19) -n+O<arg(-Sz -co)<+n-O,
and it is uniformly asymptotically equal to #f’(O)z/s + O((z/s)a) for (s/z)
in this sector.

The relation (2.19) is fulfilled whenever Re s d and

-;,- +0<argz<+x-0.
Z Z
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Hence the expression in the right-hand side of (2.18) exists and the outer integral
converges uniformly with respect to z for all z within a closed subdomain of So;
it follows that F(z) is holomorphic in So and the derivative of F(z) may be obtained
by differentiation under the sign of integration.

Because (2.17) is the restriction of (2.18) for z x, the function F(x) is the
restriction of F(z), which is holomorphic in the segment So.

Using again the uniform asymptotic behavior of the exponential function
in (2.18) and taking the limit under .he sign of integration, we find that

(2.20) lim F(z)= 1.
z--O
zSo

Before investigating the behavior of FU(z) in So for z , we remark that the
right-hand side of (2.18), after substitution of s zs’, can be written in the form

(2.21) F(z)= l+-f/z e’(s’) exp -, e ’’ -f(t)t dt ds’,

where the integration variable s’ satisfies the relations

Re (zs’)= max {Re (z(co + e)), Re (ez)} and -@ < Im (zs’) < + o, e > 0.

Because s satisfies (2.19), the integration variable s’ must lie in the sector
-r + 0 < arg (s’ co) < + rr 0, and hence

exp la e-s" -tf(t)
dt -1 p f’(O)s, +0

2

for s’--, in this sector.
It follows that the outer integral in (2.21) converges uniformly with respect

to z and

(2.22) F(z) O(eztz))

uniformly for z in So, with

(2.23) )(z) max {Re (z(co + e)), Re (z)}

and e arbitrarily small and positive.
Summarizing these results, we have now the following theorem.
THEOREM 1. /f f(z) is regular in the segment So, f(z) O(e’), uniformly

in arg z jbr some co, as z --. in So, and iff(z) is analytic in z 0 with f(O) 1,
then the shadow transform F(x) exists for all real 2 > 0 and all real It; moreover,
FU(x) is the restriction of a function F(z), also regular in the segment So, and F(z)

O(eZtZ)), uniformly in arg z as z o in So; X(z) max {Re (z(co + ez)), Re (ez)}
with arbitrarily small and positive. Further, lim-0,zso FU(z) 1.

It follows from (2.17) that F(x) for 0 < x < o may be written as

r(/) c+ io

F’;(x) + - oc-,

-f(xtles exp -g e- s dt -1 ds.
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Because the integral converges uniformly in the complex s-plane, F(x) may be
differentiated with respect to x by taking the derivative under the sign of integration,
and so we have

eSs- exp -# e -s’ dt # e-’f’(xt) d ds.
dx 2hi ioo

Using Cauchy’s theorem, it is not difficult to show also thatf’(z) is O(e’Z), uniformly
in any segment S* with closure in S.

Applying Watson’s lemma once again we can see that the limit for x 0 may
be taken under the sign of integration, and so we obtain the interesting result that

(2.24) lim dF dF t2

:,40
(x) (0)= f’(O).

The shadow transform F(x) has some more remarkable properties, which are
stated in the next two theorems.

THEOREM 2. If f(z) satisfies the conditions of Theorem and if f(x) has the
shadow transform F(x), then g(x)= (1 -)+ of(x) has the shadow transform

G(x) FU(flx),
with arbitrarily real and fl arbitrarily positive.

Proof Substituting the function g(x) (1- a) + af(flx) in the first formula
of (2.17), we obtain

G(x) +-2ni ddx-ioo

es-X exp --e# e st 1- f(flXt)
dt -1 ds

with d any positive number larger than fl Re co.
It follows immediately that

(2.25) G(x) FU(flx).

Remark. If f(z) is an entire function of z and such that a neighborhood of
infinity can be covered by a finite number of segments Sk and f(z) O(ekz),
uniformly in arg z, for some co, as z --, oe in S, then fl may be taken arbitrarily
complex. This remark will be used frequently later on in 5 and 6, where applica-
tions of shadow transforms will be given.

THEOREM 3. lff(x) hasfor 2 the shadow transform F(x), then g(x) eat’f(x)
hasfor # 2 the transform
(2.26) G(x) etXF(x),
with fl arbitrarily complex.

XProof. For the function Q[f](), we have the relation

xQxz[f](x) 2{f, Qx[f]}(x),X
and therefore,

xeXQ[f](x) 2{etXf(x) , etXQ[f](x)}
It follows that the Q function corresponding with etXf(x)is given by etXQ][f](x),
and hence the result of the theorem follows.
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3. The group properties of and QZ. From the formula (2.16) and the
convolution property of the Laplace transform, we obtain, for x > 0,

(QI If] Q2,_ If ])(x) Ao- _x_x exp I (g+ g){.1-J(y)}(s)l}(x)
or

(3.1)

In particular, applying (2.16), we find that, for #1 -#2 #,

X21 +-(3.2) (Q,[f * Qx2"[f])(x) Q +z[f](x)
F(2

valid for x > 0.
We introduce now the set A[f] consisting of elements

(3.3) Au[f] {Q[f]; 2 > 0},
which are in their turn the sets of all functions Q[f] with fand fixed and with
2 ranging from zero to infinity and 2 > 0.

In the set A[f] we define a convolution operator as follows:

(3.4) Au[f] Au[f] {Ql[f] * Q[f];2 > 0,22 > 0}.
Using (3.1) we obtain

(3.5)

In particular, according to (3.2) we have

(3.6) A,[y], A_,[f] Ao[f] {[f];o X > 0} (," X > 0

From the results (3.5) and (3.6) we have obtained the following theorem.
THeOreM 4. The set A[f is a commutative group under the convolution opera-

tion; the unit element is the element

Ao[f]_
[F(2)

;2 > 0

Besides the set A[f], we introduce also a set B[f, consisting of elements

(3.7) B2[f] =_ ’0 [J;-< <+},

which are the sets of all functions Q [f withfand 2 > 0 fixed and ranging from
-o to

A convolution operator may be defined, similarly as in (3.4), by
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Taking 3 (121 + 2’2)//1’2 we see that 3 ranges from -o to +oe when

1 and 2 range from -o to +oc. Hence

(3.9)

A unit element is not so easily constructed as in the set A[.f] because 2 is not allowed
to be nonpositive. In order to do so, we add to the set B[f] the element B0[f]
defined as

(3.10) lim

where the limit is taken in the weak sense"

valid for all B4[f] with 2 > 0.
The set B[f] together with the element Bofl is denoted by B[f]. The element

Bolfl can be given a specified meaning as follows. In order to remove the singular
factor x4- in Q4[f], we consider the limit of F4(x) for 2 $ 0.

In the expression (2.17) for F(x), we develop

exp P e_, f(xt)
dt

in a Taylor series with respect to #. Putting # 2 and taking the limit for 2 $ 0,
we obtain, owing to the uniform convergence of the outer integral, for x > 0"

(3.12)

e(1 -f(x)) (1 a) + of(x).

ds} ds

It is now quite natural to define Bo[f] as

(3.13)

X4-

Bo[f] lim Q4[f] lim
o o F(2)

X4 x4

lim4o j- + lim4o --{o(j’(x)- 1)}

X
4-

lim-
4+0 F(2)’
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where the latter limit has a meaning only in the weak sense. This means that

(3.14, Bo[f],Bz[f]=tlim(x-I )0 \l-’(v) * Q[f ;- o < < +c

Finally, using the well-known weak limit (see, for example, [4, pp. 64-65])
x_-1

lim
+o r(v)

with x-x= O(x)(x)v-l, O(x) denoting Heaviside’s unit step function, and
the Dirac distribution, we indeed obtain

o[] * n[f] {ff;- < < +} n[Y.
Summarizing the last results, we obtain the following theorem.

THEOREM 5. The set B[f] is a commutative ha-group under the convolution
operation" the unit element is

2-
Boil] lim

xo F(2)’

where the limit should be taken in the weak sense.

4. The shadow class Sill. The shadow class S[f] is the set of all shadow
transforms F, 2 > 0, - < < + , together with the functions

limF and lim F.
The first limit has been calculated in the foregoing section, and the result is"

(3.12) lim FZ(x) (1 ) + f(x).
;0

In order to calculate limx + F we use (2.17), which may be written as

es-X exp e-1 f(xt)
dt ds

valid for 0 N cx < 2. Expanding (1 -f(xt))/t in a Taylor series and again using
Watson’s lemma, we obtain for all x in a bounded segment,

Fa(x)
z-i

es- exp f’(O)x ds + 0

Hence

x-lim F’(x) x-lim -x.:tF(2) (z f’(O)x)"n, 2" +’ eSs- -" ds
n=0 d2-i

lim (zf’(O)x)" 2"V()
z- o n F(2 + n)

or

(4.1) lim F(x) exp [af’(0)x].

From the formulas (3.12) and (4.1), we have the following result.
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THEOREM 6. The shadow class S[f’j contains the function f as well as all its
linear transformations (1 o) + of, with - < < + . The exponential
.function erx is an element of all shadow classes [f] with f’(O) # O.

Remark. From the result (4.1) it is obvious that limx_.o Fx(x) is not a shadow
transform in itself, because it does not exhibit the exponential behavior with the
right constant co as is required by Theorem 1. It is clear that the limits x o
and 2 ---, o should not be interchanged.

We conclude this section with another remark which will be applied frequently
in the next section.

If the class S[f] is given by

(4.2) [f] {F,X(x)},
then it follows from Theorem 2 that

(4.3) [(1 -/) +//(Tx)] {F,tX(Tx)}
for all real values of/ and for all positive values of 7; 7 may be taken arbitrarily
complex if f satisfies the conditions stated in the remark following Theorem 2.

5. Examples of shadow classes.
5.1. Shadow classes of hypergeometrie functions of one variable. In this section

it will appear that hypergeometric functions of the types 0F, F, 2F may be
considered as representatives for certain shadow classes.

The hypergeometric function inF, is defined as

(al)l(a2)l (am)l xl
(5.1) mF,,(a,, a2, a.; b,, b2, b,; x) E l’=0 (bn)l

with (ap)l F(a, + l)/F(a,) and (bp)l F(b, + l)/F(bp) (see, for example, [5,
p. 182]). Hypergeometric functions of the types ,,F, and inF, / are connected with
each other by the formula

F(2)x- l[s-’mFn(al a2, am; bl, b2, bn;

=,,F,,+,{a,a2,...,am;b,b2,...,b,,2 2+ 2+k-1.
k’ k k ’

(5.2)
valid for m<n+ 1, 2>0, - <e< +, k= 1,2,3,.-., and x>0 (see
[6, p. 297].

It follows now immediately from (1.5) and (2.16) that mFn+{a,a2, ,am;
b, b2,"’, b,,,2/k,(2 + 1)/k,...,(2 + k- 1)/k" e(x/k)} is a shadow transform
FU(x) whenever the hypergeometric function mFn(a, a2, am; b, b2,
b, ;czs -k) can be written in the form {p(s)}" with p(s) independent of 2 and
There are three hypergeometric functions which have this property, viz.,

(5.3) (a) oFo(--#s -) exp [-/s-],

(5.4) (b) Fo(-;-s-)=(l+s-)-"/,
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(5.5) (c) ,+’2+ l’--s =2 +(1 +s

We now investigate each of these three cases, and the corresponding shadow classes
will be constructed.

(a) From (5.2) we obtain

k ’’"’ k
;-P

According to (3.12), the input function f(x) is

f(x) limF(x)= + lim
(k- 1)+o +o (2 + )... (2 + k- )(-2)

(5.7)

Taking the more general input function

(5.8) g(x) f(Tx)=
(k- 1)!’

where 7 is an arbitrary complex number, we obtain from Theorem 2 the shadow
transform

(5.9) G(x, F(TX) oF,( ) +1 2+k-1
k ’’"’ k

;-#

The shadow class $Eg] consists of all functions

2 2+ 2+k- 1. 2 "2>0Sg= o k k
(5.o)

and in particular, for k 1, we obtain

S[1 -Tx]= {oFl(2;-72x);2>0,- << +}
(5.)

{F(.)(0/X)-(gt- 1)/2 J2- l(2X//X)" 0, c < (X < 4- c },

where Ja-1 denotes the Bessel function of the first kind.

(b) From (5.2) we obtain

(5.12) F(x) 1F, k’ k ’"’ k

According to (3.12), the input function is

f(x) limF(x) oFu- ,"’,

io k k

L(-1)"xk,,
o (km)’

exp [Xeire(21- 1)/k].
1--1
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Taking the more general input function

(5.14) g(x) (1 -/3) + f(yx),

we obtain with the aid of Theorem 2 the shadow transform

(5.15) G(x) FU(Tx)= F,
’k’ k k

with fl an arbitrary real and 7 an arbitrary complex number.
The shadow class $[g] consists of all functions

S[g] ’k’ k k
;2>0,- <e< +

(5.16)

In particular, for B 1, 7 and k + 1, we obtain

(5.17) [e] {F(e" 2; x); 2 0, - < < +},
and the shadow class ofe appears to be a set ofconfluent hypergeometric functions.

For B 1, 7 and k 2 we have the result

(5.18) [cosx] F2 2 2

A subset of this class ( 1) consists of the functions

(5.19) oF( +2_____.
2

(c) From (5.2) we obtain

(5.20) f(x) 2F1 +k ,- + ; 2 +
2 2+

’k’ k k

According to (3.12), the input function is

(5.21) f(x) lim F(x) 1Fk
4+0 k’ k’ k

,1;-

The more general input function

(5.22) g(x) ( -/) + f(,x),

with/ real and ,/complex, similarly yields as above the shadow transform

G(x) FU(Tx
(5.23) (__ 2_+1,2 2+ 2+k-1

zF + + 2’ k k k

For/= 1, y=-2iandk= lweobtain

(5.24) g(x) f(- 2ix) 1F l(1/2; 2ix) e’’Jo(x),
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with

(5.25) [e"Jo(x)] {2F2(0{/, 0{ -- 1/2; 22 + 1,2; 2ix); 2 >__ 0, -oo< < +m}.

Forfi= 1,7= landk=2weobtain

(5.26) f(x)= oF1(1;- ) Jo(x),

with

S[Jo(x)] 2F3 , + , 2 +
2 2 4

x2 2 > 0, --m < < + m

{5.27)

A subset of this class ( 1) consists of the functions

{5.28) o{ + ;-x) { + )x)-*J,{x).
5.2. Shadow classes of hypergeometric functions of several variables. The

result (5.18) may be generalized as follows.
We introduce the hypergeometric function of several variables

2(a,a2,... ,a,;b;x,x2,... ,x,)

(5.29) (a)m(a2)m’’" (an)m, X X2"’’ Xn
=,=0 (b)m++...+m, (ml)(m2)-’’ (m,) "

We consider now

1,2,..-,n

(5.30)

with fli real, 7i complex and ’= fli 1. Equation (5.30) is valid for Re s > 0
and Re s > Re 7i, 1,2,... ,n. Putting

(5.31) f(x) file ’x
i=1

and using (2.16), we obtain

(x),
i=1 S

x>0,

or with the aid of [6, p. 222],

valid for 2 > 0. Hence we have obtained for the shadow transform offthe formula

(5.32) F(x) (I)2(f11, ],,lfl2, fln; i; 1X, 2x, nX)



SOLUTION OF INTEGRAL EQUATION OF CONVOLUTION TYPE 223

or, equivalently,

(5.33) Ii--l fliey’Xl= {(I)2(0{12’ 0fl22,.-., 0fl,2; 2; 71 X, 72x,’’’, 7nX);

20,-<<+}.

Finally we give two other classes of shadow transforms consisting of hypergeo-
metric functions of the type"

(a) x y"
(5.34) 3(a, b; x, y) E (b)m+nm,n=O m

For

(5.35) f(x) fl(x 1) + (1 + fl)ex,
with fl arbitrarily real and 7 arbitrarily complex, we have

gall--f(x)l t’
x s

valid for Re s > 0 and Re s > Re
Using (2.16) we obtain

e + uls X),
S

or with the aid of [6, p. 223],

X
2-

(5.36) Q[f](x) (I)3(]2(1
r()

Hence we have obtained for the shadow transform offthe formula

(5.37) F(x)

+(1 +fl) log--

or, equivalently,

x>0,

S[(x 1) -+- (1 + fl)e] {(I)3((1 -+- fl)0., .; 2x, 0fl).x), . 0, --oO< 0 < -+- oo}.
(5.38)
For

(5.39) f(x) (1 + [3x)e’,

with/3 arbitrarily real and y arbitrarily complex, we have

(s)= -fie’x+ (s)=
x

valid for Re s > 0 and Re s > Re 7.
Using (2.16) again, we obtain

log--
s--/ s
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(5.40)

which may be reduced, with the aid of [6, p. 223], to

Q[f](x) eXa- {s-"(s + y)"-e+U/}(x)

XZ-

eX(I)3(2 l, 2; x.r()
valid for 2 > O. Hence we have for the shadow transform offthe formula

(5.41) F(x) e’x(I)3(2 -/, 2; -Tx, fllaX)

or, equivalently,

[(1 4- flx e {eyX(I)3((1 o0 2; yx ofl,x 2 >__ O, oo < o < -t- oo }.
(5.42)

6. Applications of shadow transforms.
6.1. Table of shadow transforms. For applications concerning calculations in

elementary particle physics (see [1]) and for applications to be dealt with in the
next section, it is useful to summarize all the results of 5 in a table (see below)
in which we use the following notation:

fl real, complex, k positive integer, 2 positive and g real number. The functions
pFq denote hypergeometric functions, (I)2 and O3 are hypergeometric functions

(,x)
(k- 1)!

Input function J{x)

L {in(21 l/k)}(1 fl) + e,X exp

/=1

(d

COS X

112
(1 fl + fl F , -eiXao(x

Jo(x)

l flie’x i

fl(x 1) + (1 + fl)e’
(1 + flx)e x

Shadow transform F(x)

A 2-+- A+k-
oFk-, k ,,’-Iak.-) )

r(2)(#Tx)- z- /2)jz_ (2x/-#Tx)

1FI(]./" 2" X)

F2(1/2/.; 1/22, 1/2(2 +1)". 2._)
2F+ ,-- + ;2 + 1,, k

2F2(/./,/./ q- 1/2" 2/ + 1,2; 2ix)

22+1
F _1,., + . + ’2’ 2

03(/(1 + fl), 2" yx, la3x)

e3(2 -/, 2; yx, #fix)
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of several variables (see 5, formulas (5.29) and (5.34)) and J stands for the Bessel
function of the first kind.

6.2. Applications of shadow transforms. From 2 it follows that Q[f] is a
solution of the integral equation

and hence for/ 4: 0,

xQ [2 -/z(1 -f(x))] Q,

f(x),Q XQ+(1 ),Q
Taking 2 =/ and using the definition (1.5), we obtain for shadow transforms
the convolution rule

(6.1) X
f(x) * (xX- FXx(x)) -f F(x),

valid for all positive 2. This rule may be applied to all input functions and shadow
transforms, listed in the table given. For example, one has the formula

(6.2) (k-)!
o k

2+k-1
k

2+k-1
k

Other results concerning convolution products may be obtained by using the
convolution rule (3.1) for the function

or, equivalently for shadow transforms:

(6.3) xXl- 1Fll , x,2-1F
F(Z1 at- 22)

This formula may be applied to every function in the right column of the table.
For example,

X21 llF2 #1, 1/21,-2-(1 "3r- 1), * XR2-1 F2 /2,-2-2,1/2(2 %- 1)"

------(/
1-’(/ 1)F(/2)x’’ + )’2-+2) F2(1/2(]g + kt2)" 1/2(jl+/2)’ 1/2(/1-+ ’2-1-1)" -)

(6.4)

Finally we mention an application in the theory of integral equations of
convolution type. We consider the following integral equation

(6.5) g(x) f(y)K(x y)dy (f , K)(x), 0

g is a given function that is sufficiently smooth, and fis the unknown.
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Whenever K(x) is of the form

{6.6) K(x) C1QEf](x) C2xa-IF(x),

with C1 an arbitrary constant and C2 --C/F(2), the integral equation (6.5)
can be solved easily by using (6.3). It may be remarked that (6.5) with (6.6) is a
generalization of the integral equation of Abel. The method used to solve (6.5)
is completely similar to that used to solve Abel’s integral equation. Taking the
convolution of both sides of (6.5) with x’-IF. "(x), we obtain

g(X) * X 1F-t(x) C2{f(x) * x
a- 1F(x) * x 1F-t(x)}

{f(x) * x
a+-IF+(x)}

or with the aid of (3.2),

CzF()c)F(v){f(x), Qz+[f](x)},

(6.7)
F(2)F(v)

x +g(x), x ’v;"(x)= c r’(, + v)
{f(x), }.

We take now v such that

denoting the largest integer =< 2, and we obtain

g(x), x F(U(x) C2F(X)F(v){.f(x)
or

dtl
g(x) x’’- F,7(6.8) f(x)

CzF(2)F(v) dxtz]

From (6.8) it follows that it is sufficient to assume that g(x) is [23 times continuously
differentiable in order that (6.5) has a continuous solution.

Example. The solution of the equation

g(x) .1’()(X )2-11Fl(; ’, x )d,

with 2 > 0, becomes

f(x)
dr’q fo:F(2)F(v) dxt’q g()(x )" 1F( la v x )d

with2+ v- [2].
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AN OPERATOR RESIDUE THEOREM
WITH APPLICATIONS TO BRANCHING PROCESSES
AND. RENEWAL TYPE INTEGRAL EQUATIONS*

ALAN SCHUMITZKY- AND TOM WENSKA:

Abstract. The paper is concerned with an analytic operator-valued function, K(a), of a complex
variable a. Conditions are given which insure that when one is an eigenvalue of K(o), the resolvent
operator R(a) (I K(a))- is meromorphic in a neighborhood of ao with a simple pole at a a0,
and the residue of R at a is an operator with one-dimensional range. The residue is computed. A
conjecture of T. E. Harris concerning the asymptotic behavior of the mean number of objects of a
branching population is proved, and analogous formulas arising in infinite systems of renewal type
integral equations are a consequence of the formalism.

1. Introduction. In The Theory of Branching Processes by T. E. Harris [2],
a formal derivation of the asymptotic behavior for the mean number of objects of a
branching process is given. This asymptotic analysis is closely allied with the be-
havior of a solution of a Fredholm integral equation analytically dependent on a
parameter, as the parameter nears a singular point. Harris heuristically calculates
a formula involving the residue at the singular point, and indicates [2, p. 90] that
no rigorous verification of this formula existed at the time of writing.

Recently, Mode [5] deduced the Harris formula using the machinery of Fred-
holm determinants with the inherent assumption of compactness on the integral
operator involved. The Harris operator is not compact, but does have a compact
iterate, and presumably the Mode technique can be extended to cover this case.

In the same direction, Mode [6], [7] has obtained similar results in renewal
theory. The basic system of integral equations generated are of renewal type, and
(via the Laplace transform) the asymptotic behavior of the infinite system is de-
pendent upon the operator residue at a critical point.

Our approach to these problems is similar to the one we used in 9]. We are
concerned with the resolvent of an analytic operator-valued function and its
meromorphic behavior near a singularity, Our main contribution is the char-
acterization ofthe simplicity of its pole and the calculation of the residue. We derive
the Harris formula as a consequence of our general result. Compactness never
enters our argument and the machinery used is no more complicated than that of
complex function theory.

Although our focus is on the behavior of the resolvent near its singularity,
as a consequence of our theory, we derive a necessary and sufficient condition for a
meromorphic resolvent to have a simple pole. (More precisely, when A1 and A2
hold, then A3 characterizes the simplicity of a pole with rank residue.) This may
be of independent interest (cf. Steinberg [10] and Howland [3]).

A brief outline of the paper follows: 2 contains our hypotheses and the state-
ment of our results. We direct the reader’s attention to assumption A3 which plays
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a crucial role in our theory. In 3, the application to branching processes is given.
Proofs of the main theorems are given in 4.

2. Main results. We adopt the following notation: X is a complex Banach
space with dual space X*; if x X, x* X*, then (x, x*)= x*(x); B(X) is the
space of bounded linear operators acting on X.

We use the standard definitions for analytic and meromorphic functions with
values in a Banach space. Thus, for all a in a complex disc D, letf(a) be defined with
values in a Banach space B. We say f is meromorphic in D with pole at ao (= center
of D) if f has the represemation

(2.1) f(a)= y’, A,(a ao)" A, 6 B,
--N

where the series converges (for a 4: a0) in the norm of B. The term A_ is called the
residue of f at ao. If N 0 in expansion (2.1), we say f is analytic in D.

An eigenvalue is said to be geometrically simple if its geometric multiplicity
is equal to 1.

We shall be concerned with a family K(a) B(X) indexed by a in D. We con-
sider the following three assumptions about this family"

A1 K(a) is analytic in D; K(a) Ko + K(a ao) + ....
A2 (i) 2 1 is an isolated eigenvalue of Ko and K of finite algebraic

multiplicity,
(ii) 2 is not an eigenvalue of K(a) for all a in a deleted neighborhood

ofao.
A3 (K e, f*) :/: 0 for every pair of eigenvectors e, f* ofKo, K respectively,

corresponding to eigenvalue 2 1.
Our first result is an operator residue theorem.
THEOREM 1. Let K(a) satisfy assumptions A1, A2, and A3. Then"
(i) A is a geometrically simple eigenvalue ofKo and K.
(ii) The resolvent operator R(a) (I K(a))-1 is meromorphic in D and has

a simple pole at ao.
(iii) The residue of R at ao is the operator A_xe B(X) defined by A_lx

-(x, e)eo/(Kaeo, e) where the pair eo, e are eigenvectors ofKo, K
respectively, corresponding to 2 1.

THEOREM 2. Let K(a) satisfy assumptions A1 and A2. Then 2 is a geometri-
cally simple eigenvalue ofKo and K, and a ao is a simple polefor R(a) ifand only
if condition A3 holds.

Remark 1. The following simple example shows the necessity of condition
A3 for a simple pole. (See also the example in Schumitzky and Wenska [9] for the
same phenomena in a slightly different setting.) Example"

X C1 and K(a) +

For ao 1, 2 is a simple eigenvalue of Ko and K; but R(a) -2a/(a 1)2

has a double pole. Note" K 0.
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Remark 2. Combining the conclusion of Theorem with classical results in
analytic perturbation theory, one can show that there exists a function 2(a) defined
for a near a0 with 2(a0)= and 2(a) a simple eigenvalue of K(a) and K*(a).
Under suitable additional hypotheses, it can be further shown that 2(a) is analytic
near a0 and

(2.2) 2’(ao) (Kleo, e)/(eo, e).
For example, it is sufficient to assume ao is real and K(a) is self-adjoint for a in

a real interval containing ao (cf. Kato [4, pp. 385-391 ]). Formula (2.2) will be useful
later. However, we note that assumptions A1, A2 and A3 do not imply that 2(a) is
differentiable at a0. The following example illustrates this point. Example:

X= C2’ K(a)=(-la -11) and ao =0.

It follows that 2(a) + w/ is a simple eigenvalue for K(a) and K*(a), which is
not differentiable at a 0. It can be further verified that assumptions A1, A2 and
A3 are in fact satisfied.

The proof of Theorems and 2 are given in 4. An immediate corollary of
Theorem 1 which will be important for our application follows.

COROLLARY 1. Let K(a) satisfy assumptions A1, A2 and A3; let g D X be
analytic; and let u u(a) be the unique solution to the equation

u g(a) + K()u,

where a is sufficiently close, but not equal, to ao. Then the X-valued function u is
meromorphic in D and has the representation

(2.3) u(a)
-(g(a)’ e)e + o().

(KI eo, e)(a ao)

As a concluding remark, in connection with the notion of algebraic multipli-
city of operator bundles as developed by Keldys (cf. Gohberg and Krein [1, .9])
we note the following: Let 4o be an eigenvector of the bundle I K(a) at a ao,

and b l, 42,’", qk be nonzero vectors. Then the (k + 1)-tuple (qo, 4,’", k)
will be called a chain of length (k + 1) if the entries satisfy

(2.4) (I Ko)qp Ktp_ Kpq5o 0,
p =0, 1,...,k.

The eigenvector (]o is said to be of rank r if the largest chain associated with tho has
length r. The bundle (I K(a)) is of rank s at a ao if the eigenspace N(I Ko)
is finite-dimensional and the rank of every eigenvector is less than or equal s with
equality holding for at least one particular eigenvector. Let I K(a) be an operator
bundle sati,/’ying A and A2 with range of(I Ko) closed; then the rank ofthe bundle
at a ao is and the null space of (I K) is geometrically simple if and only if
A3. One direction is clear from the Fredholm alternative. For the reverse im-
plication, the geometric simplicity follows from Proposition 4.3, and the rest is
elementary.
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3. Applications to branching processes and renewal theory. The type of
branching process we consider can be described informally as follows: Let f be a
measure space. A population evolves from an initial individual in a state x f
who lives a random lifetime which depends on x. At the end of his life, this in-
dividual produces a random number of offspring with a random distribution of
states, the number and distribution also depending on x. All of the offspring repeat
this process independently of each other according to lifetime and offspring dis-
tribution depending on their respective states. The process continues as long as
there are live individuals in the population.

Under suitable hypotheses on the underlying probability distributions (cf. 2],
[5]), the mean number of individuals M(x, t, A) at time with states in the set
A c fL given the initial individual in state x at 0 can be shown to exist. One of
the fundamental problems for both theoretical and practical purposes is the
determination of the asymptotic behavior of M(x, t, A) as --. o. With this as a
goal, the Laplace transform M*(x, a, A) of M is computed and can be shown to
satisfy a Fredholm integral equation of the form

(3.1) M*(x, a, A) g(x, a, A) + k(x, y, a)M*(y, a, A) dp(y)

where the functions g and k depend on the probability distributions of the process.
In the specific Harris example [2, p. 90], the ingredients in (3.1) are

g(x, a, A) k(x, y, a)

M exp[-(a + 1)Ix
k(x, y, a)

4rtlx yl 2
x, y efL x - y,

where f is a bounded convex subset of R3, A is a measurable subset of fL and M is
the average number of offspring per individual.

We point out here that (3.1) occurs as the Laplace transform of a renewal type
integral equation. We refer the reader to the development of analogous formulas by
Mode [63, [7].

More generally, let K(a) be the integral operator defined by

(K(a)f)(x) Jok(x, y, a)f(y) dla(y).

K(a) will be considered as an operator on the Banach space, B(f), of bounded
complex-valued functions on YL Then the examples of Harris and Mode [2],
[5], [6], [7] share the following properties:

P1 K(a) is bounded, positive and analytic for all a in the positive reals R+.
(An operator K on B(f) is positive if (Kf)(x) > 0 for all x e f for every strictly
positive function j’ B(Y).)

P2 K(a) satisfies the conclusions of the Perron-Frobenius theorem, namely,
for each a R+, K(a) and K*(a) have an isolated geometrically simple
eigenvalue 2(a), with corresponding eigenfunctions e(x), e*(x) which are
strictly positive.

(We normalize e and e* so thatfn e(x)e*(x) dlt(y) 1.)
P3 The operator -d/daK(a) is positive.
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If we let 0.0 be the unique root of the equation 2(a) 1, then the Harris
conjecture can be written in the form

(3.2) M*(x, a, A) e(x) Jxg(y, a0, A)e*(y) alia(y) ao).

Assuming relation (3.2), a standard Laplace transform inversion theorem then
shows that

M(x,t,A){e(x)f g(Y, 0.o,,A)e*(y)dla(y)}to.o)
We now show that relation (3.2) is a direct consequence of Corollary 1. We

first check the hypotheses of Theorem 1. It is immediately observed that P implies
A1 and P2 + P3 imply A3. That P2 implies A2 requires further elaboration. We
need the following two propositions.

PROPOSITION 3.1. Let T B(X); 2 be an isolated geometrically simple
eigenvalue ofT and T* withfinite algebraic multiplicity’and eo and e be eigenvectors
of T, T* such that (e, e*) =A O. Then the algebraic multiplicity of2 is equal to 1.

Proof. We show that any vector x in the generalized eigenspace of T is in the
eigenspace of T.

Thus, let x be any vector in X such that (T I)2x --0. Set y (T I)x.
Then y is in the eigenspace of T so that y ceo. It follows" C(eo, e) (y, e)

((T 1)x, e) (x, (T* l*)e) 0. Thus, c 0 and x is an eigenvector of T.
It is observed at this point that the same argument can be used to prove" If K(0.)
satisfies A1 and A3 and K commutes with Ko, then the algebraic multiplicity ofKo
corresponding to 2 is 1. It is noted that this commutativity condition is in fact
satisfied in the Harris-Mode examples (although not in general). We prefer to use
Proposition (3.1) for our application as the positivity assumption is quite natural in
branching processes.

PROPOSITION 3.2. If K(0.) satisfies assumptions A1 and A2(i) and 2 has
algebraic multiplicity equal to 1, then there exist junctions 2(0) and e(0.) analytic for
0. near 0.0 such that )(0.o) 1, e(ao) eo and )(0.)e(a) K(a)e(a) and

(3.3) 2’(ao) (K leo e),

where eo and e are eigenvectors ofKo corresponding to it 1.
Proposition 3.2 is a classical result in the theory of analytic perturbations. The

reader is referred to Kato [4] for details of proof.
We now verify A2. Property P2 shows that K(0.) satisfies the hypotheses of

Proposition 3.1 so that the algebraic multiplicity of 2 is finite (in fact equal to
1). Thus, A2(i) is satisfied. Thus K(0.) satisfies the hypotheses of Proposition 3.2.
The equation (3.3) then shows that 2(ao) is not an eigenvalue of K(0.) for all 0.

near ao since (K leo, e) - 0. Thus, A2(ii) follows and all the hypotheses ofTheorem
are satisfied.

In the examples of Mode and Harris, the function g(x, 0., A) is analytic for 0.

near 0.o. Thus, Corollary applies and the relation (2.3) along with equation (3.3)
yields (3.2).
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4. Proof of Theorems 1 and 2. We break up the proof into a series of proposi-
tions. Assumptions A1 and A2 will always be in force; but, A3 will be used only
when explicitly stated. Our first proposition is due to Ribari6 and Vidav [8,
Cor. I].

PROPOSITION 4.1. R(a) is meromorphic in D.
Let R(a) have the following representation in D"

(4.1) R(a) A,,(a aoY, A,, e B(X).
--N

PROPOSITION 4.2. If A uK 1A u :/: O, then

(4.2) N 1,

i.e., R(a) has a simple pole at ao. Conversely, if R(a) has a simple pole at ao then
A_IK1A_ =/: 0; in fact,

(4.3) -A_ A_ 1K1A_ 1’

Proof. Let K(a) have representation in D"

(4.4) K(a) K,,(a ao)".
n=0

Substituting (4.1) and (4.4) into the resolvent equations,

R(a) (I K(a)) (I K(a))R(a) I

and equating coefficients of (a ao)-u and (a ao)-u + gives

(4.5) A_N(I-Ko)=(I-Ko)A_N=0,

(4.6) A_uK + A_m_l)(I- K0)= 0, N > 1,

(4.7) A_ 1K + Ao(I Ko) I, N 1.

(Note that relation (4.5) is the same as in classical resolvent theory, cf. Yosida 11 ].)
Using (4.5) in (4.6) and (4.7) then implies

A_K1A_ O, N > 1,

and

(4.8) A_ -A_IK1A_I, N 1.

The conclusion then follows from these last two relations.
PROPOSITION 4.3.If K(a) satisfies assumption A3 then 2 1 is a geometrically

simple eigenvalue ofKo and K, and R(a) has a simple pole at o.
Proof We first show that A3 implies the geometric simplicity of 2 1.

Assume the contrary. Specifically, let e and e2 be any two linearly independent
eigenvectors of K o, and f* an eigenvector of K for 2 1. Then, if either
(K el, f*) 0 or (/1 e2, f*) 0, assumption A3 is violated. Otherwise. we can
choose cva0 such that (Kl(ce + e2), f*)=c(Klel, f*) + (K lez, f*) O,
also contrary to A3. A similar argument proves 1 is simple for K.
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We next show that a ao is a simple pole of R. Let eo and e be eigenvectors
of Ko and K corresponding to 2 1. (Note eo and e are unique up to normaliza-
tion.) By virtue of (4.5) and its adjoint and the fact that A_ N - 0 (by definition),
we have that there exist nonzero vectors x0 e X, y e X* such that A_Nxo eo
and A*_ uy e. Thus, (A_K1A_ uxo, y) (K leo, e) 4= 0, and hence,
A_uKA_N =/= O. Equation (4.2) in Proposition 4.2 then shows that the pole is
simple.

PROPOSITION 4.4. If 2 is a geometrically simple eigenvalue for Ko and

K and a ao is a simple pole of R, then (Kleo, e) = 0 and A_ is the operator
defined by

A_ x -(x, e;)eo/(K eo, e;), x e X.

Proof Let x be any vector in X. Then since A_ 0, (4.5) implies that A_ x
c(x)eo for some constant c(x) (depending on x). Let y e X* be a nonzero

vector such that A*_l Y e. We compute the quantity (A_ x, y) three ways"

(A_ x, y) c(x) (Co, y)

(x, Yo*) (x

-(A_ K A_, x, y) -c(x) (K, eo,
where we have used (4.3). Since (x, e)4:0 for some x, we have (eo, y)-0.
Since c(x):/= 0 for some x, we have (eo, y)=-(Keo, e"d)=/= 0 and c(x)

(x, e)/(K, eo, e).
Propositions 4.3 and 4.4 imply Theorems 1 and 2.
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BOUNDED SOLUTIONS OF NONLINEAR DIFFERENTIAL
EQUATIONS WITH PARAMETERS*

STEPHEN BANCROI=:T AND THOMAS G. HALLAM$

Abstract. Asymptotic properties of solutions of a parametrically perturbed linear ordinary
differential equation are considered. Conditions are found which guarantee that a solution and its
derivative with respect to the parameter are bounded. The limiting behavior of solutions as the para-
meter approaches zero is also exhibited.

1. Introduction. Nonlinear differential equations that include parameters
have application in many areas. Many classical illustrations can be found in the
monograph of N. Minorsky; in [83 for example, on page 48, the rotating pendulum
problem is discussed and on page 51 the attraction of current carrying conductors
is treated. In both of these formulations the mathematical model is a parametric
perturbation of a linear system of differential equations. As another area of appli-
cation, we note a recent contribution of H. I. Freedman and P. Waltman [3] that
is concerned with the Volterra predator-prey problem; their model is again a
linear system that is parametrically perturbed.

Various qualitative properties of the solutions of the

(1) dx/dt A(t)x + f(t, x, 2)

have been investigated in the literature (see the references). Our results discuss the
asymptotic behavior for large of solutions, x(t, 2) of (1) and its derivative, Ox/2,
for small values of the vector parameter 2.

Our basic assumptions about (1) and the associated unperturbed linear dif-
ferential equation

(2) cly/dt A(t)y

include the following. The vector field h R x R" x R R defined by

h(t, x, 2) A(t)x + f(t, x, 2)

and the functions c3f/cx, cf/c2 are continuous on R x R" x em. There exists a
continuous function co’R x R/ x R/ -- R/ with the property that

If(t, x, )l co(t, Ixl, IXl),

where co(t, r, e) is nondecreasing in r[e] for each (t, e)[(t, r)] e R x R + and co(t, r, 0)
0 for each (t, r) eR x R+.

2. Conditional asymptotic stability of (2). Let Y(t) denote the fundamental
matrix of solutions of (2) that satisfies Y(0) In, where I is the n n identity
matrix. The conditional asymptotic stability state imposed upon (2) in this section
is the following.
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(H.1) Let there exist supplementary projections Po, P-1, P1, Poo, and con-
stants K, q with K > 0 and < q < such that

Y(t)P_ Y- ’(s)] ds + Y(t)Po Y- l(s)l ds

+ [Y(t)P Y- l(s)lq ds _< K, e R;

[Y(t)Poo Y- l(s)lq ds <= K, e R + [0, );

g(0e g- (sl s , e

_
The hypothesis (H.1) effects a decomposition of the solution space in the

following manner.

(3) lim Y(t)Po O,

(4) limY(t)P_ 0 and limsup Y(t)P_I
t t

provided P_ 0
(5) lira Y(t)P 0 and limsup Y(t)P

t-- t

provided P 0 and

(6) lira sup Y(t)P
ltl

provided P 0. Th abov limits follow from lmmas of W. A. Coppl
p. 6 p. 74] in th case q and from woYk of R. Conti 1] whenever
(s also [5], [6]).

Th monograph 2, Chap. 3] by Coppl presents an excellent introduction
to th fundamentals of linear prturbation problems whr conditional stability
is present for th linear unperturbed system. Rlatd problems ar discussed in
J. K. Hal’s book 4, Chap. 4].

For q as given above, w requir that the function that dominates f also
satisfies th following condition.

(H.2) Ifq 1 limt (t, r, c) 0 roy ach fixed (r ) x
and 1/p 1/q l, then (., r, ) L() for each (r, ) R.

Our main sults a th following theorems.
THEOREM 1. Le (H. 1) and (H.2) be satisfiedfor equation (1) and (). If

there exists positive number o o(ao) uh that wheneer satisfies
then (1) has olutions and o wih the properties"

(i) (, o, ) L( );
and

lira (0) Y(t) (Po P- )o,
0
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(ii) x_(’,ao,2)eL(R_);

and

lim x_ (t, ao 2) Y(t) (Po + P)ao, tR_.

If ao satisfies (Px + P- 1)ao O, then

(iii) Xo(’, ao, 2) L(R)

and

lim Xo(t ao, 2) Y(t)Po ao, R.

THEOREM 2. Let the hypotheses of Theorem 1 be satisfied, and initial value
problemsfor (1) have unique solutions.

(iv) If fx(., Y(. )(Po 4- P_x)ao, 0)] LP(R+),thenx+ of Theorem (i)satisfies
lima_ o t?x + (., ao, R)/c, L(R +).

(v) If fx(., Y(" )(Po 4- P)ao, 0)] LP(R_), then x_ of Theorem 1 (ii) satisfies
limx_ o cx_ (., ao, 2)/c L(R_).

(vi) If ]fa(., r( )Poao, O) LP(R), then xo of Theorem 1 (iii) satisfies
lima o CXo( ao, 2)/c2 L(R).

The conclusions of Theorem discuss the behavior of solutions of (1) as
functions of both and 2. Theorem 2 reveals important information about the
coefficient of the linear term in the Maclaurin series expansion of x about
2 0; and hence, implicitly yields the behavior of cx/c2 as 2 0.

Proof of Theorem 1. The existence of the solutions x +, x_ and xo is a straight-
forward application of the Schauder-Tykhonov fixed-point theorem. The details
relevant to the parameter 2 will be stressed while the remainder of the procedure
will only be indicated.

For e > 0, fl > 0 and O R, R+ or R_ define C,t(O {x(t, 2)’x(’,2)
L(D) (3 C(D x Rm, R"), Ix(t, 2)1 < e for each 2 with 121 =< fl}. Let m > 0 be

chosen so that

Y(t)P_11 + Y(t)Pol M, tR+,
and

Y(t)Pll + Y(t)Pol < M, R_.

We choose o Zo(ao) so that

ao > Mo--max {MI(Po 4- P_)aol,M[(Po + P1)aol};

now, select eo sufficiently small so that

(7) o(’, o, eo)ILtR) < K- (o Mo)"

This choice is possible since co is continuous and o(t, r, O) O. It is made in order
that an operator T, as defined in the next paragraph, maps a set Co, into itself.
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For D R, R+ or R_, define the operator T:Co,o(D - Co,o(D) by

Tx(t, 2) Y(t) (Po + P-1)ao

(8)
+ Y(t) (Po + P- 1) Y- l(s)f(S, X(S, 3), ,) ds

Y(t)(Px + Po)Y- (s)f(s, x(s, 2), 2) ds, tR+,

Tx(t, )-- Y(t) (Po + P,)ao

(9)
+ Y(t) (Po + P)Y- (s)f(s, x(s, 2), 2) ds

Y(t) (P_ + P)Y- i(s)f(s, x(s, 2), 2) ds, t6R

It follows from (8) and (9) that TCo;o(D Co,o(D); in the case D R,
the "bifurcation" condition (P + P_ )ao 0 is also needed to demonstrate this
inclusion. Using the compact-open topology, we see that T is a continuous opera-
tor; the details are similar to those in [5], [6], and because of this similarity are
omitted. The closure of TCo,o(D is compact by Ascoli’s theorem: The Schauder-
Tykhonov theorem implies that T has a fixed point, x,(t, ao,2), in Co,o(D).
We shall denote these fixed points by xo, x+ and x_ for D R, R+ and R_
respectively.

We shall now show that these solutions have the prescribed behavior as 2 --, 0.
It follows from (8) that

[x+(t,ao,2 Y(t) (Po + P_,)a0] K supco(t,ao, I,]),
teR

]2l _-< eo, R

Since co(t, r, 0) 0, we obtain

lim x + (t, ao, 2) Y(t) (Po + P- 1)ao.

The corresponding limits for xo and x_ are verified in an analogous manner. This
completes the proof of Theorem 1.

Proof of Theorem 2. We shall verify conclusion (iv). Let x+(t,O,x,,2)
denote the solution of (1) with x+(0, 0, x,, 2) x,. We wish to determine the
initial position x, with the property that

x+(t, ao, 2) = x+(t, O, x,, 2),

To this end, let x, (Po + P-,)ao + , where (P1 + Poo)x, therefore,

x + (t, ao, 2) x + (t, 0, (Po + P-1)ao + (ao, )’), 2).
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The solution x+(t, ao, 2) is a fixed point of the operator T defined by (8);
hence, for R+,

x+(t,ao,2 Y(t) (Po + P-)ao

+ Y(t) (Po + P- )Y- l(s)f(s, x + (s, ao, 2), 2) ds
(10)

Y(t) (Pa + P)Y- (s)f(s, x + (s, ao, 2), 2) ds.

The variation of parameters formula yields

x + (t, 0, x,, 2) Y(t) (Po + P-)x, + Y(t) (P + P)x,

+ (t)- (s)f(s, x + (s, o, x, ,), ;t) ds.

A comparison of (10) and (11) at 0 leads to

(ao,2) (P1 + P)Y-(s)f(s,x+(s,O,(Po + P-)ao + (ao,2),2),2)ds.

From this it follows that (ao, 0) 0 and

ioz(ao, O) (P, + P)Y- l(s)f;t(S Y(s) (Po + P-,)ao, O) ds.

A direct computation, utilizing (1) and the fact

x+(O, O, (Po + P-)ao + (ao, 2), 2)= (Po + P-,)ao + (ao, 2),

shows that the function Z(t,,ao)= limz_ o x+(t, ao,2)/2 is a solution of the
matrix initial value problem

Z’= A(t)Z + f(t, Y(t) (Po + P-,)ao, 0),

(12) ioZ(0, ao) (P1 + Po)Y l(s)f,(S, Y(s) (Po + P-1)ao 0) ds.

This implies that

PIZ(0, ao) P, Y-l(s)f(s, Y(s) (Po + P-1)ao, O) ds,

(3)

PooZ(0, ao) Poo Y- (s)f,(s, Y(s) (Po + P- 1)ao, 0) ds.

We are now in position to apply the following result (see T. G. Hallam [7]):
If (H.1) is satisfied and g(.)e LP(R), then a solution u u(t) of u’ A(t)u + g(t)
is bounded on R/ if and only if

Pu(Oi - (sl,(sl ds
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and

Poou(O) Po Y- l(s)g(s) ds.

We obtain from (12) and (13) that Z(. ,ao)e L(R+) that is,

lim x / (t, ao R)/c?R L(R /).
,-0

The remaining conclusions about the solutions xo and x_ can be obtained
in a similar manner. This completes the proof of Theorem 2.

Remark 1. The function h(t, 2) sin 2t is bounded on R but limz_ o t?h(t,
is not in L(R). Under the hypothesis of Theorem 2, this type of behavior

is impossible for solutions of (1).
Remark 2. In the case where (2) is autonomous, the conditional asymptotic

stability hypothesis (H.1) is satisfied provided no characteristic root of A has zero
real part; here, we have Poo 0 Po- It is interesting to observe that when A is
constant, the projection Poo need not, in general, be zero. This can occur whenever
the matrix A has a characteristic root with zero real part and multiplicity greater
than one. When A is constant and (H.1) is satisfied, then it is necessary that Po 0.

A simple system to which Theorem 1 is applicable is y (y l, Y2, Y3, Y4)w
and A(t) diag (- 2t, 1, 1, 2t). The fundamental matrix Y of (2) with Y(0)
is Y(t) diag (e-*2, e-t, et, d2). The projections Pi can be chosen as

diag (0, 1, 0, 0), Po diag (1, 0, 0, 0), P, diag (0, 0, 1, 0), Poo diag (0, 0, 0, 1).
A direct computation verifies hypothesis (H.1) is valid here.

3. Conditional stability of (2). Suppose that the linear system (2) satisfies the
analogue of condition (H.1) for q . In this situation, a decomposition of the
solution space into bounded solutions is not effected; however, if the additional
hypotheses

lim sup]Y(t)P_] provided P_ : O,
t-o

lim sup ]Y(t)P 1 provided P1 :/: 0,
t"-

lim sup Y(t)P 1 provided P :/: 0,
Itl-

are required, then results similar to Theorems and 2 can be obtained.
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AN EXPLICIT CALCULATION OF SOME SETS OF MINIMAL
CAPACITY*

E. G. GRASSMANN AND J. ROKNEf

Abstract. The following extremum problem is treated: Let {c 1, ..., c,} be a finite set of complex
numbers. Among the continua that contain all the c one with minimal capacity is to be found. The
known conditions of Lavrentjev are reduced to a system of equations for the unknown critical points.
For the case n 4 with symmetry a detailed study is given and for the cases n 3 and n 4 some
values are explicitly calculated.

1. Introduction. Let C be a continuum in the complex z-plane and if2 its
complement. There is a conformal mapping z b() which maps the exterior of
the unit circle ]] > onto such that (c) c with the Taylor development

()=b(+ bo++ "’.

Ib[ is an important conformal invariant called the capacity of C.
In this paper we want to treat the following extremum problem: Let

{cl, "’, c,} be a finite set of complex numbers. We want to find a continuum C
which contains all the ci and has minimal capacity.

This problem has not only applications to electrodynamics and other
branches of physics but also to the theory of univalent functions. G. V. Kuz’mina
[2] characterizes the solution for the case n 3 by a system of equations and
applies this result to the theory of univalent functions. Our method seems to be
preferable for the actual calculation and applies to all n.

For the cases n 3 and n 4 (with symmetry) we give some explicitly cal-
culated values of the critical points.

2. The basic system of equations. It is known that there is always a unique
solution of this problem and that C consists of finitely many analytic arcs together
with their limiting endpoints 23, 3. It is also known that C solves the problem
if and only if there is a polynomial P(z) z"-2 + dlz"-3 + + d,,_ 2 of degree
n 2 such that the mapping function b() satisfies the equation

f[ P(z) I 1/2

(1) log ( I-I, Ck) dz.

All the zeros of P(z) must lie on C.
We denote the zeros of P(z) by ai, 1, 2,... n 2. Each zero of order k

is a limiting endpoint of k + 2 arcs belonging to C. The set of zeros is therefore
uniquely determined by C. For proofs of these statements see [1], [3].
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It follows that there are polygonal
n 2, and joining a with c, j 1, 2,

arcs 7i joining al with ai, 2, 3,...,

(2)

.., n 1, such that

1/2

1/2

dz=O, i= 2,...,n- 2,

dz=0, j= 1,...,n- 1,Re fj F P(z)

where one branch of the square root is followed continuously along 7i and 6j
respectively. It is to be observed that in the above equations there is no path of
integration joining al and c,. We shall see that the corresponding equation is
automatically satisfied.

We want to use (2) to determine the unknowns a. In order to do that, we have
to show that we can reconstruct the continuum C from each solution of (2). It
follows then that the solution of (2) is unique.

3. A lemma. We assume now that we have a set {a} and polygonal arcs
7 and 6j such that (2) is satisfied. For abbreviation we denote"

n-2Hi= (Z ai)
Q(z).

1-I7: (z

We prove the following lemma.
LZMMA. IRea w/-Q(z) dzl does not depend on the path connecting a and z.

Proof. Let and//be the two paths connecting a and z. We have (after
changing the branch of the square root along all/, if necessary)"

According to Cauchy’s integral theorem it is therefore enough to show that

Re f Qdz 0

for a system (O’l’l= 1, 2,"’, 2n- 3} which generates the fundamental group
of the 2n 3 times punctured plane C\[{a2,.’., a,_2} U {cl,’", c,}].

Let R be a positive number such that all the c and ai lie inside the circle
{Izl < R}, and a be a path connecting a with the circle {Izl- R}. For a we
choose the path, which we obtain by following first a, then {Izl R} once around
and then back to a along a-1. Since Q(z) has a double zero at m, the branch of
the square root does not change when we follow the circle {Izl- R}, and the

-1 therefore cancel each other.two integrals over a and a
Since

we have

1 e3Q(z) + +

{1 }+ -++
Z Z2
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and

Therefore

Re | /-(z) dz +__ Re 2rti 0.

Re f ,/-(z)dz O.

For the other a we follow Yl, l= 2,3, ..., n- 2 (respectively l-tn-2),
n 1, n, ..., 2n 3), then once around the endpoint on a small circle and

then back to al. The integrals over these paths do not depend on the radii of the
circles around the ai and cj. If we let these radii tend to zero, we get from (2) that

Re f-dz O, 2,..., 2n 3.

These 2n- 3 paths generate the fundamental group of the 2n- 3 times
punctured plane. The proof of the lemma is then complete.

4. Sufficiency of the basic equations. We denote the function

Re x/) dt by u(z).

It is harmonic except at the set {zlu(z) 0} which we denote by C plus possibly
c,. If c. would not be in C, it would be an isolated singularity of a harmonic
function which is bounded in a neighborhood of c,. This is not possible and
therefore c, e C.

Furthermore u(z)- log Izl is bounded close to , i.e., u(z) is the Green’s
function in the complement f of C. It has no stationary values in f. Therefore
f has to be simply connected and C has to be connected (see [4, pp. 31-32]).
Therefore there is a conformal mapping z b(() from the exterior of the unit
circle onto . We may assume that b(m)= m. Since the Green’s function is
conformally invariant, we have

log I(I u(z) Re f x/(z) dz

and by analytic completion we get (1). Therefore C is the minimal continuum.
It follows from the lemma that we could have begun with any paths yi joining

at with a (respectively, 6j joining a with cj) and we would have got the solution.
We sum up our results in the following theorem.

THEOmM 1. The system (2) has for any choice of paths Yi connecting a with
a and 6 connecting aa with cj one and only one solution. The minimal continuum is
the set

Re
(z- ci

1/2

dz=O.
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5. Further information on the position of the ai. It is known that C and there-
fore also the a must lie in the convex hull of the c. This gives us a rough estimate
for the range of the

In case the cj. are vertices of a rectangle we can say more about the ai because
of symmetry. Since cap (aC + b) [a[ cap C (a, b complex numbers) it is no loss
of generality to assume that

(3) cj: +1 _+it, 0 <t<= 1.

Since the solution is unique the al, a2 must be symmetric with respect to both
axes, i.e., they must lie on one of the axes and a -a2. Also by symmetry or
by direct calculation we conclude that Re x(z)dz 0 along the line segment
ala2. It is therefore sufficient to solve the equation

(4) Re
(z2 -- ’2)(zZ e)

dz O.

All the other equations of (2) then follow by symmetry.
This equation depends real-analytically on and has for all precisely one

solution. Therefore a must depend continuously on t.
The question arises whether a is real or imaginary. We prove first the

following.
LIMMA. a a2 0 solves (4) if and only if 1, i.e., arg c n/4.
Proof. We have for a 0 on the line segment z sc !, 0 <__ s <= 1,

arg Q(z) arg
c2(s2 1)(SCl] z e)

n arg (SCl

For geometric reasons we have on this line segment

n arg c2 >__ arg (sc] 2 e) >= n/2.

We conclude that

n/2 >_ arg Q(z) >= arg c,
and we can determine the square root such that

n/4 >= arg x//-0(z)=> arg c

this branch is continuous on our line segment. But then since arg dz arg c we
have

2 arg c _<_ arg {x/-Q dz} <= n/4 + arg c <= n/2.

This means that

az} _>_ 0,

where equality holds on the whole line segment if and only if arg Cl n/4. In all
other cases we get

Re dz > 0,

i.e., (4) is not satisfied, and a a 0 cannot be a solution.
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Since a depends continuously on we conclude that either a is real for all
or imaginary for all t, 0 < < 1.

THEORWM 2. a is real for all t, 0 < <= 1.
We prove this fact indirectly. If a is imaginary, we have

lim al 0
t0

because a must lie in the convex hull of the {ci}. Therefore Q(z) and (d/dy) arg Q(z)
depend continuously on also in the limiting case --+ 0 (except for z ai, z cj).
Therefore (d/dy)arg Q(z) is bounded in the rectangle

R {1/4 =< Re z __< 3/4} x {-t__< Imz=< +t}.
One can verify directly that

(5) Q(z)> 0 or argQ(z)=0

on the real axis. On the other hand, we have along the continuum C"

(6) Rex/(z) dz=0 or Q(z) dz2 <0 or argQ(z)=rr- 2argdz.

C must cross both vertical sides of R and according to the mean value theorem
there must be a point in R where along C

holds or according to (6)

(7)

larg dz[ <= [arc tan 4t[

larg Q(z) rc[ <__ 2[arc tan 4t[.

This point has at most distance from the real axis. Conditions (5) and (7)
cannot both hold for all unless (d/dy)Q(z) is unbounded which cannot be the
case. Therefore a cannot be imaginary for all and has to be real for all t.

6. Numerical calculations for the rectangle. We assume that the rectangle
has been rotated so that its longer side is parallel to the real axis and that it is
symmetric with respect to the origin. From Theorem 2 we then know that the
solution lies on the real axis. We also know that the solution is unique in the
rectangle. Denoting the real part of the solution by a, we use the method of binary
search using the values of the integral

[fl I z2--a2 11/21(8) f(a) Re -(z2 c21)(z 2 e21)
dz

to determine what action to take in the binary search. The starting values were
chosen to be the value of (8) at the origin and at Re (Cl). Obviously a value a for
which f(a) 0 is the solution of the problem.

In order to apply a numerical quadrature to the integral (8) we subtract out
the singularity at c in the following manner:

f(a) Re
(Z 2 [iiz- e21)

dz Re
(Z C1) 1/2 g(Z)dz

[ g(z) g(’’l)
Re

(z c) 1/2 dz 2g(cl)(-c) 1/2
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where

The integral

Z2 a2
(z +

1/2

(Z C1
/2 dz

is now evaluated by a suitable quadrature rule (in our case Simpson’s rule). The
path of integration is from 0 to C in each case, i.e., the length is

[-(Re C1)2 + (Im C1)2 1/2.

We integrate over 20 subintervals and the error then is of the order [1/20 10- 6,
an accuracy that satisfies our needs since we also execute the binary search pro-
cedure 20 times giving an accuracy of the binary search procedure of the order
1/22 10 -6 as well. The results are given in Table 1.

TABLE
Numerical results for the rectangle

Cl

+ i.05 .95779
+ i.1 .91675
+ i.15 .87692
+ i.2 .83811
+ i.25 .800! 3
+ i.3 .76277
+ i.35 .72582
+ i.4 .68902
+ i.45 .65212
+ i.5 .61484
+ i.55 .57683
+ i.6 .53774
+ i.65 .49714
+ i.7 .45446
+ i.75 .40900
+ i.8 .35972
+ i.85 .30500
+ i.9 .24185
+ i.95 .16290
+ il. .38146E 05

The values in Table are correct to about five figures, the remaining loss of
accuracy to be attributed to numerical errors.

7. Numerical calculations for the triangle. We assume for these calculations
that we fixc andc2tocl -1 iandc2 -1 + i. Wethenletc3 vary. By
doing this we are able to find the solution for any triangle since if a triangle is
rotated, the solution remains fixed with respect to the vertices. If a triangle is
magnified, the solution is magnified in the same manner.
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Our aim now is to find solutions of

f(a) Re (z c)(- )(z c)

fz(a) Re [f]2 [(z _-c,)(- c.)(z ca) lz

A complex a for which f(a) 0, 1, 2, is the required solution.
We evaluate each integral as was done in the previous section. The idea now

is that fl(z) 0 determines a path from c through the solution point. Similarly
f2(z) 0 determines a path from c2 through the solution point. We therefore
start with a line parallel to the line through c and c2 some distance to the right
ofthis line. We find the solution offl(z 0, say z andfz(z) 0, say z2 According
to Im (z z2) being positive or negative we move the line by a positive or negative
anaount. We have found our solution a Zl z2 when Im (zl z2) 0.

As in the previous section we may expect our results to be of the order of
10- in accuracy.

Some results for the triangle are given in Table 2.

TABLE 2

Numerical results for the triangle

C3 a2

1. + i.0

+ i.00003

+ i.0005

+ i.05

+ i.10

+ i.15
+i.20
+ i.25
+i.30
+i.35
+i.40
+ i.45
+i.50
+ i.55

+i.60
+ i.65
/i.70

+ i.75

+i.80
+ i.85

+i.90
+ i.95
+il.
/ il.05

-.39174533 + i.00000000
-.39174533 + i.00001525
-.39174771 + i.00024366
-.39188838 + i.02414035
-.39231992 + i.04824876
-.39303517 + i.07229423
-.39403415 + i.09624528
-.39530253 + i.12005615
-.39687133 + i.14374256
-.39870000 + i.16722870
-.40079808 / i.19050026
-.40315843 + i.21353078
-.40577626 /i.23629165

-.40863967 + i.25875854
-.41174627 + i.28090787
-.41508412 + i.30271244
-.41864610 + i.32415295
-.42242265 + i.34521222
-.42640185 + i.36586380
-.43057656 + i.38610053
-.43493009 + i.40590024
-.43946242 + i.42525792
-.44414496 + i.44414568
--.44898248 / i.46256990
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NOTE ON ORTHOGONAL POLYNOMIALS IN v-VARIABLES*

M. BERTRANf

Abstract. We consider the polynomials in v-variables orthogonal with respect to a weight w(x)
that need not be decomposable into a product of functions of one variable and obtained by applying
the orthogonalization process to an ordered sequence of monomials in v-variables. We derive recursion
relations, an expression for the Christoffel-Darboux kernel and a system of partial differential
equation for these polynomials.

1. Introduction. The extension to an arbitrary number of variables of the
classical orthogonal polynomials in one variable presents some difficulty. One
way to obtain orthogonal polynomials in several variables is by orthogonalizing
an ordered sequence of monomials. In general the family of polynomials obtained
in this fashion lacks symmetry. One then tries to obtain other families of poly-
nomials having some orthogonality property. The second approach goes along
these lines. One constructs two families of polynomials having the biorthogonality
property [4], [10]. Once this has been done the coefficients of the expansion of an
arbitrary function in terms of one of the families are obtained by taking the inner
products of two polynomials, one in each family. The procedure has many
similarities with the expansion of a function of one variable in terms of an or-
thogonal set. Finally a third approach consists in defining a single family of
polynomials having some orthogonality property which in general will be that
two polynomials of different degrees be orthogonal but not necessarily two
polynomials with the same degrees. Examples of this approach are found in l],
[2] and in [3], [4], [5] where one bases the analysis on generating functions in
several variables which are similar to the generating functions for polynomials in
one variable.

In this note we concentrate on the first approach. We derive some properties
of the orthogonal polynomials defined by orthogonalizing an ordered sequence
of monomials. Although, in general, the approach lacks symmetry in the variables
one can derive many results closely paralleling the one-variable case
[8]. This makes the approach attractive.

We derive a recursion formula (10), an expression for the Christoffel-Darboux
kernel (16) and a system of partial differential equations (22) for the polynomials.

2. Ordering 0. We want to construct an ordering of monomials of v-variables
in such a way that some simple properties of the one-variable sequence 1, x,
x2, are preserved. In particular, if n < m, the degree of the derivative of x"
will be smaller than the degree of the derivative of xm. We want this to hold for
the ordered sequence in v-variables, that is to say if m,(x) and mm(X) are two
monomials of orders n and rn (n < m) we desire the order of any derivative of
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m,(x) to be less than the order of the same derivative of m?i(x). Similarly we re-
quire that the order of the monomial xlm?i(x) be less than the order of xlm,,(x)
if n < m, x being any of the v variables. This is an obvious property for monomials
in one variable. These properties are used in the derivation of the recursion
formulas and differential equations satisfied by the polynomials in one variable.

To construct an ordering satisfying the above properties we shall order the
sequence of exponent vectors (n n2 nv)

m?i(x) x ’"xv.lx2 ?Iv

We have to order monomials with different degrees c,

and to effect this we will order them from smaller to higher degree first. Next,
we have to order monomials having the same degree. For c 0 we have m(x)
only. To order monomials having the same degree c >= we put first (c 0 0).
Then the next element to vector (k k2 kv), k 4= 0, will be (kl k2 q-

kv). Finally for any vector (0 0...0 k r s...t),k4=0’r,s,...,t>=0,
the next element is obtained as (k 0... 0 0 r + s... t). Proceeding
similarly, the last element will be (0 0 0 c).

Let v 3 and order the exponent vectors of the monomials in three variables
X l=X, X2 =y, x3 =z. The exponents (0 0 0) gofirst. Fordegreec= first

putx, then y and finally z, that is to say, (1 0 0),(0 0) and(0 0 1).For
c 2 the ordered sequence of exponents will be (2 0 0),(1 0),(0 2 0),
(1 0 1), (0 1), (0 0 2) according to the rules given above. List the
sequence of exponent vectors for degree c 3"(3 0 0), (2 0), (1 2 0),
(0 3 0),(2 0 1),(1 1),(0 2 1),(1 0 2),(0 2),(0 0 3),The
ordered sequence of monomials will be 1, x, y, z, x2, xy, y2, xz, yz, z2, x 3, xZy, xy2,
y3, etc.

To order polynomials we order them according to the monomials of higher
order in the polynomial.

We shall define two operations on the sequence of exponent vectors"

(I) For any integer k, l[k], <= <= v, is the integer corresponding to exponent
vector

that is to say, with

then

(kl k2 kl-1 k + kl+l kv)"

k (k k2 kl- kl kl +

l[k]---- (k kl- kl nt- kl+ kv).

(II) l’[k] v is the smallest integer greater than or equal to zero such that

The following properties hold for ordering 0"
(a) If 3x,m?i(x) rtlmp() and n > 0, then lip] n.
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(b) If n > 0, then l[l’[n]] n, if n 0, l[l’[n]] > n.
(c) If k < n, then l[k] < l[n] since it is true for any pair of consecutive integers.
(d) If k is such that k bu (Kronecker delta) and qk(X) C3x,qp(x qr(x),

where qk(X), %(X) and qr(x) are polynomials of orders k, p and r, then r _<_ p, and
equality holds if p > 0.

3. The polynomials. Consider the Hilbert space H, as defined in [9], of real
functions of v variables for which the inner product

(1) (f, f2) f w(x)fx(x)f2(x) dx for all fl, f2 e H

exists. The region of integration R is arbitrary. If it has infinite measure, the
function w(x) should be such that the integral over R of w(x)f2(x), f(x) e H, exists.
The norm of an element is taken to be

f (f,f)’n.
To obtain the orthogonal polynomials with weight w(x), take the ordered sequence
of monomials mi(x), 1, 2, ..., and consider the determinant

(2) p(x)

Cl,1 Cl,2 Cl,

C2,1 C2,2 C2,

Ci-1,1 Ci-1,2" Ci-1,i

ml(x) m2(x)"" mi(x)

Z akimk(X),
k=l

where q,j (mi(x), mj(x)), pi(x) is a polynomial of order i, in the sense that it is
a linear combination of monomials ml(x), m2(x), ..., mi(x) in which some
monomial other than mi(x) might not be present, m(x) will appear in pi(x) pro-
vided au - 0. This is true because the determinant

(3) D

Cl,1 Cl,2, el,

C2,1 C2,2 C2,

Ci,1 Ci,2 Ci,i

is greater than zero since with r(x)= = bkmk(X), bk arbitrary constants, the
qiaadratic form

(4) Ilrill 2 (ri, ri) 2 blbkCl,k
l,k

is nonnegative and a, D_ 1"

We observe that

0, k<i,
(5) (mk(x),pi(x))=

Di, k=i,
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and as a consequence,

ki,
(6) (pi(x), Pk(X))

g,= Dk_ID, k i.

Therefore, pe(x) is the ith orthogonal polynomial with respect to the weight w(x)
and ordering 0. We have

(7) Ip,(x)ll (De- Di) 1/2

and the orthonormal sequence of polynomials will be given as

/e(x) (pi(x))/(Di_ 1Di) 1/2 2

4. Reeursion formulas. Consider the polynomial of order p" qp(x) xpe(x),
where __< __< v and p l[i]. We can put

p

qp(X) ,i,p,(x),
k=l

where

(8) lik --(XlPi(X), p(x)) --(XlPk(X), Pi(X)).
gk gk

We note that with k’ l’i] (see (5;)),

ik--O fork < k’

since then the order of XlPk(X will never exceed and according to (5) the inner
product in (8) will be zero. Therefore the recursion will be given as

p

(9) xlPi(X) , iPk(X)
k=k’

or, writing it in another form,
p-1

(10) OliPPp(X) xIPi(X) 2 likPl(X)’
k=k’

where p > > k’ in ordering 0.
The ’s can be put in the form

gkOlik (xtPi(X), pg(x)) ’ ani(mt[n](x), pg(x))
n=l

a,i(ml[,j(x), p(x))

and v l’kl. In particular, for k p, then v and

gptip au(mp(x), pp(X))-- auDp"

consequently

lip aii/Dp 1"
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(11)

To obtain a recursion satisfied by the azl,’s, put (10) in the form"

p p-1

t,p Z a,,pm,,(x)= Z a,imzl,l(x) 2 Zik 2 a,,,km,,(x).
k---k’

Equate terms in m,(x) to obtain

(12)
p-1

(Zlipasp-- asi] E (Zlikask’
k=l’

where

l<=s<_p,

s fors >_ k’

k’ for s < k’,

and the term ra ii is present if l[sl] s for some sl, < s < i.
S1

5. An expression for the Christoffel-Darboux kernel. The kernel will be
given as

K.(u, x) fii(u)i(x).
i=1

To derive another expression for it we proceed as follows" From (9) we obtain

l[i]

(13) Xli(U)i(x) Z likk(x)i(u)

and
l[il

(14)
NlPi(U)Pi(X)

k:k’
likk(U)i(X)’

lik (X/Pi(X), pk(X)).

Subtracting (13) from (!4) and adding from 1, 2, ..., n we obtain

l[i]

(15) (U Xl)Kn(u X) Z Aik(u, X),
i= k=k’

i:t:k

where Aik(U X) lik(k(U)i(X) k(X)i(U)) and Ajj(u, x) 0. If we set v and
use the fact that Aik(u, x) --Aki(U, X) we can put (15) in the form

-i v’[. +1 2].+1A ik(U, X)
(16) K,(u, x)

/A Xt,

since for this case many cancellations occur.
For the one-variable case, v 1, we will have l’[n + 1] n and 1[i] +

and (16) reduces to the Christoffel-Darboux formula

K,,(u, x) ann 1). + (u)p.(x) p,, + (x)p.(u)
an+ 1,n+ U X
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We note that for v > 1 the numerator of the right-hand side of (16) will have
more terms than the left-hand side.

6. A system of partial differential equations. In order to derive a system of
partial differential equations for the polynomials we have to impose two strong
conditions on the weight function.

(i) w(x) satisfies the system of partial differential equations

where

COx,W(X A/(x)
w(x) G/(x)’

A/(X)--- oimi(x),
i=1

g

G/(x) Z Timi(x),
i=1

a (il; l<=i<=v,

g 2il <= <= v,

and either a -: 0 or 7g # 0 or both.
(ii) G(x)w(x)= 0 on the boundary of the region R. Then with qm(X) an

arbitrary polynomial of order less than n, n such that n >= 1, and with

let

A(X) c?x,{Gl(X)W(x)c3x,Pn(X)},

(17) JR qm(X)fl(X) dx.

Integrating (17) by parts twice with respect to Xl and using assumption (ii), we
obtain

f pn(X)fz(X) dx,It

where

f2(x) COx,{Gl(X)W(X)C3x,qm(X)}.
But using assumption (i) and property (d) of ordering 0 we have that

f2(x) w(x){(C3xzGl(X + Zl(X))Cxzqm(X) + Gl(X)2x,qm(X)}
w(x)rm(X),

where rm(X) is a polynomial of order _<_m. Therefore, using (5) and the fact that

f w(x)p,(X)rm(X dx O,(18)

but using again assumption (i) and property (d),

fl(x) w(x){(C3x,Gl(X + Al(X))C3x,Pn(x) + Gl(X)C32x,Pn(X)}
(19)

w(x)f,(x),



256 M. BERTRAN

where f,(x) is a polynomial of order n.
Substituting (19) into (17) and using (18), we can write

(20) (qm(X), fn(x)) 0, qm(X) arbitrary polynomial of order < n.

Since for a given n we can write (20) for m 1, 2,..., n 1 and qm(X) can be
written as a linear combination of the first m mi(x)’s we deduce that condition
(20) implies

(21) (mi(x),f,(x)) 0, 1,2,..., n 1.

Since the orthogonal polynomials are uniquely determined except for a multi-
plicative constant, from (21) and (5) we can say that

f,(x) k,p,(x)

which written in another form

(22) Gl(X)C32x,Pn(X) + (Ox,Gt(x) + At(x))c,,p,,(x) k,p,(x) 0

gives a differential equation satisfied by the orthogonal polynomials (2) under
assumptions (i) and (ii).

When n is such that nl 0 the polynomial f,,(x) in (19) will be of order n’ < n.
This follows from property (d) of ordering 0. We can also write (20) but now f,(x)
is of order less than n. qm(X) being an arbitrary polynomial of order less than n,
it follows that f,(x) 0, n such that n 0, and we can write (22) with k. 0.

Example 1. For the generalized Laguerre polynomials over the positive
v-space [3],

w(x) fi x exp (-xiai)
i=1

and

cx,w(x)
c a,Xw(x).

Xl

Therefore At(x) c atx and G/(x)= Xl. Assumptions (i) and (ii) are satisfied
for 1, 2, ..., v. A system of partial differential equations will be

xtO,Z,p,(x) + (1 + c atxt)C3x,p,,(x k,p,(x) 0.

To determine k, we equate to zero the coefficients of the higher order term, ob-
taining -atn

Example 2. Take the orthogonal polynomials defined over the unit sphere
with weight w(x) 1. We can put

,w(x)

Then At(x 0 and G(x)= -’= lx2. Assumptions (i) and (ii) are satisfied
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for v. A differential equation will be

x c32vp.(x) 2xc:,vp,(x)- k,p,(x)= 0.
i=1

To determine k, we equate to zero the coefficient of the higher order term ob-
taining k. n(n + 1).

Acknowledgments. The author is indebted to Prof. A. Papoulis and to Prof.
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A SIMPLIFICATION OF THE SCHWARZ-CHRISTOFFEL FORMULA
FOR SYMMETRIC QUADRILATERAL TRANSFORMATION*

O. F. HUGHES?

Abstract. A relationship is derived which greatly simplifies the application of the Schwarz-
Christoffe formula in mapping a quadrilateral having one axis of symmetry. The relationship allows
all of the image points on the real axis to be evaluated explicitly, thus reducing the formula from an

integral equation to an explicit integral.

1. Introduction. The well-known Schwarz-Christoffel theorem is frequently
used to map the complex plane z into the region around a quadrilateral in the
w-plane. In the case of quadrilaterals with one axis of symmetry, as shown in
Fig. 1, the transformation is

(z- x)
(1) W- W0 (Z - )-(-- X3)MZ"
Because of symmetry, we need consider only the upper half-plane and in the w-
plane the polygon being mapped is that portion of the upper half-plane excluding
the triangle ABC. This polygon has four vertices, one of which is at infinity, and
we therefore choose the corresponding image point in the z-plane as x4 oo. Of

A B

x= -1 x =0 x=r

z-plane

x

w-plane
FIG.

the other three image points, it is well known that two of them can be chosen
arbitrarily. For simplicity we choose x -1 and x2 0. The location of the
third image point is not arbitrary; there is some unique value, say x3 r, which
it must have for the sides of the polygon to be mapped onto the real axis of z. The
value of r depends on the specified geometry of the polygon, and some geometric
relationship must be invoked in order for this constant to be calculated. In the
present case, the appropriate geometric relationship is the condition

(2) d sin ort d2 sin fin
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which is seen from Fig. to be the condition that the two inclined sides of the
triangle ABC have the same height at C. The quantities d and d 2 are given by

f X + fl

(3) d
(1 -+- xy(r x)1

dx,

(4) d (1 + -(r- x)tdx"

Substitution of these into (2) gives an implicit integral equation for r as a
function of e and ft. However, these integrals cannot be evaluated in terms of a
finite number of elementary functions and hence numerical techniques are usually
required to satisfy condition (2). It would clearly be preferable to have an explicit
expression for r in terms of and ft. On the basis of some numerical results, Hughes
[1] recently postulated that the relationship between r, o and fl is simply

(s) r //.

The present note proves this relationship in two ways, the first using properties
of the hypergeometric function and the second using Cauchy’s theorem.

As a preliminary step, the integrals in (3) and (4) are normalized so they have
0 and as limits of integration. Substitution into (2) gives

(6) sin 0r
(1 (f + x)

dx r sin flr (1/r + g( x)t
dx

and the task at hand is to prove that (6) can be reduced to (5) or, in other words,
that (5) is the equivalent of (6).

2. Proof using hypergeometric functions. Our first method of proof is to
substitute (5) into (6) and to show, after some manipulation with hypergeometric
functions, that the resulting expression is an identity. The substitution yields,
after some minor rearrangement,

ff x+
dx o sin flrr f x+

(7a) sin
(1 x)=(o( / x) (1 x).(/o / x)dx"

It will be seen that the left- and right-hand sides are "images" of each other,
with and fl interchanged. Therefore, let us denote the expression on the left-
hand side of (7a) as fl(0, fl); then (7a) becomes

(7b) f(0, fi) f(fi,

The integrals in (7) may be evaluated in terms of the gamma function and the
hypergeometric function, yielding

(8) fi(,/) / )/F(1 +0+ fi)F(fl,F(a)r(2 + fl) +0+fl;fi+2"-).
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Substituting (8) into (7) yields, after some simplification,

(9a)

/,1 +e + /3"fi+ 2’--)

or in symbolic form

(9b) f(,/) f(/, ).

In the above expression the argument of the hypergeometric function on the
right-hand side, -e//, is the inverse of the argument on the left-hand side. In
order to show that the two sides are identical we apply the linear transformation

F(a, b, c, z)=
F(b)F(c a)

(-z)-"F a, c + a" b + a"

F(c)F(a-b)
+

F(a)F(c b)
(-z)-bF b, c + b’l a + b’

to the left-hand side of (9). The result is

f2(e, fl)
r()r(2 + ) r( + (/ ’ ’ - -(0)

+ F ++, 2+-

It can easily be shown that the first of the two hypergeometric functions in (10)
vanishes and that the remainder of the expression is identical to the right-hand
side of (9). Equation (9) is thus reduced to an identity, and this proves the re-
lationship which was originally postulated in (5).

3. Proof sing Caehy’s theorem. Let a, ..., a,, e, ..., e, be complex
numbers, aj0, argajCargah andReej< " Re,j> -1 j= n,
h 1, ..., n, h j. Define (1 aj/z)- by its principal value outside the segment
[0, @. if C is a circle Izl R traveled counterclockwise, R > lajI, j 1,..., n,
then it may be shown that

2i ajj dz

The same result will be obtained by integrating around the contour shown
in Fig. 2 (drawn for n 2) and it may be Shown that the integrals around Co and
around each of the C vanish as the radius e approaches zero. Hence,

2rci ajej
j=l h=l j=l

2i sin r
h=l

a

dz + e2"
j=l

1- dz.
j=l
jCh
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C

C1

C 2

co

FIG. 2

In particular, if n 2, a 1, zl , a2 b, (z2 j:

rt( + bfl)= sin rt dz

+ b sin rcfl ff 1_

Choosing b -o/fi we obtain (6) with r

dz.
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SAMPLING EXPANSIONS WITH DERIVATIVES FOR
FINITE HANKEL AND OTHER TRANSFORMS*

ABDUL J. JERRIt AND DALE W. KREISLER

Abstract. A sampling expansion involving the samples of a function represented by a finite Hankel
transform and the samples of the derivative of the function is derived. Also, the general procedure for
obtaining sampling expansions with derivatives for functions represented by other finite integral
transforms is outlined. It is shown that in parallel to the known special case of the finite Fourier trans-
form that the advantage of sampling with N derivatives is to increase by (N + 1)-fold the asymptotic
spacing between the sampling points. The importance of such an advantage for the Hankel transform
can be realized in a time-varying or spatial-varying system.

Finally, an extension to two dimensions of the sampling theorem with N derivatives for a function

having a finite double Fourier transform is stated.

Introduction. The problem of reconstructing a function by interpolating at
equidistant samples of the function, using the Cardinal series, has been considered
17] and the result was introduced to communications theory [13], [14] as the
well-known sampling theorem: If a function contains no frequencies higher than
W cps, it is completely determined by giving its ordinates at a series of points
1/2Wsec apart. A restatement of the above theorem in mathematical terms leads
to the following theorem.

Let

(1) f(t) F(x) eixt dx,
2W

where F(x) L2- 2roW, 27W]. Then,

n )sinz(2Wt-n)7(2Wt-n)
(2) /(t)= f -Many generalizations of this result exist. Among them are those that include
showing that a sampling expansion for a function represented by (1) containing
samples of the function and N derivatives simultaneously need be sampled only
at every N + sample points [4], along with an explicit result including one
derivative and the function sampled simultaneously [5]. An extension of this
result to an expansion containing N derivatives is given in [4], [11]. We draw the
attention of the reader to the important correction of the sampling expansion of
[11] which appeared in the same journal, 4 (1961), pp. 95-96. Recently, another
method for obtaining a sampling series with derivatives has been given [12].

All of the sampling expansions given in [13], [14], [4], [5], [11] and [12]
reconstruct a function represented by a finite Fourier transform.

It is one objective of this paper to show that sampling expansions with
derivatives can be derived for functions represented by other integral transforms
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besides the finite Fourier transform. More details concerning the method, the
results we present here, and other results and suggestions can be found in [10].

A generalization of the sampling theorem without derivatives for functions
represented by integral transforms that includes the Fourier transform as a
special case was suggested [16] and was later stated [9] as the following lemma.

LEMMA. If

(3) f(t) f K(x, t)F(x) dx,

where F(x) L2(I), and for each real t, K(x, t) L2(I and there exists a countable
set E {tn} such that {K(x, t.)} is a complete orthogonal set on L2(I), then

(4) f(t) lim f(t.)S.(t),
tq--, in _-<N

where

K(x, t)K(x, t,) dx
(5) s.(t) =’

II Ig(x, t.)l 2 dx

The values of S,(t) for different cases of K(x, t) can be found in [2], [8].
The following is the sampling expansion for the finite Jo-Hankel transform

[9]. We state it here since we shall use it in the following sections.
The finite Jo-Hankel transform. Let the function f(t) have a finite Jo-Hankel

transform representation. That is,

(6) f(t) XJo(xt)F(x) dx,

where F(x)e L2[0 a]. Then, by (4),

(7) f(t) j(tO,k)Sk(t),
k=l

where

(8) Sk(t) 2to,flo(at)
a(t, t2)d(ato,k)

and Jo(ato,k) 0 for all k. The sampling points in (7) occur at to,k jo,k/a, where
Jo,k are the zeros of Jo.

I. Sampling expansions with derivatives for finite Hankel and other trans-
forms. The method employed here will make use of the residue theorem which
states that any function h(z) which is meromorphic inside C for every R, where
C is a circular contour of radius R centered at the origin, may be represented by
an expansion of the form

(9) f h()
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if the integral

(0) fc h()
d

2ri z

along C approaches zero as R - . In (9), Rz denotes the residue at {zj}, and
j stands for the summation over the poles of h(Q. This theorem can be used to
produce a variety of sampling expansions. All that we need to do is to let

(11) h(z) f(z)/g(z)

and choose the proper function for g(z). This was used [5] to derive the sampling
expansion (2) and the corresponding expansion with one derivative by letting
f(z) have a finite Fourier transform representation and letting g(z) sin z and
sin2z respectively. The proper choice for g(z) that allows us to reproduce the
sampling expansions given by (4) can be selected by comparing S,(z) in (5) with
the terms in the Lagrange interpolation polynomial [5]. Each S(z) can be ex-
pressed as a partial fraction expansion of its nontranscendental part multiplied
by its transcendental part. The nonconstant transcendental portion of this ex-
pression is the proper choice for g(z). Once a particular g(z) has been chosen, it
is a simple matter to introduce derivatives into the sampling expansion. To
introduce N derivatives into the sampling expansion, we let

(12) h(z) (f(z))/gu + ’(z).
That this is true follows immediately from the residue theorem.

An example is h(z) f(z)/J, + (az) for the finite J,-Hankel transform. In the
following we shall illustrate the method for the case of n 0 and N 1. Other
explicit sampling expansions with derivatives derived by this method can be
found in [10]. This includes the sampling expansion with one derivative for a
function represented by a finite Legendre transform and with N derivatives for
the finite Fourier and the J,-Hankel transforms.

The finite Jo-Hankel transform. If g(z) Jo(az), then we may use (9) to re-
produce (7). That the condition for the integral in (10) is satisfied is shown in
details at the end of this section. In accordance with (12), if we desire a sampling
expansion for a function f(z) having a finite J0-Hankel representation which in-
cludes the samples of one derivative in addition to samples of the function, we
should choose

(13) g(z)-- J(az).
The sampling expansion with one derivative is given by

(14) f(z) y -T-f(to,) + f’(to,) S(z),
to, 2to,

where S.(z) is defined as in (8).
To evaluate the residues needed in (9), we evaluate the sum of the residues

of the integrals:

(15) c f()
d and c f()

d.( z)JZo(a) ( + z)J(a)
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The residue for the first of these integrals is the coefficient of the term
( t0,k)- in the product of the following three expansions:

(16) f() f(to,k) + ( to,k)f’(to,k) + ...,

(17) -- to, +
(-- tO,k)2- z to, z (to, z)2 (to, z)3

and

(18) d- 2(a) + -Y 2 to2,k)2 + 2 tg,k J2(to,k)
With regard to (18), see [6], [3]. Summing the results obtained from (16), (17) and
(18) withsimilar results obtained by using the second integral of (15), we have the
total residue contributions as:

f(t’k + O,kf,(to,k) 2(19) a- k= o,k 2to,k (to, Zl(at0,k)j
Thus, (19) becomes (14). It is important to point out that in considering Jg(az)
here instead of Jo(az), the condition needed for f(z) to satisfy the integral con-
dition (10) is somewhat relaxed. This is in the sense that (14) can represent a finite
Jo-Hankel transform with double the finite limit and hence the asymptotic spacing
between the sampling points isdoubled. In the following, this will become evident
as we show that the integral in (10) vanishes along CR as R

If in (9), h(z) f(z)/g(z) where f(z) is defined by a finite Hankel transform
and g(z) is defined by g(z)- J,(az), then we shall make use of the following
asymptotic relationship [1] for large values of ]z]:

(20) Jr(Z) (1/2Z)-1/2{COS (Z 1/2];7 1/47) -1
t- eI1 O(Izl-

]arg zl _-< rc 0 < re, so that

(21)
IJ,(az)l

O(Iz

where z x + iy. So to satisfy the condition on (10) to vanish it is necessary that
f(z) increase, less rapidly than ealYl/IZ] 1/2 as y oO.

To show this for the Jo-Hankel transform consider

f(z) COJo(coz)F(co do,

where again for large Izl we use (20), and consider the total variation of col/2F(co)
over (0, b) to obtain

(22) If(z)] O(]Z] 1/2 eblxl).
Now with the aid of (22) it becomes clear that (10) is satisfied if b < a. That is,
the Hankel transform is band-limited and the limit should not exceed a, where a
determines the asymptotic sample spacing. The case of a b can be proved by
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showing that zf(z) is again a finite J1-Hankel transform. Thus (6) represents f(z),
where f(z) is defined by a Hankel transform over the interval (0, b) if b _<_ a.

Similarly, if g(z) Jo(az) and N in (12), then we may again make use
of (20) to show that (14) represents f(z), where

(23) f(z) COJo(Coz)F(co) do.

In this case, (21) becomes

O(Izl e-2alyl)
IJo(az)[ 2

and the integral will vanish if b < 2a.
It is very important to point out that in considering J(az) instead of Jo(az),

the condition on f(z) for (10) to vanish is somewhat relaxed. This is in the sense
that (14) can represent a finite Hankel transform with larger limit b 2a.

Hence the sampling points for this function are t0,k jo,k/a 2jo,/b which
is double that of to, jo,k/b for f(z) in (7).

If N derivatives are to be introduced into the sampling expansion of a
function represented by (23), then let

h(z) (f(z))/J + X(az)
and the same analysis will be followed to show that the sampling points can be
taken at to, (N + 1)jo,/b. Hence the asymptotic sample spacing becomes
N + times that when the function samples alone are employed.

Of course this advantage is realized when (14) is used for time-variant systems
in contrast to the sampling expansion with derivatives for the Fourier transform
which is most useful for time-invariant systems.

The analysis for a function represented by a finite Legendre transform to
show that (10) is satisfied follows very closely the analysis done for the case in-
volving J(az) except g(z) sin a(z -1/2) and N in (12). Again the doubling
of the asymptotic sample spacing is achieved.

2. R-derivative sampling with double Fourier transforms. The sampling
theorem with R derivatives for a function represented by a band-limited Fourier
transform has been developed [11. In this section, we state that we have general-
ized the result given in 11] to a sampling expression with partial derivatives for
a function represented by a double Fourier transform which is band-limited in
two dimensions. The proof uses a generalization to two dimensions of the lemma
given in 11]. The result and the details of this proof are given in [10]. This ex-
tension is of particular interest to us because it is well known [12] that a Hankel
transform can be represented as a double Fourier transform of a function with
circular symmetry. Thus, if a function has a Hankel transform representation and
has circular symmetry, we can use the sampling expression developed here to
reconstruct the function.
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ON THE STABILITY OF A PERIODIC SOLUTION OF
A DIFFERENTIAL DELAY EQUATION*

JAMES L. KAPLAN’ AND JAMES A. YORKE{

Abstract. This paper considers the class of scalar, first order, differential delay equations y’(t)
-f(y(t- 1)). It is shown that under certain restrictions there exists an annulus A in the (y(t),

y(t 1))-plane whose boundary is a pair of slowly oscillating periodic orbits and A is asymptotically
stable. These results are applied to the frequently studied equation x’(t) -x(t 1)[1 + x(t)]. The
techniques used are related to the Poincar6-Bendixson method, used in the (y(t), y(t 1))-plane.

1. Introduction. The differential delay equation

(1.1) x’(t)- -x(t- 1)[1 / x(t)

is one which occurs in several applications and has been studied by many authors.
It was first proposed by Cunningham [1] as a nonlinear population growth model.
Later, it was mentioned by Wright [10 as arising in the application of probability
methods to the theory of asymptotic prime number density. Jones, in [3], states
that this equation may also describe the operation of a control system working
with potentially explosive chemical reactions. In that same paper Jones demon-
strated the existence of a periodic solution of (1.1) for > 7r/2 through the use
of an asymptotic fixed-point theorem. This method has been extended and
clarified by Grafton [2] and Nussbaum [8], [9]. A result which establishes the
existence of a periodic solution for a class of differential delay equations which
also includes equation (1.1), but is based upon unrelated techniques, has been
given by Kaplan and Yorke 6]. This equation, and similar ones, also appear in
the recent book by May [7] on ecology.

In numerical studies related to [3], Jones [4] suggested that this periodic
orbit possessed some type of stability, although this was never proved.

In this paper we consider a class of equations of the form

(E) y’(t) f(y(t 1)),

where f(0) 0, f:R R is continuously differentiable and (d/dy)f(y) > 0 for all
y R. This class can be shown to include (1.1) by making an appropriate change
of variables. (See Example 5.1.) We show, for example, that for (1.1) if > 7/2
there is an annulus A in the (y(t), y(t 1))-plane whose boundary is a pair of orbits
in R2 of slowly oscillating periodic solutions and A is asymptotically stable. The
region of attraction includes all solutions which do not oscillate too quickly, in
the sense that higher harmonics do oscillate too quickly. We also show that

(1.2) x’(t) ox(t 1)[1 xZ(t)],
which is also transformable into (E), has a slowly oscillating solution (see Example

* Received by the editors February 10, 1972, and in revised form April 8, 1974.

" Department of Mathematics, Boston University, Boston, Massachusetts 02215.
; Institute for Fluid Dynamics and Applied Mathematics, University of Maryland, College Park,

Maryland 20742. This research was supported by the National Science Foundation under Grant
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5.2). We have chosen to study equations of type (E) because they include the
simplest oscillatory differential delay equations.

The techniques introduced are related to the Poincar6-Bendixson method,
which we would like to have used in the (y(t), y(t 1))-plane. The difficulty that
arises, however, is that trajectories of solutions of (E) cross in this plane because
points in R2 do not determine solutions uniquely. We are able to show that for
equations of type (E) if two trajectories in R2 do not cross for a sufficiently large
time interval, then the curves will not cross in the future (see the trajectory crossing
lemma of 3). These lemmas permit the use of analysis similar to that of Poincar6-
Bendixson.

2. Statement of main results. Consider the scalar, first order, differential
delay equation

(E) y’(t) f(y(t 1)),

where f(O) O, f’R R is continuously differentiable and (d/dy)f(y) > 0 for all
yR. Let Jo [- 1,0) and J [- 1,0]. Denote by C C(J, R) the set of all
continuous functions mapping J into R. Let C, denote the set of all O C
satisfying

(2.1)

(2.2)

q5 has at most one zero on J,

if b has a zero in (- 1, 0), then b must change sign there.

We shall write Yt(" to denote the function y,(s)= y(t + s) for s e J, provided
y(. is defined on It- 1, t]. Thus yt(. )e C. Similarly, we shall write y’(. for
y’(s) y’(t + s) for s e J. We let y(t" to, c) denote the unique solution of (E) for

=> to for which Y,o(" Yo(" to, b) 4(" ).
PROPOSITION 2.1. Let dp C,, and write y(t) y(t; o, d?). Then y, C, for all

>= o and y’te C, for all >__ o + 1. Moreover, for >= to, y(tl) 0 implies
y’(t) 4: O, and for t > to, y’(t) 0 implies is a strict local maximum of ly(. )l.

Proof. Since (E) is autonomous, in order to show that y, e C, for all >= to,
it will suffice to let o 0 and to show that y,(. 0, b) e C, for all 0 < < 1.

If k is nonnegative or nonpositive on J, then since yf(y) > 0 for all y e R,
and from the fact that y’(s)= -f(y(s- 1))= -f(O(s- 1)) for all s e [0, 1], we
see that yl(. 0, b) is monotonic on J. It follows immediately that y,(. "0, b) e C,
for0<t< 1.

Suppose, therefore, that there exists t e(-1,0) such that b(tl)= 0. For
simplicity, we shall suppose that qS(s)< 0 for s e[-1, t), while b(s)> 0 for
s e(tl, 0]. These assumptions imply that yl(.; 0, b) is monotonically increasing
on [- 1, tl), and thus yl(s’O, qS) > 0 for all s [- 1, tl). Also y(s; O, c) is mono-
tonically decreasing on (t, 0]. It is thus clear that Y l(" ;0, qS) can have at most
one zero on J, at which it must change sign. Obviously, if y(. ;0, ) has no zero
on J, then Yt(" ;0, qS) C, for all 0 < <__ 1.

Suppose y(. ;0, 4) has a zero at 2 (--1, 0]. It will be shown that ys C,
for 0 < s __< 1. To do so, observe that y(t + s’O, ok) can be zero only at + s
and + s 2 %- 1. It suffices to show these zeros satisfy (t2 %- 1) > 1, i.e.,
2 > t. But, as observed above, yl(. ’0, b) increases from the positive number
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b(0) on -1 __< 1, and decreases thereafter, hence 2 > 1. Therefore, Ys C,,
0<s<l.

Notice that f(y) 0 if and only if y 0, and f changes sign at 0. Thus for
z(t) f(y(t 1)) we have z, C, if and only if y,_ C,. But y’(t) -f(y(t 1)),
so that Yt C, for >= to implies y’, C, for >__ to + 1.

Since y’ changes sign at any of its zeros l, is a local extremum of y(t),
andso by(2.1)it cannot be azero ofy. Thus, for tl >= to, y(t) 0 implies y’(t) :/: O.

Finally, let t > to, and suppose that y’(t) 0. Then

sup {t =< y(t) 0}.
For the sake of definiteness, we suppose that y(tl) > 0. Then y(t) changes from
negative to positive at t 1. Since -f is a strictly monotonically decreasing
function, y’(t) -f(y(t 1)) changes from positive to negative at t. Therefore,

is a strict local maximum for ]y(t)].
DEFINITION 2.1. The real-valued function y(. is said to be slowly oscillating

(on [to, )) if [to, ) = domain (y(.)) and yt C, for all _>_ to + 1.
The following proposition increases the motivation for restricting our con-

sideration to slowly oscillating solutions.
PROPOSITION 2.2. For r >= --1, define the subset C, 6 C;y(. 0, ) is

slowly oscillating on [q, )}. Then for rl > O, C", is an open neighborhood of C,
in the topology of uniform convergence on compact subsets of [, o).

A proof of Proposition 2.2 can be easily supplied by the reader.
For the remainder of the paper we shall write p(t)= (y(t),y(t- 1)) and

q(t) (y(t), y(t 1)) whenever y is a solution of (E). The use of q(t) rather than
p(t) is of no substantial consequence, but will allow simpler notation. Let d[.,-]
denote the usual Euclidean distance in the plane.

DEFINITION 2.2. Let S R 2 be closed. We say that S is C,-stable in R2 (for
(E)) if for each e > 0 there exists a 6(e) > 0 such that when y is a slowly oscillating
solution of (E)on [to, or)satisfying

we have

dq(t), S] < for 6 [to, to + 1]

d[q(t), S] < e, for all __> to.

We say that S is a C,-global attractor in /2 if for each solution y of (E) such
that y, C, for some t, we have d(q(t), S)

We say S is C,-globally asymptotically stable if S is C,-stable and is a C,-
global attractor.

DEFINITION 2.3. For a periodic solution y of (E) we define the orbit of y in
R2 by Oy {q(t)’t R}. We say y is a simple periodic solution of (E) if Oy is a
simple closed curve.

For a simple periodic solution we let Int O and Ext O denote the closures
of the interior and exterior of the simple closed curve O, in the sense of the
Jordan curve theorem.

DEFINITION 2.4. We say A c R2 is a periodic C, annulus for (E) if there are
simple periodic solutions x and y with xt,y,C, for all tR such that
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A Int Ox f-I Ext Oy. Observe that Ox c A and Oy c A. We allow x y, in
which case A Ox.

TI-IEOrEM 2.1. Let f’R- R be a continuously differentiable function such
that f(O) 0 and

(2.3) f’(y) > 0 for all y R.

Assume there exists a B > 0 such that

(2.4) f(y) > B for all y e R.

If 2f’(O)/zt > 1, then there is a periodic C, annulus A R2 which is C,-
globally asymptotically stable for (E).

COrtOLLAR 2.1. Assume that the hypotheses of Theorem 2.1 are satisfied.
Assume that there is a unique slowly oscillating periodic solution y. Then Or is a

C,-globally asymptotically stable set.
Remark 2.1. Corollary 2.1 follows immediately from Theorem 2.1. In Example

5.2 we give an equation for which we are unable to show that the periodic solution
is unique. G. S. Jones’ computer experiments made it rather clear that there was
a unique periodic solution for (1.1), but this fact remains without a rigorous proof.

Remark 2.2. If 0 <_ =< 1, it is still possible for 0 to be globally asymptotically
stable. This will be the case, for example, if 0 < f’(y) < re/2 for all y.

Remark 2.3. Condition (2.4) can be replaced by

(2.5) f(y) < B for all y e R,

since if this condition held we could make the change of variable y -+ y and let
fl(Y) -f(-Y). Then fl would satisfy the hypotheses of Theorem 2.1.

Remark 2.4. Recall that for a solution y of (E) we write p(t) (y(t), y(t 1)).
Clearly, for y 0, p(t) does not tend to A as --+ oo. In general, by considering
linear equations, we are led to expect that there is always an infinite-dimensional
"surface" M c C(J, R) C, such that b M implies y(t; 0, b) --, 0 as --, oe. At
the same time we may expect C** {qS"y,( ;0, b)e C, for all sufficiently large t}
to be an open dense subset of C. For linear equations of the type (E), iff(y) > ny/2,
then C** is the complement of a proper infinite-dimensional subspace.

Example 2.1. There can be nontrivial periodic solutions of (E) which are
"higher harmonics" and are not in C,. G. S. Jones pointed out the following
example.

Let f(u) fo(u), where f(0) n/2. Suppose that yO is a nontrivial periodic
solution with period p of (E), for equal to some o. Then yO also satisfies

(yO), _eofo(yO(t np 1))

for n 0, 1,2,.... Define y"(t)= y((np + 1)t). Then y"(t- 1)is y((np + 1)t
np 1) and so y" satisfies y’ -efo(y(t 1)) for e (np + 1)e0. Of course,

for large n, y’ would not be in C, since it would have at least two zeros in each
unit interval.

Remark 2.5. For a simple periodic solution x of(E), the conclusion of Corollary
2.1 that "Ox is a C,-globally asymptotically stable set" implies a result for the
more usual Banach space formulation of differential delay equations. Let
O(C) {x "t e R}, which is a compact subset of the Banach space C. Then, if we
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consider the "flow" rc’R + x C --, C given by re(t, qS) Yt(’; O, ), the set Ox(C)
is asymptotically stable (that is, x is orbitally asymptotically stable) and the
region of attraction is C

This follows from Proposition 2.2.
The main purpose of this paper is to establish this asymptotic stability result.

Existence of periodic solutions under the hypotheses of Theorem 2.1 is known,
and the methods of Jones and Grafton used to establish this existence extend to
some equations with several lags.

3. Trajectory crossing lemma. In this section we study functions x’I --, R
and y’Iy R, where I and Iy are intervals.. Let G G(v) denote a continuous
function from R into R which is strictly monotonically increasing. We assume
that
(3.1) G(0)-- 0.

For those points lx and r Iy at which x’(t) and y’(:) exist (using right-hand
derivatives at the left endpoints of Ix and Iy), we shall write

(3.2) r(t) (x(t), G(x’(t))), s(r) (y(v), G(y’(r))).

DEFINITION 3.1. We say a function x’l R is simply oscillatory on I if
(i) I c Ix is an interval, sup I De’

(ii) x is continuously differentiable on I’
(iii) the zeros of x and x’ are strictly interlaced on the interval I, and x has

infinitely many zeros on I.
Observe that these conditions imply that if x’(t) O, e I, then is a strict

local maximum of Ix(" )1.
We would like to examine the notion of the curve r(t) being "outside" the

curve s(r), where x and y are simply oscillatory functions. This idea will be used
to examine the crossings of trajectories, and to define the concepts of "spiraling
outward" or "spiraling inward".

In order to do this, it is necessary to first define what is meant by the point
ro R2 being "outside" the point So R2. The most obvious definition is based
upon a lexicographic ordering on the polar decompositions of ro and So" that is,
we might say that ro is outside of So if both points lie on the same ray through
(0, 0) and Irol > Isol > 0. Unfortunately, such a procedure will not produce the
kind of phase plane performance we demand from r(t) and s(r), even when r(t)
and s(.r) are periodic. Instead, we shall use the following definition.

DEFINITION 3.2. Given ro (r, r2) and So (s, s2) in R2, we say ro is outside
so if ro - (0, 0), So - (0, 0) and either of the following is satisfied"

(3.3a) r S1, It2[ > 1S21 and r2s2 > O"

(3.3b) S2 0, Irll >_-Isxl and rls > O.

Notice that if s 2 4= 0 then the set of all r0 outside So is an open, vertical, half-line.
If s2 0, the set of all r o outside So is a closed half-plane minus So (which is on
the boundary).

Let us elaborate further on Definition 3.2. Our goal is to construct a non-
decreasing function T(t) such that r(t) and s(T(t)) wind around the origin of the
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phase plane at about the same rate. In particular, it is required that if r(t) crosses
the x-axis then s(T(t)) crosses the x-axis at r T(t), and when r(t) crosses the
y-axis, so does s(T(t)). Toward this end, it will be useful for us to give an alternate
characterization of the notion of outside. It is, of course, equivalent to the
definition just given, but it will be more convenient for some further developments.

DEFINITION 3.2’. Given ro (rl,r2) and So (s1,s2) in R2, we say ro is
outside So if ro 4: (0, 0), So #- (0, 0), ro -#- So, and one of the following is satisfied:

(3.3a’) S2 0, r S1, r2 (1 + ,)$2, 2 > 0"

(3.3b’) S2 0, r (1 - 2)S1, /]. > 0"

(3.3c’) S2 0, r $1, r2 0.

If ro r(t) and So s(r), then, by (3.1), we see that (3.3) or (3.3’) is in turn
equivalent to
(3.4a) y’(r) :# 0, x(t) y(r), (x’(t))/y’(r) > 1" or

(3.4b) y’(r) 0, x(t) (1 + 2)y(r), 2 > 0’or

(3.4c) y’(z) 0, x(t) y(r), x’(t) # O.

In particular, we find that x(t) (1 + 2)y(z), where 2 >= 0 in (3.4a-c).
PROPOSITION 3.1. Let x and y be simply oscillating functions on It 1, o) and

IT1, o), respectively, and assume that r(tl) is outside s(T1). Then there exists 09,

< co <- oo, and a function T:[t 1, co) -* IT1, ) such that

Tis continuous, nondecreasing, T(tl) T1, and r(t) s(T(t))
(3.5)

for <= < co.

Furthermore, T is uniquely determined by (3.5), and

(3.6)
if co < oo, then T can be continuously defined at co and

r() s(T())"

(3.7) if co o, then T(t) as c.

Proof. Let us first show that there exists an coo > and a function
T:[tl, coo) IT1, oo) satisfying (3.5) with co coo.

Suppose that (3.4) holds with and T T1. In case (3.4a) y-1 exists
in a neighborhood (y(T)- e, y(T)+ e), e.,, e2 > 0. Since x(t) starts in this
neighborhood at l, it remains in the neighborhood on some interval. There-
fore, T(t) y-l(x(t)) is continuous near l. If coo > is chosen appropriately,
then r(t) and s(T(t)) will satisfy (3.4a) on It c%), hence (3.5) with co coo.

In case (3.4b), we have y(T1) 4 0 and 2 [x(tl)/y(T1)] > 0. Therefore,
x(t)/y(T1) > on some interval =< < coo, and we may define T(t)= T1 in
order to have r(t) and s(T(t)) satisfy (3.4b) on tl =< < coo. Thus, T satisfies (3.5)
with co coo.

If (3.4c) holds, then x(tl)= y(T1) y’(T1)= 0 4: x’(tl). Suppose first that
x(tl) > O, x’(tl)> 0. Then x(t) increases from x(tl) for t- tl > 0 sufficiently
small, and we see that taking T(t) T1 gives (3.4b) (r r(t), s s(T(t))) for some
interval It1, coo). Hence (3.5) is satisfied with co coo.
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Suppose next that x(tl)> 0, x’(tl)< 0. Since y is simply-oscillating, we
must have y’(T) < 0 for T T > 0 sufficiently small. Strict monotonicity implies
that COo > t and T2 > T can be selected such that y(T2) =< x(t) <= y(T) for
tl _<_ _<_ COo, Y- exists and is continuous in [y(T2), y(T)], and x’(t)/y’(y-(x(t)))
> on t < _< COo. Therefore, we let T(t) y-(x(t)) on Its, COo], and observe
that r(t) and s(T(t)) satisfy (3.4c) at r and (3.4a) on t < =< COo. Hence
(3.5) holds with co COo.

The separate cases x(t) < O, x’(tl) < 0 and x(t) < O, x’(t) > 0, can be
obtained from the preceding by replacing x by -x and y by -y. We conclude
that if (3.4c) holds, then there exists a function T and an COo such that (3.5) holds
with CO COo.

Let CO sup {COo}, where COo > tl and there exists a function T with (3.5)
holding, CO replaced by COo. To obtain a function T as in (3.5) with this choice of
CO, it suffices to show that any two functions T and T2, which satisfy (3.5) on

<_ < COo, COo < CO, are equal.
To show T1--Tz on [tl,COo), it suffices to show that T(to)- T2(to),

_-< to < COo, implies T _= T2 for t- to > 0 small enough. This is done by
showing that Ta and T2 agree with the function T, constructed as in the first part
of the proof, except with replaced by to and T by TO Tl(to) T2(to).

Using limiting arguments and/or the invertibility of y, we show that
T T1 T2 in a right neighborhood of to, provided either (3.4a) or (3.4b) holds
at to, z To. The verification in case (3.4c) is more involved. The idea is to
observe that the equation y’(T) 0 has only the solution T-- T(to) when T is
near T(to), and y(T)- y(T(to))<= 0 for T near T(to). Then one examines the
possible definitions of T(t), o small. The details are left to the reader.

The argument supplied above shows that T is unique in (3.5). Relations
(3.6) and (3.7) will now be established.

On the interval t =< < CO we have x(t)= [1 - 2(t)]y(T(t)) by (3.4), where
2(0 >= 0. Therefore, T(t) maps the zeros of x(t) one-to-one and onto the zeros of
y(s)

If CO < , then x(t) has a finite number k of zeros in Its, CO). Therefore, T(t)
is bounded above by the (k + 1)st zero of y. Conversely, if T(t) is bounded above,
then x(t) has only a finite number of zeros in It1, CO), hence CO < . This establishes
(3.7), and shows that in (3.6) we may define T(CO) sup { T(t)’t < CO}.

To verify that r(CO)= s(T(CO)) in (3.6), observe that (3.4) holds for < CO,

r T(t). Suppose that r(CO) - s(T(CO)). Since one of (3.4a)-(3.4c) must hold in
every left neighborhood of CO, we arrive at three cases" (a) x(CO) y(T(CO)), y’(T(CO))
:/: O, x’(CO)/y’(T(CO)) > 1; (b) x(CO)= y(T(CO)), y’(T(CO))= 0, x’(CO) :A 0;(c) y’(T(CO))

O, y(T(CO)):P O, x(CO)/y(T(CO))_> 1. In arriving at these cases we used the fact
that y’(T)= 0 implies y(T) :/: O, and r(. :/: s(T(. )) if and only if (x(CO), x’(CO))
4: (y(T(CO)), y’(T(CO))). In any case, r(CO) is outside s(T(CO)), hence T can be
extended beyond CO, as in the first part of the proof, a contradiction. Thus, (3.6)
h)lds.

Remark 3.1. Let x and y be given as in Proposition 3.1, with r(ta) outside
s(T). The first four paragraphs of the proof of Proposition 3.1 show how to con-
struct T(t) explicitly. The reader may find it instructive to do so for x(t) 2 sin t,
y(t) sin t, t z/6, T z/2, G(x’) x’.
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DEFINITION 3.3. Let x and y be simply-oscillatory functions. Let Jx and Jy be
intervals, with Jx and Jy subsets of the domains of x and y, respectively. We shall
say x[Jx is outside y[Jy if and only if there exists a function T’J - Jy that maps
Jx onto Jy, T is continuous and nondecreasing, and r(t)is outside s(T(t)) for all

J. In particular, the identity x(t)= 1 + 2(t)]y(T(t)), 2(t)_>_ 0, is valid for
t6Jx.

PROPOSITION 3.2. Let x and y be simply-oscillatory functions and suppose that
J and Jy are nonvoid, bounded open intervals. Assume xlJx is outside ylJy and y is
monotonic on Jy. Then

length Jx < length J.
Proof. By Definition 3.1, y’(z) - 0 for z J. From (3.4a) we have

T(t)- y-l(x(t)) and T’(t)- x’(t)/y’(T(t)) >

for 6 J. Thus (3.9) follows from the mean value theorem.
We now wish to compare x and y as solutions of the differential delay equation

(3.8) x’(t) g(x(t 1)),

where g’R R is continuous, and strictly monotonically increasing. We assume
that

(3.9) g(0) 0.

We also assume that x[[tl- 1, oe) and y[T 1, oe) are continuous so that
x[[tl, oe) and yIT1, oe) are continuously differentiable. Then for g as above,
satisfying (3.9), we have the following result.

LEMMA 3.1 (Trajectory crossing lemma). Let x and y be solutions of (3.8).
Assume that Xto, Yzo C,, and the sets of zeros of x and y are both infinite. Assume
for some and T satisfying

(3.10) >__ o + 1, T >= TO +
that either xl[to, tl) is outside y][To, T1) or that x](to, tl] is outside yl(To, T1]. Then
xl(to, o) is outside Yl(To, o).

Proof. Define G(. by G(. )= -[(-g)-1(. )], where (-g)-1 denotes the in-
verse of -g. It follows that G is strictly monotonically increasing (because g is),
and (3.9) implies that G satisfies (3.1). Hence

(3.11) r(t) (x(t), x(t 1)), s(t) (y(t), y(t 1)),

since G(x’(t)) [(- g)- (x’(t))] x(t 1), and similarly for y.
Let T be the function of Proposition 3.1. Then, if the conclusion of the tra-

jectory crossing lemma is false there must exist co < o such that r(co) s(T(co)).
In particular, using (3.11), this says that

(3.12) x(co 1) y(T(co) 1).

Moreover, since co >__ o + 1, T(co) _> To + 1, we must have

(3.13) r(co- 1) is outside s(T(co- 1)).

Let t2 be the largest number such that xl(t2, o))is outside yl(T(co) 1, T(co)). If
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y is not monotonic on (T(co) 1, T(co)), then from the definition of "outside", x
is not monotonic on (t2, co). In this case, it follows from (3.12) that we must have
t2 co 1. Therefore x is not monotonic in (co 1, co) (see Fig. 1).

G(x’(f)) or G(y’(r))

G(y’(T(o)-I)))

(x(o-I), G(x’(o- I)))

FG.

xory

If, on the other hand, y is monotonic on (T(co) 1, T(co)), then since xl(t2, co)
is outside yl(T(co) 1, T(co)), Proposition 3.2 implies that co 2 < 1. Further-
more, x(t) y(T(t)) for (t2, co), so by continuity and (3.12) we have

x(t2) y(T(co)- 1)= x(co- 1).

But co 2 < 1, and so x is not monotonic on (co 1, co), a fact which is there-
fore true whether or not y is monotonic on (T(co)- 1, T(co)) (see Fig. 2). For
definiteness we shall assume that X’(t2)> 0 > X’(t2 --1). The other case (in
which the signs are reversed) is similar and is omitted.

G(x’(t)) or G(y’(r))

(x(t2), G("(t )) r(o)=s(T(w))

(x(w-I), G(x’(w-I)))

FIG. 2

xory

Observe that, since r(co) s(T(co)),

G(x’(co)) G(y’( T(co)))

and y’(T(co)) > 0. Also, for some e > 0, writing I (co e, co), we have that for
all I., x(t) y( T(t)) and

G(x’(t)) > G(y’(T(t))).



STABILITY OF A PERIODIC SOLUTION 277

For (co e,, co], let

3(t) G(x’(t))- G(y’(T(t))).

Thus 3(t)=-x(t- 1)+ y(T(t)- 1). Since 6(.)> 0 on I
must have (using left-hand derivatives), that 6’(co) =< 0" that is,

and 6(co)= 0, we

g’(T(co) 1)T’(co) __< x’(co 1).

But x(t) y(T(t)). Thus, for co, we have

x’(co) g(x(co 1))
T’(co) 1.

y’(T(co)) g(y(T(co) 1))

Therefore, from (3.14), we see that

y’(T(co) 1) =< x’(co 1).

Now r(co 1) is outside s(T(co 1)) by (3.13), and G(x’(co 1)) < 0, so

G(x’(co 1)) < G(y’(T(co 1))) <= G(y’(T(co) 1)),

with equality holding if T(co- 1)= T(co)- 1. But x(co- 1)= y(T(co)- 1),
combined with the monotonicity of G, imply that

x’(co 1) < y’(T(co) 1),

contradicting (3.15).
Thus, there cannot exist any co < , co _>_ to + 1, for which r(co) s(T(co)).
LEMMA 3.2. Let x and y be oscillatory functions. Let C be a simple closed

curve in R2 such that r(t) C and s(t) C for all >= O. Then r, s, x and y are periodic
functions and for some c > O, r(t) =_ s(t + c).

Proof. Clearly r(R) s(R) C. Let c > 0 be the first strictly positive time
for which r(0) s(c). As in Proposition 2.1 (although the details are simpler in
this case), there exists a unique T’R R such that T(0) c and r(t) s(T(t)),
for >__ 0. It follows from the technique of Proposition 3.2, since x’(t) y’(T(t)),
that T’(t)= 1. Hence T(t)= + T(O)= + c. Hence

(3.16) r(t) s(t + c) for all >__0.

For any oscillatory x, we may choose y-- x, in which case r(t)-- s(t + c)
r(t + c), by (3.16). Since c was chosen strictly positive, r must be periodic. The

periodicity of r and (3.16) imply that s is periodic.

4. Proof of main results. The reason for imposing the condition that,

f’(0) > n/2 in Theorem 2.1 is that iff’(0) < n/2, it is possible for all solutions of
(E) to tend to zero as . For f’(0) /2, the following is easily verified.

Example 4.1. The functions Vo(t) p sin (/2)t and vl(t) p cos (n/2)t satisfy

(4.1) v’(t) -(n/2)v(t- 1)

for all t. Of course, v0 and v are slowly oscillating.
We now wish to compare solutions of the equation (3.8). Throughout the

remainder of the paper we shall let

r(t) (x(t), x(t 1)), s(t) (y(t), y(t 1))
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(as was done in (3.11)) since we can make the appropriate choice of G as we did
in Lemma 3.1.

DEFINITION 4.1. We say the simply-oscillatory function x spirals outward on

[to, oe) if there exists some > to for which xl[tl, v) is outside xl[to, oe). In
particular, r(tl) is outside r(to) and there exists T:[tl,)[to, oe) with
T(tl) to, as given in Definition 3.3.

We say x spirals inward on [to, oe) if there exists some > to for which
xl[to, )is outside xl[ta, ).

We shall assume (as in the paragraph preceding Lemma 3.1) that g :R R
is continuous, and strictly monotonically increasing. We shall assume that g
satisfies

(4.3) g(0) 0.

We assume, further, that g’(v) exists and is continuous, and that the following
condition is satisfied:

(4.4) There exists some 6o > 0 such that g’(v) >_ whenever Ivl < 60.
This assumption implies that any solution y of (3.8) for which Yt e C., is

simply-oscillatory. To see this, suppose that y is a nonsimply-oscillatory solution
of (3.8), for example. Then y(t) must tend to 0 monotonically as --* oe. Thus for
some T1 > 0, and all > T 0 < ly(t)l < 6/2. Assume for the sake of definiteness
that y(T1) > 0. For T2 > T1 + 1, write 1 [T2, T2 + 1]. Then

y(T + )= y(7".)- , g(y(s 1))ds

=< y(T)- f,y(s-)s<y(T)- fy(T)as 0.

Hence y(T2 + 1) < 0, contradicting our hypothesis.
We now return our investigation to the study of (E), where we shall assume

that f’R --. R satisfies all the hypotheses of Theorem 2.1.
Let B1 sup {If(v)l"- o < v =< B}, where B is given in condition (2.4).
LEMMA 4.1. Every slowly oscillating solution y on [to, o) of (E) is oscillatory.

If "62 denotes the second zero of y on [to, oe), then

ly(t)l <: B1 for all _> "62.

Proof. The fact that any slowly oscillating solution y of (E) is simply-
oscillatory follows from the remark following hypothesis (4.4), and the fact that
f’(0) > re/2,

Let ’61 denote the first zero of y on [to, oe). If tM is any local maximum of y
on [’61, o), then tt is a zero of y (since y’(t) 0). Writing I
and using (2.4) we have

y(tt) 0 + f y’(s) ds < B

from (2.4). Hence y(t) < B for all __< "61. If "62 is the second zero of y on [to,
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then z2 > "c + 1. Let tm be any local minimum of y on [r2 ). Then, proceeding
as above, we see that we must have y(t) > f(B) for all >= r 2.

Let P be the set of all slowly oscillating periodic solutions of (E).
LEMMA 4.2. P is nonempty and there exists a "smallest" 2 P" that is, for all

w P, Int O4 c Int Ow and either 04 Ow o.r 04 f’) Ow . Also, 2 is a simple
periodic solution.

Furthermore, Ext Oz is C.-globally asymptotically stable.
Proof. Let qSp =/9 sin (rtt/2), e [- 1, 0]. Consider now the linearization of

(E) in a neighborhood of the origin

(4.5) x’(t) f’(O)x(t 1).

Denote by xp the solution of (4.5) on [- 1, o) with initial condition bo, and let y
denote the corresponding solution of (E). Since f’(0) > n/2 it is well known (and
in fact may be verified by direct computation) that xo spirals outward on [- 1, T]
for any fixed T > 0. Now If(x)- f’(O)x] o(]x]) and solutions of (E) depend
continuously upon the right-hand side of the equation. It follows that if p is
sufficiently small, we must have that yo spirals outward on [-1, T]. Suppose that
T has been chosen sufficiently large that there exists To e(0, T] such that
yo][To 1, ) is outside ypl[0, ); that is, yo spirals outward on [0, oo). By
Lemma 4.1, the curve r ro(t)= (yo(t), -yo(t- 1)) is bounded. Clearly to(t)
spirals outward to some simple closed curve C.

Let c be any point of C. Choose t v such that r(t,) c. Let ,(F)
yo(t + F) for F => -1. Since tp, and ’, are uniformly bounded, it follows

from Ascoli’s lemma that there exists a function 6"[-1, o)- R and a sub-
sequence tp,, such that for each T > 0,

and

,,(t) - 6(0 uniformly for s [- 1, T]

f(W,,(t 1)) f(f(t 1)) uniformly for [0, T].

Hence 6 satisfies (E). Obviously (6(t),-6(t- 1))e C for all >_ 0. Moreover,
since C is bounded away from (0, 0), 6 is oscillatory. It is easy to verify that 6 is
slowly oscillating. It follows from Lemma 3.2 that 6 is periodic, and thus P is
nonempty.

We now wish to demonstrate the existence of a "smallest" 2 e P. Choose Po
sufficiently small that for all 0 < p <= Po, Yo spirals outward on [0, ). Denote
by 2 that element of P to which Ypo converges; that is, Yoo spirals outward to O4.
Define t3 inf {pl <= Po[Yo spirals outward to O4 for all Pl < P =< Po}. If 0,
then 2 is the "smallest"element of P and we are done. Suppose, therefore, that
p>0.

CLAIM. y spirals outward to 04.
Suppose not. Then there would exist some . P, , 4: 2, such that y spirals

outward to O and O c Int O4. Let

d sup dist [(y,(t), yp(t 1)), 0].
re[O,1]

By the continuous dependence of solutions, upon initial conditions, if we choose
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p > t3, IP 31 sufficiently small, then

sup dist [(yo(t), yo(t 1)), (y(t), y(t 1))] < d/2,
t[O,1]

so that y,(t) is inside O for [0, 13. It follows from the trajectory crossing lemma
that yo(t) is inside O for all e [0, oe). This contradicts the fact that t < P <_- P0
implies that Yo spirals outward to O4, and establishes our claim.

Consider next a sequence Pi such that 0 < pi < , p < P/I, P 3. We
know that the corresponding solutions yo, must spiral outward to some 2 e P.
Moreover, Yo,--’ Y uniformly on compact t-subsets. This in turn implies that
O4, 04, in the sense that O4 c U lnt 04,. It follows that there must exist some
integer N so large that dist [04,,, O4] < d/2. Thus yl[0, 13 is inside 04,,. This
implies that y must remain inside Ok,, for all future time. This contradicts the
fact that y spirals outward to O4. Thus we must have t 0, and 2 is the "smallest"
element of P, establishing the first part of our lemma.

To see that Ext O4 is a C,-global attractor, let y be any slowly oscillating
solution of (E) on [to, oe). Let s(t)= (y(t),-y(t- 1)) for >__ to. Recall that in
the first paragraph of the proof of this lemma we constructed a family of curves
ro(t) (yo(t),-yo(t- 1)), such that Yo is a solution of (E) and each Yo spirals
outward. Choose tl >__ 0 so that y(t) yo(O) 0. Now choose p so small that
yl[t, t + 1] is outside yol[0, t2] for some 2

>_ 1. Then by Lemma 3.1, yl(t, oe)
is outside yo[[O, ). Thus there exists a monotonically nondecreasing function T
satisfying the requirements of Proposition 3.1, so that s(t) is outside ro(T(t)) for
all e It1, oe). Since Yo spirals outward to some slowly oscillating periodic solution
of (E), it follows that for p sufficiently small

d[r(T(t)), 04] - 0 as o.

Since yl[ta, v) is outside yl[0, oe) it follows that d[s(t),Ext 0
(and possibly dis(t), Ext 04] 0 for all sufficiently large). Hence Ext O4 is a

C,-global attractor.
It remains to show that Ext 04 is C,-stable in R2 for (E). An equivalent

formulation of C,-stability of a set Ext Ox is given by the following:
Let {z,} be any sequence of slowly oscillating solutions of (E) on [0,

Write .(t) (z,(t), -z.(t 1)). Then Ext O4 is C.-stable if

(4.6) d[b,(t), Ext 04] -* 0 as n --, oe uniformly for e [0,

implies that

(4.7) d[b,(t), Ext O4] 0 as n oe uniformly for all e [0,

Let {z,} be a sequence satisfying (4.6). Let x be any solution of (E) which
spirals outward on [0, ), and such that r(t) (x(t), -x(t 1))
For n sufficiently large, let T, denote the largest time such that 4.(0) is outside
r(T,), and there exist numbers t. >_ and T’, >__ T, + 1 such that z,l[0, t,] is out-
side xl[T., T’,]. But then z,[[0, oe) is outside xl[T., ) by the trajectory crossing
lemma. Since

sup {d[r(t), Ext 04] :t >= T.} 0 as n
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it follows that (4.7) is satisfied and Ext Ox is C,-stable. Therefore Ext Ox is C,-
globally asymptotically stable.

LENMA 4.3. There exists a "largest" tp e P; that is, for all we P, Ext
c Ext O, and either Oe 0, or Ox f’] 0, . Also, tp is a simple periodic
solution.

Furthermore, Int Ox is C,-globally asymptotically stable.
Proof. The proof of this lemma resembles the proof of Lemma 4.2. Let us

first establish the existence of a largest e P. Define a partial ordering on
_< O, if O, c Int O,20{O, weP} as follows If wl,wzeP, then O,

Int O,. Let {O}a be a chain in O. Then we may find a sequence w;e P
(where the wi need not all be distinct), such that wi w e P and Ow is the boundary
of [J

0a Ow" (Note that this union is a bounded set by Lemma 4.1.) Clearly, O,
is an upper bound for the chain. By Zorn’s lemma, 0 must have a maximal element
Ov for some e P, and Ext O,e c Ext O, for all w e P.

As in the proof of Lemma 4.1, we shall be able to show that Int O,v is C,-
globally asymptotically stable once we are able to establish the existence of a
slowly oscillating solution x of (E) which spirals inward, and such that

r(t) (x(t), x(t 1)) - 0

as o. To do this, let A > B1, where B is given in Lemma 4.1. Define x
to be the (slowly oscillating) solution of (E) on [0, oe) for which x(t) 2At for
e [- 1, 0]. It follows that

Ir(t)l--(Ix(t)l 2 + Ix(t- 1)12)1/2> 2A1 for t[0, 13.
Assume (by a translation of if necessary) that x[[0, 1] is outside Pl[0, to] for
some to >-_ 1, and hence x][0, or) is outside P][0, or), by Lemma 3.1. But by Lemma
4.1 we must have [r(t)l < 2B1 < 2A1, for > z2, and so x must spiral inward.
Since the limit set of r(t) is a simple closed curve C, which is the orbit of some
solution, it follows that we must have C Or, and tp is a simple periodic solution.
The remainder of the proof proceeds as in Lemma 4.2.

Proof of Theorem 2.1. With the proof of Lemma 4.3, we have completed the
proof of Theorem 2.1, since A Ext Ox ["1 Int O is a periodic C,-annulus, and it
is clear that A must be C,-globally asymptotically stable since Ext Ox and Int Ov
are.

5. Examples.
Example 5.1. Consider equation (1.1). If x(t) satisfies (1.1) for >_ to, define

a(t) -x(t 1) for => to. Then this solution x obviously satisfies

x’(t) a(t)[1 + x(t)] for all >__ o.

It follows immediately from inspection of this ordinary
X(to) -1 implies x(t) for

differential equation that
all >= to;

X(to) < -1 implies x(t) < for all >__ o

X(to)> -1 implies x(t)> -1 for allt_>_to

In the second case it follows that x(t) -ov as oe. Hence for the interesting
case, X(to)e (- 1, oe). Perform the change of variable y In (1 + x) taking
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(-1, oo)onto R. Write
f(v) o[e 1.

Then f(0) 0, f’(0) a,f’(v) > 0 for all vsR, and (1.1) becomes
x’(t)

y’(t) -x(t- 1)= -f(y(t- 1)).+ x(t)
Thus by Theorem 2.1 there are two (possibly equal) slowly oscillating simple
periodic solutions which bound an annulus A R2, and A is C,-globally asymp-
totically stable.

Example 5.2. Consider equation (1.2). This equation was studied by Jones in
[5]. As in the above example, there is a region of particular interest, which in
this case is (- 1, 1). Let y(t) 1/2 In [(1 + x)(1 x)], taking (- 1, 1) into R. Define

f(v) o[e2v 1]/[e2v + 1].
Then (1.2) becomes

x’(t)
y’(t)

1-x2(t) x(t- 1) --f(y(t- 1)).

Again, f(0) 0, f’(0) 0, f’(v) > 0 for all v R. Thus there exists a periodic
orbit Ox, and this orbit is C,-globally asymptotically stable. Using the fact that
f(y) =-f(-y), Jones proved that there exists a slowly oscillating periodic
solution y of (1.2) having period 4. (Its existence also follows from Theorem 2.2.)
Furthermore, he showed that any other slowly oscillating periodic solution of
period 4 was just a translate of y. However, he was unable to rule out the existence
of a slowly oscillating periodic solution with another period.

Acknowledgment. We would like to thank the referee for detailed comments
on the manuscript. We would also like to thank Professor Roger Nussbaum for
his very careful reading of the original manuscript, which resulted in the present
formulation of the key trajectory crossing lemma.

REFERENCES

[1] W. J. CUNNINGHAM, A nonlinear differential-difference equation of growth, Proc. Nat. Acad.
Sci. U.S.A., 40 (1954), pp. 709-713.

[2] R. GRAFTON, A periodicity theoremfor autonomousfunctional differential equations, J. Differential
Equations, 6 (1969), pp. 87-109.

[3] G. S. JONES, The existence ofperiodic solutions off’(x) -f(x 1)[1 + f(x)], J. Math. Anal.
Appl., 5 (1962), pp. 435-450.

[4] , On the nonlinear differential difference equation f’(x)= f(x- 1)[1 + f(x)], Ibid., 4
(1962), pp. 440-469.

[5] , Periodic motions in Banach space and applications to functional differential equations,
Contributions to Differential Equations, 3 (1964), pp. 75-106.

[6] J. L. KAPLAN AND J. A. YORKE, Ordinary differential equations which yield periodic solutions of
differential delay equations, J. Math. Anal. Appl., to appear.

[7] R. MAY, Model Ecosystems, Princeton University Press, Princeton, N.J., 1973.
[8] R. NAUSSBAUM, Periodic solutions ofsome nonlinear autonomous functional differential equations,

II, J. Differential Equations, 14 (1973), pp. 360-394.
[9] , A global bifurcation theorem with applications to functional differential equations, to

appear.

[10] E. M. WRIGHT, A nonlinear difference differential equation, J. Reine Angew. Math., 194 (1955),
pp. 66-87.



SIAM J. MATH. ANAL.
Vol. 6, No. 2, April 1975

THE APPROXIMATION OF CERTAIN PARABOLIC EQUATIONS
BACKWARD IN TIME BY SOBOLEV EQUATIONS*

RICHARD E. EWING"

Abstract. For any nonnegative, self-adjoint operator A, which does not depend on time, the
backward solution to the parabolic equation, u’(t) Au(t), >= O, in a cylinder can be approximated
by the solution to the Sobolev equation, u’(t)= -(I + flA)-lAu(t). The solution to the backward
Sobolev equation can be more readily computed than the solution to the adjoint of the parabolic
equation. In a Hilbert space setting, if the norm of the solution is assumed to be bounded by a positive
constant E at the base 0 of the cylinder and the data error at T is less than a prescribed > 0,
then the norm of the difference in the solutions is O([-log (e/E)]-1). This logarithmic continuity is
essentially the best that can be obtained for this approximation.

The above result can be generalized to operators A which are sectorial with semiangle n/4 and
such that -A generates a contraction semigroup of operators. Simple numerical results for the heat
equation in a rectangle illustrate the approximation results.

1. Introduction. Consider the region of the plane given by 0 _< x -< n and
0 _< =< 1. Suppose the solution u(x, t) to the heat equation, Uxx ut, in the above
region is known approximately for all x when 1. The object of this paper is to
discuss in a Hilbert space setting the numerical approximation and continuous
dependence on data of solutions for < to a fairly general class of equations
containing the heat equation.

The problem

(1.1a) u,x=ut for0<x <n, 0< < 1,

(1.1b) 0=u(0, t)=u(rt, t) for0< < 1,

(1.1 c) u(x, 1) Z(x) for 0 < x < re,

is unstable and not well-posed in the sense ofHadamard 10]. However, continuous
dependence ofthe solution on the data can often be brought about by the additional
requirement of a prescribed global bound upon the class of solutions considered
[11]. Therefore, we add the restriction

(1.2) lu(x,O)l < E for0<x<Tt,

where E is some known positive constant.
Since the heat operator cannot be time-inverted to obtain a well-posed

problem (irreversibility), we would like to find an operator "near" the heat
operator in some sense for which the backward problem is well-posed. We then
compare the solution of the backward problem for the perturbed operator with
the desired solution of the original problem (1.1)-(1.2).

Many people have considered this type of problem. Among these are Cannon,
Douglas, John, Latt6s and Lions, Lavrentiev, Miller, Payne, Pucci, Showalter,
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Buzbee and Carasso, and others [2], [3], [4], [5], [6], [7], [11], [13], [14], [15], [16],
[17], [18], [19], [20], [223.

We now consider the differential equation on a Hilbert space,

(1.3) u’(t) Au(t), >= O,

where A is a self-adjoint operator that is not dependent on and is nonnegative,
which means the numerical range of A is contained in the right half of the complex
plane. The method of quasi-rOversibilitk introduced by Latt6s and Lions [13]
replaces A in (1.3) by a function of the operator, f(A) A (A2, with spectrum
bounded above and then solves the backward problem for the new operator.
Using the final value for this new backward problem as initial data for the original
operator, they obtained an approximation which converged to the data in their
control theory problem.

Using the quasi-reversibilit6 idea, Miller [17] employs the requirement of
H61der continuity to determine constraints on f(A). He then shows that an f(A)
satisfying these constraints can be found which results in a H61der degree ofapproxi-
mation. This method leads to rational functions of the operator for which the
numerical computations require complex arithmetic and several complicated
inversions of the operator at each time step. The purpose of this paper is to consider
a perturbation ofthe operator A which allows much easier numerical computations
and still retains logarithmic continuity.

Consider the "pseudoparabolic" [21] or Sobolev equation

(1.4) v’(t) + flAv’(t) Av(t)

with/ > 0. Since A is nonnegative and/3 > 0, we see that I + flA is invertible and
we obtain the equation

(1.5) v’(t) -(I + flA)-lAv(t).
Thus, in the quasi-r6versibilit6 setting we are choosing

(1.6) f(A) (I + A)- 1A

The idea of approximating (1.3) by (1.5) is due to Yosida. He uses this idea in his
proof of the generation theorem for semigroups of operators [23]. We see that the
Sobolev equation (1.4) satisfies the requirement of a bounded spectrum. Also,
numerical techniques do not require complex arithmetic. For some numerical
methods see [8] and Part II of the author’s Ph.D. thesis [7a].

We now state the problem considered in this paper.
Problem. Suppose u(t) is an unknown solution of

(1.7a) u’(t) Au(t),

(1.7b) ]u(1)- Zll < e,

(1.7c) ]u(0)

where ) is a given "data" vector in a Hilbert space H, e > 0 is a known small
number, E is a known positive constant, and A is any nonnegative, self-adjoint
operator which does not depend on t. H incorporates the side boundary conditions
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and has norm II" II. We want to approximate u(t) with v(t), a solution of the ap-
proximate problem

(1.8a) v’(t) -(I + flA) -Av(t), >_ O,

(1.8b) v(1) Z.

We shall show that for each > O, we can choose a fl in (1.8) such that

(1.9) ]u(t) v(t)[[ O([-log (e/E)]-1).
In 3, we consider generalizations of the results obtained in 2 using dif-

ferent techniques. We describe the notion of an operator being sectorial. Then, for
any operator A which is sectorial with semiangle zt/4 and such that -A generates
a contraction semigroup of operators, we obtain the same type of logarithmic
continuity as in (1.9) for the problem related to (1.7). Finally, in 4, we describe
some simple numerical results for the heat equation in the problem (1.1).

2. Continuous dependence on data. It is well known [9], 13], 17] that solutions
to (1.7a) have the representation

(2.1) u(t) e-tauo, >= O, uo H,

where e -tA, the strongly continuous contraction semigroup generated by -A, is
easily defined in terms of the spectral representation of A. Now we recall a well-
known result which stabilizes the problem (1.7).

THEOREM 2.1 (Stability estimate) [1]. If u(t) is a solution ofequation (1.7), then
log u(t)]] is a convexfunction oft. Consequently, if

(2.2a) u(1)ll < ,
(2.2b) [[u(0)[[ =< E,

then

(2.3) u(t) <= e,tE- forO <= <= 1.

This stability estimate clearly gives a backward uniqueness result for (1.7).
This uniqueness result implies that for 1, e-1A is a 1-1 operator. Thus the
kernel of e- A consists only of the zero vector. An easy computation shows that the
kernel of e- A is the orthogonal complement of the range of the adjoint, (e-A)*.
However, in our discussion, A is self-adjoint and since (e-A)* e -(A*) [9], we
have that (e-A), e-A. Thus since the zero vector is the orthogonal complement
of the range of e-A, we have the range of e-A is dense in H. Therefore, given any
data vector ) in H and > 0, we can write for some Uo in the domain of A,

(2.4a) Z e-AUo +

with

(2.4b) 011 < .
Thus we can write any data vector 2: in the form (2.4) and be compatible with (1.7b).
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Since 7. is the exact data for (1.8a), the exact solution for 0 __< =< of (1.8) is
given by

v(t) e t)(I + flA) a

(2.5) e(1-t)(I+A)-IA(e-AUo
e(1 t)(l + flA) 1A- ALIO

where the strongly continuous semigroup e(1-t)(I+#A)-IA is defined in terms of its
spectral representation.

THEOREM 2.2. Let u be a solution of(1.7) and let v be given by (2.5). Ifwe choose
fl 1/log (E/e), we obtain for each > O,

(2.6)

4(1 t)E
[lu(t)- v(t)l[ =< t2 log (E/e)

+ E(1-t)g

O([- log (e/E)]- 1).

Proof. We compare u(t) and v(t)in the norm. From (2.1), (2.4), and (2.5), we
have

(2.7)
U(t)- V(t) e-tAUo e(1-t)(I+IA)-IA-AUo + e(1-O(l+lA)-At[

<= e -tA e(1-t)(I+A)-IA-A uo + lie(-t)(I+IA)-tA ll
Thus defining

(2.8a) B(t) e-tA e(1 -t)(l + flA) -1A A

and

(2.8b) C(t) e(1-t)(I+A)-A,

it follows from (1.7) and (2.7) that

(2.9) [[u(t)- v(t) <= B(t) IE + C(t)lle.

Now we consider the roles that B(t) and C(t) play in our problem. We note
that IB(t) just measures the amount by which the Sobolev operator differs from
the parabolic operator. It is clear that as fl ---, 0, IB(t)ll --+ 0 in some sense. As in
the author’s thesis, one can show that liB(t) is at most O() with the bound

4(1 t)
(2.10) B(t) =< 2 ft.

C(t) III 1 measures the effect of the backward Sobolev equation on the error
term g, in the data. We can easily obtain the bound

(2.11) C(t) < e(1-’)/a.

As --, 0, the bound el-’)/a grows very rapidly. Thus we must balance the two
terms against each other to obtain a best estimate. If we could solve for the bound
for liB(t) in closed form in terms of fl as we did for C(t)l[, we could obtain the best
/3 in closed form. At present, we can only approximate/3.
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The best choice of fl for the second bound is given by

(2.12) fl 1/log

With this choice of fl, it follows from (2.9), (2.10), and (2.11) that for any > O,

(2.13) u(t) v(t) <= 4(1 t)E
2 log (E/e,)

+ E(1 -t)e‘t 0([- log (/E)]- 1).

Remark. The choice (2.12) is not the best possible choice of fl since it gives the
second term significantly better continuity properties than the first. In regard to
this problem, we conducted a simple numerical experiment on the computer for
the heat equation (1.1). If we take

(2.14) Z e- sin x,

we know a priori the exact solution to the backward heat equation. Using these
data and then perturbing it we considered the differences in the Fourier series
representations ofu(t) and v(t) as we varied e. The literature tells us we cannot expect
usable results all the way back to the time 0. For 0.5, we obtained numeri-
cally

lu(.5) v(.5) =< (.130)[log (lfi;)]- 1.113.

Thus even with this very simple problem, where an essentially best possible
was used, we don’t get significantly better than logarithmic continuity.

3. Generalizations. We recall that all the results in 2 hold for any non-
negative self-adjoint operator A which does not depend on t. The techniques that
were used depended heavily on the self-adjointness of A. We now extend these
results to more general operators.

First we assume that -A generates a strongly continuous contraction semi-
group of operators on the complex Hilbert space H. We shall add another restric-
tion later and shall need the following theorem.

THEOREM 3.1 [23]. The operator -A is the generator of a contraction semi-
group if and only if- A is closed, densely defined, each 2 > 0 is in the resolvent set

of A, and
(3.1) ]1(2 q- A)-III-< 1/2 for all 2 > O.

COROLLARY 3.2 [23]. If the operator -A is the generator of a contraction

semigroup, then for every > O, the operator Jt (I + A)- is a contraction, or

(3.2) Jail <- for every > O.
From the identity

(3.3) JA (1//3)(1 Jt)= AJt,
we clearly see that A commutes with Ja. Then from (3.2) and (3.3) we see that JaA
is a bounded linear operator:

II,,/aAII- II(1/)(I Ja)ll
(3.4) =< (1//3)(1 + IIJell)

=< 2//3.
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Due to (3.4) we can define the group of linear operators by

(3.5) T(t) exp (-tJA),
where we use the power series to define the exponential function. Yosida showed
[23] that for each > O, >= O, Te(t) is a contraction and that the strong limit

(3.6) T(t)x s-lim Tt(t)x, x H,
B--,O

exists and is the semigroup generated by A. Yosida also showed that for x D(A),
the domain of A, then x D((d/dt)T(t)), x D((d/dt)Try(t)),

d
(3.7a)

dt
T(t)x A T(t)x T(t)Ax, >= O,

and

d
(3.7b)

dt T(t)x JAT(t)x T(t)JAx, >= O.

From (3.7b) we see that for any ,/ > 0,

(3.8) T(s)Ta(t) Ta(t)T(s), s, > O.

Also from (3.7b) if x e D(A), then Ta(t)x e D(A) and we see that from (3.6) and (3.8),
we have for s, > 0,

(3.9)

Now from (3.6),

T(s)Ta(t)x s-lim T(s)Ta(t)x s-lim Ta(t)T(s)x.
0 0

(3.10) s-lim T(s)x T(s)x.
0’-* 0

Then since Te(t) is continuous and thus closed,

(3.11) s-lim Ta(t)T(s)x Ta(t) s-lim T(s)x Tt(t)T(s)x.
0 0

Thus combining (3.9) and (3.11) we see that for x e D(A), s, > 0,

(3.12) T(s) Tt(t)x Tt(t)T(s)x.
Now we need to consider some additional terminology. An unbounded

operator A on H is called sectorial with semiangle 0 if the numerical range of A,
{(Ax, x)’x D(A)} ,is contained in the sector {z "larg (z)] =< 0}. We recall the follow-
ing theorem.

THEOREM 3.3 [12]. If- A generates a contraction semigroup T and A is sec-
torial with semiangle O, where 0 <= 0 < rc/2, then T is a holomorphic semigroup. For
each > 0 and x H, T(t)x D(A) and AT(t) is a bounded linear operator on H
with IIAT(t)]] <- M1/t, where M is a positive constant. The identity T(t) T(t/m)
holds for > 0 and m >= t, and we also have

(3.13) A’T(t) <= Mm/tm,
where M,, are a sequence ofpositive constants.
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Note. The last inequality in Theorem 3.1 is crucial in obtaining the last
results above.

Showalter [22] introduces a collection of semigroups which he calls Q-R
semigroups generated by -(A JA)and denoted by

(3.14) E(t) exp (-t(A JA)),
and proves the following theorem.

THEOREM 3.4 [22]. Let -A generate a contraction semigroup and define the
Q-R semigroups, E, by (3.14). Then the Q-R semigroups are each contractions if
and only ifA is sectorial with semiangle /4. In this case we have lim_o E(t)x x
for each x H, uniformly on bounded intervals, and thefollowing estimates holdfor
anyt >__0"

(3.15a) E(t)x x <= Ax JAx [, x D(A),

(3.15b) Ea(t)x xl _-< t./llA2xl, x D(A2).
We can now state the main theorem of this section.
THEOREM 3.5. Let -A generate a contraction semigroup and let A be sectorial

with semiangle zt/4. Let u be an unknown solution to

(3.16a) u’(t) Au(t), >= O,

(3.16b) lu(1)- 7.1<
(3.16c) u(0) < E,

where 7. e- Auo + q and IIq/II < e. Let

(3.17) v(t) e

be a solution to

(3.18a) v’(t) JAv(t),
(3.18b) v(1)

where Ja (I + flA)-. For the choice

(3.19) /3 Z/log (E/e),

(3.20) Ilu(t)- v(OII-- O([-log(e/E)]-1)

holdsfor each > 0, where the constant depends on and is displayed below in (3.30).
Proof. In defining his Q-R semigroups, instead of the notation in (3.9),

Showalter [22] defines

(3.21) E(t) =_ T(t)T(-t), >__ 0, > 0,

where T(t) and T(t) are defined in (3.6) and (3.5). In this form, (3.15b) becomes, for

(3.22) lim T(1)T(-1)x x, x D(A).
/-0

Since by Theorem 3.1, -A is densely defined, the range of T(1) e- A is dense in
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H and the requirement that

(3.23a)

where

(3.23b)

is not a restriction.

)(. e- AUo +

in (3.28), we obtain for each > 0,

(3.30) u(t)- v(t) <= 2(1 t)MzE
2 log (E/e)

+ E(1-% O([-log (e/E)]- 1).

4. Numerical results. In this section we present some results of numerical
comparison of the Fourier sine series representations of the solutions to the heat
equation in a rectangle (1.1) and the corresponding Sobolev equation approxima-
tion. We also considered the Crank-Nicolson method and got very comparable
numerical results, but these results are not presented here.

First we describe the numerical method for choosing the parameter fl in (1.4).
We know from the literature that it would be overly optimistic to expect very good
numerical results all the way back to 0. Thus we built in the requirement that
the choice of fl would be best for results at .5, half the way back. We noted that
for .5 we can obtain the bound

(4.1) Ilu(t)- v(t) < (1 e-St)E +

Setting

(3.29) fl 2/log (E/e)

Consider u(t) and v(t). From (3.5), (3.6), (3.16), (3.17), and (3.18) we have

u(t)- v(t)ll e-ratio e(1-t)JaA(e-auo +
(3.24)

<= T(t)Uo e-(A-SA)T(t)UoI +
Using the fact that

(3.25) e -(A-JtA) E(1) T(1)T(- 1)

from (3.14) and (3.21), we have from (3.8),

u(t) v(t) <- Y(t)Uo T(1)T(- 1)T(t)uo + e(1-t)StAlp

(3.26) IIT(t)Uo- T(1- t)T(-1 + t)T(t)Uoll +
T(t)Uo E(1 t)T(t)Uo + Ile(1-t)Jamd/

Theorem 3.3 implies that -A generates a holomorphic semigroup. Hence,
uo D(A) implies uo D(A2). Then from (3.4), (3.7), and (3.15b), we have for > 0,

(3.27) ]]u(t)- v(t)]] =< (1 t)fl]]A2T(t)Uo]] +
Now from (3.13) of Theorem 3.3, we have for > 0,

(3.28) [[u(t)- v(t)[[ _<_ (1
2 t)MzEfl + e2(l_t)/Bg.
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To minimize this bound, we differentiated, set the result equal to zero, and used
an interval halving method on the computer to obtain an approximation for the
required ft. Table gives an idea of the optimal choice of fl for different data errors
with E 1. Using the choices of fl found in Table we obtained the result in (2.15).

TABLE

Data error

10 -2 0.196
10 -3 0.113
10 -4 0.080
10- 0.061
10 -6 0.049
10 -7 0.041

Now we describe a few experiments consisting of various perturbations of the
fundamental mode of sine curves for which the exact solution of the heat equation
is known a priori. We first perturbed the fundamental mode with .01 sin 2x and then
.01 sin 3x in Figs. and 2 for 0.5. Then in Fig. 3 we perturbed the sine curve

True soln.- x sin x + .01 sin 2x
Sobolev 0.5
Heat

-I

FIG.
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True soln.
Sobolev
Heat

x= sinx+.01sin3x
0.5

rr/a

Fio. 2

with a uniform error of ,01 (expanded in the first ten terms of this Fourier series)
and considered the results at .5. In each case 100 intervals were used in the
x-direction and 10 intervals in the y-direction, Simpson’s rule was used for the
numerical integration. Truncation in the Fourier series always occurred after
20 terms. In each of the figures all solutions have zero boundary data on x 0
and x ft. "True solution" means the exact solution u of the heat equation with
u(x, 1) sin x, "Sobolev" refers to the solution w of the Sobolev equation Wxx

wt flwxxt with w(x, 1) sin x + perturbation, and "Heat" refers to the solu-
tion z of the heat equation (which was obtained by setting/3 0 in the above equa-
tion) with z(x, 1) sin x + perturbation. The severe problems with the backward
numerical computations on the heat equation are apparent.
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True soln. x sin x +
Sobolev 0.5
Heat 0.01

I.TXlO14 4.4 1014, .5,4XI014 4.4X1014 1.7’1014

-2
-3.axo4 -5.zxo4rr/,-5.zxo4.. -3.zx4

0
X

FIG. 3
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ALGEBRAIC METHOD FOR SOLVING LINEAR DIFFERENTIAL
EQUATIONS WHOSE COEFFICIENTS ARE FUNCTIONS

OF ONE VARIABLE*

SERGE VASILACH"

Abstract. The present paper is devoted to an algebraic method for solving linear differential
equations, whose coefficients are functions of one or several variables. This method is based on the
composition product of tensor products of kernel distributions and permits transformation of dif-
ferential equations into algebraic composition equations.

In our subsequent papers, we shall apply the same method for solving partial differential equations
whose coefficients are functions of several variables.

1.1. Preliminaries. It is known that the integral transforms (Fourier, Laplace)
permit transformation of linear differential and partial differential equations into
algebraic equations by means of the convolution product. Likewise, by means of
the algebraic operational calculus of distributions, linear differential and partial
differential equations with constant coefficients are transformed into algebraic
equations in a field of operators (cf. [1], [2], [3], [43). In the present paper we
present an algebraic method for solving differential equations whose coefficients
are functions of one or several variables, by means of the composition product of
tensor products of kernel distributions. This method permits the transformation
of linear differential equations into algebraic composition equations.

1.2. The composition algebra @(-rx))+ry)- First of all, we recall the
definition of the composition product of tensor products of kernel distributions,
such as that given in [5, Chap. I] and 6, p. 181]. For a more general algebraic
composition product of tensor products of finite families of bimodules, see [6,
pp. 100-103] and [7].

Let X" (resp. Y") be a topological vector space isomorphic with the Euclidean
space R", n >__ 1. Let (cf. [2, Chap. II, 2]) 9(+ rx)(resp. 9(_.r,)) be the locally con-
vex space of indefinitely differentiable functions with support limited to the left
(resp. to the right), for x e X" (resp. y e Y"). Let (cf. [2, 2, no. 2]) 9-rx) (resp.
91+r,)) be the strong dual of 9(+ r) (resp. 9(-r,)). On the other hand, let (cf. [8,
2, pp. 4-7]) 9(+r)(_r,) be the locally convex space of indefinitely differentiable

functions with support limited to the left for x e X" and with support limited to
the right for y e Y". Let (cf. [8, 4, pp. 7-9]) 9}-r)(+ ry) be the topological dual of

(-t- I"x)( 1-’y)

91_r)(+r,) is the locally convex space of distributions with support limited
to the right for x e X" and to the left for y e Y". We have (cf. [8, Thm. 1, 3, no. 2])

9(-rx)(+r,l 9(-rx) (R) 9(+r,) (kernel theorem).

The locally convex space 9(-rx) may be considered as a subspace of9(’- r), endowed
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with the topology induced by the latter. Then,

is a composition algebra, in which the composition (S, T) --* S T is the bilinear
operation of

((-rx) )+r))x ((-rx) +r)) into (-rx)
defined as follows" for S(x, {) (-r) }+r)and T(, y)s (_r }+r), set

(S(x, ), T(, y)) S(x, )T(, y)d.(1.1) (So T)(x Y)

On the other hand (cf. [9, ff 5, pp. 848-849]), if we take y N N x y N Cj N xj
for all j [1, n] N, we obtain

The relation (1.2) shows that the operation of composition in (-r @ +r, is
an extension of the composition product of the first kind, as given in the theory
of Volterra’s integral equations. More precisely, (1.2) is a composition product
wih variable limits of integration.

In another connection, the composition product in -x @, such as
defined in [6, p. 181], is an extension of the composition product of the second
kind, such as defined in the theory of Fredholm’s integral equations (operation
of composition with fixed limits of integration).

On the general theory of topological composition algebras, see [10].
Remark. For x e X, y e Y, let (x y) be the Dirac kernel. On the properties

of (x y), see Schwartz [5, Chap. I, 4, pp. 102-105]. In particular, it is known
that (x y) belongs to @ ,, N @, @
@ N, (-r @ -r, and -r @ (+r,. Moreover, (x- y)is the unit
element for the composition product, i.e., (x y)o S S (x y) S for all
S N. Indeed, S e N @ and 8(x y)N’
(x ), S(, y)) has meaning.
Indeed, (x ) is the identity distribution kernel (2, )e’ @ (cf. [5,

Chap. I, pp. 102-103]), with e (N’, ’) e ’, such that

s J’o (x, g)s(, y) d S(x, y).

Likewise, (, y)e ! (R) y implies S 6(x y) S.

p q2. The topological composition algebras L.(Ly), 1 < p < 1 < q <
and ’*’.

2.1. The spaces (Lfoc) and (Lfo)y. Let X" (resp. Y") be a topological space
isomorphic with the Euclidean space , n >= 1. For 1 =< p < , =< q < ,
lip + 1/q 1, let (L’o) (resp. (L]o)r) be the vector space of classes of functions
whose pth (resp. qth) powers are locally integrable with respect to the Lebesgue
measure on X" (resp. Y"). Provided with the topology defined by the sequence of
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norms

(2.1) P(f) [f(x)l p dx

in which (K) (resp. (L)) is a covering of X (resp. Y) with compact subsets,
such that

Kc K+(resp. Lc L+) for allveN,

it is easy to show that (Lfo)x (resp. (LIo)) is a Frchet space.
Consider, on the other hand, the vector space of (classes of) functions f(x, y)

with pth locally integrable powers with respect to Lebesgue measure on X, for
each fixed y e Y, and with qth locally integrable powers with respect to Lebesgue
measure on Y, for each fixed x e X. One can consider f(x, y) as a vector-valued
function of X" with values in (Ulo)., i.e., as an element of the vector space
(Lfoc)x ((Lfoc))

For each compact K (resp. L) of X (resp. Y), we denote by LP(K,) (resp.
L(L)) the vector space of restrictions of elements of (Lf’oc) (resp. (Lo)v) to K
(resp. L). Under these conditions, the vector space (Lf’o) ((Loc)v) (Lio)v ((L’oc))
up to isomorphism, provided with the topology defined by the sequence of norms

(2.2)

P(f) Ilfll IIf(x, y)IIZ dx fL ) lq[If(x, y)lidy

fK ;L p/q 1/p

If(x, y)l q dy dx

If(x, y)l p dx dy

is a Fr6chet space.
Remark 2.1. It is known that the Banach space LP(Kv) Lq(K) is a vector

subspace of the Banach space LP(K)(Lq(L)), and that the topology induced by
LP(K)(Lq(L)) is weaker than the projective topology. For p 1, one has

LI(K) L(L) L’(K)(L(L)),
algebraically and topologically, and in this case, for each f LI(K) L(L) we
have

(2.3) Ilfll | ]if(x, y)ll dx.
"K

2.2. The topological composition algebras L’(K,,)(L(K)), v . For each
pair f, g of elements of (Lio)((Lo)r) and each v , let f g be the composition
product in LP(K,,)(L’(K,,))defined by

fog fr f(x, )g(, y)d.
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PROPOSITION 2.1. The Banach space LP(Kv)(Lq(Kv)) is a Banach algebra of
composition, for each compact K of the covering of

Proof. First of all, we shall prove that f g belongs also to LP(Kv)(Lq(K)).
Indeed, from (2.2) we get, for each fixed (x, y) X" x Y",

If gl =< I_ If(x, )11g(, y)l de
(2.4)

If(x, )1q d Ig(, Y)I p d

by virtue of H61der’s inequality, whence

If glq <= If(x, )1q dr Ig(, y)l ’ d

and

(2.5) lf gl q dy
1]q

If(x, )1q d

But

by virtue of (2.2). Therefore,

(2.6) If gl q dy dx <= If(x, q)l drl dx gll.

But by virtue of (2.2) we have (f(f If(x, n)l dn)/)/ Ilfl whence

(2.7) If ogll fll’llgll.

Inequality (2.5) shows that (fo g)(x, y) belongs to L(K) for each fixed x X".
Likewise, one can prove that (f g)(x, y) belongs to L(K) for each fixed y Y".
Therefore f g belongs to LP(K)(Lq(K)).

On the other hand, LP(K)((L(K)) is a Banach composition algebra by
virtue of (2.7).

2.3. The topological composition algebra t,) Suppose n 2, X and Y are
topological spaces isomorphic with and (K) resp. (Lv)) is a covering of
X (resp. Y) with compact subsets such that K = Kv+ ) resp. L L+ ) for any
v N Let tl,) be the vector space of real functions continuously differentiable
of order with respect to x X, and of order m with respect to y 6 Y.

provided with the topology defined by the sequence of normsxy

+’f(x, y)
(2.8) P(f) sup

l Xy
tm

is a FrOchet space.
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PROPOSITION 2.2. The locally convex space (t(l’m) provided with a secondxy

internal operation defined by the composition product

(2.9) (fo g)(x, y) f(x, {)g({, y)d{

is a topological composition algebra.
Proof. We have

c3s+’(fo g) frcx t3y
f)(x, )g(r?(, y)d + xs_ If(x, X)gyt, y)]

s-- 2

-It- X 2 f’(x )1= Xl:ytt Y)l -II-

Ff(S- 2 _(t)(x ) (t)(X,+ xx ax’-l (x, )l=gy,, Y)] + f2 (x, )l=xgy,, Y)

t t 2

c3yt_ [f)(X,xs. )1= yg(Y, Y)] cyt- 2 ,g;(e "l[f)(x, C)le

2 (s) (t[fxs(x, S)l=ygyt-33)(, Y)l=y]

f(s)(xx- )1 rg,-- 2)(dJ Y)[ y f(x, {)l=ygy’ {(dj, Y)l=y,

whence

f g sup
s<_l
tNm

c3s+’(f g)
<M fl. g,,, (x, y) e K x L,

where M depends on and m.
Therefore the bilinear mapping (f, g),---fo g of xy(l(l’m) X egypt,m) into xy((l’m)

defined by the composition product (2.9) is continuous (cf. [11, Chap..II, p. 1,
no. 4, Prop. 4]).

3. Composition product of kernel functions.
3.1. Preliminaries. Let (Lloc)x((Llc)y) be the vector space of real

functions f(x, y) in X Y, such that for each fixed y Y, f is locally integrable
with respect to Lebesgue measure on X, and for each fixed x X, f is a locally
bounded and measurable function of y Y, where X and Y are one-dimensional.
Then, for f, g arbitrary elements of, the composition product

f g f(x, )g(, y) d{

has meaning for -oo <a_<y=<{=<x=<b< oo(cf.2).



300 SERGE VASILACH

3.2. Heaviside kernel.
DEFINITION 3.1. We call Heaviside’s kernel in X x Y the function Y(x y)

given by

for x >= y,
(3.1) Y(x y)=

0 elsewhere.

3.3. Kernel functions in {+rx)(-ry). For f an arbitrary element of xy, set

{f} Y(x y)f(x, y)
f(x, y) for X y,

0 elsewhere.

Under this hypothesis, for each fixed x e X, {of } is a distribution in y, an element
of 9{_r,), and for each fixed y K {f} is an element of {+r). In the sequel the
elements {f} will be called kernel functions.

Now, we shall prove that for x e X, y e Y arbitrary elements such that x >_ y,
{f} is a distribution of 91+ r,)_ v,. First of all, let us prove that {f} is an element
of i+ r,) (@i-r,)), i.e., a vector-valued function with values in i-r,) (cf. [8, 3,
no. 1, Def. 1]). Indeed, by virtue of kernel distribution theory (cf. [8, 3]), for

4 9(_ rx) and 9(+ r,), such that supp 4) c oo, b] and supp c [a, av [,
we have, using Fubini’s theorem"

({f}, q(x) (R) W(y)) ;Y(x y)f(x, y)d(x)UP(y) dx dy

fw(y)dy f Y(x-y)f(x,y)cb(x)dx

f dp(x)dx f Y(x y)f(x, y)P(y)dy,

({f}, (x) (R) O(Y)) O(Y) f(x, y)dp(x) dx

dp(x) dx f(x, y)q/(y)dy

since the support conditions give us the inequalities a =< y =< x =< b. Therefore
{/} e 9+rx)(91_r,))(cf. [8, 3, no. 3, p. 13]).

On the other hand, we have

9(+rx)(9(-rr)) 91+rx)(R) 9(-r,)
by virtue of the kernel theorem (cf. [8, 3, no. 4, Thm. 1]). Hence,

3.4. Composition product of kernel functions. For each pair (f, g) of arbitrary
elements of )ffxr, the composition product of the kernel distributions {f}, {g} is
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given by

{f} {g} (

:f
f(x, (, Id

Y(x )f(x d), Y(- y)g(,

f Y(x )f(x, )Y( y)g(, y)d}

(

_1_1f(x, )g(, y) d fory_< _<x,

0 elsewhere,

where rf(x, )g(, y)d f g is the composition product in xr (cf. no. 1).
Remark 3.1. In the same manner one can define the kernel functions of the

elements of (Lf’oc)x((L’oc)r) and ’xr{l’m), and also the composition product of these
elements.

3.5. Derivatives of kernel functio in {, For all feo , the kernel
functions {f} Y(x )f(x, ) give us

(3.2)
a{f}

=6(x- {)f({ ) + Y(x )= + 6(x )f( )X

where

Of } Y(x )c3f(3.3) xx xx
is the kernel function of f/Ox, considered as a distribution in x X, for x => .
Likewise,

(3.4) t3{f} _{t?f}_ (5(x-)f(x x)

in which {c3f/c)is the kernel function of ?f/c3, considered as a distribution in
e E, for _< x. Then, from (3.2) we obtain for the derivative of order v <

x -gUx + 6(x-) -a-x-- x-,

for {f} considered as a distributioo in x e X, for x .
3.6. Composition powers of Y (x {). We have

(3.6) [Y(x-)2]=fY(x-y)Y(y-)dy={X-}= Y(x-)oY(x-Q

whence, by recurrence on the powers of composition,

(x )-
(3.7) [Y(x- #)v]0

(v- 1)!
forallvetN* {1,2,3,...}.
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(3.8)

and

(3.9)

(3.10)

and

3.7. Primitives of {f(x, )}. We have

Y(x ) {f} f(rl, )

primitive of {f} with respect to x

{f}o Y(x ) f(x, I) drl

primitive of {f} with respect to {.

3.8. Unit element of composition of kernel functions. We have

a(x {)o {f} 6(x tl)f(rl ) dq {f(x {)}

(3.11) {f b(x ) f(x, q)b(rl {) drl f(x, {)}.

Therefore, 6(x ) is the unit element of the composition for elements of tl,,,)
’’x{

(resp. 3fxy)considered as kernel functions.
PROPOSITION 3.1. We have

(3.12) a’x(x )o {Y(x {)} {Y(x {)}o a’x(X )= {6(x {)}.
Indeed,

6’x(X-O {Y(x- O}

Likewise

Therefore, we can write by definition

(3.13) [6’(x- 0-1] {Y(x- 0} and

Thus, by definition, the general formulas

(3.14)

c6(x 11)drl {6(x {)}.

{Y(x O}o{6’x(X O} ={f Y(x rl)6’,(rl

6’,(r/ {)dr/} {a(x- {)}.

{6’,,(x )} [{Y(x 0}-11o.

{6’x(x- O}-= [{Y(x 0}-11 {6t-)(x )}
[{6,x(x )}]o [{Y(x 0}-)]. and
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3.9. Derivatives of the composition product. We have

(3.15)
c{f} and {f}oa’x(x {)a’x(X ) {f} ax

{f}

Indeed,

whence, by virtue of (3.2),

a,(x {) {f} o{f}
cx

Likewise,

{f 6’,(x ) { ff(x, n)6’.(, {) dr/ }
{ 6(x {)f(x, x)

by virtue of (3.4).
From (3.15), we get

a)(x )o {f} -xk{f},

(3.16)

6)(x ) f } 6)(x ) (-1)

Remark. Iff is a function of the single variable x, we set

(3.17) {f} Y(x )f(x) (R)1 {f(x)(R) 1},
in which 1 is the constant function of E equal to 1. Then

{f}o 6’,(x ) ---{f (R) 1} {0}.

Likewise, iff is a function of the single variable {, we set

(3.18) {f} {1, (R) f()}, where lx(x) for each x,
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whence

6’x(X )o {f} -x(lx f()} {0}.

PROPOSITION 3.2. We have

(3.19) 5’x(x )o {f) {g} {Jo’-" {g},
#x

(3.20) {f}o 6’(x )o {g} {f}o
c{g} c{f}
cx c

and

a{g}
(3.21) {f} {g} CS’x(X {) -{f} c

These formulas are an immediate consequence of the formulas (3.15) and of
the associativity of the composition product. More generally, we have

((k)/xktX ) {f} {g} {g},

(3.22)
c3{g}

(_ 1)c{f} {g}{f}o a’ff)(x )o {g} {f}o cx c3{

{f}o {g}o cS)(x ) (- 1){f}

3.10. Operators of multiplication in [-rx)(+r)"
DEFINITION. Let a(x) be an indefinitely differentiable function of x X. For

each S(x, ) -rx)t+ re) we say that a(x) is a multiplication operator, if we have

a(x){S(x, )} {a(x)S(x, )}
PROPOSITION 3.3. Let a(x) be a multiplication operator in ’-v)+re). Then

(3.23) { y( Q}(k) {a(x) o) )
j (X )k-1

(6x(X- ))} =(-1
(k- 1)

a()

Proof. We have

[Y( )]{a(x)fJ)(x )} { 1)’ a(z)(fxs(Z) ))dz

6x,(X(k- 1)
a()

On the other hand, kping in mind the formulas (3.22), we obtain

(k- 1)’.
a({) o60)(xx, )=(-1)[ (L-i a({)

whence (3.23). The formula (3.23) is fundamental, because it leads to the following
important theorem.
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THEOREM 3.1. Each linear differential operator, whose coefficients arefunctions
of a variable, may be transformed in a composition product in i- rx)t + r).

Proof. Let f be a linear differential operator of order n >__ 1, acting on an
element S(x, )

_
rx)t + r), defined by

S(x, )
(3.24) f(S) a,_j(x)

j=0 c3xJ

where the aj(x), j 0, n] N, are multiplication operators in 9i_vx)(+I-). By
virtue of (3.22), we can write

(3.25) (j)n(s) a._ (x)(ax,(X )o S(x, )).
j=O

On the other hand, we have

a (J)_j(X)6xj(X )} S(x, )t-rx)t+r) for allj [0, n] c N.

Suppose ao(x) 1. Then, we can write

(3.26) n(S) {6().(x )}o S(x ) + a,_j(x)(6(J)x- )) S(x )xJ
j=O

But 6t"(Xx. ) possesses an inverse in _r(+r given by (cf. Prop. 1, 3, no. 8,
formulas (14))"

(3.27) [{62(x )}-rio [{5,x,(X )}(-,)]o [{r(x )},]o.
Therefore, by composition to the left in (3.26) with (3.27), we get

[{Y(x )}"] {n(S)}
(3.28)

s(x ) + [{Y(x )}.]o a._;(x) ((x(X )) s(x, )
j=O

whence, by virtue of (3.23), the following fundamental formula is obtained"

(3.29)

where

(3.30)

[{ Y(x )}"] {f(S)}

{6(x ) + H(x, )}o S(x, ),

._.1 (J (.X;_ _---_ _)__n_-_l }{H(x, )} a(, (n 1)!
a,_j()

j=O

4. Algebraic operational methods for solving differential equations with
variable coefficients.
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(4.1)

4.1. Fundamental kernels. Consider in i-rx)t+ r) the equation

a(x)a--x + + a.(x){} a(x )
dx"

in which (aj(x))l <=j<=, are indefinitely differentiable functions of x e R. Then the
fundamental formula (3.29) allows us to write (4.1) as follows"

(4.2)
(x )"-}{( ) + H(, )}o {} ( -in which

63n-k !X_ .)n_-_ lak()}(4.3) H(x, )
k=l

(- 1)"- 8--,-=-, [. (n 1)!

Now, let [[i-rl(+r)]] be the algebra of formal series, the terms of which are
elements ofi_r(+r. Then {i(x
whence

(4.4)
{E(x, )} {6(x ) + H(x, )}(-1)o {Y(x )}n

E (-1){H(x, )}() {Y(x, )}",

where the composition powers of the kernel {H(x, )} are given by

{H(x, {)}(o) 5(x {),

{H(x, )}(1) {H(x, {)},

(4.5) {H(x, {)}(2) H(x, r/)H(r/, {)dr/ {H(2)(x, {)},

{(x,} H-(, t(, t {H(x, }.

Let

(4.6) {F(x, {)} (- 1){H(’)(x, {)}

be the "resolvent kernel" formed with the composition powers of {H(x, )}. If

On the formal series and their extensions, cf. [1 2].
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we set

we obtain

M sup IH(x,
a<=<_x<b

IH(")(x, )l < MY
(b a)v-1

(v

Therefore {F(x, )} is an absolutely and uniformly convergent series on each
closed finite interval of R. Then the same is true for the solution

(4.7)

{E(x, )} 1){H()(x, )}o Y(x )}"

r(x y)(n
(n- 1)!

dr/

4.2. Differential equation of first order. In particular, if we consider the first
order equation

(4.8) d{E_} + a(x){E} 6(x O,
dx

the formulas (4.5) give us" H(x, ) a(0 lx (R) a(0, whence

{a)} 6),

{a()}1)= {a(0},

2! a(r/) dr/

{a()} (3) a()(x, r/)a(r/)dr/

2!

}i,f a(r/)dr/)
{a()}() {a()(x, )}

{a(Z)(x, )},

---{f---(ff a(r/1)dr/1)2a(r/)dr/1
----a() a(r/1) dr/1 {a(3)(x,

3!
a(r/) dr/

a(r/) dr/ for all v e N.
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On the other hand, we have

Therefore

whence

(4.9)
{E(x, {)} {F(x, {)}o Y(x {) , (-l) a(t/) dr/

vel

={exp[-ff a(rt)dr]}= Y(x )exp[-ff a(rt)drt].
5. Algebraic method for solving Cauchy’s problem for linear differential

equations with coefficients functions of an independent variable.
5.1. Statement of the problem. Consider the linear differential equation of

order n > 1"

dx
+ al(X)dx,_. + + a,,(x)y f(x)

in which (aj(x))<=j<_,,, f(x) are given functions satisfying some conditions of
differentiability in any closed finite interval 1 [a, b of the real line .

It is required to find a solution of (5.1) in a neighborhood of e e I, satisfying
the following conditions (Cauchy’s problem)"

(5.2) y(o) C, y’(o) C2, "", y("-a() C,,.

To do this, proceed as follows" by transfer of (5.1) into -rx)(+r), we get

+ al(x)l),,_ +... + {a,,(x)y} {f}.

Of course, we suppose the functions (aj(x)) <:j<=, are multiplication operators in

i-rx)(+r). On the other hand, the fundamental formula (3.5) gives us, for



ALGEBRAIC METHOD 309

for 0 =< v __< n. By virtue of (5.2),

dy I d{y}
-X dx

{daY} d2{y}
X2 dx2

dx dx

dx

6(x oOC

a(X )C aa(X 00C2,

v-1

k=O

n-1

E {a,( )c._}.
k=O

Then, equation (5.3) takes the form

dx
d"-’{v}+ a,(x) -;--;,- + + a,(x){y}
ax

n-2

{f} + Z aft)(x )C,_k .qL a l(x) 62(x z)C,_l -k
k=O k=O

n-3

+ az(X) E "(k)tv 0)C. -[- + a l(X)a(x 0)(x g)C"xk, 2
k=O

For solving (5.5) it is required to find first of all the fundamental solution {E}
of the equation"

(5.6) d"{E} d"-’{E}
dx---g-+ a(x) dx,_ + + a.(x){} a( )

whose solution, by virtue of the formula (4.7), is given by

{E(x, )}
(5.7)

X (- ) (, n)
(n )-
(q- 1) dn

If we denote by {(x, )} the right-hand side of(5.5), the solution of (5.5) is given by

(5.8) {y} {(x, )}o {(x, )}.

5.2. Cauchy’s problem for the first order linear differential equation. In par-
ticular, the first order linear differential equation

dy
(5.9)

dx - a(x)y f(x)

whose solution satisfies the Cauchy condition

(5.0) y() c,,
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is obtained as follows" From (5.9) and (5.10), we get the equation

(5.11)
d{y}
dx

+ a(x}{y} {f} + 6(x )C

The fundamental solution of (5.11) is given by (cf. formula (4.9)),

(5.12) {E(x,oO} exp a(r/)dr/ Y(x o)exp a(r/)dr/

therefore, by (5.8) we get"

{y} {E(x,z)} {f} + {E(x,z)} 6(x- )C

E(x,s)f(s)ds + Cl{E(x,)}

{ff exp [- fXa(sl)ds,f(s)ds} + C,{exp [- ff a(s)ds]}
For e __< x, we obtain the classical formula

y(x) exp a(sl)dsl f(s) ds + C exp a(s) ds

in which

Z(x, e) exp a(s) ds

is the solution of the homogeneous equation

dZ
d2 + a(x)Z 0

satisfying the Cauchy condition

Z()-- 1.

In a forthcoming paper we shall prove that the functions which multiply the co-
efficients (Cj)x <_j<_. in (5.8) form a fundamental system of solutions of the homo-
geneous equation

d"- y
(5.14)

d"y
+ a (x)

dx"-
+ + a,(x)y 0

dx"

whereas the function

(5.15) Yo(x) E(x, )o f(x) E(x, s)f(s) ds

is a particular solution of the nonhomogeneous equation (5.1), satisfying the
Cauchy conditions"

0 for0<v< n- 2,
(5.16) Y(o’)(a)

1 forv<n- 1.
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More precisely, our algebraic methods give simultaneously a fundamental system
of solution of the homogeneous equation (5.14) and a particular solution of the
nonhomogeneous equation (5.1)(cf. also S. Vasilach 11], where we have obtained
the same results by a different method).

Our next papers will be devoted to our algebraic method for solving partial
differential equations whose coefficients are functions of several variables.
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ON A NONLINEAR INTEGRAL EQUATION FOR POPULATION
GROWTH PROBLEMS*

FRED BRAUER’

Abstract. We consider a nonlinear Volterra integral equation which arises in the study of popula-
tion growth assuming a growth rate depending only on population size, and a probability of death
depending only on age. The same type of equation also arises in the study of the spread of a disease for
which recovery from the disease confers no immunity to reinfection. We obtain a result on boundedness
of solutions, and a condition under which no solution can tend to zero.

1. Introduction. The study of population growth, assuming a growth rate
which depends only on the size of the population and a probability of death which
depends only on age, leads to a Volterra integral equation of the form

(1) x(t) f(t) + g(x(t s))P(s) as.

Here, g(x) is the number of members added to the population in unit time when
the population size is x, so that g(x)/x is the rate of growth of population size in
unit time per unit of population size. In many situations, for example, populations
governed by a logistic equation, with g(x) ax bx2 for 0 <__ x <__ a/b, this growth
rate decreases as the population increases. The function P(t) represents the prob-
ability that a member of the population survices to age t. Thus g(x(t s))P(a) As
approximates the number of members added to the population between time
(t s) and time (t s + As) who survive to age s at time t. The term f(t) represents
the number of members of the population who were already present at time 0
and who are still alive at time t.

The equation (1) may also be used to describe the number of members of a
given population who are afflicted with some disease, provided that recovery from
the disease confers negligible immunity (so that the growth rate depends only on
the number of diseased members), and provided that the disease has a negligible
incubation period (so that no delay terms appear in the integral). This model has
been derived and used to study the spread of gonorrhea [2], [3].

Another problem which leads to the same equation is an economic model,
where x(t) represents the total value of capital of time t, where the production of
new capital within the economy depends only on x(t) and the rate of production
is g(x(t)), where P(t) is the value at age of a unit of equipment (or where equipment
retains its full value until breakdown and P(t) is the probability of survival to
age at least t), and where f(t) is the value at time of the original capital from time
t=0.

In studying the behavior of solutions of (1) we are interested in questions of
boundedness of solutions, of whether all bounded solutions tend to limits, and
what limits are possible. In this paper we give a result on boundedness of solutions
under hypothesis which are appropriate for many population problems. We also
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give conditions under which solutions cannot tend to zero. This gives a global
asymptotic behavior result if the growth rate g(x)/x is a monotone decreasing
function of x.

2. Boundedness of solutions. In studying the equation

(1) x(t) f(t) + g(x(t s))e(s) ds,

we shall always make the following assumptions on the functions f, g, and P"
HI We assume that f(t) is nonnegative, continuous, and ofbounded variation

on0__<t< oe, sothat

(2) f() lim f(t)

exists.
Hp. We assume that P(t) is nonnegative, monotone nonincreasing, and differen-

tiable on 0 __< < oe, and is normalized so that P(0) 1. We also assume that

(3) P(s) ds <

H. We assume that g(0)= 0, that g(x) is continuous and nonnegative on
0 =< x < oe, and that g’(x) is continuous on 0 =< x <

Given f(oe), there is a set of functions f(t) satisfying HI and tending to this
limit as . To each f(t) in this set corresponds a unique solution x(t) of (1).
When we speak of the collection of all solutions of (1), we shall mean the collection
of solutions x(t) corresponding to some f(t) in this set.

THEOREM 1. Suppose that the hypotheses HI, Hp, and Hg are satisfied and that

(4) P(s) ds lim sup
g(x)

< 1.

Then every nonnegative solution of (1) is bounded on 0 < o.

Proof. Pick a sufficiently large K > 0, and then choose p <! such that

(5) P(s) ds g(x) < px

for x _>_ K, which is possible because of (4). Now define

I, ulx(u) > K I2 ulx(u) <= K
Since f(t) is of bounded variation on 0 __< < oo, there exists M > 0 such that
f(t) <_ M on 0 __< < oo. Since g(x) is continuous, there exists L > 0 such that
g(x(u)) <= L for x(u) <= K, that is, for u e 12. Thus, using (5), we obtain

x(t) f(t) + g(x(u))P(t u)du

f(t) + f g(x(u))P(t u) du + f g(x(u))P(t u) du
(cont.)
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P f x(u)P(t-u)du+Lf P(t-u)duM + P(s) ds

_<_M+ p sup x(u) + L P(s) ds
ueI,u<_t

_<_M+ p sup x(u)+L P(s)ds.
O<_u<_t

Since this is valid for every >__ 0, we have

sup x(t) <= M + p sup x(u) + L P(s) ds
O<t<_T O<u<T

for every T > O, and since p < 1, we obtain

P(s) ds
sup ’x(t) <= M+ L o

o<t<T p

Since this bound is independent of T, we have

M + L P(s)ds,stlp
o_<t_<o p

and the theorem is proved.
COROLLARY. Suppose that Hy, Hp, and Hg are satisfied and that lim sup_

g(x)/x O. Then every nonnegative solution of(l) is bounded on 0 =< < .
Since the hypothesis lim sup g(x)/x 0 implies (4), the proof of the corol-

lary is immediate.

3. Limits of solutions. It has been shown recently ([5], [6], [7], [8], [9]), that
under quite general hypotheses every bounded solution of (1) tends to a limit as
t- . For example, we quote the following result, actually established under
much less stringent hypotheses.

THEOREM 2 (Londen [8]). Suppose the conditions Hy, Hp, and Hg are satisfied.
Then every bounded solution x(t) of(l) satisfies

(6) lim x(t) g(x(t)) P(s) ds f(oe).

It is easy to see that if x(t) is a solution of (1) with lim_, x(t) c, then

Iolim g(x(t s))e(s) ds g(c) P(s) ds.

It follows that the limit c must satisfy the equation

(7) c f() + g(c) P(s) ds.

It follows easily from Theorem 2 that if the roots of (7) are isolated, then every
bounded solution of (1) tends to a limit c which is a root of (7). In other words, the
possible limits of solutions of (1) are given by the abscissae of the intersections of
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the curve y g(x) and the straight line y (x f(oc))/ P(s) ds. If g’(c) P(s) ds
< 1, then the curve crosses the line from above to below (in the direction of in-
creasing x). If g’(c) P(s)ds > 1, then the curve crosses the line from below to
above in the direction of increasing x. Since by assumption g(0) 0, if f(oe) 0,
then c 0 is a root of (7). Our main result is that if g’(0) P(s) ds > 1, then even
though c 0 is a root of (7), it is not a possible limit of a nontrivial solution of (1).
The proof will involve linearization of (1) and examination of the solutions of the
linearized equation. We make use of the following obvious generalization of a
classical result on linear integral equations.

THEOREM 3 (Feller [4]). Consider the linear integral equation

(8) z(t) F(t) + z(t s)a(s) ds

for >_ z, where z(t), F(t), and a(t) are continuous and nonnegative on 0 <_ < c
and where limt_ F(t)= 0. Suppose that a(t) is of bounded variation and that

a(t) dt < oc.Io
(i) If a(t)dt 1, I ta(t)dt ml < oc, and I t2a(t) dt < c, and if

F(t) dt b < or, then (8) has a unique solution z(t) on z <__ < oe which is non-
negative and satisfies limtoo z(t) b/ml. In particular, ifF(t) is not identically zero

for <__ < oe, then limt_. z(t) v O.
(ii) IfI a(t) at > 1, choose > 0 so that e-ta(t) dt 1. Then

lim z(t)e -(t-)
e-(t-F(t) dt- te-a(t) dt

In particular, ifF(t) is not identically zerofor z <= < , then z(t) grows exponentially
as t- od.

To reduce this result to the case n 2 of Theorem 4 of [4], we need only make
the change of variable z u and define (u)= z(u + )= z(t), go(u)= F(u + )

F(t) for u >= 0; then the equation (8) for _>_ z becomes

(u) gO(u) + z(t s)a(s) ds go(O) + (u s)a(s) ds

foru > 0.
We may now establish our main result.
THEOREM 4. Suppose the hypotheses H.r, He, Hg are satisfied, and suppose

f(oe) O, so that c 0 is a root of (7). If g’(O) P(s)ds > 1, then no solution of
(1) which is not identically zero for all large can tend to zero as oc.

Proof. Choose a number e such that g’(0) > e > 1/j’ P(s)ds. Then define
4(x) g(x)- ex for x >= 0. Since 4’(0) g’(0) e > 0, 4(x) is positive for all
sufficiently small x > 0. Suppose x(t) is a solution of (1) which tends to zero as

--, oe but does not vanish identically for all large t. Then we may choose z >= 0
so that x(z) > 0 and x(t) is small enough for => z so that ck(x(t)) >__ 0 for _> .
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We now rewrite (1) as

or

(9)

x(t) f(t) + g(x(t s))P(s) ds + g(x(t s))P(s) ds

f(t) + g(x(t s))P(s)ds + dp(x(t s))P(s)ds

+ ax(t s)P(s) ds,

x(t) F(t) + x(t s)a(s) ds

with

(10)

F(t) f(t) + g(x(t- s))P(s) ds

+ c/)(x(t s))P(s) ds,

(11) a(s) P(s).

Since qS(x) --, 0 as x -, O, x(t) --, 0 as --, oc, f P(s) ds < , f() 0, and g(x(t))
is locally bounded, it is easy to deduce from (10) that F(t) >_ 0 and limt_ F(t) O.
It also follows from (10) that F(z)= f(z)+ o g(x(z- s))P(s)ds x(z)4: 0, so
that F(t) is not identically zero for _>_ z. From (11) and the choice of a, we see that

a(s)ds > 1. By the second part of Theorem 3, x(t) grows exponentially, a
contradiction which establishes the result.

A similar result can be obtained if g’(0) P(s) ds 1. In this case, we choose
0 g’(0) 1/ P(s) ds. To make qS(x) > 0 for x positive, we must assume g"(0) > 0.
To apply the first part of Theorem 3, we must also assume sP(s)ds < o and

f s2p(s) ds < . Otherwise, the proof is similar to that of Theorem 4 and we have
the following result.

THEOREM 5. Suppose the hypotheses HI, Hp, Hg are satisfied, and suppose
f(o) O. Suppose also that sn(s)ds < v, s2p(s)ds < or. Ifg’(0) P(s)ds

and g"(0) > 0, then no solution of(l) which is not identically zero for all large
can tend to zero as o.

The situation covered in Theorem 5 is that in which the curve y g(x) and the
line y x/ P(s)ds are tangent at x 0, but the line is above the curve for small
positive x, as in the situation covered in Theorem 4.

Relevant to these results, although not overlapping with them, are those of
Chover, Ney, and Wainger [1], especially Theorems 10 and 11, dealing with the
rate of approach of a solution to its limit.

4. An example. A particularly interesting situation arises when the growth
rate h(x)- g(x)/x is a monotone nonincreasing function of x, which we have
suggested as a plausible assumption for some population problems. In this case,
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(7) becomes

(12) c f(c) + ch(c) P(s) ds.

Iff() O, then c 0 is a root of (12). If in addition,

g’(O) P(s) ds h(O) P(s) ds > 1,

then there is a second root of (12) given by h(c)f P(s)ds 1. By Theorem 4,
however, no solution of (1) can tend to zero; and every bounded solution tends
to this second root of (12). On the other hand, if h(O)f P(s)ds < 1, c 0 is
the only root of (12), and every bounded solution of (1) tends to zero. Iff() > 0,
it is easy to verify that (12) has a unique root in either case. This argument, together
with Theorem 4 and Theorem l, gives the following global asymptotic behavior
result.

THEOREM 6. Suppose that the hypotheses of Theorem are satisfied, and in
addition that g(x)/x is a monotone nonincreasing function of x. Then every solution
of(l) is bounded on 0 <= < and tends to the same limit as .

It is natural to conjecture that a condition like that of Theorem 4 should be
necessary for nonzero limits of solutions of (1). However, the proof of Theorem 4
depends strongly on the fact that the approach to the limit zero is necessarily from
above. For a nonzero limit, the solution may oscillate about the limit and it does
not appear that any general result of this nature can be true. It might be possible
to give conditions on f which would imply that certain roots of (7) cannot be
limits of solutions of (1), and this question certainly deserves further exploration.

Acknowledgment. The author is indebted to Professors T. G. Kurtz, J. J.
Levin, P. E. Ney, and D. F. Shea for many stimulating discussions which were of
great value in the preparation of this paper.
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INTEGRALS OF PRODUCTS OF LAGUERRE POLYNOMIALS*

J. GILLIS"

Abstract. If L,(x) is the nth Laguerre polynomial, let A,,(o)= e-’XL,.(x)L(x)L,()dx. It has
recently been shown that A,t( > 0 for >__ 2, r,s,t 0, 1, ..., while (- 1)’++tA,t(00 >= 0 for 0 < 0

__< 1. It has been conjectured that (-1)A,,(3/2) > 0 for >__ t. The complete conjecture has not yet
been proved, but it is established here for the cases 0 =< _<_ 10, >__ t, by obtaining, for each such t,
an explicit expression for A,,(3/2) as a function of r. The numbers A,,t(3/2) have been evaluated by
means of recurrence relations up to 500 and the conjecture has been found to hold. In addition
Am(3 has been evaluated asymptotically as o both for fixed and for r. The.asymptotic
expressions verify the conjecture. The main technique used is that of recurrence relations and generating
functions, with the asymptotic estimates derived from generating functions by Darboux’s method.

On the basis of numerical computations it seems as though the original conjecture about A,.,.t(3/2)
may in fact be true for Arrt(), < __< 3/2.

1. Introduction. We define the Laguerre polynomials by

and the Laguerre functions by 2,(x)= e-(1/a)’L,(x), n O, 1,2,.... It is well
known that the functions 2(x) form an orthonormal set, complete in La(O, o).
If we wish to linearize the product of two such functions, say

t=O

then we see from the orthonormal property that

(1.2) C, 2(x)2,(x)2,(x) dx

and, in particular, that Crs is symmetric in r, s, t.
The coefficients Crs, were discussed rather extensively in an earlier paper [6],

and several recurrence relations and other methods for computing them were
derived. A table of numerical values of C, for 0 =< r =< s =< =< 10 led to the
conjecture that

(1.3) (-1)’C, > 0

for all 0 < =< r. The complete conjecture has not yet been established. However,
we shall prove in this note that (1.3) holds in the following cases’

(i) For 0 __< __< 10 and all r _>_ t.

(ii) For0__<t =<r=< 500.
(iii) For each _>_ 0 and all sufficiently large r" though the "sufficiently

large" has not been shown to be uniform with respect to t.
(iv) For all sufficiently large r and r" i.e., (- 1)"Cr, > 0 for large r.
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We shall establish (i) by obtaining, for each value of up to 10, an explicit
formula for Ct as a function of r. The method could certainly have been continued
to larger t, but it becomes progressively more complicated and does not seem
capable of being extended indefinitely.

The verification of (1.3) for 0 =< __< r =< 500, as stated in (ii), is by direct
computation, based on recurrence relations which will be derived in 3.

To prove (iii) we shall in fact do rather more, and shall obtain an asymptotic
estimate for Crrt, for fixed t, as r --, oo. Similarly we shall prove (iv) by evaluating
Cry, asymptotically for large r.

If, more generally, we define

(1.4) Arst(O0 e-’L(x)L(x)Lt(x) dx,

then C, A,t(3/2).
Some time ago Szeg6 [9] and Kaluza [8] showed that At(3)> 0, r,s,t

0, 1, ..., and more recently Askey and Gasper (private communication also
quoted in [1]) have proved a similar result for a 2. Moreover, they have pointed
out that if, for any > 0, A,t(0) > 0 for all r, s, t, then the same will be true for
any e’ > . This follows at once from the identity

([5, p. 192]).
For suppose that 0( > z > 0 and let/ a/0(. Then 0 </t < 1, and

A,(a’) e -’Lr(x)L,(x)L,(x) dx

(1.6) e-’L(py)L(gy)Lt(y) dy
0

/lr+s+t-(k, +k2+k3)(1 /l)k, +kz+k3
kl,k2,k3 kl k2 k3
A_,,_._3() > 0.

We know therefore, that At(a) > 0, a 2; r, s, 0, 1, 2,....
On the other hand it is known that

(.7) (- )++’A,(1) 0

([7 and [10]) and we may deduce, by an argument similar to the above, that

(-1)+’+Ar,(00 <_ 0

for0<0=< 1;r,s,t =O, 1,....
In this paper we shall limit the discussion to the case 0 3/2, with particular

reference to the special values r s ._>_ t. However we mention here that we have
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performed a large number of direct computations of Arst(z), for different values of
a, r, s, t, and these seem to suggest the possibility that, in fact, (-1)tAr,,(a) >= 0
for r _>_ rand __< 3/2.

(2.1)

and

2. Generating functions.

Z Z E c,z’= { -(x + y + )- O,z + + y) + xz}-r=0 s--0 t=O

(2.2) C,,,.,u"z’= 2(1 u)-2/2{(3 z)2
r:0 t=0

u(1 3z)2

Proof of (2.1). It is known ([5, p. 189]) that

(2.3) L(O)xr= (1 x)-i exp
xr=O

and hence

r-0 s--0 t:0

(2.4)
[(1 x)(1 y)(1 z)]-I exp {- x y

-x -y
z

+1 z

Integrating (2.4) term by term for 0 from 0 to infinity gives

(2.5)
Z E E
r=O s=O t=0

(1 -x)(1 -y)(1 -z) +
-y

i.e., (2.1).

We can also write this as

CrstX y Z
r=O s=O t=O

(2.6)
{3-z-xy(1 3z)}-(x+y)(1 +z)

(x + y)"(1 +
=2Yo= {3-z--fiy(1 3z)}"+t"

Proof of (2.2). We pick out from (2.6) the terms in which x, y enter with
equal powers. This can only happen for even n, and in these we need only the
middle term from the expansion of each such (x + y)" in the numerators on the
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right-hand side. Making this selection, and writing xy u,

C,.,.,u"z’=2yv=0 t=0

(1 + z)2nun
3 z u(1 3z)} z"+

2

[3-z-u(1- 3z)]
4(1 + z)2u } 112

[3-z-u(1- 3z)] 2

and this is equivalent to (2.2).

3. Recurrence relations. We shall establish the following recurrence relations,
which will be used later"

3Crst- (C 1,s,, + Cr,-1,, + C,,,_ 1)

(3.) Cr,s- l,t- -t- C 1,s,t- -Jr- C 1,s- 1,t)

+3C_,_,,_ =0, unlessr=s=t=0.

Also, writing K, C,,

(r + 1)(9Kr+ 1,, 6K,+ 1,t-- + K,+ 1,t- 2)

(3.2) (2r + 1)(5K,,- 6K,,_1 + 5Kr,t_2)

+ r(K,._ 1. 6K,._ 1,- + 9K,._ ,t-2) 0,

9(t + 1)Kr,t+ 3(2t + 1)K,,, + tK,,t_ -(t + 1)K,_ 1,t+l
(3.3)

+ 3(2t + 1)Kr_ 1, 9tK_ ,_ O,

3(t + 1)(t + 2)K,,+2 2(t + 1)(5t +
(3.4)

2t(5t- 4- 8r)K,_ + 3t(t- 1)Kr,t_ 2.

In all of the above relations we assume r _>_ 0, s >= 0, >= 0. Moreover any term

C.a.v or K,a, in which any of the subscripts is negative, is to be replaced by 0.
The exception to (3.1) which arises when r s 0 is

2Cooo .
Proof of(3.1). This follows immediately from (2.1), if we multiply both sides

of the latter by {3 (x + y + z) (yz + zx + xy) + 3xyz} and then compare
coefficients of x"ySz.

Proof of (3.2). Write F(u, z) ,.=o ,=o K,.eu"z’. By (2.2),

(3.5)

and, therefore,

cF
F cu

(3.6)

F(u,z) 2(1 u)- /2{(3 z)2 u(1 32)2} -1/2

-1[i2 -u
(1 3Z)2 7

(3 z)" u(1 3z)

5 6z + 5Z2 u(1 3z)2

(3 z)2 2u(5 6z + 5z2) -- (1 3z)2u2"
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It follows that

[(9- 6z + z

(3.7)

2)_2u(5_6z+ 5z2)+u2(1 -6z+9z2)] rKr,,u
r=O t=O

[-5 6z + 5Z2 Hrzu(1 -6z+9z2)] 2 2 Kr,,
r=O t=O

Comparison of the coefficients of urz on both sides of (3.7) immediately yields (3.2).
Proof of (3.3). This is very similar to that of (3.2) except that we consider

(c/cz)(log F) instead of (c/cu)(log F). We omit the details.
Proof of (3.4). The function y 2,(x) satisfies the differential equation [5]

(3.8)

If we set u x

(3.9)

where

(3.10)

Let v u2. Then

xy" + y’ + (r + 1/2 -Ix)), o.
1/22, then u satisfies

u"+Pu=O,

P=(1/4x2){1 +2(2r+ 1)x-x2}.

(3.11) v’ 2uu’,

v"= 2uu" + 2U’2

(3.12) 2Pu2 + 2u’2

2Pv + 2u’2,

and hence (v"+ 2Pv)’ 4u’u"=-2Pv’, by (3.9) and (3.11). It follows that
v x22 satisfies

(3.13) v’" + 4Pv’ + 2P’v 0,

and hence that z(= 22 x-iv) satisfies

(3.14)
(z) =_ xZz + 3xz" + {1 + 2(2r + 1)x- xZ}z

+ (2r+ x)z =0.

We now substitute z t=0 Kt2,(x) in (3.14). To calculate (/t), note that

(3.15) x2, =-(t + 1)2t+1 + (2t + 1)2,- t2t_l,

(3.16)

(3.17)

xa; {(t + )x,+, x,- tx,_ },

x2)t, --1/2(t + 1)(t + 2)/],t+ 2 + (t + 1)(t + 2))t+ (2t + 1)2,

t(t 1)2,_ -[- 1/2t(t 1)t_2.

In fact (3.15) follows immediately from the usual recurrence relation for L,,
and the other two relations are obtained from it immediately by differentiation
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followed by repeated use of (3.15) itself. Moreover higher derivatives of 2 are all
expressible in terms of 2t, 2; by means of the differential equation for 2t. We
finally obtain

0 x!(z) =o K (t + 1)(t + 2)2+ + (t + 1)(8r 5t 1)2+

lt(8r_ 5t +4)2_
_

t(t 1)At
(3.18)

t=

41( + 1)(8r- 5- 1)K,+, 83(t + 2)(t + 1)K,+X,.
Now the functions 2 form a complete orthonormal set on L(0, ), while 2
and all of its derivatives clearly belong to this function space. It follows tat the
coecients of the individual 2’s in (3.18) must all vanish, and this establishes (3.4).

4. Alieafi f e recurrence reltis. The relation (3.1) was used to
compute C, for 0 N r N s N N 250, using the Golem A computer at the Weiz-
mann Institute. As a check on the stability of the computation the work was first
done with single precision and then repeated using double precision. There was
very close agreement up to the tenth significant figure. The coecients K, were
computed for 0 N r, N 400, using (3.3). In this range (1.3) was verified for all
r t. Indeed the tabulated values rather led one to guess that (1.3) might be true
whenever r > 4(t), where 4(t) is some positive slowly increasing function of t.
Again we could verify the accuracy of our results by using both single and double
precision computation. Moreover, for r, up to 250, we could check with the
previously computed table of C.

Now consider (2.2). We have

r=O t=O

(4.1)
{(3-z)2-2u(5- 6z+ 5z2)+(1 3z)Zu2}1/2

2 3z
P,

5-6z+ 5z
U

3--Zm=0 3--Z 3Z)(3--Z)

where Pm is the mth Legendre polynomial. Hence

(4.2) F(u, 0)-- 2 grout--2 3- Pm
r=o

(4.3) Kro Cro (2/Y +

where we have written P()= Pr. We also seek an explicit formula for
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Write

(4.4) w

and

5 6z + 5Z2

(1 3z)(3 z)

(4.5) 5qm Pm(-)"

Then

(4.6)

cF 2 yc?z (3 z)2 o 3ZZ)mPro(w)um3-

2 8m(1 3Z)
3 Z 0 (3 Z----i P,,,(w)u"

2
P’m(W)

dw
u

3--Zm= o 3--

Now, for any w, (cf. [5, p. 179])

(4.7) (1 wZ)P’m(W) mwPm(w) + mPm- (w),

and hence, setting w , we have

(4.8) qm (3m/16)(5Pm 3Pro-,).

Also (dw/dz)z= o aoa. Hence, by (4.6),

K,Iu= Cz z=0

(4.9)
2 @ 3_ pmu
9 m"=0

giving

(4.10)

16
3_m_ lmPmUm3 =o

+ 3-m(5pm 3Pro-1) Urn,
m=0

2
Kr,

3 + 2 [P 8rp + 2r(5p 3p,_ 1)]

2
3r+ 2 [(2r + 1)pr 6rp,_ 1]"

Again, setting 0 in (3.4) gives

(4.11) 6Kr, 2 2(1 8r)K,l,
i.e.,

8r-
K,,2 3 K,,
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and, setting gives

(4.12) 18 Kr, 3 4(6- 8r)Kr, 2 2(1 8r)K,o

leading to

(4.13) K,3 2.3-’-(8r- 1){(32r2 8r- 3)G- 24r(4r- 3)G-1}.
We can calculate K,,t, for successive values of t, by repeated application of (3.4).
In this way formulas for Kr,t as functions of r have been obtained for 0 =< =< 10.
These are tabulated in the Appendix.

5. Verification of (1.3) for 0 --< t =< 10, r t. To exploit the formulas derived
in 4 we need an estimate of G/G- for large r. To begin with we note that, for
large r,

1+O(5.1) P,(cosh )
x/2rn sinh

provided that Re > 0; ([3, p. 98]).
Setting In 3, cosh -, sinh , we get

(5.2) P"-x 1+O

and so P/G- 3 as r . To obtain an asymptotic series we try an expansion
of the form

al 2 a3(5.3) G 3 ++ + +

where we have written G for P/G-. Now, for any x, ([5, p. 179])

(5.4) re (x) (2r l(X) + (r 0.

Dividing by P,_ (x) and setting x , we get

(5.6)

Let

3rG-5(2r- 1)+ 3(r- 1)/G_I =0.

al a2
G-1 3 1+ + ,2

q-
r-1 (r-1

b b2-,3 1+--+ +...
r -Then it follows, by direct expansion, that b a,

b2 a + a2

Rewriting (5.5) in the form

b3 a + 2a2 + a3,

al a29r 1+--+ +...

(5.7)

bl b21++ +...
r ; 5(2r- 1) bl b21+--+ +...

r ;
+(r- 1)--0



326 J. GILLIS

and comparing coefficients to obtain a l, a2, we get

7 865 3797
or 3

2r 32r2 128r 8192r4 214r
617,153
22Or6

3,629,173 3,126,992,365 23,752,522,907
221r 229r8 23Or9

6,434,124,927,143 60,819,747,327,687
236rlO 237r1

We now apply this expansion to the formulas for Krt 0 =< 10. Let us take, for
example, the case 3. We have

2(8r-1) { 24r(4r-3) }(5.9) Kr,3 3r+5 Pr-x(32r2- 8r- 3) at- 32r_ 8r- 3
Now we can verify that

(5.10)
24r(4r-3) { 7 }32r2- 8r- 3

> 3
2r 32r2 128r3 32r4

forr > 5.
On the other hand we can show, e.g., by induction using (5.5), that

7 }(5.11) or < 3
2r 32r2 128r3 32r4

for r > 6.
It follows from (5.9), (5.10), (5.11) that Kr,3 < 0 for r >= 6. The values of Kr,3

for 3 =< r =< 6 can be verified, by direct numerical computation, to satisfy (1.3).
Higher values of r, up to r 10, can be handled similarly, except that the

expansions have to be taken to more terms and the work is correspondingly more
complicated. Incidentally, we note from the table in Appendix A that it is sufficient
to perform the verification for odd r.

6. Proof of (iii). In this section we shall derive an asymptotic estimate of
Krt for fixed as r tends to infinity. The proof will depend mainly on a classical
theorem of Darboux [4].

DARBOUX’S THEOREM. Let h(w) ,o A,w" be regular for Iwl < and have
afinite number ofsingularities w w2, ..., w on the circle Iwl 1. In the vicinity of
each wa, k 1, 2, 1, let h(w) have an expansion of the form

(6.1) h(w) ca)(1 w/wa)ak +vb
v=0

where bk > O. Then the expression

(6.2) Z c
v=O k=

ak + vb
Wk)

furnishes an asymptotic expansion for A, as n .
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Consider the expansion (2.2). We can write it in the form

E E Kr,urz’= 2(1 u)-1/2{(9 u)- 6z(1 u)+ z2(1 9u) I- 1/2

r=O t=O

(6.3) 2(1 u) 1/2(9- u) 1/2 {1 6(1 u) (1 9u)’/2

z + z
9-u (9-u)’+1/2

^
2 [w/(3(l-u) ,](1-9u)’/2,, (1 u) 1/2P’ 9- u)(1 9u (9- -72z’’

where P, is the Legendre polynomial of order t. It follows that

K,.tu"= 2(1 u)-1/2(1 9u)(1/2)’(9 u) -- /2p, 3(1 u)
,=0 (9- u)(1 9u

(6.4)
F,(u) (say).

Now the only singularities of F,(u) are at u 1, and u 9; since the factor
(1 9u) 1/2 in the denominator of the argument of Pt(" is balanced by the factor
(1 9u)(1/2)t outside. It follows, by Darboux’s theorem, that it is sufficient to
consider the behavior of Ft(u in the neighborhood of u 1.

Write = l-u, and set x=(3(1-u)/x/(9-u)(1-9u)). We find at
once that

(6.5) X2

We distinguish two cases’

(a) even (= 2s). Then

(6.6)

by (6.5).

Also,

(6.7)

while

(6.8)

Pt(x) P2s(X),

73129’2 +[+ +O(3)
64

-1/2
{1 s(2s + 1)x2 + O(x4)}

s

9s(2s + 1) }+
64 .3 + 0(.)

(19_ 9) (1/2)t

5s(5s 4)2 + 0(3)"(
32 J

(9- u)-1/2 (8 + )-1/2

(cf. [5])

2x/ ++O("
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From (6.4), (6.6), (6.7), (6.8) we obtain

(- 1)s. + + 0(3)Ft(u) x s 64

(6.9)
+

32 a + -i-

--(-1)sx -1/2}s {1 _20s+11_-+ 544s2-208s+32+512 0(3)}"
This is of the form (6.1) with ak --1/2, bk 1, and it follows by (6.2) that

2s - 20s+
r 16

2-1/2(__ 1)r+

(6.10)
1)

544sa 208s + 3
+

512

-1/2){s +
20s+116 2r-

544s2 208s + 3
512

3

(2r- 1)(2r- 3)

2- 2r-t- 1/2

1/2t 16

But it follows from Stirling’s formula that

3(136t2 104t + 3)
+ + 2048r2

(6.11) 2 -2r (r)-1/2 r + 128r2 -i- O(r -3)

Combining (6.10) with (6.11) we get that, for even t,

(6.12) Kr, 2- t) {lOt-3408t2_72t+491/2t (2rcr)-l/2 +
32r +

2048r2

and is, in particular, positive.
(b) odd (= 2s + 1). We now have, for small x (cf. [5])

P2 + l(x)
s

(6.13)

{ 3s(2s + 3)2 }-23- 1+ --0(3)
s 64

by (6.5).
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Hence, by (6.4) and the definition of x, (,

:3)F2+ l(u)= 2 - {(1 u)-1/2(1 9uy + 1/2(9- u)--1}
s

(6.14)

But, as in (6.7),

(6.15)

while

{3(1 u)(1 9u)-1/z(9- u) -1/2}

{3S(2S+3)2+O(’)}l+ 64

9,,, =(-1 + 4)2 + O((3)}5s(52

(6.17) 1/2{ 20s+31______ { + 44Ss2-128s+lS{2+"512 "}
and so, again applying Darboux’s theorem,

(6.18)

But

Kr,2s+l 8X//-
448s2- 128s + 15

+ 512

2r- r

r) 20s + 3
16

3
+ (2r- 1)(2r- 5) 1)

and
15

(2r- 1)(2r- 3)(2r- 5) 1)
Substituting these in (6.18), and applying (6,11), we get, after some straightforward
manipulation, that, for odd t,

(6.19)

3t t-1 )1 { 3(10t-3)
Kr’t "--g-5t1/2(t 1)

1+
32r

5(336t2 144t + 149) }+ 2048r.

Substituting (6.15) and (6.16) into (6.14) yields

(9--/2) -3/2 --(8 -Jl- )-3/2 2-9/2 --]- + + O(g3)
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(7.1)

7. Proof of (iv). It follows from (4.1) that

Krtz’= 2(3 z) 1(1 3z)’V{(5 6z + 5z2)/(1 3z)(3 z)}
t=O

and so

(7.2)
z--1(3 z)--1(1 3z)

P,{(5 6z + 5z)/(1 3z)(3 z)} az.
In the integral in (7.2) we make the change of variable

(7.3) w
3 --Z

This transforms the unit circle into itself and we get

(7.4)
(1 3w) {w1=1(3 _2 wiP"

Let w e -i. Then

(7.5) C

-r-1 dw.

To evaluate C, asymptotically, consider the generating function

H(z)- (-1)C,r,z
r=O

(7.6) -iO)r+ zrP,(cs 0) dO
rc _,,= (3-e

_1 {(3 e-i)2 4z cos 0(5 3 cos 0) + z2(3 e+i)2} 1/2 dO.

The evaluation of the sum under the integral sign is an immediate consequence
of the generating function for Legendre polynomials. The change of order of
summation and integration is justified by the uniform convergence of the power
series in any domain [zl _-< p < 1. The integral in (7.6) will converge unless z is
such that the expression under the square root sign, regarded as a function of 0,
has a zero of order higher than 1. It is an elementary exercise to show that this
will happen if and only if z +_ 1, and hence that H(z) is regular in Iz] < with
singularities at z _+ on its circle of convergence. To apply Darboux’s theorem
we have therefore to study the behavior of H(z) in the neighborhoods of these two
points.

We begin by writing tan 0/2, and get

(7.7)
H(z) {4(1 + z)Zt4 + 4i(1 zZ)t a + 3(1 z)Zt2 + 2it(1 z2)

+ (1 z)2} 1/2 dr.

+ iO)r(- 1) (3 ero P( cos O) dO.
rc _,(3 -e-
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If we now write -iu-1, w (1 + z)/(1 z), then

(7.8) H(z)
re(1 z)

{u4 q" 2wu3 3u2 4wu + 4w2} 1/2 du.

We consider the two singularities separately, and shall denote by Xr, Y the
respective contributions of z and z to the asymptotic development.

(a) The singularity at z 1. To transform the integral in (7.8) we suppose
z ’, where " is real, small, and positive.

Let p (1 + zl/2)1/3(1- Z1/2) -1/3, O"---[-]A-1. Then /, a are real and
clearly both tend to infinity as z 1, " - O. We find that

(7.9)

Here

(7.10)

where co e2rci/3.

H(z) -i(rc) -1 (u a)(u b)(u c)(u e)}-1/2 du.

b= -a(a2- 3),

c (co/ +
_, (co2//_1._

We now make some transformations of standard type. Define

b 1/2(c -k- g’) 1/2o’,
(7.1 )

al -1/4c e) Io: 4),

A2 =(a- b)2 +a 3(a2- 1),

(7.12) B (b b)2 + a (a2 1)2(a2 3),

G2 (b a)(b, b) + a (a" 2a2 2),

(A S)u -(Ab Sa)
(7.) v

(A + S)u- (Ab + Sa)’

and we get

(7.14) H(z) ix/(n)-lfc {(1 v2)[(AB + G2)v2 + (AB G2)]} 1/2 dr,

where C, the image of the imaginary u-axis under the transformation (7.13), is a
circle with center on the real axis in the v-plane, and which intersects that axis at
vl, v2 (say), where

A B 2x/ _,)/)1 =A + B
-1 +

0"
2, --[- O(o

(7.15) and

Ab Ba
2- + O(a-2).v2 Ab + Ba
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The singularities of the integrand in (7.14) are at v + (both of which are
outside of C) and at v _+ i2, where

(7.16)

It is easily verified that the points +_ i2 lie inside the circle (at least when a is large).
We now deform the path of integration from C to F, where F consists of small
circles with centers at -+_i2, connected by parallel straight lines, A,B, C,D on
opposite sides of the imaginary axis (see Fig. 1). It is seen that the contributions

FIG.

of the two circles to the integral tend to zero with their radii. On the other hand
the integrand clearly changes sign as we go round either circle from B to C. Letting
the radii of the two circles tend to zero, as also the distance of AB, CD from the
imaginary axis, we see that

v2)[(AB + G2)v2 -F (AB G2)]} 1/2 dv

’ 2)[(AB + G2)v2 + (AB G2)]} dv(7.17) 2 {(1 v 112

iX

4 ix/AB + G2
[(1 v2)(v2 + 22)] -’/2 dr.

Setting v i2 cos 0 leads to

nl2

H(z) 4,,//(n) (AB + Ga) /a (1 + 2 ,,1.a sina )-/ d
0

(7.18)
4(n)-I(AB)-I/2K

x//1 + 22
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where, in accordance with the usual notation,

l2rc

(7.19) K(k) (1 k2 sin2 0)-1/2 dO

for0<k< 1.
We also define, for any k in (0, 1),

(7.20) k’= -k- X//i k 2

and

(7.21) E(k) ;i
1/2)rr

It is known ([2, p. 282]) that

(7.22)

and
d2K

(7.23)
dk2

(1 k2 sin2 0) 1/2 dO.

dK
dk kk’2 {E(k) k’2K(k)}

{(3k2 1)E(k)+ k’2(k’2 k2)K(k)}.k2k,4

In our case,

(7.24)

2 /1 Gz

by (7.12). We write

w/- x/(x/ + 1) x/(9 + 7w/
2x/ 80..2 320..4

x/-I
2x//

ko,

(7.25)
K(ko) Ko 1.598147,

E(ko) Eo 1.544151,

k) w/1 kg x/ +
2,f "

We note that kok’o 1/4. It follows from (7.24), (7.22), (7.23) that

2 0.183800.13978(7.26) K
x//1 + 2

1.59815-
0..:z + 0..4

0(0.. -6

-[- O(o"- 6),

On the other hand we deduce from (7.12) that

(7.27) (AB)-1/2 3-1/40.-2 +a2 +
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Combining (7.26), (7.27) with (7.18) yields

1"54613 f 1"38499 2"53995
(7.28) H z

(7
2

.Jr_
t72 -ll- (74 -ll-

If we now recall the definitions of/t, a at the beginning of this section, we see that

/3 {1 + (1 ()1/2)/{1 -(1
(7.29)

=4 -- +O(3)

and therefore,

7 2 }(7.30) /t=4/Z- / --g-- 1- +O("z)

It follows that
-1

(7.31)
a / + g

4x/3 /3{1 -t- 2-4/32/3 -- O(5/3)}.
If we now substitute this into (7.28) we obtain, after some rather laborious work,

(7.32) H(z) 0.61358-/3 0.14976/3 + 0.20453/3 + O().

It follows now by Darboux’s theorem that

(7.33) X(-1)" 0.61358 x

But for any ,
(- 1)( -er

(7.34)

F(r + )
1-’()F(r + 1)

0.14976 + 0.20453 +

{ x(x 1) -2)}F(e) r- + 2r
+ O(r

by Stirling’s formula. Substituting from this into (7.33) we get

(7.35)

0.61358 { 2)}r(1/2) ?.2/3 r -t- o(r-

0.14976 0.20453
r(-1/2) r4/3 r(-) r5/3

(7.36)
0.2290 0.0369 0.0763
r2/3 r4/3 r5/3 t- O(r- 8/3).

(b) The singularity at z 1. It remains to estimate Y. We consider z

+ r/, where r/is to tend to zero through positive values. We previously defined t by

(7.37) # {(1 + zl/2)/(1 zl/2)}1/3.
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This now becomes a complex number and Il 1. We therefore write

(7.38)

where is real, and note that

(7.39) lim e rt/12.

The roots of the quartic polynomial in the integrand in (7.8) are now all real and

{(u e)(u --f)(u g)(u h)}-x/2 du,H(z)
re(1 z) -iv

where

(7.40)

e 2 cos (z/3 2a),

f 2 cos (t/3 + 2a),

g -2cos6a,

h= -2cos2a.

We make the standard transformation

u-f(7.41) v
ume

and obtain

-i f dv
(7.42) H(z)

re(1 z) {v[(e g)v (f- g)[(e h)v (f- h)]} x/z,

where C is a circle with center on the real axis in the v-plane and which cuts that
axis at v + 1 and at v cos (rt/3 + 2e)/cos (rt/3 2e), and it is easily seen that,
for e close to rt/12, 0 < v < v. (See Fig. 2.) The singularities of the integrand

v v2
vR

FIG. 2
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(apart from the singularity at 19 O, which is outside of C1) are at

(7.43) and

191 e-g

192 e-h

By the same kind of argument as was used in transforming the integral in (7.14)
we see that

(7.44) H(z)
2 fl

’2 dv

re(1 z)x/(e g)(e h) x//v(v v,)(v 2

We now write

(7.45) sin2 0

and obtain

4
(7.46) H(z) K(k),

r(1 z)x/(e g)(f- h)

where

k2=l

(7.47) 1-

191
192

(f g)(e h)
(f h)(e g)

-y (say).

If we write r/12 fl we obtain

(7.48)
sin 4fl cos2 2/3

sin (re/3 + 4fl)sin2 (re/6 + 2fl)’
As z - we have fl 0, and we deduce from (7.37), (7.38), (7.39) that

(7.49) fl r/+ + O(/3),

and therefore, by (7.48), that

(7.50) 7 3xf 6x/ r/

But it is known that, ([ 12, p. 298]), as k -4 1,

(7.51) K(k) (1 + 1/4k ’2) In - + O(k’4 log k’).
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To complete our evaluation of (7.46) we easily calculate that

(7.52)

x//(e g)(f- h)= x/{1 + 16fl/x// + O(f12)l 1/2

+ +
xf{1 + 2r//(3x//)+ O(r/2)].

Substituting in (7.46) we obtain

re(2 4_H(z) r/3-1/2
(7.53)

3-1/a

3x//-J
x + 3x//

[lnr/+O(1)]

+ ) In r/.

We use now the easily established extension of Darboux’s theorem to logarithmic
singularities. The term In r/contributes to Y simply the coefficient of x in In (1 + x),
i.e., (- 1) 1/r, while the term r/In r/similarly contributes (- 1) 1/(r(r 1)).

We deduce that

(7.54)
7"ON

"[- 2 -It- O(r-3)

1)r x 0.183{1 -3)}.+ + O(r
r

We can now combine (7.36) and (7.54) and obtain

(7.55)

0.2290 0.0369 0.0763
(- 1)Cr r2/3 r4/3 r5/3

+( 1)(0"1838 0.0919)r
+

r2

8. Some numerical values. As a matter of interest we compare in Table
some values of Kt as given by our asymptotic estimates with actual values com-
puted directly by the aid of the recurrence relations.

TABLE

Asymptotic Formula
Exact value estimate used

20 2 +.04588 +.04587 (6.12)
50 5 -.0004350 -.0004347 (6.17)

200 5 .0000507 .0000507 (6.17)
200 20 +.005134 +.005133 (6.12)
400 20 +.0035705 +.0035704 (6.12)
20 20 + .0405 +.0407 (7.55)
21 21 -.0217 -.0214 (7.55)
22 22 + .0375 + .0379 (7.55)
100 100 +.0125 +.0125 (7.55)
500 500 +.00401 +.00401 (7.55)
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Appendix.
2

3’ +
Pr,

2
Cr, 3r+ 2 {(2r + 1)p,. 6rp,_ },

8r-
C2 3 Cra

Crr3
2(8r 1)

{(32r2 8r- 3)p- 24r(4r- 3)p_ },

32r2-48r+
C,,

3 8r- Crr3’

2(32r2 48r + 1)
{(512r3- 1,152r2 + 46r + 15)p

-6r(256r2 704r + 303)p,_ },
256r3 1,056r2 + 872r- 3

Cry6
9(32r2 48r + 1)

2 256r3 1,056r2 + 872r- 3
{(8,192r- 45,056r3 + 53,440r2C,.,-z

35 3,+ o

352r 105)p, 192r(128r3 768r2 + 1,183r 408)P_1},
512r4- 4,096r3 + 9,280r2 5,792r + 3

C"8 3(256r3 1,056r2 + 872r- 3)
C,,7.

2 512r4- 4,096r3 + 9,280r2 5,792r + 3
Crr9 5.7 3,+ 4

{(131,072r 1,310,720r* + 3,873,280r3 3,345,280re

+ 3,378r + 945)p,- 6r(65,536r4- 688,128r3 + 2,262,272r2

2,624,064r + 806,409p,)}

4,096r s 53,760r4 + 232,960r3 388,800r2 + 206,104r- 15
C,,o

15 512r4- 4,096r3 + 9,280r 5,792r + 3
Cr,9,
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ON THE SEPARATION OF VARIABLES FOR THE
LAPLACE EQUATION Ag, + K2 = 0 IN TWO- AND THREE-

DIMENSIONAL MINKOWSKI SPACE*

E. G. KALNINS?

Abstract. Using well established methods we classify all coordinate systems in two-dimensional
Minkowski space which allow a separation of variables of the Laplace equation A + K2 0. With
each such coordinate system we associate an operator L which determines the choice of basis functions.
The connection between these operators and symmetric second order operators in the generators of
the group E(1, 1) is discussed. We also give a classification of all orthogonal separable coordinate systems
in three-dimensional Minkowski space.

1. Introduction. The problem of the separation of variables for the Laplace
equation A + K2 0 in a two- or three-dimensional Euclidean space has been
solved by Eisenhart [1]. He showed that to each of the distinct eleven types of
orthogonal coordinate systems in Euclidean 3-space which have second order
coordinate curves there corresponds a separation of variables of the Laplace
equation. These coordinate systems were investigated by earlier workers from a
purely geometrical point of view [2], 3]. The fundamental criterion that an
orthogonal coordinate system in Riemannian n-space R, with differential form

(1.1) ds2 g(dx)2 h-g22(dx2)2 -+-’’. q-gnn(dxn)2

admit a separation of variables for the Laplace equation is that the metric coeffi-
cients gii, i= 1,..., n, be of StS,ckel form. In other words, there is a StS_ckel

matrix S of functions

(1.2) S

such that

(I)ll(X1) (I)ln(X 1)

(I)21.(X2 (I)2n(X2

.1(x") ..(x")

det S g 1/2 lff] fi(x’),(1.3) gii
Mil det S i=

where M is the cofactor of in det S and g ]g g22 g,,I. This form of
the metric was originally investigated by St/ickel [4] and has been shown by
Moon and Spencer [5] to be necessary and sufficient for the separation of variables
in Riemannian n-space. It should also be mentioned at this stage that Olevski [6]
has found all the coordinate systems in a four-dimensional space having constant
positive or negative curvature for which the Laplace equation admits a separation
of variables.

More recently there has been renewed interest in the problem of separation
of variables in Riemannian spaces with constant curvature [7]-[9] (including
zero curvature). This work has connected the separation ofvariables for the Laplace
equation with various possible choices of basis for the harmonic functions of the
Riemannian space in question. For the orthogonal groups SO(p, q) and Euclidean
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groups E(p, q) the connection of the Laplace equation with the corresponding
group is clear. The Laplacian A is in fact one of the Casimir operators of the group
in question. The Laplace equation then solves for basis functions of the most
degenerate irreducible representations (IRs) of the group, i.e., IRs for which all
the remaining Casimir operators introduce no new labels (Note: there is generally
more than one Casimir operator labeling the IR of the group we are considering).
Choosing a separable coordinate system for the Laplace equation amounts to
choosing a basis set for degenerate unitary irreducible representation (UIR) of
the corresponding invariance group. This has been shown explicitly for some of
the lower dimensional orthogonal and Euclidean groups.

To each such basis (for the cases that have been evaluated) there corresponds
a set of symmetric second order operators in the generators of the group whose
eigenvalue equations together with the Laplacian completely specify the basis
functions. The basis defining operators commute, if there is more than one, so
as to be simultaneously diagonalizable. Each such basis set is inequivalent to
any other set under inner automorphisms of the associated group, the addition of
arbitrary real multiples of the Laplace operator A and the formation of arbitrary
linear combinations of operators in each set. Furthermore in the cases investigated
to date these bases sets exhaust all such possibilities under this equivalence relation.
The known examples of such classification of second order operators are the works
of Winternitz et al. 1-7] in which the little groups of the Poincar6 group are treated,
Makarov et al. [8] in which pairs of operators are found for the group E(3) and
Smorodinski and Tugov [9] who treat the proper Lorentz group SO(3, 1).

The interesting result of this classification is that not only do these basis sets
give those bases in which the defining operators are Casimir operators of a definite
subgroup chain, but there are also bases in which the defining operators do not
belong to a subgroup chain. This latter type of basis is what is known as a non-
subgroup basis. The simplest example of bases of this type is the case of the three-
dimensional rotation group [7] SO(3) in which we have one subgroup-type basis
specified by making _j2 and J3 diagonal (this gives spherical harmonics) and one
nonsubgroup-type basis in which _j2 and J + rJ (0 < r < 1) are diagonal (this
gives the product of two Lam6 polynomials as the harmonic functions). This
nonsubgroup basis for SO(3) has recently been investigated in detail by Patera
and Winternitz 10]. The introduction ofnonsubgroup-type bases is ofconsiderable
interest from the mathematical and physical points of view. From the mathe-
matical point of view this is a group theoretic treatment of new special functions.
(Systematic group theoretic treatments of special functions are already well
developed; see, for instance, Talman [11], Vilenkin [12 and Miller [13). More
recently, Miller [14, [15 has examined parabolic-type nonsubgroup bases for the
groups E(2) and E(3) and obtained new identities for the corresponding special
functions. On the physical side Macfadyen and Winternitz [16] have used a
Lam6 function basis for the group S0(2, 1) to obtain an explicitly crossing sym-
metric expansion of the spinless scattering amplitude. The corresponding Lam6
basis for the rotation group examined by Patera and Winternitz [10] has its
applications in the quantum mechanical treatment of the asymmetric top.

It is the purpose of this paper to investigate the problem of the separation of
variables in two- and three-dimensional Minkowski space. In particular, we give



342 E.G. KALNINS

a detailed treatment of the two-dimensional case and find the basis generating
operators in terms of the generators of the group E(1, 1). For the three-dimensional
case we content ourselves with a classification of the differential forms correspond-
ing to a separation of variables of the Laplace operator and the calculation of the
corresponding special functions appearing in the solution. In doing this we obtain
a further idea of the correspondence between separation of variables and quadratic
operators in the group generators.

The content of the article is arranged as follows. In 2 we discuss the group
E(1, 1) and some of its properties with regard to separation of variables. In 3
we evaluate the different classes of inequivalent second order symmetric operators
with respect to the group of distance preserving transformations in the pseudo-
Euclidean plane (two-dimensional Minkowski space) viz. E(1, 1). In 4 we carry
out the separation of variables for the two-dimensional Laplacian in the pseudo-
Euclidean plane (two-dimensional Minkowski space). In 5 we list the differential
forms and special functions which are solutions of the Laplace equation for the
case of three-dimensional Minkowski space. In 6 we draw our conclusions from
the results we have established.

2. The group E(1, 1) and the separation of variables for the Laplace equation
in the pseudo-Euclidean plane. The pseudo-Euclidean plane (i.e., two-dimensional
Minkowski space) is such that the distance between two points (ti, xi), 1, 2
(these are Cartesian or perpendicular coordinates), is

(2.1) s 2 (t /72)2 (x x2)2

The distance s can thus be positive, zero or pure imaginary: The group of motions
in this plane which preserve the distance s is the one-dimensional Poincar6 or
pseudo-Euclidean group E(1, 1). A general transformation of this group on the
defining t- and x-coordinates can be written in matrix form as

(2.2)

t’ cosha sinha s

x sinha cosha s2 x

0 0

The Lie algebra commutation relations for the group E(1, 1) are

(2.3) [P,,P2] O, [P2,M] PI, [M,P1] -P2,

where P and P2 are the generators of translations along the t- and x- axes respec-
tively and M is the generator of hyperbolic rotations. In the coordinate representa-
tion these generators are given by

(2.4) P1 P2 M x= +ax
There is one Casimir operator of the group E(1, l) viz. A P P22, the Laplacian
in the pseudo-Euclidean plane. Each complex eigenvalue --K2 of this operator
specifies an irreducible representation of E(1, 1). These representations are also



ON THE SEPARATION OF VARIABLES 343

unitary if K2 is real. The standard realization of these IRs is on the space of
functions f(b) over the real line with scalar product.

(2.5) (f h) f(b)h(b) db <

The action of a general group element in this space is [12]

(2.6) Tr(g)f(b) exp [iK(-s cosh a + s2 sinh a)]f(b a)

with a, s l, $2 specifying the group element as in (2.2). For the unitary case the basis
functions which span this space are the eigenfunctions eib (’c real) ofthe operator M.
For an alternate realization of the IRs of E(1, 1) and the properties of related matrix
elements we refer the reader to the treatment of Vilenkin [12].

By way of a specific example we review here some of the pertinent facts for
the corresponding problem for the group E(2). This will help to illustrate some of
the general remarks in the Introduction. For each of the four coordinate systems
for which the two-dimensional Laplacian equation

(2.7) c32 c20 K20=o

is separable there is a symmetric second order operator L which together with
the Laplace equation (2.7) completely determines a basis for the corresponding
UIR of E(2) specified by K. The details are given in Table 1.

In Table 1, P1 and P2 are the generators of x and y translations and M gener-
ates the rotations. The two eigenvalue equations

(2.8) A0 + K2O 0, L0 BO
then completely determine the corresponding coordinate system. The separation
constant in the separated equations of the Laplace equation is related to the eigen-

TABLE
The separation of variables in the Euclidean plane and associated bases

Coordinate system

Rectangular coordinates x, y

Polar coordinates
x rcos b, y sin q5

Parabolic coordinates
x 1/2(z qz), y

Elliptic coordinates
x cosh cos q,
y sinh sin r/

Laplace operator A

0 0 2

(sinh + sin r/) - +

Additional operator L

L p2_ p

L--M

L MP + P2M

L= Mz + p21
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value B of the additional operator L. The four operators L correspond to a com-
plete classification of all symmetric second order operators in the generators of
E(2) under the equivalence relation stated in the Introduction.

In the next section we shall investigate the corresponding relation between
the separation of variables for the pseudo-Euclidean Laplacian A p2_ p2
and second order symmetric operators in the group generators. The corresponding
problem for E(1, 1) is however more complicated. For instance, it is not true that
every coordinate system for which A separates variables covers all of the pseudo-
Euclidean plane. An example of this is polar coordinates, and x are then para-
metrized according to r cosh a, x r sinh a. This parametrization only covers
the quadrant x _+ > 0. By similarly parametrizing the other remaining quadrants,
all of the pseudo-Euclidean plane can be parametrized except for the lines _+ x.
The Laplacian A then admits a separation of variables in each of these regions.
This behavior is typical of the coordinate systems we shall introduce.

3. Classification of all inequivalent second order symmetric operators for
the group E(I, 1). The general problem we consider here is the classification of the
operator

(3.1) f= aM2 + bl(MP + P1M) + b2(MP2 + P2M) + cle2 + c2P1P2 + c3P,
where equivalence is defined in much the same sense as given in the Introduction,
i.e., f f’ if (i)f’ can be obtained from f by an inner automorphism of the group
E(1, 1). Under such a group motion the generators transform according to

(3.2) P cosh aP! sinh aP2

(3.3) P2 sinh aP1 + cosh aP2,

(3.4) M --, M + (S 2 cosh a sl sinh a)P + (s cosh a s 2 sinh a)P2

and the general quadratic operator f transforms into f with the new coefficients
given by

a:a,

b as -" bl cosh a b2 sinh a,

b2 as2 b sinh a + b2 cosh a,

as -+- 2sb cosh a 2sb2 sinh a + c cosh2 a c 2 sinh a cosh a

+ Ca sinh 2
(./,

’2 2ass2 + 2bl(s2 cosh a s sinh a) + 2b2(sx cosh a s2 sinh a)

2(c + ca) sinh a cosh a + e2 cosh2 a,

6a as 2s2b sinh a + 2s2b2 cosh a + cl sinh2 a 2 sinh a cosh a-- C3 cosh
2 a.

Then from our definition f f, (ii) two such operators f, f’ are also equivalent if
they differ by a real multiple of A, i.e., if

(3,6) f=/f’+ 2A, 2,/real, /va 0.
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In order to evaluate the different classes of operators f we consider each possibility
and demonstrate mutual inequivalence by inspection.

Case 1. Operators of the type f clp2 + CzPIP2 + c3P with a b b2

0. Without loss of generality we can take c 0. If in addition c2 or c3 are also
zero, then we obtain the forms P and PxP2 respectively. If c2 +_c3, then f
can be made equivalent to one of the forms (P +_ P2)2. Finally if c2 >< c3, then
by suitable choice of hyperbolic rotation anglef can be reduced to one ofthe forms

P or PxP2. The four inequivalent forms of f of this type are then f P22, P1P2,
(P1 P2)2.

Case 2. Operators for which a 4: O. For operators of this type we can always
choose s, s2 such that bx b2 0. Having ensured this condition initially it can
be maintained under inner automorphism by making only hyperbolic rotations.
The degrees of freedom for the coefficients c, c2, c3 then coincide with those of
Case 1. The inequivalent forms of operators of this type are then

(3.7)
f M2 + aPZ2,

f M2 -+- (P1 + P2)2,

where < 0.
Case 3. The final type of operator is that corresponding to a 0, b l, b2 4: 0.

There are a number ofcases to consider here. If b > b2, then it is possible to choose
a hyperbolicangle a such that 2 0. Then by appropriate choice of translations
S and S2 such that 1 -[- 3 0 and 2 0, f can be reduced to the form MPI
+ PM. Similar remarks apply to the case b < b2 for which we obtain the form
MP. + P2M. There are two remaining cases to be considered. If b b2 and
(i) C2 C -[- C3, then f MP1 + P1M + MP2 + P2M, (ii) c2 4: C -" C3, then
f MP1 + P1M + MP2 + P2M + o(PI P2)2, o > 0. These are the two
possible cases. Similarly for the case b -b2 there are two distinct inequivalent
forms. We now list all the forms for the operators of type 3:

f MP + P1M, f MP2 + P2M,
(3.8) f MP1 + P1M + P2M + MP2 + (PI P2)2, 0,

f MP1 + P1M MP2 P2M + 0(P + P2)2 0.

This then completes the evaluation of the inequivalent operators f of the form
(3.1) in the generators of E(1, 1).

Subsequently it will prove convenient to consider in addition to the group
motions of E(1, 1) in the pseudo-Euclidean plane two further discrete (or improper)
transformations which leave the Laplacian A invariant apart from, in one case, a
change of sign. The two transformations are defined by the matrices

(3.9)

-1 0

R= 0

0 0

0 0

I= 0 0.

0 0 0
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In coordinate space these transformations correspond to R; (t,x) (-t,x)
(reflection through the x-axis)and I :(t, x) (x, t)(permutation of coordinates).
If these discrete transformations are added to the group of inner automorphisms
we have used to define the equivalence of the operators f (i.e., added to the group
E(1, 1)), we can reduce the number of inequivalent operators of this type con-
siderably. We shall see that this is necessary in obtaining a correspondence
between separable coordinates for the Laplace equation and symmetric second
order operators of the type (3.1). It should also be noted here that the form of the
Laplace equation in the pseudo-Euclidean plane is invariant under the scale
transformation S(t, x) (rt, rx) (r real) (for the nonunitary equation r could also
be complex). The point to be made from this observation is that under S the
generators of E(1, 1) transform according to

(3.10) S’M M, S’Pi -Pi, 1,2.

This follows from the coordinate representation (2.4). Therefore a basis which
is specified by the Laplacian A and an operator of the type (3.7), e.g., M2 + 0P
( > 0), can equally well be specified by a normalized operator M2 -+- P having
applied the scale transform S with r (00-1/2 to both the basis defining operators.
In a similar way the operators in (3.8) with 0 0 can be unit normalized (note in
the case of the Euclidean plane the scale transformation has been used in Table
to normalize the interfocal distance). This normalization procedure although
not always used by other authors does make our problem of classification more
straightforward. In Table 2 we summarize the classification of operators of type
(3.1) under the equivalence relation given in the beginning of this section. The effect
of the discrete transformations R and I in reducing the number of inequivalent
classes is also given. From the original 19 classes of such operators the discrete
transformations reduce that number to 12.

TABLE 2
Quadratic symmetric operators in the generators of E(1, 1) classified up to equivalence

2
3-4
5-6
7-8
9-12
13
14

15
16-17
18-19

Operators for E(1, 1)

P
PPz

(P1 +- P2)
M _+ P
M +. P1P2

ME "+" (P1 -{- P2)
M

MPI + P1M

MP + P2M
MPx + PIM +_ MP + P2M

MP + PM +_ MP + P2M + (P -T- P2)

Operators for E(1, 1) @ R(@I)

P
PI P2

(P1 + P2)
M: +_P
M2 + PP2

M (P + P2)
M

MP1 + PM
MP + PIM

MP + P2M)
MP + PM + MP + P2M

MPx + PM + MP + P2M + (PI P2)
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4. The separation of variables for the Laplace equation in the pseudo-Euclidean
plane. We now proceed to find all the different coordinate systems for which the
Laplace equation

20 20 K(4.1) c3--2 c3x2 + ff 0

allows the separation of variables. The criterion for the separability of a form of
the type (1. l) has already been outlined in the Introduction. The means for making
a complete classification of all separable coordinate systems in an n-dimensional
Riemannian space has been given by Eisenhart [1]. He has shown that for such a
space with metric diagonal as in (1.1) the conditions that the equations of the
geodesics admit n quadratic first integrals of the form

dx dx const.(4.2) air ds ds

together with some additional conditions (for which we refer to Eisenhart [1])
are necessary and sufficient for the metric to be in Stickel form. The remaining
constraints on the metric coefficients amount to the specification of the curvature
of the space, i.e., the Riemann curvature tensor.

We now specialize to the case of two-dimensional Riemannian space viz.
the pseudo-Euclidean plane. For the separation of the Laplacian corresponding
to the metric

(4.3) ds2 g ll(dX1)2 q- g22(dx2)2

(i.e., there exists a Stackel matrix

(4.4) s (l)l I(X1) (l) 12(X 1)/
(I)2 I(X2 (I)2 2(X2)

such that conditions (1.3) for n 2 are satisfied), the necessary and sufficient
condition that we have separation as given by Eisenhart [1] is given by the two
equations

(X OX2
(4.5)

c2 log H

log H2 c3 logH log H22
/ 0,

X2 X

t? log H: c log H.+ O,
XI 6X2 X2 X1

where gll elliS, g22 e2H2 and ei (i 1,2) are +/- and determine the sign
of g,. These equations imply that the metric coefficients can be written in the form

(4.6) H Xl(O" -+- 0"2) H X2(a, + a2),

where Xi and a (i 1, 2) are functions of x only. For the purposes of studying the
pseudo-Euclidean plane we take el -e2 1. For the determination of the
various types of coordinate system we need to specify the curvature of the space.
For the pseudo-Euclidean plane this amounts to equating the one nonidentically
zero component of the Riemannian curvature tensor R122 to zero in order that
the space be fiat, i.e., have zero curvature.
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This gives

(4.7)

2 log H
R1221 H21

c log H1 c
log
H 1)

21ogH2 81ogH2 c logH-) =0

This equation together with the conditions (4.5) completely determines all the
possible coordinate systems allowing separation of variables in (4.1). In evaluating
these it is convenient to choose variables xl, x2 such that
(This is when 0-1,0-2 are not constant functions.) We now enumerate the possibili-
ties.

Type 1. Xi, 0-i (i 1, 2) are not constant functions. Substituting the expressions
H2 Xl(X Xz),H X2(X x2)into equation (4.7), we get

(4.8) 2 11)X2 X 1 -}- (x X2) -- 0.

Differentiating twice with respect to x2, this equation gives

(4.9) (1/X 2)’" 0

so that 1IX2 --ax2 + bx2 + --f(x2). Substituting this equation back into
the first derivative of (4.8), we have that 1/X1 f(xl). The general differential
form of Type is then

(4.10) ds2 --(x x2) axe_ dx22 .-]
[_f(x1) f(x2)_]

The number of distinct forms of this type can be found by considering the various
forms for the quadratic function f(x). These possibilities are now enumerated.

(i) f(x) has two distinct roots, f(x) can then be taken in standard form f(x)
4x(x 1) (we take the coefficient of x2 to be positive with no loss of generality).

The differential form is then

(4.11) ds2 (x1- x2)( dx2 dx2
4 XI(X 1)- x2(x2 1)"

There are two possibilities for the ranges of the parameters x,, x2 such that we
have a differential form which is locally pseudo-Euclidean. (Note. This is an extra
requirement that should be born in mind throughout this derivation.) In other
words, for small values of the parameters x l, x2 the differential form should be
expressible in the form ds2 A(Ul, u2)(du21 -du22), ui ui(xx, x2), i- 1, 2. The
two possibilities are:

(a) xx > 1,x2<0;
(b) > X1, X2 > 0 or < X1, X2 < OO.

The first of these systems is clearly a valid one as both x x2 and f(x) are positive.
For the second possibility the relative sign between g ll and g22 is preserved (i.e.,
sgn (gl 1/g22) -) and this is sufficient to make this choice of coordinates locally
pseudo-Euclidean. This is in contrast with the coordinate systems in the Euclidean
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plane in which the metric remains positive definite. This will be a feature of several
of the coordinate systems we find for the pseudo-Euclidean plane.

(ii) f(x) has two equal roots. We can then take f(x)= 4x2 without loss of
generality. The differential form is

(4.12) ds2 x2)

There are then two possibilities for x l, x2.
(a) X1,--X2 > 0;
(b) x l, X2 > 0.

The first corresponds to a differential form for which H2, 1, 2, are always
positive, the second type to a system which only preserves the relative sign of
H2 and H22

(iii) f(x) has two complex conjugate roots. We can then take f(x) x2 + 1.
The differential form is then

(4.13) ds2= (X1- X2) X21 + x2 +
There is no essential restriction on x l, x2 in this case other than that they be real.

(iv) f(x) is linear in x. Then f(x) 4x and the differential form is

(4. 14) ds2
4 xl x2

where the restrictions on x, x2 can be reduced to x l, x2 > 0.
(v) f(x) is a constant, viz. 4. The differential form is then

(4.15) ds2
X X2 (dx21 dx).

4

There is no restriction on the range of x, x2.
This is the complete list of differential forms of Type 1.
There are a number of further possibilities to be considered.
Type 2. a2 const. Then the metric coefficients can be chosen without loss

of generality to be H 1, H X. Substituting these into the equation (4.7)
we get that X’ 0. By suitable choice of variables the corresponding differential
form becomes

(4.16) ds2 dx x dx.
The case a const, does not yield a new differential form apart from a minus
sign. The remaining possibilities for which a and a2 are constant or H are con-
stant yields the usual Cartesian metric

(4.17) ds2 dt2 dx2.

We now proceed to systematically tabulate the various coordinate systems
whose differential forms we have evaluated. In doing this we give the relation of
the variables to the Cartesian variables and x, illustrate and find the coordinate
curves, find the additional operator necessary to specify the coordinate system
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and find the solutions of the various separated forms of the Laplace equation and
the special functions appearing in these solutions.

It is perhaps appropriate to mention at this point that we will consider only
those operators derived in the previous section for the group E(1, 1) which are also
inequivalent under the discrete transformations R and I. This proves to be an added
convenience and considerably reduces the amount of coordinate systems to be
classified.

(4.18) (I) ds2 dt2 dx2.

This is the case of Cartesian coordinates in the pseudo-Euclidean plane.
The solution of the Laplace equation is a linear combination of the solutions

(4.19) Ip eit eiax, o2 2 K2

for fixed I! and 1/31. The coordinate curves are just the lines const, and x
const. The additional operator specifying this coordinate system will be chosen

as L PP2 with eigenvalue -/3 (see later in this section for a more complete
discussion).

(4.20) (II) ds2 dx21 x21 dx2.
This is the case of polar coordinates

(4.21) x cosh x2, x x sinh x2,

where0=<x <
The additional operator specifying this coordinate system is L m2. The

separation equations have the form

d2 272 d21//2(4.22) + x- + K2, =0, L2 dx2
-2qt2.

The solution of the Laplace equation is then

(4.23) I) 011//2 xl/2Cv(Kx1)ei-x2,

where C(z) is a solution of Bessel’s equation (i.e., a linear combination of J(z),
Y(z)) and v2 1/4 r 2. The parametrization (4.21) only covers that sector of the
pseudo-Euclidean plane given by x > 0. The coordinate curves have the equa-
tions

(4.24) x tanh X2,
2 X2 X21

and are illustrated in Fig. 1.
Similar coordinate curves can be set up in the three other quadrants and the

Laplace equation separated. The various parametrizations of and x are then
related by the discrete transformations R and I written down previously.

(X X2) dx21 dx(4.25) (III) ds2

4 x x2

It is convenient to write x 2, x2 q2. Equation (4.25) is then

(4.26) ds2 (2 qZ)(d2 dr/Z)
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tan 0 tanh x

FIG.

and this corresponds to the choice of parabolic-type coordinates in the pseudo-
Euclidean plane, viz.

(4.27) t=1/2(Z+r/Z), x= q, - << , 0=<q< .
The additional operator required to specify this coordinate system is

(4.28) L MP2 + P2M 2
2 2

The separated Laplace equation then reduces to two ordinary differential equations
of the form

(4.29) X2 + K2X2 + B @(x)= O,

where x , r/. The separation constant B is generated by the eigenvalue equation
of the operator L, i.e., Lq -B,. Equation (4.29) is a form of the parabolic
cylinder equation having solutions

(4.30) OA(X AD(_+,)/2[e(1 + i)x//-x]
=+1
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FIG. 2

with 2 B/K. The solution of the separated Laplace equation is then the product
of two -functions A()B(r/). The coordinate curves are parabolas with
equations

(4.31) 2t 92 "i- X2/V2 V I
These coordinate curves are illustrated in Fig. 2. They form a set of parabolas

with the t-axis as the axis of symmetry. The curves completely fill the quadrant
-T- x > 0 and also parametrize the bounding lines of this quadrant, i.e., the lines

+_ x (t > 0). All that has been discussed thus far also holds true for the same
set of coordinate curves in the x-axis reflected quadrant, i.e., under the reflection
R. If, however, we choose to take this set of curves in the quadrant x

_
> 0,

the operator needed in addition to the Laplacian A is L MP + PM. This,
however, is equivalent to MP2 + P2M if we include the inversion operation I
in our group.

(4.32) (IV) ds2 x X2(dx2 dx)
4

This metric corresponds to a parabolic-type coordinate system in which the
Cartesian coordinates and x are given by

--1/2(X1 X2)2 (X1 + X2)’
(4.33) -oo <xi< oo, i= 1,2.

X --1/2(X X2)2 " (X -1
t- X2),
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The additional operator necessary to specify the coordinate system is

L MP + PIM + MP2 + P2M + (P P2)2

(4.34)
c2 82)

The separated equations then become

(4.35) + K2x, + B 0,(x,)= 0, i= 1,2,

where the eigenvalue equation of the additional operator is LO BO. Here as
usual 2. The general solution of (4.35) has the form

(4.36) x + C/3 x +

This solution can also be expressed in terms of the Airy functions Ai(-z) and
Bi(-z) with z x + B/K. The solution of the Laplace equation is then the
product of two such solutions. The equations of the coordinate curves are

(4.37) + x=(2x+ t- x)z, i= 1,2.

These are parabolas with axis of symmetry parallel to the line x and all
touching the line -x on the same side.

The situation is illustrated in Fig. 3.

2x

FIG. 3
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For -oo < xi < oo, i= 1,2, the parametrization (4.33) covers the half-
plane + x > 0. The half-plane + x < 0 can be covered by a similar set of curves
by applying the inversion operator IRIR: (t, x) --, (- t, x).

(4.38) (V) ds2=(xl-x2) x2 + 1-x+
It is convenient to choose new variables yi, 1, 2, such that x- sinh y.

The differential form is then

(4.39) ds2 (sinh y sinh y2)(dy2 dy2).

The Cartesian coordinates can then be written in terms of these variables as

2t cosh 1/2(y Y2) -b sinh 1/2(y + Y2),
(4.40) -oo <yi< or, 1,2.

2x cosh 1/2(y Y z) + sinh 1/2(y + Yz),

The additional operator specifying this coordinate system is

(4.41) L M2 P1P2 -(sinh y sinh Y2)
2 (2)sinh y Oy sinh y2-

The separated equations then become

(4.42) + K2 sinhy + B 0i(Y) 0, 1,2,

where LO 4BO.
Equation (4.42) is a form of the Mathieu equation having the general solution

(4.43) i(Yi) Ace,,,(iz, q) + Bfe,,,(iz, q),

where 2z y- iz/2, q 2iK 2. Here we are using the notation for Mathieu
functions as found, for instance, in the book by Moon and Spencer [17]. The
solution we seek is then the product of two solutions of the type (4.43). The
coordinate curves for this coordinate system are given by the equations

(4.44)
4e-’[_ei(t- x)+ (t + x)][e’(t + x)- (t- x)-]

=(e2+ 1)2 i= 2

These are rectangular hyperbolas with asymptotes rotated through an angle
given by tan ey’.

The situation is depicted in Fig. 4.
The coordinates in this case cover all of the pseudo-Euclidean plane.

(X X2) dx21 dx29.\
(4.45) (VI) ds2

4 x2 ----x22 I’ x,,-x2 > O.

It is convenient here to change the variables so that x 4eu’, -,Y2 -4eU2.
The differential form is then

(4.46) ds2 (e2", + e2")(du2 du2).
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FIG.

The Cartesian coordinates in terms of these variables are

sinh (u u2) -- e"’ +"2,
(4.47)

x sinh (Ul uz) e"’ +,2,
i= 1,2.

The additional operator specifying the coordinate system is

(4.48) L M2 -}- (P + P2)2
e2u* + e2u2

e2U2 e2Ul

and the separated equations become

d2

(4.49a) + K2 e2ul v 2

(.2 g2 e2.2 v2(4.49b)

The solution of these equations has the form

(4.50) O 11/1(//2 C(K e"’)Cv(iK e"2)

01(Ul) 0,

1//2(U2) 0.
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FIG. 5

with Cv(z) as in (4.23). V2 is the eigenvalue of L (i.e., L v2). The equations of
the coordinate curves are

(4.51) +_ e"i(t 2 x2) e2"’ (t x)2

with the + or sign being taken according as or 2 respectively.
These coordinate curves are sections of hyperbolas as shown in Fig. 5. The

parametrization (4.47) completely covers the region > x,
A similar set of curves reflected about the line x can parametrize the remaining
half-plane. This merely involves the inversion IRIR: (t,x)--. (-t,-x) of the
Cartesian coordinates.

(VII) This coordinate system has the same differential form as (VI) with
the exception that x l, x2 > 0.

Putting e"i xi, 1, 2, the differential form is

(4.52) ds2 (e2,, eZ,2)(du21 du22)

with Cartesian coordinates

cosh (H H2) -+- e"* +"2,
(4.53) -oo < ui < oo, 1,2.

x cosh (U /12) e" +,2,
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The additional operator L required to specify the coordinate system is

(4.54) L (P1 + P2)2 M2 eZ,2 e2ul
(e2ul e2u2) u:

The separation equations then reduce to two Bessel-type equations of the form
(4.49a) for both U and u2. So the solution of the Laplace equation has the form

(4.55) Cv(K e"’)Cv(K

where y2 is again the eigenvalue of the operator L. The coordinate curves are given
by the equations

(4.56) 2 X2 2 e2ui q- 1/2 e-a"’(t- x)2.

These are sections of hyperbolas and are illustrated in Fig. 6.
The parametrization as written in (4.53) only covers the region + x > 0,

> x + 1. Further sets of such curves can be introduced by applying the operators
I and R to equations (4.53). However, the strip It xl < cannot be covered by
such curves. This then is the first example of a coordinate system which cannot
be made to cover all of the pseudo-Euclidean plane.

(4.57) (VIII) ds2 (x x2) dx dxZ2
4 x(xl- 1) x2(x2- 1)

2e2’ + 1/2e- 2/./!\

FIG. 6
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with the parameters in the range x > 1, x2 < O.
Putting x cosh2 a and x2 -sinh2 b the differential form can be written

(4.58) ds2 (cosh2 a -+- sinh2 b)(da2 db2)
and the corresponding Cartesian coordinates are

(4.59) sinh a cosh b, x cosh a sinh b, < a, b < v,

The additional operator L is

cosh2 2(4.60) L M2 + P22 -cosh2 a + sinh2 b affb5 + sinh ba2
and the separated equations have the form

a2d
2

(4.61a) + K2 cosh2a + 2 l(a) 0,

d-
d2

(4.61b) K2 cosh2b + 2 ffz(b) 0

with 2 B + 1/2K 2.
These are Mathieu equations with solutions of the form (4.43). For (4.61a),

z a, q 1/4K 2, and for (4.61b), z b, q -1/4K 2. B is the eigenvalue of L. The
general solution of the Laplace equation is the product of two solutions of the
Mathieu equation. The coordinate curves are the families of hyperbolas with
equations

2 X2 X2 2

=1 =1(4.62)
sinh2 a cosh2 a sinh2 b cosh2 b

These curves are illustrated in Fig. 7. They clearly parametrize all the pseudo-
Euclidean plane.

(IX) This is the second type of coordinate system with differential form as in
(4.57). It is convenient to choose two different parametrizations of x l, x2.

(i) If 0 < X ,X2 < 1, we choose x sin2 , X2--sin2 fl; the differential
form is

(4.63) ds2 (sin2 x sin2 fl)(d2 dfl2).

(ii) If < xl, x2 < , we choose x sinh2 a, x2 sinh2 b; the differential
form is

(4.64) ds2 (sinh2 a sinh2 b)(da2 db2).

The Cartesian coordinates are

cosh a cosh b, x sinh a sinh b,
(4.65) - <a< v, 0=<b< ,
and

cos e cos/3, x sin e sin/3,
(4.66)

0 < < 2re, 0 </ < r,
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sinh b

FIG. 7

The additional operator L which specifies the coordinate system is

(4.67)

The separation equations assume the two forms

d 2(4,68) d-x2 + K cosh 2x + 21 b(x) 0, x a, b,

d2

dx2 2
-K2 cos 2x + 22 O(x) O, x ,,(4.69)

where 2, B 1/2K 2, 22 B -- 1/2K 2 and B is the eigenvalue of L. Equation (4.68)
has a solution in terms of Mathieu functions of the form (4.43) with q 1/4K 2
and z x. The solution of (4.69) is a linear combination of periodic solutions of
the Mathieu equation of the form

(4.70) O(x) Ace.,(x, q) + Bfem(X, q)
with q 1/4K 2. The solution of Laplace’s equation for this coordinate system is
either the product of two nonperiodic solutions of the Mathieu equation of the
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form (4.43) or two periodic solutions of this equation of type (4.70). The coordinate
curves are given by the equations

2 X2

=1, y=a,b,(4.71)
cosh2 Y sinh2 Y

(4.72)
t2 X2-- 1, y=o,fl.

cos2 y sin2 y

The coordinate curves are illustrated in Fig. 8.
The nine orthogonal coordinate systems we have found allow the separation

of variables for the Laplace equation in the pseudo-Euclidean plane. There are
two cases in which the resulting parametrization cannot be made to cover the whole
plane even with the addition of the discrete transformations R and I. The one
feature to be noticed is that the basis defining operator we have called L does not
run through all of the second column of Table 2 as all the orthogonal coordinate
systems are considered. In addition, there appears to be no unique choice of addi-
tional operator for the Cartesian coordinate system. We now proceed to resolve
this question by considering further nonorthogonal coordinate systems for which
the Laplace equation separates variables. Such coordinates have previously been
considered in the case of three-dimensional Euclidean space by Weatherburn [18]

FIG. 8

x
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but not from the point of view of the separation of variables. We now proceed to
evaluate all such systems for the pseudo-Euclidean plane.

Consider a coordinate system with the differential form

(4.73) ds2 a dx + b dx + 2h dxl dxz.
The Laplacian for this system is then (see, for instance, 19])

2 2
(4.74) V2 H 11 "1- H 12 6x Ox2
where

(4.75)

H12 2h/g, H22 a/g

and g Idet (gij)l lab h2[ (a, b and h are functions of X and X2, h ::fi: 0). If
we seek a solution of(4.1) in the separable form q A(xl)B(x2), this requires that
the equation

A" A’B’ B" A’ B’
K2(4.76) HI- q- H12---- q- H22-- + HI-- + H2- -k- 0

admit a separation of variables. This is only possible if H ll H1 --0, i.e., if
b 0 (or equivalently a 0). Equation (4.76) may then be written in the form

(4.77) H 12- + Hz + H22 B--;"

Now for this equation to be in separable form we require that a a(x2), h h(x2).
Without loss of generality the resulting differential form then can be written in
the form

(4.78) ds2 a(x2)dx + dxl dx2.

The requirement that the space be flat, i.e., R 1221 0, gives a" 0 so that

(4.79) a cx2 + d.

There are then three possible forms of ds2, viz.

(4.80) (i) C d 0, ds2 dXl dx2,

(4.81) (II) C O, d O, ds2 dxi + dx dx2,

(4.82) (III) c, d : O, ds2 x2 dx2 + dxx dx2.
We now give the coordinate systems corresponding to these differential forms and
include the treatment of the conventional Cartesian coordinates.

1. Cartesian coordinates of type I (i.e., ordinary Cartesian coordinates). The
Laplacian is A 2/t2 2/X2. A convenient choice of additional operator L
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is PIP2 c32/t X. The separation equations for the solutions of (4.1) and P1P2
Bff have the form

(4.83) d01 d02

with f12_ 2 K2. These equations are equivalent to those obtained by the
separation of the Laplace equation in the absence of any additional operator L
viz. 0’ 20,, 0

2. Cartesian coordinates of type II. In this case we choose coordinates such
that

(4.84) t’ + x, x’ t- x.

The Laplacian then has the form 4(2/& x’) and the generators oftranslations
are

(4.85) P + x, P2 t’ x"
The convenient choice of additional operator is P + P2 2(O/&’). The separa-
tion equations for the Laplace equation and the eigenvalue equation (P + P2)0
B0 are the same as in (4.83) with eB -K2, B. The solution is then

0(t’)02(x’). This coordinate system is obtained from system by a Euclidean
rotation of 45 degrees.

3. Cartesian coordinates of type III. In this case we choose coordinates such
that

(4.86) t’ -2t, x’ =t+ x.

The Laplacian then has the form 2/t’2 + O2/&, x’ and the generators of
translations are

(4.87) P -2 + Ox" P2 x"
The convenient choice of additional operator is P2. The separation equations for
(4.1) and the equation P20 e0 are then

(4.88)
dx’

2, dr,2 + + K2 O.

These are just the separation equations of the Laplace equation. The coordinate
curves are illustrated in Fig. 9. All other coordinate systems of this type can be
obtained from the choice (4.86) by a combination of the discrete transformations
R and 1.

4. Te coordiuate sstem it differemial form (4.82). The Cartesian coordi-
nates are such that

(4.89) x2 e’/2 e-/2 X X2 ex/2 + e x/2.

Theseparation equations have the solution

(4.90) e=’/2x/2C,(2iKx/2).
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FIG. 9

Here e is the eigenvalue of the basis defining operator L M c/cxl. The
coordinate curves are given by the equations

(4.91) X --2e -xl/2 2 x2 --4x2

These are illustrated in Fig. 10.
Comments. In this section we have evaluated all coordinate systems orthogonal

and nonorthogonal which allow the separation of variables in the Laplace equa-
tion (4.1). All but one of these coordinate systems can be associated with a basis
defining operator which can be written in the form (3.1)in terms of the generators
of E(1, 1). The results are summarized in Table 3. Only the operator L MPI
+ PM + MP2 + P2M does not correspond to a separable coordinate system
for the Laplace equation (4.1). This operator, although it is a limiting case of an
operator which does correspond to a separation of variables, does not give a
separation of variables, when diagonalized, in the pseudo-Euclidean plane. We
should also comment here that the nonorthogonal separable coordinate systems
we have classified correspond in each case to the diagonalization of a first order
operator in the lie algebra of E(1, 1). This is a reflection of the fact that the
diagonalization of such an operator does not uniquely determine a corresponding
separable coordinate system.
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FG. 10

5. The classification of all separable differential forms in three-dimensional
Minkowski space. In this section we give a complete classification of the possible
differential forms for which the Laplace operator admits a separation of variables
in three-dimensional Minkowski space. In classifying these forms, we make use
of the analysis of Eisenhart with the exception that the equations giving a zero
curvature tensor are modified so as to correctly include the indefinite signature
of the Minkowski space metric. Accordingly we do not go through the details of
the derivation here. This is also appropriate from the point of view that many of
the coordinate systems found have already been evaluated in this paper (for the
case of E(1, I)) or elsewhere [6]-[8]. Many of the coordinate systems have a sub-
group Casimir operator in the basis defining operators. In addition, we do not
touch on the problem of complete sets of basis defining operators for the associated
group E(2, 1) under equivalence relations of the type introduced for E(1, 1). The
only features of the group E(2, 1), acting on three-dimensional Minkowski space,
which will prove useful are the specification of its Lie algebra generators; E(2, 1)
is the group of proper transformations which preserve the relativistic distance S
between two points (t, x, y), 1, 2, in Cartesian coordinates, where

(5.1) S2 (t t2)2 -(x x2)2 -(y y2)2.
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We denote the generators of translations along the t, x, y axes by P1, P2 and
P3 respectively, the generators of hyperbolic rotations in tx, ty planes by K1, K2
and the generator of the xy plane rotations by M3 For the degenerate representa-
tions of E(2, 1) the only nonzero Casimir operator is the Laplacian

2 2
(5.2) A

tt2 (X2 ty2

satisfying an equation of the form

(5.3) A0 + X20 0.

We now proceed to the enumeration of all separable differential forms in this
space.

System 1. The defining case of Cartesian coordinates

(5.4) dS2 dt2 dx2 dy2.

The Laplace equation then has exponential type solutions.
Systems 2-9. These are the coordinate systems corresponding to E(1, 1)-type

cylindrical coordinates, i.e., we have bases in Which P3 and one of the operators
L in the eight coordinate systems (II)-(IX) (in 4) are diagonal. The special functions
which are the solution of (5.3) then have the form of the product of eiy and the
corresponding solution of the two-dimensional Laplace equation (4.1) with
K2 Z2 .c2. No further comment is required here.

Systems 10-12. These are the three E(2)-type cylindrical coordinates for which
P1 and one of the operators L appearing in Table are diagonal and define the
basis (excluding of course the Cartesian case). The corresponding separated
solutions then have the form of the product of ei’ and the corresponding solution
of the two-dimensional Laplace equation (2.7) with K2 2 T2. These solutions
are well known [1 93 and will not be reproduced here.

Systems 13-21. Coordinate systems in which’one of the basis defining operators
is the Casimir operator K21 + K M of the S0(2, 1) subgroup of E(2, 1) gener-
ated by K, K2, M3 and the remaining basis operator is symmetric and quadratic
in these generators. These coordinate systems have been discussed in detail by
Winternitz et al. [7]. For coordinate systems of this type the differential form is

(5.5) dS2 dxg x dw2,

where dw2 is one of the nine quadratic forms evaluated by Olevski for a space of
constant negative curvature in two dimensions. The Xo or radial part of the Laplace
equation has the same form in all three coordinate systems, viz.

d2 2 d j(j + 1)
(5.6) -t + X2

Xo dxo x) c/)(Xo) 0

which has the general solution

(5.7) dp(Xo) AJj+ x/z(ZXo) + BJ_j_ x/z(ZXo).

The general solution of (5.3) is the product of qS(Xo) and the corresponding SO(2, 1)
basis functions. For the three subgroup-type bases for S0(2, 1) these functions
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have already been evaluated [20]. Two of the nonsubgroup-type bases have been
studied by MacFadyen and Winternitz. For the remaining four coordinate systems
we now give the differential forms and Laplace equation solutions.

(i) Semihyperbolic system.

dx ax(5.8) 81422 --(x2 x1)
(x 21 + 1)- (x2 a)(x2 + 1)

with x2 < a < x The separation equations are

+ ++
(5.9)

Yi Yi K- z dy

j(j + 1)yi+ B -]
+ 4Yi(i-- li@i- K-2)]F(Yi)= O, i= 1,2,

where K is complex and IK[ 1. We also have xi (1 + i)y. This is just the
Lam6 equation with complex modulus of absolute value 1.

(ii) Elliptic parabolic system. From the differential form

(5.10) dw2 (xx x2)( dx2 dx2
4 (x1 1)x2 (x2 1)x

where 0 < X2 < < Xl, we have putting xl 1/cos2 0, X2 1/cosh2a the
differential form

(5.11) dw2={ COS2 0 COSh2 a (dO2 -t- da2).

The separation equations then give differential equations whose solutions are
F(a), G(O), where

(5.12a) F(a) AP(tanh a) + BQ}(tanh a),

(5.12b) G(O) CP[i(i tan 0) + DQj(i tan 0).
2 is the separation constant and P" (z), Q(z) are first and second kind Legendre
functions respectively.

(iii) Hyperbolic parabolic system. The differential form is the same as with
(5.10) with the variables now subject to the restrictions x2 < 0 < < xl. Then
putting xl 1/cos2 0, x2 1/sinh2 b we get the differential form

dw2 }(d02 + db2)"(5.13)
cos2 0

/
sinh2 b

The separation equations then have solutions F(b), G(O) with G(O) as in (5.12b) and
(5.14) F(b) AP(coth b) + BQ(coth b).

(iv) Semicircular parabolic system. From the differential form

(5.15) dw2 (X X2) dX21 d’x’221
putting x -2, x2 -r/-2 we get the form

(5.16) dw2 1)q--- (d2 + dr/2).
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The separation equations then have the solutions F()G(rl), where

(5.17)
F() I/2(Ajj+ 1/2(b) + BJ_j_ 1/2(b),
G(rl) ril/2(CI2+ 1/2(brl) + DI_2_ 1/2(brl).

Winternitz et al. [7] have also given the expressions for Cartesian coordinates in
terms of the variables appearing in the differential forms as well as the extra
operator required to specify the basis. We should note however that the Cartesian
coordinates have only been given inside the light cone.

Systems 22-27. Coordinate systems for which the two basis defining operators
are the generator of a hyperbolic or proper rotation and a basis operator of the
E(1, 1) or E(2) subgroup. We now enumerate the possible number of differential
forms"

(5.18) (i) ds (x) xZ)(dx dx2) 2 2 dxzXOX

This corresponds to a choice of Cartesian coordinates

(5.19) -- 2 X) X(Xo + XoX cos x2, .v-- xoxl sin x2.

The basis functions of (5.3) are then diagonal in KP2 + P2K1 q- K2P3 -k P3K2
and M3. The separated equations in Xo and X have the form

d2 d
Z2X + q2 Fi(xi) 0, 0,(5.20a) + --xi-d-xi + x{-

This is the Bessel wave equation with general solution

(5.20b) Vi(xi) Afire(Z, q, x) + BiJ-m(Z, q, x), O,

(in the notation of Moon and Spencer [17]). The corresponding solution of
Laplace’s equation is then FoF 1H, where H e"x-.

(5.21)
(ii) ds2 (cosh2 Xo + sinh2 xx)(dx dxi)

cosh2 xo sinh2 x dx.
This corresponds to a choice of Cartesian coordinates

(5.22)

(5.23)

sinh Xo cosh x1, x cosh Xo sinh x cos x2,

y cosh Xo sinh x sin x2.

The basis functions of this system are then diagonal in the operators K + K2
+ P + P and M3. The separation equations for the solution of the Laplace
equation F(xo)G(x 1)H(x2) are

d m2d
cosh Xo +(5.24) costa Xo dx---o oXo cosh2

X0
+ X2 cosh2 x0 j(j + 1)]F(xo) 0,

d m2d sinh xl(5.25) sin xl dXl dx sinh2 x1
Z2 sinh2 xl j(j + 1)J G(xl) O,
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with H(x2) eimxa. The equations (5.24)-(5.25) are both spheroidal equations with
general solutions

(5.26) F(xo) AP’j’(iz, sinh Xo) + BQ’j’(iT., sinh Xo),

(5.27) G(Xl) CP’j’(iz, cosh xl) + DQ’j’(i7., cosh xl),
where P(a, z) and Qu(a, z) are solutions of the spheroidal equation (or Legendre
wave equation) which reduce to the corresponding first and second kind Legendre
functions when a 0.

(5.28) (iii) ds2 (sinh2 Xo sinh2 x)(dx dx2) sinh2
Xo sinh2 x dx2,

(5.29) ds2 (sin2 Xo sin2 x)(dx dx) sin2
Xo sin2 x dx2.

These differential forms correspond to the two possible choices of Cartesian
coordinates

cosh Xo cosh x l, x sinh Xo sinh x cos xz,
(5.30)

y sinh Xo sinh x sin x2,

(5.31) t=cosxocosx, x=sinxosinxcosx2, y=sinxosinxsinx2.

The basis functions are diagonal in the operators K + K2z P P and M3.

The separation equations for the Laplace equation solution F(xo)G(x)H(x2) are

[ d d m2

+Z2sinh2xi-j(j+ 1) (xi)=O,(5.32)
sinh xi dxi

sinh xi dxi sinh2
xi

[ d
sin dxidm2sin2 X

(5.33) xdxSin xi - Z
2 sin xi + j(j + 1) b(x)= 0,

where (x), b(x)= F(xo) or G(xl). As with the previous coordinate system
H(x2) e". Equations (5.32)-(5.33) are both forms of the spheroidal equation
and have general solutions

(5.34) O(xi) APT(z, cosh xi) + BQT(z, cosh xi),

(5.35) d/)(xi) CP’j’(Z, cos xi) + DQ’j’(Z, cos xi).

(5.36) (iv) ds2 2 2 2X,xzdxo -(x2 + xZ)(dx2 + dx2).

This corresponds to the choice of Cartesian coordinates

(x, + x).(5.37) xx2 cosh xo x xx2 sinh xo Y 2

The basis functions are diagonal in the operators K and K2P + PIK2 + M3P
+ P2M3 The separated equations have the form (5.20b) with m replaced by
q2 is real and positive for the equation in x and negative for the equation in x2.
The corresponding solution of the Laplace equation is then the product of two
solutions of the type (5.20b) (with the specified changes) and e*.

(5.38) (v-vi) ds2 sinh2 x sin2 x2 dx (sinh2 x + sine x2)(dxi + dx2).
This corresponds to the choice of Cartesian coordinates

(5.39) sinh xo sinh x sin x2, x cosh xo sinh x sin x2,

y cosh x cos x2
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The basis functions are diagonal in the operators K and K M + P2o p2.
The separation equations for the solution of the Laplace equation are for the x
dependence a solution of the type (5.32) and for the x2 dependence a solution of
the type (5.33), the only changes in the parameters in these equations being

ix, m z (real). The Xo dependence is given by eix. Similar remarks apply to
an additional coordinate system in which the Cartesian coordinates are given by

(5.40)
sinh Xo cosh x cos X2, X cosh Xo cosh x cos X2,

y sinh x sin x2.

As this system differs very little from (5.38) we make no further comment on it.
Systems 28-32. Other coordinate systems. (See Note added in proof.)
System 28.

(5.41)

where

ds2 --(x- x1)(x X2) dx- (X1 x)(x1 X2) dX(Xo a)(Xo 1)Xo (x a)(x 1)x

(X2 X0)(X2 X1)
(X2 a)(x2 1)x2

dx22,

xo>a> > xx >0> X2

The separation equations have the form

d2

xi - - + e(5.42) + -} a xi

2X "3t- Axi + B 1(xi a)(xi li ri(xi)= 0,

where e + if i= 0, and -1 if i= 2. For i= 0, this is the Lam6 wave
equation with solution

(5.43) F(x,) AE,(, x/2) + BFp(, x/2),
where B (1 + a2)q, A -1/4p(p + 1) and 1/2. For i= 3 the solution is
again of the form (5.43) with argument ixz/2 instead of x/2.

System 29.
(X Xo)(X X2) dx21ds2 (x0 Xl)(xo x2) dx /

(5.44)
(Xo- 1)2Xo (Xl- 1)2Xl
(X2 X0)(X2 X1)

/
(X2 1)2X2

dxz,

wherexo> >x >0>x2.
The separation equations are

[_x.2 [1 2 I d zzx{/Axi+BlF(xi) 0
d2

fci xi- (xi- 1)2xi
(5.45) + + + e

with e as in system 28. These equations are identical with those of (5.42) and hence
the solutions of the Laplace equation are as in that case with the only modification
being B 1/2q.
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System 30.

(5.46)

ds2 (x x1)(x x2)dx) --xg(xo 1)

..1_
(X2 X0)(X2 X1)dx22

x22(1 x2)

(x Xo)(X x2) dxX21(1 XI)

with x2 > > X > 0 > Xo. The almost identical nature of this system to 29
enables us to make no further comment on its properties.

Systems 31-32.

ds2 (e2XO + e2’)(dx) dx2) e2XO e2, dx2.(5.47)

Separation of variables gives the equations

d2 d
(5.48) r2r2 + 2rrr + e - + x2r2 j(j + 1)lF(r O,

where e + if r ex and e -1 if r ex’ is an asymptotic form of the
Legendre wave equation for r large. We have at the time of writing found no
standard notation for the solution of this equation. The second system of this type
can be obtained from this system by the transformation Xo Xo + i(n/2).

6. Concluding remarks. What has been achieved in this paper has been the
classification of all coordinate systems for which the Laplace equation admits a
separation of variables in the pseudo-Euclidean plane. This includes both ortho-
gonal and nonorthogonal coordinates. With each such coordinate system we
can associate an additional operator which uniquely determines the basis. We have
shown that there are three coordinate systems in the pseudo-Euclidean plane
which are nonorthogonal and no nonorthogonal system in the Euclidean plane
which admits a separation of variables of the Laplace equation. It has been shown
that with the addition of the discrete operations R and I that every class of second
order symmetric operators in the generators of E(1, 1) but one can be associated
with a separable coordinate system of the Laplace operator. This exception is the
operator L MP + PM / MP2 + P2M.

For the three-dimensional case we have merely evaluated all the differential
forms and associated basis functions for the case of orthogonal coordinates which
allow separation. The problem of the parametrization of the space has not been
given in any detail. This is of particular interest for the case of bases defined
according to the chain E(2, 1) = SO(2, 1) = L with L some second order operator.
One then has to parametrize inside, outside and on the light cone in terms of the
various coordinate systems. For the case of the pseudo-Euclidean plane these
regions (with the exception of the light cone) can be regarded as identical. In the
three-dimensional case they are however distinct and the spectra of the Laplacian
is also different inside and outside the light cone [20], [21]. We hope to return to
some of these problems in the near future.

In terms of future work it would seem expedient to make a systematic study of
the possible nonsubgroup bases of the compact groups, in particular the orthog-
onal and unitary groups. A study of these bases should prove relevant to associated
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physical problems (e.g., the group SO(4) and the Coulomb problem). Related to
this work will also be the study of the associated special functions and the evalua-
tion of some new properties in this area. As far as the Euclidean groups are con-
cerned we hope to be able to give a complete treatment of the Poincar6 group
E(3, 1) and its separable coordinate systems as well as make the first steps in a
systematic treatment ofthe Euclidean groups E(p, q). Finally it should be mentioned
that the study of nonorthogonal separable coordinate systems will of necessity
be given a more detailed analysis.

Note added in proof. It should be noted that the classification of separable
differential forms in 5 is incomplete. A more detailed presentation of such
systems is currently under preparation. The majority of separable systems have,
however, been presented in this article.
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THE PERIODIC PART OF THE RESPONSE TO A
PERIODIC EXCITATION*

GREGERS L. KRABBE"

Abstract. The aim is to describe an algebraic procedure which gives explicit formulas for the
steady state part of the response to a periodic excitation which may be a generalized function; the
transfer function may have positive degree, and its poles may lie on the imaginary axis. The theorems
are intended to form a rigorous basis for applications to network analysis.

Introduction. An important problem in network analysis is to determine the
steady state part [E] of the response to a periodic nonsinusoidal excitation E
which vanishes on the negative axis. The steady state part [E] can be obtained
by two procedures: the Fourier procedure gives [E] in the form of a Fourier
series; the operational procedure gives [E] by an explicit formula involving
finitely many terms. This paper presents the operational procedure in a rigorous
mathematical form and generalizes this procedure in various directions. More
specifically, the periodic excitation E is allowed to be a generalized function which
vanishes on the negative axis (for example, E could be a row of impulses, or just
one impulse concentrated at the origin). The transfer function h is allowed to have
positive degree; moreover, the poles of h may have arbitrary order and may lie
anywhere outside a sequence of equidistant points situated on the imaginary
axis (this sequence depends on the period of the excitation E). Some attention is
given to minimizing the amount of work involved in calculating [E]; for example,
[E] can be obtained by repeated application of the formula used when the transfer
function has only simple poles (see 7 and the material following Remark 8.2);
see Theorem 8.1 for an explicit formula giving [E] in the case of multiple poles.

Motivation. Professor Clare McGillem (of the Department of Electrical
Engineering of Purdue University) brought to my attention the practical interest
of finding an efficient operational procedure for calculating [E]. The few textbooks
dealing with the operational procedure (e.g., [2] and [12]) describe it by working
out one example by reasonings which occasionally appeal to nonmathematical
arguments (see Remark 7.3); none consider the case where the transfer function
has a pole of order greater than one. Remark 7.6 deals with the following classical
situation the transfer function h is defined by the equation h(s) 1/(s a), and
the. excitation E is a row of equidistant impulses starting at the time 0; it
turns out that the steady state part [E] oftheresponse is the periodic extension ofan
exponential function: this form of the answer is clearly more useful (for example,
for finding the extrema of [E]) than the Fourier series answer obtained in 13].

In this paper is defined a space of periodic generalized functions; the space
contains the space of functions which vanish on (-, 0) and have on (0, )

period a > 0; moreover, if an element of is an ordinary function vanishing on
(- c, 0), then it is on (0, ) a periodic function having period a (see Remark 3.4
of course, contains, in particular, the infinite series of impulses concentrated at
the points ka, where k 0, 1, 2, 3, see Remark 7.4).
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Throughout, r is an arbitrary number > 0. The transfer function is a rational
function whose poles lie outside the sequence 2rki/a (k O, +_ 1, +_2, +_ 3,...).
Given an excitation E of period a which vanishes on (- oe, 0), the periodic part of
the response is the unique periodic function (of period a) differing from the response
by a solution y of the differential equation

# y-0 fort>0,

where/ is the denominator of the rational function h; if stability occurs (that is,
if all the poles of h lie on the left-hand side of the imaginary axis), then the periodic
part equals the steady state part (of the response); see Remark 5.1. The case where
E is a generalized function seems to require a restriction on the degree of the
transfer function h; see Theorem 8.3. Remark 6.2 involves a transfer function of
positive degree.

Organization. Section 2 discusses the notion of "response" and "transfer
function". Section 3 ("Periodic operators") deals with the space . The purpose
of 4 ("Free responses") is to provide theorems to be used later (see Remark 4.2).
Section 5 ("The periodic part") deals with some key properties subsuming the
existence of the periodic part. Section 6 ("Sinusoidal excitations") presents a slight
generalization of properties known under the heading of "frequency response".
Sufficient conditions for the existence of the periodic part are given in 7-8,
which deal with nonsinusoidal excitations (the case of multiple poles is relegated
to 8). For the main results, see Theorem 8.2 and Remark 8.4.

1. Algebraic operational calculus. In order to avoid unnecessary growth
conditions, it is best to replace the operational calculus based on the Laplace
transformation by a direct approach such as the one described in [8]-[11] or [14].
This 1 is devoted to a brief sketch of the relevant material. The notions of "re-
sponse" and "transfer function" are discussed in 2.

Notation. We denote by R the set (- , ) of all the real numbers C denotes
the complex field.

A function f(. is called piecewise-continuous if f(. is a mapping of R into C
such that f(. has only a finite number of discontinuities in each finite interval;
moreover, it is required that both, right- and left-hand limits of f(. exist at each
point.

DEFINITION 1.1. Let (sC) denote the family of all the piecewise-continuous
functions f(. such that f(t) 0 for __< 0.

Remark 1.1. If f(. )e(cg), then If(t+_)[ < for every r in R. As usual, we
denote by f(t-) the left-hand limit"

f(t-) lim f(u) forutandu<t.

Remark 1.2. The direct operational calculus described in [8]-[11 is based on
the following two notions. A test function is an infinitely differentiable mapping of

into C which, at the origin, vanishes together with all its derivatives (for example,
the equation qg(t) exp (-1/[t[) defines a test-function). An operator is a linear
mapping of the space of test functions into itself. For example, the differentiator D
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(which assigns to each test function its derivative) is an operator. If gk (k 1, 2)
are two operators, then g g2 means that g l(qg) g2(o) for every test function

If f(. and g(. belong to the space (0g) we denote by f A g(. the function
defined by

f A g(t)= f(t- u)g(u)du for t.

Let sg’ be the family ofhll he operators A such that the equation

A(w / w2) (.) (Awl) / w2(.)

holds whenever both wl(" and W2(" are test functions. It can be shown (see
[9, Thm. 1.22]) that s is a commutative subalgebra of the algebra of all the opera-
tors (multiplication is the usual operator product). The operator D, defined by
Dw(. w’(. for every test function w(. ), is an invertible element of the algebra
(in the sense that there exists a unique element D- ofs such that DD- equals the
unit element of the algebra

To any function f(.) in (cOt) there corresponds an operator f, called the
operator of the function f(. ); the operator f is defined by the equation

f(w) f A w’(. for any test-function w(. ).

The correspondence f(-)- f is a linear mapping of the space () onto a
subspace of the algebra .

Remark 1.3. Suppose that gk(" )e () for k 1, 2; if g l(t) gz(t) for > 0,
then g g2.

Conversely, if gl g2, then gl(t)= gz(t) whenever both gl(.) and g2("
are continuous at the point (see [8, p. 27]).

THEOREM 1.1. Suppose that gk(" )e() for k 1,2. If gl g2, then gl(t-)
gz(t- for all [.

Proof The proof is immediate from Remark 1.3.
DEFINITION 1.2. We set (f {g’g(.)e(gf)}. Thus, reef if f equals the

operator g of some function g(. belonging to (3(f). Iff e af and e N we denote by
f(t) the unique element of the set {g(t-)’g(.)e(o) and g f/; in view of
Theorem 1.1, this unique element exists.

Remark 1.4. Consequently, if f g and g(. ) (f), then f(t) g(t-). Thus,
to every f in of there corresponds a function f(. belonging to ((f) this corres-
pondence f- f(. is linear.

THEOREM 1.2. The space ,iU is a linear subspace of the algebra
and ck C, then

. or O.
[_k d k

Proof The proof is immediate from Remark 1.2 and Definition 1.2.
The derivative. Suppose that f e. If f(. is continuous on R, then the

equation Df f’ holds whenever f’(. s (af) (that is, the operator product of the
operators D and f equals the operator of the derivative of the function f(. ):see
[9, p. 203]).
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The translation operator. Suppose a >= 0; we denote by T( the function
defined by

0 for __< a,
(1.1) T(t)

for > a.

In particular, To is the operator of the Heaviside step function. If f e then the
operator product "l’f (of the operators "1" and f) belongs to in fact,

(1.2) "l’,f(t) T(t)f(t a) for > 0;

see [9, p. 206] or [8, p. 30].
Example 1.1. Suppose that a e C. If k is an integer >= 1, we denote by DTo/

(D a)k the operator A such that DTo (D a)kA (that is, D’I"o DA aA in
case k 1); it turns out that A e and

DT tk-
(1.3)

(D a)k(t) ears’(k-1)! for >0;

see [8, p. 49].
Convergence. Henceforth, the linear space ’ is endowed with the locally

convex linear Hausdorff topology defined in [9, p. 209]. In case a > 0, it turns out
that the operator To T is an invertible element of the algebra ’; in fact,

(1.4) rk,TO T k=o

and 1/(To T) is an element of such that

To- T(t)--- + It fort>O,

where It is the greatest integer smaller than t/a. See [8, pp. 250-251].
Impulses. Let a => 0. The operator product DT (of the operators D and T)

satisfies the equation

DT lim I(T
-,0

T,+)

note that

(T- T+)(t)=
0 otherwise;

consequently, DT corresponds to the unit impulse applied at the time t--a.
Multiplying by D both sides of (1.4), we obtain

D
DTk(1.5) To T, k=O

this is a row of impulses applied at the times ka (k 0, 1, 2, 3,
p. 251].

..). See [8,
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Remark 1.5. In view of Remark 1.3, (1.2) gives ToT T and

(1.6) f Tof wheneverf
DEFINITION 1.3. An operator E is said to agree with zero on the interval

(- , 0) if the equation Ew(t) 0 holds whenever < 0 and for each test function
w(. ). An operator E agrees with zero on the interval (-, 0) if (and only if)
E ETo (see [10, 1.31 and 3.25]). It is easily verified that the operators (1.4) and
(1.5) agree with zero on the interval (- , 0).

Convolution. If fk ’ for k 1, 2, we set

(1.7) fl * f2 dcj

Note that D * f2 f2. Iff e , it turns out that the operator fx * f2 belongs to 3((

in fact,

(1.8) f, * f2(t)= f(t u)f2(u)du for > 0;

see [9, p. 204] or [8, p. 28]. Consequently, the operation (1.7) is a generalization of
the operation of convolution of functions.

Suppose that a C, and let f be the operator DTo/(D a)" Definition (1.7)
gives, for f2 1,

DTo f2*f2(1.9)
D a D a

since fl DTo/(D a), it follows from (1.3) that fl(x) e for x > 0; from (1.9)
and (1.8) it therefore results that the equation

f2 (t) ea’-auf2(u du for > 0(1.10) D--a
holds whenever f2

Polynomials in D. Let p be a polynomial

(1.11) p(s) co + cls + + Cksk +
since the coefficients ck are determined by p, we are entitled to write

(1.12) p(D) co + cxD + + CkDk + ....
Remark 1.6. Let n be the degree of the polynomial p, and consider an element w

of U such that w")( )6 (3(f) and such that wtk)( is continuous on for all non-
negative integers k < n;if so, then

p(D)w CoW + c + + Ckwk) +
see [9, p. 203]. Consequently, the operator p(D)w belongs to # and the equation

(1.13) p(D)w(t) CoW(t) + cw’(t) + + CkWk)(t) +
holds for all > 0. As usual, wk)( denotes the kth derivative of the function w(. ).

THeOReM 1.3. Let p be the polynomial (1.11). Suppose that p has degree n >= 1.
If F o,uf and w F/p(D), then p(O)Wl(. F( and the equation

(1.14) CoW(t) - C lW’(t + "k- cw)(t) + F(t)
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holds for w(. wl(. and > O. In fact, w(. is the only solution of (1.14) which
satisfies the conditions

(1.15) wtk)(o)=o for O-< k< n.

Proof. It is well known (see, for example, [7, p. 194]) that there exists a unique
function Wo(" such that w)( is continuous on R for each nonnegative integer
k < n and such that both (1.14) and (1.15) are satisfied by w(. Wo(. ); from (1.14)
it follows easily that W(o")( (,X) from Remark 1.6 therefore follows the equation
p(D)wo(. F(. ). Since (by Remark 1.3) this equation implies p(D)wo F and
Wo F/p(D), it follows from our hypothesis (wl F/p(D)) that Wo w x; the
conclusion Wo(" w(. now comes from Remark 1.4 and the fact that Wo("
is continuous on R.

2. Transfer function. Let # and be polynomials and suppose that - 0.
By definition, the operator /(D)/#(D) is the operator A such that O(D) #(D)A.
Let E be an operator; we write

it obviously follows that

(2.2) #(D) [E] O(O)E.

Equations of the form (2.2) occur in filters (a filter is a black box into which is
fed an excitation E and out of which comes a resulting response [E]). Set

O(D)
(2.3) G -D’I"o.

Let us suppose that E ETo that is, suppose that E is an element of the algebra
which agrees with zero on (- oe, 0) (see Remark 1.5) from (2.1) it follows that

O(D) [g/(D)
1E

so that (2.3) and Definition (1.7) give

(2.4) [E] G * E.

Let us call [E] the response to E; in case E is the unit impulse D’l"o, it follows from
(2.1) and (2.3) that [D’l’o] G:the operator G equals the response to D’I"o (this
response will be called the impulse response). Thus (2.4) states that [E] [DTo] * E
the response to E is obtained by convoluting with E the impulse response.

In case the degree of is smaller than the degree of , it turns out that G e
and

(2.5) G

where denotes the Laplace transformation. Thus, the impulse response equals
the operator of the function G(.) satisfying (2.5) Since [E] G * E, it follows
from (2.4)-(2.5) that the function /# is the transfer function in the sense of 15, p.
190]. If, in addition to the restriction on the degrees, we suppose that both [/3] and
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E are Laplace-transformable, then (2.4) gives .[E] (2G)(E); consequently
(2.5) gives

2[E] E and 2[E3.
/,t kt E’

from [6, p. 97] and [2, pp. 74-85] it therefore results that [E] is what is commonly
called the response to E, while the function /# is indeed the "transfer function" in
the usual sense.

DEFINITION 2.1. Given the ratio h O/p of two polynomials (whose degrees
need not be related) and an operator E, we shall call h(D)E the response to E.
As we have seen at the beginning of this 2, this terminology is in accord with the
standard terminology.

that

(3.1)

3. Periodic operators. Throughout a is a fixed number such that a > 0.
DEFINITION 3.1. We denote by A the family of all the operators f in sU such

f(t+a)=f(t) for allt>0.

Remark 3.1. Clearly A is a linear subspace of the space s(. We shall define a
space which contains (besides all elements ofA) rows of impulses the space
is such that, if it contains an element of .if, then this element belongs to A (see
Remark 3.3).

THEOREM 3.1. If G ff let Go( be the function defined by

f G(u) for u <= a,
(3.2) G(u)

0 otherwise.

If G A, then the equation

(3.3) G(t) G(t na) whenever na < < na + a

holds for any integer n >= O.
Proof. If na < < na + a, then 0 < t- na < a and

G(t) G({t- na} + na)= G(t- no’);

Conclusion (3.3) is now immediate from (3.2).
THEOREM 3.2. Suppose that f e d4. The operator f belongs to A if (and only if)

there exists some operator w in off such that

(3.4) w(t) =0 fort > a

and

(3.5) f

Proof Suppose that f e A let us verify that (3.4)-(3.5) hold when w(. is the
function defined by

(3.6) w(t) To(t)f(t T(t)f(t a) for 6 ;
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note that w e . From (3.6), (1.2) and Theorem 1.2, it follows that

w(t) (’l’of Tf)(t) for

consequently, w "l’of- "l’,f (’1"o- "l’,)f. Conclusion (3.5) is therefore
immediate from (1.4). It remains to prove (3.4). To that effect, take u > a and note
that (3.6) implies

w(u) f(u) f(u a) f({u a} + r) f(u r) 0;

the last equation is from (3.1). This completes the proof of (3.4).
To prove the converse, suppose that (3.5) holds for some element w of.U which

satisfies (3.4). Multiplying both sides of (3.5) by To "!’, we obtain "l’of "l’f
w; from Theorem 1.2 and (1.2), we therefore have

(3.7) f(u) T,(u)f(u a) w(u) for u > 0.

Since f.U (by hypothesis), we only have to establish (3.1). To that effect, take
> 0 and substitute u + a into (3.7)" this gives

(3.8) f(t + a)- r(t + a)f(t)= w(t + a)= O.

The last equationis from our hypothesis (3.4)(note that u > a). Since "l’o(t + a)
(by (1.1)), equation (3.8) gives the desired conclusion" f(t + a) f(t).

DEFINITION 3.2. Let p be a polynomial" if p 4: 0, we shall denote by [p[ the
degree of p; if p 0, we set Ipl -oo. It is understood that -oo < x for any
x[.

Let @ and p be polynomials and suppose that p 4: 0. The division algorithm
guarantees the existence of a unique pair (p, ,) of polynomials such that

// p + // and

we call p the polynomial part of ff//. We denote by (qt/#) the family of all the
operators of the form p(D)f + f2, where f A for k 1, 2"

(ff/p) {p(D)f + f2 "(f, f2) A A]
Remark 3.2. Thus G (/#) if the equation G p(D)f + f2 holds for some

pair (j), f2) of elements of the space A.
Remark 3.3. The family (ff/#) is a linear subspace of the algebra ; it

contains rows of impulses (see Remark 7.4).
THEOREM 3.3. If d/ and l are polynomials such that l 4: O, then

.; n (//12) A.
Proof. Iff E A", then f p(D)f + f2, with f 0 and f2 f; consequently,

{3.9) A" c ,X( n ,(/).

To prove the converse, take

(3.10) G , and G E (O/t);

therefore, the property

(3.11) G p(D)fl + f2 with f E A



RESPONSE TO A PERIODIC EXCITATION 383

holds for k 1, 2. In case p 0, the conclusion G e A is immediate. In case Ipl 0,
we have p(D) Co for some co e C the conclusion G e A comes directly from the
fact that A is a linear space. The rest of this proof deals with the case IPl >- 1.
Set

(3.12) f p(O)fl;

therefore G f + f2, whence f G- f2 and f2 e Sf (since f2 e A). Conse-
quently it follows from G e Sf (see (3.10)) that

(3.13) fe5 and G=f+f2.
Since f2 e A (and by Remark 3.1), it follows from (3.13) that the conclusion G e A
can be obtained by proving that

(3.14) feA.
Since fl e A, it follows from Theorem 3.2 the existence of an operator w in .;f

such that

(3.15) w(t)=O fort> a

and

Multiplying by p(D) both sides of this last equation, we obtain

(3.16) p(D)w p(D)f f;

the last equation is from (3.12). Calling w "l’of "l’f, it results from (3.16) that

(3.17) p(D)w w,

so that (3.16) can be written

W
(3.18) f To- T’
moreover, since w "l’of- T,f, it follows from Theorem 1.2 and (1.2) that w(t)

To(Of(t) T(t)f(t ). Therefore we so{. From (3.18) and Theorem 3.2 we
see that the conclusion (3.14) can be obtained by proving that

(3.19) w(t) 0 for > r.

From (3.17) it follows that w w/p(D); since [Pl >_- we can apply Theorem 1.3
to infer that

(3.20) CoW(t) + ClW’(t) + + cw() +

where the ck (k 0, 1, 2, 3, ...) are the coefficients of the polynomial p; in view of

(3.15), conclusion (3.19) is immediate from (3.20).
THEOREM 3.4. Let and # be polynomials such that # 4= O. If IO[ =< I#l, then

{0/#) A.
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Proof. In view of (3.9), it suffices to prove that ,(.O/#) A". Since I1 =< I#1,
the polynomial part p of O/la is a number p Co; if G e ,(/#), it follows from
Remark 3.2 that G cof + f2 with fk e A": the conclusion G e A" is now imme-
diate from Remark 3.1.

Remark 3.4. Let , denote the family {f ,(p) :p is a polynomial}. If f e sf
f-I ,, then there exists a polynomial p such that f e sf f’l ,(p) the conclusion

f e A" comes from Theorem 3.3.

4. Free responses. Let (oo) be the family of all the functions which vanish
on the interval (-oe, 0] and are infinitely differentiable on (0, oe). Let # be a
polynomial

la(S) CO AI- ClS Al" C2$2 -[’- Af_ CkSk +

If y(. e (cg), we denote by la(d)y(. the function defined by la(d)y(t) 0 for =< 0
and by

la(d)y(t) coY(t 4- ClY’(t 4- 4- cky(k)(t) 4-

for > 0. Let ([--]la) be the family of all the functions y(. in (oo) such that #(d)y(t)
=0fort >0"

([-lla) {y(. 6 (cffoo).#(d)y(t) 0 for > 0}.
We write

(4.1) [--]la {y "y(. )e ([-]la)}.
Note that To e V--lp if (and only if) la(0) 0.

LEMMA 4.1. Let la be a polynomial. If la is a polynomial such that la/lal is also
a polynomial, then [--llal [-]#.

Proof. The proof is easy; see [7, p. 210.
Remark 4.1. Clearly, [-lla is a linear subspace of (see Definition 1.2); the

elements of [--]la could be called free responses [6, pp. 35-36].
DEFINITION 4.1. A polynomial # will be called dissipative if all the zeros of la

lie to the left of the imaginary axis. If la is dissipative, it is easily verified that ([--]la)
is a space of transients (a transient is a function of which approaches zero as

Remark 4.2. The aim ofthe present 4 is to prove a generalization ofthe follow-
ing uniqueness property. Suppose that la is dissipative; if a > 0, then the constant
zero is the only element of A fl V-lla. The dissipativity condition on la will be
replaced by the less restrictive condition la e V (see Definition 4.2); also, the space
A will be replaced by the larger space (O/la) (see (3.9)).

We shall also prove two theorems (4.1 and 4.2) which will be used later on.
Most of the material in this 4 comes directly from the theory of ordinary dif-
ferential equations with constant coefficients.

DEFINITION 4.2. Suppose a > 0. We shall write la V to indicate that la is a

polynomial such that

la(2kni/a) 4:0 whenever k e 77,

where 7/ {0, _+ 1, _+2, __3,’..}.
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Remark 4.3. If r > 0 and/ e V, then p(a) 0 implies e and a - 0.
Clearly, if # is dissipative, then # e V.

Remark 4.4. Unless otherwise stated, m denotes a nonzero polynomial and e
denotes the set of its zeros. Thus

(4.2) a ,, m(a) 0;

note that e is a subset ofthe field C ofcomplex numbers. If b is the leading coefficient
of the polynomial m, there exists a family {ma’a e e} of integers >= such that

(4.3) m(s) b H (s a)ma for all s e C.
a6

Suppose that a s C. If k is an integer >= 1, we denote by ek,( the function
defined for any e R by

(4.4) e(t) To(t) e"’tk- 1/(k 1)!;

note that eka( ) (cgo) c (ogg); from (1.3) and Remark 1.3 we see that
k DTo/(D a)(4.5) e

LEMMA 4.2. The linear space ([]].m) is the linear span of the set {e,k( )’ae e
and <= k N_ ma}.

Proof. See [5, pp. 88-90] or [4, p. 72].
THEOREM 4,1. If y F-qm, there exists a polynomial 2 such that

(4.6) y= -:’’DTo and 12[<lm[.
m/)

Proof. Since y F,lm, it follows from (4.1) and Lemma 4.2 that there exist
such thatcomplex numbers c

(4.7) y(.) kCaea( );
k=l

from Remark 1.3 and (4.5) it therefore follows that
,.a DTOm(D)y Z Z ckam(D) D a)k’

whence, by (4.3),

m(O)y bCka 1-I (D z) (D a)ma-k DTo,
zfl

where fl {z ’z a} this can also be written

(4.8) m(D)y I-I (D z) bcka(D a)"a-k DTo.
zefl k=

Denoting by 2(D) the operator inside the square brackets, conclusion (4.6) results
from (4,8) by observing that

121 =< max {(Iml- ma) + (ma 1)} _< Iml- 1.
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THEOREM 4.2. Let 2 be a polynomial such that 121 < Iml then

if y= 2(DDTo, then y m.
m(D)

Proof. Expanding 2/m into partial fractions [1, p. 25], it follows from (4.3)
such thatthat there exist complex numbers c,

2(D)
m(D)- Z C(D_a);k=l

therefore

DTo ma
k __ZkkCaea.

The last equation is from (4.5). Since e, off, it now follows from Theorem 1.2 that
ma

Caea(. );
k=l

the conclusion y 6 Vqm is now immediate from Lemma 4.2.
LEMMA 4.3. Let {p, a a} be a finite set of polynomials. If

p(t)e’ 0 for all t> O,

then p 0 for all a a.

Proof. The proof is straightforward’see [7, pp. 199-200].
THEOREM 4.3. Suppose a > O. If m V, then

(4.9) A f) [-lm {0}.
(Loosely speaking, the constant zero is the only free response which is periodic
with period a.)

Proof. By Remark 4.3, our hypothesis m V implies

(4.10) e - 1.

Suppose that y A f’l Vim. From Definition 3.1 it follows that

(4.11) y(t + a)- y(t) =0 fort > 0.

Since y e IS]m, we can infer from (4.7) and (4.4) the existence of polynomials P,
such that

(4.12) y(t) earns(t) for > 0.

We have to prove that y 0. From (4.12) and (4.11) it follows that

(4.13) eat[ena(t + a)- Pa(t)] O.

Let p be the polynomial defined by

(4.14) p(t) eap(t + a)- P(t);
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from (4.13)-(4.14) and Lemma 4.3 it follows that Pa 0 for all a. That is (by
(4.14)),

(4.15) eaP(t + a)= P(t) for > 0

and for any a . We shall now prove that the assumption

(4.16) Pa : 0 for some a a

implies a contradiction;this will conclude the proof, since it then follows that
P 0 for all a a, from which our conclusion y 0 is now an immediate con-
sequence of (4.12). Let

(4.17) Pa(s) bkSk with b, :/: 0
k=O

be the polynomial in assumption (4.16)’ from (4.17) it follows that

(4.18) eab,(t + a) + 2(t)= b,t + 2a(t) for > 0,

where 2 are polynomials of degree less than n. Dividing both sides of (4.18) by ,
we obtain

b e + + 21(t b + --2:(t)"

taking limits as --, oc, we obtain (since IRkl < n)

(4.19) b e + 0 b, + 0.

Since b, : 0 (by (4.17)), equation (4.19) implies e 1, which contradicts (4.10).
Consequently, assumption (4.16) is false. This concludes the proof.

THEOREM 4.4. Suppose that a > 0 and # V. Let /be a polynomial. If A is an
operator, there is at most one pair (y, yC) such that

A =y + y withy,(//#) and y
Proof. Suppose that A y, + yk with y, ’(ff/) and yk [S] for k

1, 2. Consequently y] Yz Y2 y’if we set

(4.20) Y Y] Yz,
it then follows that

(4.21) y y2 yl.
Since y, (ff/#), it follows from (4.20) and Remark 3.3 that y (//#) since
yk , we may infer from (4.21) and Remark 4.1 that y U]" thus we have

(4.22) y IS]# and y (ff//).

Since y IS]#, it follows from Remark 4.1 that y ; therefore, (4.22) gives y
f’) (q//), whence y A (by Theorem 3.3). Having thus verified that y A, it
follows from (4.22) that y A fq [S]/; Theorem 4.3 (with m #) therefore gives
y 0. In view of (4.20)-(4.21), the conclusions y] y and y y2 are now at
hand.
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5. The periodic part. Henceforth, a is a fixed number > 0; also, h will denote
the ratio ,/t of two polynomials q; and # such that kt V (see Definition 4.2).
As before, C denotes the field of complex numbers.

DFVINI37ION 5.1. Recall that the polynomial part of h is the first element p
of the unique pair (p, 2) of polynomials such that

h p + 2// and I1 < I1,

As in Definition 3.2, we denote by (h) the family of all the operators of the form
P(D)fl + f2 (where f e A for k 1, 2).

Orientation. Let E be an operator. From Theorem 4.4 it follows that there
exists at most one operator y belonging to (h) and such that h(D)E y belongs
to [71#. If such an operator y exists, we shall call it the periodic part of h(D)E. This
5 deals with some general properties which depend on the existence of the

periodic part of h(D)E. It will be convenient to denote by [a, hi the set of all the
operators E such that the periodic part of h(D)E exists as we shall see in (8.35), the
inclusion A [o,h] holds; moreover, (pl) [o,h] whenever p is a poly-
nomial such that IPxq;I -< It} (see Remark 8.4). The example in Remark 5.6 is
typical.

Notation. Recall that h /t and t - 0; we set

In case 0, we have h 0 and Ihl -oo -Il -oo. from Theorem 3.4 it
follows that

(5.1) ,(h) A" when Ihl 0.

DEFINITION 5.2. Given an operator E,0 we shall write E e [a, hi to indicate
that there exists a pair (y, y) such that

(5.2) h(D)E y + yrn with ye (h) and Yrne [Sip,.

Suppose that E e [o, h] from Theorem 4.4 it follows that there exists exactly one
pair (y, y2) satisfying the relations (5.2). We write

(5.3) h(r,)E y and h(rn)E y3.

Further, we call h(z)E the periodic part of h(D)E (recall that h(D)E is the response
to E: see Definition 2.1).

Remark 5.1. Suppose that E [a, h]. From Definition 5.2 we see that h(z)E
is the unique operator y such that y e (h) and h(D)E y belongs to the space

(5.4) h(z)E e (h) and h(rn)E e 1-1#
and

(5.5) h(D)E h(z)E + h(c3)E.

If all the zeros of the polynomial/ lie to the left of the imaginary axis, then kt e V
and each element of [-]kt is a transient (see Definition 4.1). Thus h(z)E is the steady
state part of h(D)E (since h(D)E h(r)E is a transient).
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Remark 5.2. Given an operator E, if there exists a pair (y, y[]) such that

h(D)E =y+y[] withy(h) and y[][--]#,

then E e [a, hi (by Definition 5.2); further, h(z)E y and h(t)E y.
Remark 5.3. If Ih[ -< 0 and E e [a, hi, it follows from (5.1) and Remark 5.1 that

h(z)E is the unique operator y in A such that h(D)E y belongs to the space [-1#.
Remark 5.4. Suppose that Ihl =< 0 and let E be an operator such that the equa-

tion h(D)E y + yen holds for some pair (y, y[]) such that y e A and y e [-1.
it then follows from (5.1) and Remark 5.2 that E e [a, hi and h(z)E ye A.

DEFINITION 5.3. Let [a, hi be the family of all the operators E such that E
[a, hi.

Remark 5.5. It is not hard to verify that [a, hi is a linear subspace of the
algebra ; moreover, if Ek(k 1, 2, 3,..., m) is a finite sequence of elements
of the space [a, hi, then the equation

[m 1(5.6) h(r) ckE c[h(r)E]
k=l k=l

holds for any sequence c(k 1, 2, 3, ...) in C this is not hard to prove.
Remark 5.6. Suppose that Ihl < 0. Let us verify that DTo (the unit impulse)

belongs to the space [a, hi; in so doing, we shall also obtain the equations h(z)DTo
0 and h(n)DTo h(D)DTo.

First, note that To s A (see (1.1) and Definition 3.1). Consequently DTo
e (p), where p is the polynomial p(s) s (see Definition 5.1); since Ihl < 0, we
have h // with [1 < [/tl. Consequently

h(D)DTo y[], where y O(D)DT
/(D)

It now follows from Theorem 4.2 that ye [-1; since h(D)DTo 0 + y, it
follows from Remark 5.2 that DTo e [a;h] and h()DTo 0.

Orientation. We conclude this 5 with two lemmas which will be needed later.
LEMMA 5.1. Suppose that h is the ratio O/la of two polynomials and 1 such that

# V. Let p be the polynomial part of h: in consequence of Definition 5.1, there
exists a polynomial 2 such that

(5.7) h p + 2/# and I1 < I1,

If E e [a, 2//) and E e A, then E e [a, hi and

where

()
h(’c)E p(D)E + --:, E,

2(r)
(5.9) E def (’c)E.

()
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Proof. Since E [r, 2/#], it follows from Definition 5.2 that

(5.10) 2(D--) E y] + y[] with y[]
#(D)

In view of (5.9) and Remark 5.3, it also results that

2(Z)E A(5.11) Y]
#(r)

On the other hand, (5.7) and (5.10) imply that

(5.12) h(D)E p(D)E + y] + yC.
Since y] e A (by (5.11)), and since p is the polynomial part of h, it follows from
Definition 5.1 and the hypothesis E A that the equation

(5.13) y= p(D)E + y]

defines an element y of (h)" therefore (5.12) becomes

h(D)E y + y with ye(h) and ye [--1

(by (5.10)). From Remark 5.2 we may now conclude that E [o, hi and

(5.14) h(r)E y= p(D)E + y].

The second equation is from (5.13). Conclusion (5.8) is now immediate from
(5.14) and (5.11).

LEMMA 5.2. Suppose that ho is a ratio Oo/# of two polynomials Oo and It such
that lu V and

(5.15) A [a, ho].

Further, let p be a polynomial such that Ipho] __< 0 and

(5.16) A [a, pho].

If E p(D)f + f2 with f A (for k 1, 2), then E [a, ho] and ho(z)E A;
molol)?",

(5.17) ho(r)E pho(r)fl + ho(r)f2.

Proof. Since ho o/#, we have

(5.18) pho pOo/l and #eV.
The hypothesis Iphol =< 0 clearly implies that Iho[ < 0; from hypothesis (5.15) and
f2 A, it follows that f2 [a, ho" we may therefore infer from Remark 5.3 that

(5.19) ho(r)/2 A

and

(5.20) ho(D)fz ho(z)f2 + Y2 with y2 e [-]p.

Since f e A it results from hypothesis (5.16) that f [a, pho; since Iphol __< 0
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(by hypothesis), we can again use Remark 5.3 (and (5.18)) to conclude that

(5.21) pho(r)f A

and

(5.22) pho(D)f pho(r)fx + y with y
Our hypothesis E p(D)f + f2 clearly implies that

(5.23) ho(O)E pho(O)f + ho(D)f2.

Combining (5.23) with (5.22) and (5.20), we obtain

(5.24) ho(D)E y + y + y,
where

(5.25) y= pho(z)f + ho(z)f2.

Since both y and y2 belong to [S] (see (5.22) and (5.20)), we may conclude from
Remark 4.1 that y + y2 is an element yD of IS]#. Equation (5.24) becomes

(5.26) ho(D)E y + y[] with y[]

Since y e A (by (5.25), (5.21), and (5.19), we can now obtain from Remark 5.4
the conclusions E e [a, ho] and ho(z)E ye A. Conclusion (5.17) is immediate
from (5.25).

6. Sinusoidal excitations. This section culminates with Theorem 6.3, which
is a slight extension of a result extensively used in electrical engineering textbooks
(of course, we shall not assume the usual dissipativity condition; see Definition
4.1). Equation (6.22) shows what happens to the classical "phasor" equation (6.16)
when the transfer function is allowed to have degree 1.

As before 7/= {0,_ 1, _+ 2, _+ 3,.-.}. Unless otherwise specified, h denotes
the ratio /# of two polynomials. When a C, we denote by Fa(. the function
defined by

(6.1) Fa(t) To(t) eat for R.

Note that F e ." from (1.3) it follows that

(6.2) F

It is easily verified that

(6.3)

(6.4)

(6.5)

DTo

DF DTo + aFa.

LEMMA 6.1. Suppose that Ih[ 0. If a C and #(a) 4: O, then

h(D)Fa h(a)Fa + yD, where yC [-qp.

Proof. Let be the polynomial defined by

(s) #(a)O(s)- O(a)#(s.
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Since h if/#, (6.5)implies that

O(s)
(6,6) h(s)- h(a)=

#(a)#(s)’

moreover, since Il Il (by hypothesis), (6.5) gives

(6.7)

Set c 1/g(a) since c(a) 0, there exists a polynomial . such that

(6.8)

consequently (6.6) implies

whence, by (6.2),

o(s)/u(a) (s

h(D)F h(a)F
(D a)2(D)

(D)

2(D)
(6.9) h(D)F h(a)Fa DTo,
From (6.8) we see that 121 < [(I)[; from (6.7) it therefore follows that
Conclusion (6.4) is now immediate from (6.9) and Theorem 4.2.

Notation. Let g(. be a function such that To(.)g(-) is a function g+(.
belonging to the space (af)" if g + [a, hi and if the operator h(r)g + is an element f
of,, it follows from Remark 4.1 that the number f(t) is defined for any
Under these circumstances, we shall write

(6.10) h(r)g(t) f(t) for > 0

instead of

(6.11) h(r)g + f
THEOREM 6.1. Suppose that a > 0 and h / with lhl 0 and V. If b

then bTo [a, hi and

(6.12) h(r)bTo(t) bh(O) for > O.

Proof. Since e V, it follows from Remark 4.3 that (0) 0. Setting a 0
in (6.2), we obtain Fo To, and (6.4) becomes

(6.13) h(D)To h(0)To + y, where y.
Obviously, h(0)To e A. From (6.13) and Remark 5.4 it therefore follows that
To e [a,h] and h(r)To h(0)To; consequently, bTo also belongs to [a,h] (by
Remark 5.5), and the equation

(6.14) h(r)bTo bh(0)To

is immediate from (5.6). Setting g(t) in (6.10(6.11), we find that (6.14) can be
written

h(r)bTo(t) bh(O)To(t bh(O) for > 0.



RESPONSE TO A PERIODIC EXCITATION 393

Remark 6.1. As a consequence of Theorem 6.1, we have, for ihl =< 0,

bTo[a,h] and bToA.
Thus, in view of Lemma 5.i, the restriction Ihl N 0 can be removed,

THEOREM 6.2. As usual, x//- 1. Let r be a nonzero real number; moreover,
suppose that

(6.15) #(ik[rl) g: 0 for all k Z.

If Ihl <= 0 and rr 2n/lrl, the operator Fr belongs to [rr, hi and

(6.16) h(z)eirt h(ir)ejr’ fort > O.

Proof. Since Irl- 27r/r, our hypothesis (6.15) guarantees that g e V (see
Definition 4.2); since (6.15) also implies I,t(ir) O, we may apply Lemma 6.1 (with
a it) to obtain

(6.17) h(D)Fi h(ir)Fi + yC3, where y[]

Since F,(t + rr) Fir(t) (by (6.1)), the operator h(ir)Fir belongs to A;in view of
(6.17), the equation

(6.18) h(z) Fir h(ir) F
follows directly from Remark 5.4. Conclusion (6.16) is obtained by setting g(t)

ert in (6.10)-(6.11)(recall that Fr(t g(t)To(t)).
Remark 6.2. Let us remove the condition Ihl =< 0 from the hypotheses of

Theorem 6.2 If p is the polynomial part of h, it then follows from (5.8) that

,(
(6.19) h(’c)F, p(D)Fi + -)F,.
Of course, 2// h p. Setting h 2// in (6.18), equation (6.19) becomes

2(ir)(6.20) h(r)Fi, p(D)F,, + )
In the particular case p(D) D, we have h(s) s + 2(s)//(s) and

(6.21) h(c)Fir DTo + ir +
#[ir)_]

Equation (6.21) is derived from (6.20) by using (6.3); it can also be written

(6.22) h(r)Fir DTo + h(ir)Fi when Ihl 1.

Recall that Dl"o is the unit impulse and compare with (6.18).
THEOREM 6.3. Suppose that h is the ratio O/# of two polynomials with real

coefficients and such that Ihl-_< 0. Given a number o)> 0 such that #(kico)=/= 0

for all k 7/, let be the principal value of the argument of the complex number
h(ico). If 0 e R and g(t) sin (oat + 0), then

(6.23) h(r)g(t)- ]h(ico)l sin (cot + 0 + ) fort > O.

Proof. Set a 2n/co. Obviously, #e V and #[kcoi) 0 for all k e 77; the
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hypotheses of Theorem 6.2 are satisfied for r + co. It is now merely a question of
applying (6.18) proving that

h(z)[aFi,, + ?tF_io] [h(ico)lf,

where a ei/2i and f(t) sin (cot + 0 + e).

7. Nonsinusoidal excitations. Throughout, a is a fixed number > 0. If w e
and a e C, it follows from (1.10) that

(7.1) D---aW (t) ea e-aUw(u) du for > 0.

If G e , we define GO( as in Theorem 3.1 consequently (7.1) gives

(7.2) D-a(a) e e-auG(u) du.

DEFINITION 7.1. As in (4.4), let e(. be the function defined by eX(t) ea’To(t).
If G e . and a - 0, we set

G G [- G..(o.)-(eaa l)_11(7.3)
"c a- D a L a ea"

Orientation. In case h is a rational function with simple poles, we shall, in
this section, show that the periodic response h(r)G can be expressed as a linear
combination of operators of the form G/(r a).

LEMMA 7.1. If G A and a O, then G/(z a) belongs to A.
Proof. Set

(7.4) b
e

e-aUG(u) du.

Set y G/(z a); from (7.1), (7.3) and (7.2), we see that

G (t) eat b + e-a"G(u) du(7.5) y(t)
r a

In view of Definition 3.1, it will suffice to verify that y(O + a) y(O) for all 0 > 0.
To that effect, take any 0 > 0 and note that (7.5) gives

(7.6) y(O + r) ea(+ b + e-a"G(u) du

Since

(7.7) e-aUG(u) du e-aUG(u) du + e-a"G(u) du,

the change of variable r u a gives

(7.8) e-aUG(u) du e-a e-aG(r + a) dr.
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Since G(z + a) G(z), we can combine (7.8) with (7.7) and (7.4) to obtain

(7.9) e-"UG(u) du [-b + e-a’b] + e e-arG(’c) dr.

Substituting (7.9) into (7.6), we have

(7.10) y(O + a) e"(+) 0 + e-ab + e e-aUG(u) du

the conclusion y(O + a) y(O) is now immediate from (7.10) and (7.5).
THEOREM 7.1. Let be a subset of C containing none of the points of the form

2krci/a, where k 7/. Given a number ko and a subset {ca’a } of C" let h be the
function defined by

(7.11) h(s) ko
S

IfG A, then G [a, hi and

G
(7.12) h(r)G koG + Ca

moreover, h(z)G e A, and

(7.13)
GO 1 ea

h(ra)G(t) c D- a
(a)

e

Proof. Equation (7.11) implies

G
h(D)G koG + caD a’

consequently (7.3) gives

G
(7.14) h(D)G koG + ca + y,

c a

where

(7.15) IDGY--Z Ca ((7)(e 1)-i
a ea"

It is easily seen that h is the ratio h //m of two polynomials and m such
that Iql _-< Iml. Indeed, m is defined by the equation re(s) b [-Ia (s a) (see (4.3));
clearly our condition on the set a insures that m Va. Note that ma (see
Remark 4.4); from (7.15) it follows that y[](. belongs to the linear span of the set
{eka( )’at a and <= k <_ ma} ;in view of Lemma 4.2, this proves that y[](. belongs
to the space ([--qm). Consequently y[] [-qm (see (4.1)); therefore if we set

G
(7.16) y= koG+ Ca,

:-a
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it follows from (7.14) that

(7.17) h(D)G y + y[] withy[]em.

From (7.16), Lemma 7.1 and Remark 3.1 we see that y e A. As we remarked earlier,
it follows from (7.11) that Ihl _-< 0; we may therefore apply Remark 5.4 to infer from
(7.17) that G e [a, hi, h(z)G y e A and h(D)G y. Conclusions (7.12) and (7.13)
are now immediate from (7.16) and (7.15).

DEFINITION 7.2. A function h will be called a simple t-stable function if h is
the ratio /# of two polynomials and # such that # e V and such that kt has only
simple zeros.

THEOREM 7.2. Let h be a simple a-stable function such that Ihl <= O, If G A
then G [r, hi and h(z) A.

Proof. By Definition 7.2 the function h is the ratio O/p of two polynomials
and # such that # e V and such that # has only simple zeros. Since [hi =< 0, the
polynomial part of h (see Lemma 5.1) is a number k0. We can therefore write
h ko + 2/# with [2[ < 1#[; further, the partial fraction expansion theorem enables
us to write h in the form (7.11). If G e A, the conclusions G [r, hi and h(r)G A
come directly from Theorem 7.1. If e is the set of zeros of the polynomial g, then
(7.12) gives

G
h(z)G koG + c,.

It is not hard to verify that

c, g,(a)’
where g,(s)-

s a’

while the number ko is given by the equation

(0)

Remark 7.1. Just as in Remark 6.2, the restriction Ihl _-< 0 can be removed.
THEOREM 7.3. Suppose that ho is a simple r-stable function further, let p be a

polynomial such that Iphol <__ O. If E p(D)f + f2 with fk e A (for k 1,2),
then E e [, ho] and ho(z)E e A; moreover,

(7.18) ho(z)E pho(z)f + ho(z)f.

Proof. Clearly, the hypothesis Iphol <= 0 implies Ihol -<_ 0; from Theorem 7.2
we therefore have the inclusion

(7.19) A c [, ho].

Set ho /#; therefore e V and the polynomial # has only simple zeros. Since
pho pO/la, it follows that pho is a simple a-stable function; since Iphol -< 0 (by
hypothesis), the inclusion

(7.20) A c [rr, pho]

now comes directly from Theorem 7.2. The conclusions are immediate from Lemma
5.2.
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Remark 7.2. Let h be a simple a-stable function such that [hi 0, and suppose
that f e A for k 1, 2. Setting p in Theorem 7.3, we obtain

(7.21) h(r)(fl + f2) h(r)fl + h(r)f2.

In particular, if b e C andf2 -bTo, we can use (6.10)-(6.11) and (6.12) to obtain

(7.22) h(z)[f bTo](t)= h(r)f(t)- bh(O) fort > 0.

If E e A" is such that the restriction of its graph to the interval (0, a) is a line having
slope m, then

(7.23)
z

E(t)
am eat m

for0< t<a
"C a e a

Remark 7.3. The following is essentially Example 7-11 in the textbook [3,
pp. 213-215]; the reasoning in [3] involves unnecessary physical principles (e.g.,
"the voltage across a capacitor cannot change instantaneously"). Let E be a
voltage source in a simple electric circuit consisting of a resistance R > 0 and a
capacitance C > 0 let b be the initial voltage across the capacitor. If y is the voltage
across the resistance, then

E =Y+RcoY+ bTo;

consequently if a 1/RC and h(s) s/(s a), then

(7.24) y h(D)(E bTo).

Thus y can be considered as the response to E bTo; from Remark 5.1 it follows
that the steady state part of y equals the periodic part y h()(E b’l’o) of y.
From (7.22) and h(0) 0, we obtain

(7.25) y(t) E(t) + 0 fort > 0.

Let E be the sawtooth function of period a defined by

(7.26) E(t) for 0 < < r;

from (7.25)-(7.26) and (7.23) it follows that

eat "(7.27) y(t) E(t) for 0 < < a.
e aa z a

Remark 7.4. Given a real number L, let G be the operator defined by

(7.28) G LDTk
LD

k=o To T"
G represents a row of impulses of magnitude L applied at the times ka (where
k 0, 1,2, 3,... ); see (1.5). Let p be the polynomial p(s)= s. To verify that
G ,(p), it follows from Definition 3.2 that it will suffice to establish the equation

(7.29) L-G DE + (1/a)To,
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where E is the sawtooth function of period a defined by (7.26). It is not hard to
verify that

-1
E =---To + To T,

see 5.43.8 in [8, p. 106]. Consequently

D _IG(7.30) DE /-To L
a To- T,

the second equation is from (7.28). Equation (7.29) is immediate from (7.30); it
implies that G (p) when p is the polynomial p(s) s.

Remark 7.5. Suppose that a > 0 and let ho be the simple a-stable function
defined .by ho(s 1/(s a); let p be the polynomial p(s) s. Since Iphol <__ O, we
can apply Theorem 7.3 with E L- 1G; from (7.29) and (7.18) it follows that

L_IG=
r,
E+ To.:-a z-a z-a

That is, by (6.14),

L_IG
"c

E + To.(7.31)
z-a z-a 0-a

In view of (7.27), equation (7.31) can be written

(7.32) L-G (t)
e

for0 < < a- a aa aa

Remark 7.6. Let G be the row of impulses defined by (7.28); let it be the input
voltage for a simple electric circuit consisting of a resistance R and an inductance
L. The current y satisfies the equation Ry + LDyl G. In view of Definition 1.4,
the response to G is given by the equation

Yl LD+R
G D-aL- 1G, where a R/L.

Since a < 0, it follows from Remark, 5.1 that the steady state part of the current
y is given by

y](t) L- 1G (t)
e

for 0 < < a"

the last equation is from (7.32). This answer is more informative than the Fourier
series answer obtained for the same problem in [13, p. 174].

8. Poles of arbitrary orders. As usual, a is a fixed number > 0 throughout.
Remark 8.1. Recall Definition 4.2; we write / V to indicate that # is a

polynomial such that #(2kni/a) 4:0 whenever k 7/.
DEriqn:ioq 8.1. A function h will be called a-stable if it is the ratio q/# of

two polynomials and # such that # V,. As in Definition 7.2, we say that h is a
simple a-stable function if h is a-stable and has only simple poles.
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Orientation. The object of this 8 is to extend the results of 7 to a-stable
functions having poles of multiple order. We shall give two explicit procedures
(see Remark 8.2 and Theorem 8.1) for calculating the periodic part of the response
to an element of A. Although we start with the restriction Ihl =< 0, this restriction
is removed in Theorem 8.2 (as we saw in (6.22), the case Ihl implies that the
periodic part has an impulse term).

LEMMA 8.1. Let g be a a-stable function, and let g2 be a simple a-stable
function; further, suppose that [gk[ =< 0 for k 1,2. If E6[a,g], then E6[a, g2gl]
and

(8.1) g2gl(V)E g2(:) [g,(r)E] A.
Proof. Let gl ffl/#1 and g2 2//2. Then

(8.2) gig2 12/#, where / /1/2

Further, set

(8.3) yr gl(T)E.

From our hypotheses E [a, gl] and Igll -< 0, we can infer from Remark 5.4 and
(8.3) that

(8.4) gl(D)E y] + y,
where

(8.5) y] =gl()E6A and y
From (8.4) it follows that

(8.6) g2gl(D)E g2(D)Y] + g2(D)y.

By hypothesis, g2 is a simple a-stable function with Ig21 0. Since y] A (by (8.5)),
we can set h g 2 and G YI in Theorem 7.2 to infer that y] [a, g2] from Remark
5.3 we therefore have

g2(D)Y] Y + y2,

(8.10) yD g2(D)y .+. Y2
Since Ig2gll =< 0 and Yz e A (by (8.8)), we see from (8.9) and Remark 5.3 that it
only remains to prove the property y e IS]#. To that effect, we use the fact that
Y e [-q#k (for k 1, 2; see (8.5) and (8.8)); from Theorem 4.1 it therefore follows
that there exists polynomials 21 and22 such that 12kl < I1 andy 2’(D)DTo/#,(D)

(8.7)

where

(8.8) y gz(z)y] 6 A and y2 ]2.

Substituting (8.7) into (8.6), we obtain

(8.9) gzgl(D)E Yz + YD,
where
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combining this with (8.10), we get

21(D)DT )2(D)
(8.11) y3 g2(D)#I(D o + #2(D)DTo
But g2 @2///2 with 1021 =< l/2l. Consequently, (8.11) gives

(8.12) y (I//2/1 -+- #22)(D)DTo
#1#2(D)

it now only remains to observe that the degree of the polynomial @22 + t).2 is
smallerthan l# / I=l(sincel2l < I#landl@21 _-< 1#21).Theconclusiony .1#2
is now immediate from Theorem 4.2 and (8.12).

Since # #,#2 (see (8.2)), we havejust proved thaty FI#. On the other hand,
we have (8.9) with yA (see (8.8)); since Ig2gxl 0, we may set h g2gx in
Remark 5.4 to conclude from (8.9) that E [, g2gx] and

glgl(z)E yr ga(z)gl(Z)E] Aa.

The last equation is from (8.8) and (8.5).
LEMMA 8.2. Let h (k 1, 2, 3,... be a sequence of simple a-stable functions

such that Ihkl <= O; for any integer n >= we set

(1) H,= fi h.
k=l

If G A we set Ga hl(r)G and define recursively

(2) G+ h+ a()G for any integer v.

If n is any integer >= 1, we have

(3,) G [a, H,] and H,(z)G G,.

Proof. In case n 1, we have H h and we can get gz hx in Theorem 7.2
to obtain G e [a, H1] and G H(z)G e A. We proceed by induction. Suppose
that

(3) Ge[a,H] and H(z)G G.
It is easily verified that H is a-stable; since H+ h+ H, we may therefore
apply Lemma 8.1 (with 42 h+ and ga H). Since G e [a, H] (by the induc-
tion hypothesis (3)), Lemma 8.1 gives G e [a, gzHv] therefore

(8.13) Ge[o’,H+l-1.
Moreover, (8.1) yields

(8.14) hv+ 1Hv(z)G hv+ x(z)[Hv(z)G].
Since H+ h+ 1H and H(z)G G (by (3)), equation (8.14) can be written

(8.15) H+ (z)G h+ (z)G G+
the last equation is from definition (2). In view of (8.14)-(8.15), we have proved
that (3) implies (3+ 1). Consequently, (3,) holds for any integer n >__ 1.
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Remark 8.2. Let h be a a-stable function such that [hi =< O. Suppose that there
exists a sequence hk (k 1, 2, 3,..., n) of simple o-stable functions such that
[hg[ _< 0 and

(8.16) h- fi hk;
k=l

if G e A, it follows from Lemma 8.2 (with H h) that G e [a, hi and h(’c)G G,,,
where G is the operator defined recursively by the equations

G h(’c)G, G2 h2(z)Gx, "’, G,, h,,(’c)G,_.

Remark 8.3. It is not hard to prove that it is always possible to construct a
sequence hk (k l, 2, 3, ..., n) of simple a-stable functions hk with Ihkl _< 0 such
that (8.16) holds for any a-stable function h with [hi _-< 0 ;the proofis left to the reader.

Orientation. We shall now give a different procedure for calculating h(z)G when
GA.

Notation. Let a be a complex number such that

(8.17) a v 2krci/tr for all k e Z.

Let n be an integer __> 1. If G e A, we shall denote by G/(z a)" the operator G.
defined recursively by the equations

G G Gn_
G2 G(8.18) G - a’ z- a’ z-a

Let p be the polynomial defined by p(s) s a; we set

(8.19) hi= II hk, wherehk= 1/p.
k=l

Consequently

(8.20) h",(s)
p(s)" (s a)"

Since (8.17) implies p(2kni/a) (2krti/a) a 4: O, we see that hk is a simple a-stable
function. Suppose that G e A". From (8.19) and Remark 8.2 (with h ha" it follows
that

(8.21) G s [o, h,"] and h(r)G G,, e A’,

where G, is given by the recursion formula

(8.22) G ha(z)G, Gz hz(z)Ga, ..., G,, h,,(z)G,,_a.

Since hk 1/p, we have hk(S 1/(s a). From Theorem 7.1 it therefore follows
that hk(’C)E E/(’c a); consequently (8.22) is equivalent with (8.18)"

G
(8.23)

(z a)"
G, h(z)G.

The last equation is from (8.21).
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THEOREM 8.1. Let h be a a-stable function O/la such that Ihl <= 0; let o be the
set of zeros of the polynomial #. From the partial fraction expansion theorem it

follows that there exist complex numbers c and integers ma > 0 such that

(8.24) h(s) Ca(s a)""

If G e A, then G e [a, hi and

(8.25)
G

h(z)G Z Z c,(z_ a)""

Proof. From (8.24) and (8.20) we have

(8.26) h(D)G c]h](D)G.

where

(8.27) ha" 1/# and #a"(S) (S a)".

Suppose that G e A. From (8.21) it follows that G e [a, hi] we may therefore apply
Remark 5.1 to write

(8.28) h(D)G ha(z)G + y,,
where

(8.29) h(z)GA and y, #,

Substituting (8.28) into (8.26), we obtain

(8.30) h(D)G y / y,
where

(8.31) y ch(r)G

and

ma

(8.32) Y= Z cy.

Recall that h q/#. From (8.24) and (8.27) we see that #/#," is a polynomial; from
Lemma 4.1 it therefore follows that

(8.33) f--]a Vq

Since Ya [S]#a (see (8.29)), it follows from (8.33) that ya iN#. From (8.32) and
Remark 4.1, we therefore have

(8.34) y[] V]# and yA;

the property y* e A comes from (8.29), (8.31) and Remark 3.1. Since h is a a-stable
function /# such that Ihl _-< 0, we can use Remark 5.3 to infer from (8.30) and (8.34)
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the properties G e [a, hi and h(z)G y; conclusion (8.25) is now immediate from
(8.31) and (8.23).

THEOREM 8.2. Suppose that h is a tr-stable function with polynomial part p;
in consequence ofDefinitions 8.1 and 5.1, there exists a tr-stablefunction h such that
h p + h and [hi < 0. IfG e A, then G e [tr, hl] and ha(z)G p(D)G + h(z)G.

Proof. Since Ihl _-< 0, Theorem 8.11 gives G e [tr, hi. The conclusion now comes
from Lemma 5.1.

Remark 8.4. Suppose that h is a tr-stable function. From Theorem 8.2 it
follows immediately that A c [r, hl].

THEOREM 8.3. Suppose that ho is a tr-stable function further, let p be a poly-
nomial such that Iphol <_ O. If E p(D)f + f2 with fk A (for k 1, 2), then
E e [tr, ho] and ho(z)E A. Moreover, ho(z)E pho(z)f + ho(z)f2

Proof. From (8.35) we have A c [tr, ho]. Set ho /#; therefore,/ e V and
pho pO/#. Consequently, pho is tr-stable and the inclusion A c [tr, pho] is now
immediate from (8.35). The conclusion comes directly from Lemma 5.2.

Remark 8.5. Suppose that ho is a tr-stable function, and let p be a polynomial
such that Iphol <= O. If E e (p), then the equation E p(D)f + f2 holds for
some functions fk (k 1, 2) in A (see Remark 3.2; from Theorem 8.3 it now
follows that E e [r, ho]. Consequently

(p) c [, ho] when [pho[ __< 0.

Acknowledgments. The basic ideas in 4 originate from a set of lecture notes
(unpublished) written by Michael Golomb; to him is due the uniqueness theorem
(Theorem 4.4) (with A" instead of .(//)). The author is also indebted to Michael
Golomb for several helpful hints relating to 4.
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Abstract. In the context of a self-adjoint generalized differential system that is equivalent to a

type of linear vector Riemann-Stieltjes integral equation, certain functional inequalities are presented
generalizing, in particular, the well-known Liapunov inequality fb q+(t) dt > 4/(b- a), which is

satisfied by q+(t) 1/2[q(t) + ]q(t)[] whenever q(t) is a real-valued Lebesgue integrable function on the
compact real interval [a, b] which is such that the differential equation u"(t) + q(t)u(t) 0 is oscil-
latory on [a, b]. In particular, some decided extensions of the results of the author’s recent paper
19] are given.

1. Introduction. In the Sturmian theory for a real linear homogeneous
differential equation of the second order

(1.1) [r(t)u’(t)]’ p(t)u(t) O, a <= <: b,

the importance of an associated quadratic functional

(1.2) ParlZ(a) + PbrlZ(b) + fi’ {r(t)[rl’(t)] 2 + p(t)rlz(t)} dt

is well known, the central feature being that (1.1) is the Euler equation for (1.2),
while the involved boundary conditions consist of certain "basic restraints" on

r/(a), q(b) and the associated transversality (natural boundary) conditions for (1.2)
subject to the basic restraints (see, for example, Reid [10], 17, Chaps. V, VI, VIII).
Also, for nonparametric variational problems in the plane with separated end
conditions the second variation functional along an extremal arc is of the form
(1.2), and (1.1) is the associated Jacobi, or accessory, differential equation.

The generalized differential system to be considered here is equivalent to a
type of linear vector Riemann-Stieltjes integral equation, to which the author’s
attention was first directed by the following facts.

(i) If for a nonparametric variational problem in the plane g is an extremaloid
(broken extremal arc) with a finite number of corners determined by values j,

j 1, ..-, m, where a to < < < tm < tm+ b, then the special second
variation functional along g computed for an embedding family of admissible
arcs with no corners except possibly at the same intermediate values tj is of the
form (see Reid [9], [16])

m+l

(1.3) pr/z(t)+
=0

{r(t)[,’(t)] + v(t),(t)}

In this case, for the functional (1.3) subject to the basic restraints at a and
b the Jacobi condition yields equation (1.1) on each of the intermediate open

intervals (t, t+ 1), 0, 1, ..., m, the natural boundary conditions at a and

* Received by the editors January 22, 1974.

" Department of Mathematics, the University of Oklahoma, Norman, Oklahoma 73069. This
research was supported by the National Science Foundation under Grant GP-36120.
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b, and also the transition equations

(1.4) r(t]. )u’(tf) r(t)u’(t-) pju(tj) O, j 1,..., m,

at the intermediate values l, ".’,

(ii) If a to < <.-. <tm < tm+l b, then for a set of linear second
order difference equations, or recursive relations, of the form

(1.5) pjU(tj+ 1)- U(tj) u(tj)-- U(tj_ 1)__ rCjU(tj)--O, j 1,..., m,
lj+ tj

)j-
tj- tj_

with p > 0, cz 0, 1,..., m, there exists a theory analogous to that of the
Sturmian theory for equation (1.1) (see B6cher [3, Chap. II], Whyburn [23],
Fort [5, Chap. X], Atkinson [1, Chaps. 1-7], Harris [6]). Indeed, according to
Sturm [21, p. 186], his initial consideration of comparison and oscillation theorems
was in the context of difference relations.

Generalized linear differential systems of the sort considered here have been
treated in the earlier papers [12], [13], [143 of the author. The consideration is
variational in nature, with central feature the extremizing character of Hermitian
functionals as exemplified in the accessory boundary problems for variational
problems (see, for example, Birkhoff and Hestenes [2], Hestenes [7], Reid [10],
[17, Chap. VII] and 18]). Also, the real scalar generalized second order differential
equations occurring in the works of Sz.-Nagy [22], [20, pp. 247-254] and Feller
[4] are particular instances of the general system considered here. In particular,
the theorems of 3 provide decided extensions of the results of the author’s
papers [15] and [19].

Matrix notation is used throughout; in particular, matrices of one column
are called vectors, and for a vector (w), 1,..., n, the norm Iw[ is given by
(Iwxl 2 / / Iw12)/2, The vector space of ordered n-tuples of complex numbers,
with complex scalars, is denoted by C,. If W is a linear subspace of C,, the
orthogonal complement {zlz*y 0 for y W} of W in C, is denoted by W1. The
n x n identity matrix is denoted by E,, or merely by E if there is no ambiguity,
and 0 is used indiscriminately for the zero matrix of any dimensions; the conjugate
transpose of a matrix is designated by M*. If M [M and N [N] are
n x r matrices, then the 2n x r matrix H [Ho], a 1,-.., 2n;/ 1,..., r,
with H M and H,+. N, is denoted by [M;N]. If M is an n x n
matrix, the symbol IMI is used for the supremum of IMwl on the unit ball
{w[ [w[ 1} of C,. The notation M >__ N {M > N} is used to signify that M and
N are Hermitian matrices of the same dimensions, and M N is a nonnegative
{positive} Hermitian matrix. If an Hermitian matrix function M(t), [a, b], is
such that M(s) M(t) __> 0 {_<0} for a =< s < b, then M(t) is called non-
increasing {nondecreasing} Hermitian on [a, b]. A matrix function is called con-
tinuous, integrable, etc., when each element of the matrix possesses the specified
property.

If a matrix function M(t) is a.c. {absolutely continuous} on [a, b], then M’(t)
signifies the matrix of derivatives at values where these derivatives exist, and
zero elsewhere. Similarly, if M(t) is {Lebesgue} integrable on [a,b], then
[.a M(t)dt denotes the matrix of integrals of respective elements of M(t). For a
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given interval [a, b] the symbols if, , .,2, .o, and 9.1 are used to denote the
class of finite-dimensional matrix functions M(t)= [M3(t)] on [a, b] which are
respectively continuous, {Lebesgue} integrable, {Lebesgue} measurable and
]M3(t)12 :, measurable and essentially bounded, of bounded variation, and
absolutely continuous on [a, b]. If M, S and T are matrix functions of respective
dimensions m x n, r x m and n x s on [a,b], and S1, TI$, M3, then
b, S[dM]T denotes the r x s matrix, with elements given by the Riemann-Stieltjes
integrals

Si(t)T3g(t) dM3(t)

also, j-,b [dM]T and j’,,b S[dM] designate I, E,,[dM]T and j’,b S[dM]E,, respectively.
If M(t) and N(t) are matrix functions such that M(t)= N(t) a.e. {almost every-
where} on [a,b], we write simply M(t)= N(t). Moreover, for M(t) an n x r
matrix function on [a, b] the 2n x r matrix [M(a);M(b)] is denoted by

2. Some basic results for generalized differential systems. In the following the
n x n matrix functions Ao, A x, B, C, M are defined on a given compact interval
[a, b] on the real line, and satisfy the following condition.

() B(t), C(t), M(t) are Hermitian, and A l(t is nonsingular for [a, b]; the
matrix functions Ao, A1, A-[ 1, B, C belong to P, and M .

The symbol [a, b] will denote the class of n-dimensional vector
functions y which are a.c. on [a, b], and for which there exists a z e 2 such that
L[y, z] =_ L[y] Bz 0 on [a,b], where L[y] Aly’ + Aoy; the fact that z is
thus associated with y is denoted by y e :z. The subclass of on which y(b) 0
is denoted by ,o, the subclass of on which y(a) 0 is denoted by 0,, and
o o, ,o, with corresponding meanings of the symbols y e,o:Z,
Y e o, :z and y e o :z. Attention will be restricted to operators L with domain
D a linear manifold satisfying o c D . In particular, o {Y]Y , .9 0},
and if S denotes the set of 2n-dimensional vectors for which there exists a y D
with , then S is a linear manifold in C2, and D {y[y , S}. Finally,
we shall denote by * the class of n-dimensional vector functions z 2 such
that z (A)- iv with v e 3.

As in Reid [14], we shall consider certain self-adjoint boundary problems
involving the vector generalized differential system

A[y, z] -dvz + (Cy + Az) dt + [dm]y O,
(2.1)

L[y, z] _-- L[y] Bz O.

By a solution (y; z) of (2.1) is meant a pair of n-dimensional vector functions
(y, z)e 9.1 x * satisfying L[y, z] 0 on [a, b] and the Riemann-Stieltjes integral
equation

(2.2) v..(t) v(z) + {C(s)y(s) + A(s)z(s)} ds + [dM(s)]y(s)

for (z, t) [a, b] x [a, b]. In particular, for a solution (y; z) the vector function
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of3 defined as

(2.3) n(t; y, z) v(t) + { C(s)y(s) + A(s)z(s)} ds + [dM(s)]y(s)

is equal to the constant vector function -v(r). In general, a pair of n x r matrix
functions Y, Z is a solution of the corresponding matrix generalized differential
system

(2.1t) A[Y,Z] 0, L[Y,Z] 0

if each column vector of (Y; Z) is a solution of (2.1).
For (y, z)e g; x 2, 1, 2, we introduce the notation

(2.4)
Jo[Yl"Zl, y2"z2] {zBz + yCyl} dt + y[dM]y1,

J[Y "z1, Y2"z2 QI + Jo[yl "z1, y2"z2,

where Q is a 2n x 2n Hermitian matrix. Also, for brevity we write Jo[Y:Z] and
J[y :z] for the respective functionals Jo[Y :z, y :z] and J[y z, y :z]. In particular, if
y e :z, 1, 2, then the values of the functionals (2.4) are independent of the
choice of the z, satisfying with y the definitive relation L[y, z,] 0, and we
write Jo[Yl, Y2] for the more complicated notation Jo[Yl :zl, Y2 :Z2], with similar
meanings for J[Yl, Y2], Jo[Y] and J[y].

The following results may be established by the methods of 2 of Reid [13];
they also appear as Lemmas 2.1, 2.2 and 2.3 of [14].

LEMMA A. If (y, z) ft, x * and r , then

(2.5)

where

(2.6)

J[y z, rl #] O* T[y, z] + rl*(S) [df(s y, z)],

T[y, z] Q9 + [diag {-E., E.}]
LEMMA B. If (y, z) (f, x 2, the following conditions are equivalent:
(a) J[y z, rl ] O for
(b) there exists a zo * such that B[z z0] 0, T[y, Zo] S+/- and A[y, Zo] 0.
LEMMA C. If y 9.1, then there exists a z such that (y, z) is a solution of

(2.7a) A[y, z] 0, L[y, z] O,

(2.7b) .9 e S, T[y, z] e S+/-

if and only if there exists a zo such that y e D:zo and J[y:zo, q:] 0 for q D:.
The results of the above Lemmas B and C .may be described as the condition

that (2.7) is the "Euler-Lagrange system" for the Hermitian variational integral

(2.8) J[y] .9*Q9 + {z*Bz + y*Cy} dt + y*[dM]y

subject to the restraint y D:z.
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For a nondegenerate interval I [a, b] the symbol A(I) will denote the
linear space of n-dimensional vector functions v which are solutions of

v’ + AA- lV O, BA- lv O onI;

that is, v e A(I) if and only if (y, z) with y 0, vz v is a solution of (2.7a) on I.
If A(I) is zero-dimensional, the system (2.7a) is said to be normal on I, or to have
order of normality zero on 1, whereas if A(I) has dimension d d(1) > 0, then (2.7a)
is called abnormal, with order of abnormality d on I. If I [r,s], for brevity
Air, s] and d[r, s] are written instead of the more precise A([r, s]) and d([r, s]),
with similar contractions in case 1 is of the form Jr, s), (r, s] or (r, s). The system
(2.7a) is said to be identically normal on I if it is normal on arbitrary nondegenerate
subintervals of I. If (r/, ’)e 91 x 2 and Lit/, ] 0 on a subinterval 1 of [a, b],
then for v A(I) it follows readily that v’r/is constant on I.

The subspace of A[a, b] on which the 2n-dimensional vector (w) with (wi)
-v(a), (w, + ) v(b) belongs to S+/- will be denoted by A{S}. Obviously v A{S}

if and only if (y, z) (0, A- iv) is a solution of the system (2.7). If dim A{S} 0,
then the boundary problem (2.7) is said to be normal, or to have order ofabnormality
zero, whereas if dim A{S} d > 0, then (2.7) is called abnormal, with order of
abnormality d. In the latter case, by a method used originally for accessory
boundary problems for variational problems of Bolza type (see [14, 2]), one may
determine a subspace S of C2, such that S S, dim S d + dim S, and the
boundary problem (2.71) consisting of (2.7a) and the boundary conditions

(2.71b) u_ S1, T[y, z S
is normal, and if y e , then y e D {yly 3), 9 81} if and only if y e D. More-
over, (2.71) is equivalent to (2.7) in the following sense: if (y; z) is a nontrivial
solution of (2.71), then y(t) 0 on [a, b] and (y;z) is a solution of (2.7), whereas
if (y; z) is a solution of (2.7) and re,/3 1, ..., da, is a basis for A[a, b], then there
exist unique constants c such that (y, z + cA- lye) is a solution of (2.71). In
particular, if r/ D :( and q e D1 :(1, then (1 A[a, b], and hence B[(1 (] 0
and J0[q :(] Jo[q :(1]. The boundary problem (2.71) is called the normal boundary
problem equivalent to (2.7).

Distinct values and 2 on [a, b] are said to be (mutually) conjugate with
respect to the generalized differential system (2.7a) if there exists a solution (y;z)
of this system such that y(tl) 0 y(t2) and y(t) 0 on the subinterval with
endpoints tl, t2. The system (2.7a) is called disconjugate on a subinterval I c [a, b]
if there exists no pair of distinct values on tkis subinterval which are conjugate.
A basic result on disconjugacy is presented in the following theorem, for the
proof of which reference is made to [13, 5] and [14, Thms. 3.1, 3.2].

THEOREM 2.1. /f d([q] is nonnegative on 330, then B(t) >__ 0 a.e. on [a, b]. More-
over, if B(t) >_ 0 a.e. on [a, b], then the following conditions are equivalent:

(i) Jo[r/] is positive definite on o;
(ii) the system (2.7a) is disconjugate on [a, b];

(iii) there exists a solution (Y;Z) of (2.1t) with Y(t) nonsingular on [a,b],
and the constant matrix V Y Y*Vz Z*A Y- Y*AZ the zero matrix.

For the boundary problem (2.7) we have the following result.
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THEOREM 2.2. If J[rl] is nonnegative on D, then B(t) >= 0 a.e. on [a, bl, and
exactly one of the following conditions holds"

(a) there exists a solution (y; z) of (2.7) with y 0 on a, b];
(b) there exists a t > 0 such that if r D ( and [a, b], then

(2.9) J[r/] [Ir/(a)l 2 + Ir/(b)l z + I(t)l 2 + {1’12 + I1 dt];

moreover, if 1-I(t) is an n x n nondecreasing Hermitian matrix function which is
nonconstant on [a, b], then

(2.10) J[r/] >
x f,V[abll-I] u*[dn]rt for U D,

where V[a, blII] is the supremum of 2am=l II-I(t)- 1-I(t_x)] for all partitions
a= to < < < t,,= b of [a,b].

As 3o D, if J[r/] is nonnegative on D, then this functional is nonnegative
on o, and by a result of the above theorem we have B(t) >__ 0 a.e. on [a, b]. If
J[r/] is nonnegative on D, but not positive definite on D, then there exists a y e D
such that y 0 on [a, b] and J[y] 0. If y e D’zo and r/e D’, then for arbitrary
real c we have that y y + cr/, z zo + c( satisfies yeD" z and 0 __< J[y],
from which it follows that J[y’zo, r/"] 0, and hence by Lemma C there exists
a z such that (y;z) is a solution of (2.7).

In the alternate case we have that J[r/] is positive definite on D, and from the
results of Lemma 5.1 and Corollary of [14] for the associated normal boundary
problem (2.7) it follows that there exists a positive constant such that (2.9)
holds for all r/e D and e [a, b], and consequently from the above remarks on the
normal boundary problem equivalent to (2.7) we have that (2.9) is valid for all
r/ D and Ia, b].

Since (2.9) implies that JVq] >_- ]r/(t)l 2 for arbitrary q e D and e [a, b], if H
is an n x n nondecreasing Hermitian matrix function on [a, hi, then

r/*[dl-I]r/<__ Via, bil-I]J[r/],

and consequently (2.10) holds since Via, b[II] > 0 for a nondecreasing Hermitian
matrix function H which is nonconstant on [a, b].

Corresponding to (2.12) of [14], let

A A-(1BAS -1 A-[XAo, B A-[1BA -1,
(2.11)

CO-- C + AA-IM + MA-[1Ao- MA-(XBA-XM.
Similar to results of [13, 2] and [14, 2], it may be established that iff on
[a, b] then (y; z) is a solution of the system

(2.12a) A[y, z] fat, L[y, z] O,

(2.12b) p $1, T[y, z] Si,

if and only if (y;v)= (y, v- My) is a solution of the ordinary differential



410 WILLIAM T. REID

equation system

(2.120

L[y, v] =_ _vo, + Cy AO,vO= f,

LOz[yO, vo] yO, AOyO BOvO O,

TO[yO, vo] QO)O + [diag {- E,, E,}] $1-I-,

where QO Q + diag { M(a), M(b)}.
Now if (2.71) has only the identically vanishing solution, then the system

(2.13a) Ll[y, v] 0, L2[y, v] O,

(2.13b) .90 e $1, r[y, v] 6

has only the identically zero solution. Also for arbitrary fe the solution of
(2.12o is given by

(2.14) y(t) G(t, s)f(s) ds, v(t) Go(t, s)f(s) ds,

where the n x n matrix functions G, Go belong to a classical Green’s matrix for
the incompatible system (2.13), and which on [5] [a,b] x [a,b] satisfy the
following conditions"

(i) G is continuous on , is a.c. in each argument on [a, b] for fixed values of
the other argument, and G(t, s) =- [G(s, t)]* on I--l;

(ii) Go is continuous on each of the sets 7-11 {(t,s)e [5][s < t} and [_
{(t,s)e I---lit < s}, is bounded on V-l, and for 1, 2 the restriction of Go to

V-l, has a finite limit at each (t, t)e [--I (Go,, will denote the uniquely determined
continuous matrix function on the closure of [, which is equal to Go on 7-1,);

(iii) if s [a, b] and is an arbitrary vector in C,, then y(t)= G(t, s), v(t)
Go(t,s) satisfy the differential equations (2.13a) on each nondegenerate sub-

interval [a,s) and (s,b], and .9 $1 so that G(.,s) D’Go(. ,s); moreover, if
s (a, b), then also T[y, v] e S.

As an extension of the result of Theorem 2.2 we have the following theorem,
corresponding to Theorem 2.1 of [14].

THEOREM 2.3. If (2.71) has only the identically vanishing solution, then for
arbitrary ?8 the system

(2.15a) A[y, z] dO, L[y, z] O,

(2.15b) .9 $1, T[y, z] e Si

has a unique solution, which is given by

(2.16)

y(t) G(t, s)Ida(s)],

v(t) Go,l(t, s)[dO(s)] + Go,2(t, s)[dO(s)].

As a ready consequence of Lemma A, we have the following result.
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COROLLARY. If the hypotheses of Theorem 2.3 are satisfied, and (y;z) is the
solution of (2.15)for a 3, then

(2.1 7)

3. Generalized Liapunov inequalities. As a ready consequence of Theorem
2.3 and its corollary we have the following result.

THEOREM 3.1. Suppose that (2.71) has only the identically vanishing solution,
and H(t) is an n x n nondecreasing Hermitian matrix function on [a, b]. Then a
vector function y(t) belongs to a solution (y;z) of the boundary problem

A[y, z] 2[dn]y, L[y, z] O,
(3.1)

s, [y,.z] s,
for a value 2 if and only if y(t) is continuous on [a, b] and

(3.2) y(t) 2 G(t, s)[dH(s)]y(s), e [a, b].

Moreover, for such a y(t) we have

(3.3)

y*(t) [an(t)3(t, s)

2 y*(t)[dfI(t)]y(t).

If H(t) is a nondecreasing Hermitian matrix function on [a, b], its domain of
definition will be understood to be extended to (-v, ) by defining 1-I(t) H(a)
on (-, a) and H(t)= H(b) on (b, ). Moreover, we shall denote by (1-I) the
points of increase of H; that is, the set of points s such that for each h > 0 the
nonnegative Hermitian matrix I-I(s + h) 1-I(s h) is nonzero. The set t(I-I) is a
closed set which is nonempty if H is nonconstant on [a, b], and for 7(t)a vector
function continuous on [a, b] we have that

(3.4) G(t, s)[dfI(s)]9(s) G(t, s)[dH(s)](s).
(I-l)

Indeed, if )7 is any bounded function on a(fI) such that the integral of the
right-hand member of (3.4) exists as a Lebesgue-Stieltjes integral for a(fl),
then in view of the uniform continuity of G on [a, b] [a, b] it follows that

w(t) f G(t, s)[dl-I(s)].(s), r(I-I),
(l-I)

defines a continuous vector function w on a(1-I). In particular, if 37 is a bounded
function on a(I-I)such that

(3.5) 37(0 2 f G(t, s)[dH(s)](s), t(H),
(rl)
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then 37 is continuous on a(H). Consequently, such a j7 admits continuous ex-
tensions on [a, b], and a particular continuous extension of )7 on [a, b] is given by

(3.6) y(t) 2 f G(t, s)[dl-I(s)]9(s), [a, hi.

Moreover, for z the vector function such that the associated Vz is given by

Uz(f GO, l(/, s)[dH(s)]y(s) + Go,2(t, s)[dII(s)]y(s),

we have that (y;z) is a solution of (3.1) and

g[y]=22f f y*(t)[dH(t)]G(t, s)[dH(s)]y(s)
(l-I) (l-I)

(3.7)

If J[r/l is positive definite on D, and H(t) is an n n nondecreasing Hermitian
matrix function on a, b] which is nonconstant, and the class

(3.8) D[rIJ r/It/e D, n*Vdn]n 4: 0}

is nonempty, then from Theorem 5.1 of [14] it follows that the boundary problem
(3.1) does possess proper values; that is, values 2 for which there exist non-
identically vanishing solutions (y;z) of this system. Moreover, in view of (3.7)
and the extremizing properties of proper values as established in Theorem 5.1
of [14], all proper values are positive, and the largest constant such that

(3.9) J[r/] __> tc rl*(t)[dl-l(t)]rl(t) for r/e D

is given by 2a, the smallest proper value of (3.1). Moreover, if r/e D and
equality holds in (3.9), then there exists a solution (y;z) of (3.1) for 2 2 and a
constant c such that q(t) cy(t). In view of the above established relations be-
tween solutions of (3.5) and solutions of (3.1), we have the following result.

THEOREM 3.2. Suppose that J[rl] is positive definite on D, and H(t) is an n x n
nondecreasing Hermitian matrix function on [a, b] such that the class D(H) of (3.8)
is nonempty. Then there exist # > 0 such that the integral equation

(3.10) #jT(t)
(rl)

possesses nonidentically vanishing bounded solutions , and the largest value c such
that the inequality (3.9) holds is 1/#M, where # M is the largest value such
that (3.10) has a nonidentically vanishing bounded solution. Moreover, for q D
equality in (3.9) holds only if q(t) cy(t), where y(t) is for 2 1/t the extension
(3.6) of a solution f of (3.10)for kt PM.

If J[r/] is positive definite on D, then J[r/ is positive definite on o D, and
there is no pair of points on [a, b which are conjugate;also, if a =< 81 < Sz -<_ b
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while (2.7a) is normal on the subinterval IS1, $2] and 1, 2 are arbitrary vectors
of C,, then there is a unique solution (yO, zo) of this system such that y(s) ,
e 1,2. In particular, r/= yO is an element of joining the points (s, ),

1,2. If K is a nonzero n x n matrix that is nonnegative Hermitian, for
s [a, b] let 1-I denote the nondecreasing Hermitian matrix function on [a, b]
defined as" if s (a, b], then Hs(t) 0 for t [a, s), IIs(t) K on Is, b], while for
s a we set FI,(a) 0, rI,(t) K for (a, b]. For such a matrix function 1-I we
have D[1-I] {r/It/ D, rl*(s)Krl(s) 4: 0}. Moreover, if G(t, s) is the matrix function
of Theorem 2.3, then since K _> 0 and KG(s, s)K is Hermitian, the proper values
of G(s, s)K are all real and its largest proper value #max(S) is equal tO the maximum
of *KG(s,s)K on {l 6C,, *K 1}.

These properties are consequences of well-known results for symmetrizable
completely continuous linear transformations in Hilbert space, and, in particular,
are direct consequences of results in Reid [11, 7]. An equivalent characterization
of # #max(S) is that it is the largest proper value of the Hermitian matrix
K/2G(s,s)K1/2, where K/2 denotes the unique nonnegative Hermitian square
root of K. If (2.7a) is normal on all subintervals [a, s] and Is, b] for s e (a, b), then
for se(a, b) the class D[1-I] is nonempty and #max(S) is positive; however, for
s a or s b the class may be empty, in which case G(s, s)K 0 and #ma(S) is
zero.

In view of Theorem 3.2 and the above remarks we have the following general-
ization of results of Theorems 2.2 and 2.3 of [19], where it is understood that if
s a or s b and D[H,] is empty, then (s) + oo and the right-hand member
of (3.11) is set equal to zero.

THEOREM 3.3. Suppose that J[r/] is positive definite on D, and the system (2.7a)
is normal on all subintervals [a, s] and Is, b] with s (a, b). If K is a nonzero n x n
matrix which is nonnegative Hermitian, then for s [a, b] the largest constant (s)
such that

(3.11) JEr/] >_- (s)rl*(s)Krl(s) for rl D[a, b]

is equal to 1/#max(S), where # #max(S) is the largest proper value of the sym-
metrizable n x n matrix G(s, s)K and G(t, s) is the matrix function of Theorem 2.3;
moreover, if D[H] is nonempty, then equality in (3.11) holds ifand only if there exist
a constant c and a o C, such that rl(t) cG(t, s)Ko. Correspondingly, the largest
constant such that

(3.12) J[r/] >__ rl*(s)Krl(s for r D[a, b] and s (a, b)

is t 1/max {Pmax(s)ls [a, hi}.
A corresponding application of Theorem 3.2 to the case of a nondecreasing

Hermitian matrix function on [a, b] with only a finite number of points of increase
yields the following result.

THEOREM 3.4. Suppose that J[q] is positive definite on D, and the system (2.7a)
is normal on arbitrary nondegenerate subintervals of [a, b]. If denotes a k-tuple
of values sty, 1,..., k, satisfying a <= Sl < s2 < < sk b, and Kt3, 1,
.., k, are n x n nonzero matrices which are nonnegative Hermitian, then the



414 WILLIAM T. REID

largest constant () such that

J[r/] >= x() tl*(sa)Ka,(sa) for rl O[a, b]
/=1

is equal to 1/#mx(), where # #max() is the largest proper value of the sym-

metrizable kn kn matrix [G(s,sa)Ka], , fl 1,..., n, whose element in the

[n(a- 1)+ i]-th row and [n(fl- 1)+ j]-th column is equal to the element in the

i-th row and j-th column of G(s, sa)Ka.
4. Special inequalities. With the aid of the results of 3 one may readily

obtain various results for special types of differential systems (2.7), and particular
results of the sort presented by A. Ju. Levin [8]; in this latter connection, see also
[19, 4]. For brevity, attention will be limited to one such result.

THEOREM 4.1. Suppose that J[r/] is positive definite on D, the system (2.7a) is
normal on all subintervals [a, s] and Is, b] with s (a, b), while Co(t) is an n n
Hermitian matrix function of class 9. on [a, b], and such that

(4.1) J[r/’Co] _-- J[r/] rl*(t)Co(t)tl(t dt

is not positive definite on D. If K is a nonzero n n matrix which is nonnegative
Hermitian and such that there exists a nonnegative Lebesgue integrable function
(t) on [a, b] such that (t)K Co(t >_ 0 for a.e. on [a, b], then

(4.2) 7(s) ds > 1/max {mx(S)lS e [a, bl},

where # #a(S) is the largest proper value of the symmetrizable matrix G(s, s)K.
Since by hypothesis J[/:Co is not positive definite on D there exists an

o e D with o 0 and J[r/o:Co =< 0. From Theorem 3.3 it follows that for
s e [a, b we have

(4.3) rl(t)Co(t)rlo(t) dt >= J[rl] >_ [1/12max(S)]rl(s)Krlo(S),

where if for s a or s b the class D[lq] is empty then rl*(s)Ktl(s 0 for all
r/ D and #max(S) 0, in which case the last term in (4.3) is to be interpreted as
zero. Also, since J[r/0 > 0 we have

(4.3’) 0 < rl’(t)Co(t)rlo(t)dt <= ?(t)rl(t)Ktlo(t) dt,

and the nonnegative continuous function 1(t)Krlo(t) is not identically zero on
[a, bl. If so [a, bl is such that tl(t)Krlo(t attains its maximum value on [a, b] at

so, then from (4.3), (4.3’) it follows that

(4.4) y(t) dt >- 1/#max(SO) >" 1/max {#max(S)lS’ e [a, b]}.

Now if J[r/:Co] fails to be nonnegative on D one may choose r/o so that
J[t/o:Co] < 0, in which case the first inequality in (4.3) becomes strict, and the
first inequality in (4.4) is also strict. On the other hand, if J[r/:Col is nonnegative,
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but not positive definite, on D, from Theorem 2.2 it follows that there is a solution
(y;z) of the system

A[y. z] Coy dr. L[y. z] O.
U. S1. T[y. z] S(.

with y 0 on [a,b]. Then (rlo, o)= (Y, Vz- My) is a solution of the corre-
sponding differential system (2.12) with f Cor/o Consequently, for this r/o e D
the first inequality in (4.3) is equality. Also, for s such that Pmax(S) > 0 the second
inequality in (4.3) is a strict one unless there exist a constant c and a vector

o C, such that r/o(t cG(t, s)Ko, in which case the normality of (2.13a) on
each of the subintervals Va, s), (s, b] which is nondegenerate, and the fact that
(y z) (G(., s)Ko, Go(’, s)Ko) is a solution of (2.13a) on such subintervals,
implies that Co(t)lo(t) 0 for :/: s and hence the contradictory result

rlg(t)Co(t)rlo(t) dt O.

In particular, if So is such that the maximum of rld(t)Krio(t) on [a, b] is attained for
So, then #max(S0) > 0 and

J[r/o] > [1/max(So)]rl(so)Krlo(So),

so that the first inequality in (4.4) is strict. Thus it has been established that (4.4)
holds with the first inequality strict, which is equivalent to (4.2).

THEOREM 4.2. Suppose that J[r/] is positive definite on o, the system (2.7a) is
normal on all subintervals [a,s] and Is, b] with s (a, b), while Co(t is an n x n
matrix function of the form [q(t)tirbr for some r of the set 1, n, with q of class
poo and such that relative to the system

(4.5) A[y, z](t) Co(t)y(t) dt O, L[y, z](t) 0

there exists on [a, n] a pair of conjugate points. Then q+(t) 1/2[q(t) + [q(t){] must

satisfy the integral relation

(4.6) q+(t)dt > 1/max {G.(s.s)lse[a.b]}.

where G(t,s)= [G(t,s)], , fl 1,..., n, is the matrix belonging to the pair
G, Go of Theorem 2.3 for the incompatible normal boundary problem

(4.7) A[y,z] =0, L[y,z] =0, 9 0.

Note. One of the referees has kindly called the attention of the author to
the paper by Zeev Nehari in the American Journal of Mathematics, 76 (1954),
pp. 689-697, dealing with the zeros of solutions of second order linear differential
equations in the complex plane, and wherein the Green’s function is employed to
establish a Liapunov-type inequality.
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AN INTEGRAL EQUATION FORMULATION OF A
MIXED BOUNDARY VALUE PROBLEM ON A SPHERE*

H. L. JOHNSON,"

Abstract. The paper considers the boundary value problem (I)" V2w(p, go)= 0, 0 <= p < 1,
0 _< go =< " w(1, go)= Hi(go), 0 =< go < goo" (8w/Sp)(1, go) H2(go), goo < go =< z on the unit sphere. A
solution is sought in the form w(p, go) (1/z)j’)u(pcosgo, psin gocosO)dO, where u satisfies uxx + uyy

0. A Fredholm integral equation of the second kind with a weakly singular kernel is obtained for
a function g g(go) which determines w. Besides the derivation of the integral equation, the principal
results are the following" (i) the solution w is unique, (ii) if H e C’, H2 C2, and if other explicit con-

ditions are satisfied by H1 and H2, then the character of the solution w at (1, goo) is obtained.

1. Introduction. In this paper, we derive a Fredholm integral equation of the
second kind with a weakly singular kernel the solution of this equation (equation
(3.25)) will enable one to find a solution, w w(p, go), of the mixed boundary value
problem

pl[(2C__) ( C3W)) 1V2W /9 + sin go 0
sin go --(p p)G+ {(p g0)10<p< 1,0<go<)

(I)
w(1,go) Hi(go), goI {gol0. go < goo},

w
cp(1, go) H2(), 6 I2 {[o < }.

Martin Schechter has proved [6] a Fredholm alternative theorem for a large
class of mixed elliptic boundary value problems with a nonhomogeneous dif-
ferential equation and homogeneous boundary conditions. His results applied to
problem (I) guarantee that if the boundary functions satisfy an orthogonality
condition with respect to the eigenfunctions of an associated adjoint problem,
then at least one solution w exists, and w C(F), where F is any closed subset
of G + {o}. Our formal analysis leads us to seek a solution in a certain class
of functions and to assume certain smoothness properties of the boundary
functions, H1 and H2 Under these hypotheses, our principal conclusions, besides
the derivation of the integral equation, are the following"

(i) The solution is unique.
(ii) The solution w and its first partial derivatives are continuous at (1, o).

2. Some basic theorems. We begin by observing two known facts about
solutions of VZw 0. First of all, setting x p cos , y p sin , it follows that

2w O2w Ow/Oy
(2.1) VZw + +

Y
0.

* Received by the editors August 14, 1973, and in revised form December 13, 1973.
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Second, a solution of (2.1) exists in the form

(2.2)

where

w w(x, y) -nl ff u(x, y cos 0) dO,

a2u u(, rt) + u,,(, rt) 0

(cf. [3]). Let 6 + it/. The function u can be continued harmonically as an even
function of r/into ]61 < 1. Let f u + iv be analytic in 161 < 1, where v is normal-
ized by v(0, 0) 0. It can be shown that v(, -r/) -v(, r/). Therefore, (2.2) can
be rewritten as

w(x, y) _1 Re f(x + iy cos 0) dO

Let z x + iy cos 0 p cos q) + ip sin qo cos 0. The boundary conditions of (I)
can then be written as

(2.3a)

_
Re f(z) dO H (qg), q9 e I

P

(2.3b) lim Re f’(z)z dO H(q)), q) e I.
p-*l

Using the integral representation of an analytic function inside the unit circle and
interchanging orders of integration, one can prove the following theorem.

THEOREM 1. If g g(Z) is analytic in ]z[ < and Re g(z) Re g(), then

where

)-- -nl Re g(z) dO A(Re g(e’*))(qg)

(-E + F + G,)(Re g(e’*))(qg),

u(s) ds,e(u)(q)

" u(s) cos (s/2) ds

J0Fc(u)(q))
n K(q), s)

1 ( u(s) sin (s/2) ds

K(O, s) ([sin2 (/2) sin2 (s/2)[)/2

It can easily be shown that

(2.4) Fc(1)(O) G(1)(O)= E(1)(O)= 1.
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For later purposes, we define

Fs(u)(go) ;00 u(s) sin (s/2) ds

f u(s) cos (s/2) ds

and introduce the family of functions (P.C.)’’(I), I I U I2 defined to be those
functions v v(go) with the properties"

dk- lv/dgok- are continuous on I"(i) v, v,...
(ii) the jump of v(J), j 0, 1, ..., k 1, is finite at go goo;

(iii) v(k) e C(I) f’) Lp(I), < p <= 2.
As a consequence of Theorem 1, the boundary conditions (2.3) take the form

(2.5a) A(u)(go) Hi(go), go 11,

(2.5b) A(d2)(go) Hz(go), go e 12,

where u(go) + iv(go) f(eiO). It is well known [4, p. l19J that u(go) and v(go) are
related by the equation

f(2.6) u(go) v(s) cot ds.

Although (2.6) may be used to rewrite (2.5) in terms of v and v’, we shall write
(2.5) in terms of u and u’ as a consequence of our next result.

THEOREM 2. Let f(eio) u(go) + iv(go) be the boundary values of a function
analytic in [z[ < 1, with u an even and v an odd function of go. Let v (P.C.)I’P(I).
Then

where

Fc(u)(go) Gc(v)(go) + E(u) + [v](goo)W4(go),

G(u)@) -V(v)(q) + e(u)+ [v](Oo)W(q),

[V]@o) v(qo + 0) v(qo 0),

w,(o) V(w,)(o) + w(o) + E(w),

WS(go)----- Gs(w1)(go) -+- w3(go) +

Wl() In Jcos cos o[ o

W2() 21n (sin(/2)+ K(Oo’O))(1 Uo(O)n sin (/2)

_2 In (cos (o/2) + K(Oo, )
u cos (/2) u()’

Uo() unit step function with jump at o.
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Outline of proof. Let fo(ei) Uo((p) + ivo(q)) COO( n < o < n) with Uo(- q)
uo(cP), Vo(-q))= -Vo(CP). The functions Uo and Vo can be represented by the

Fourier series

(2.7a) uo(q) ao + a, cos (nq),

(2.7b) vo(q)) a, sin (nq),
n=l

where [a,] < O(1/n2). Mehler’s formula for the Legendre polynomial P,(cos q)
[7, p. 57] asserts that

(2.8)
P(cos q) Fc(cos (ns))(q) F(sin (ns))(q))

Go(sin (ns))(q))+ Gs(cos (ns))(q)), n= 1,2,...

Forming ,= a,P,(cos (p), using the fact that the series (2.7) converge uniformly,
and using (2.4), one obtains

(2.9)
a.P.(cos q) F(uo)(q Fs(vo)(o)

tl=O

6(Vo)(q)+ 6(Uo)(o).

Laplace’s representation of P,(cos q) [2, p. 343] and Theorem imply that

(2.10) P,(cos (p) A(cos (ns))(cp), n O.

Multiplying (2.10) by a, and summing, one obtains

(2.11) a,P,(cos q)= F(uo)+ G(Uo)- E(uo).
n=O

Equations (2.9) and (2.11) imply that

(2.12a) 6,(Uo)(q) Vs(vo)(q) + :(Uo),

(2.12b) F(uo)(q)) Gc(vo)(q)) + E(uo).

When v e (P.C.)I’’(I), we start with
2pv(a) sin (a q) &r

(2.13) u(p, o) - +02- 2p cos (a )
integrate the right-hand side of (2.13) by parts, take the limit as p 1-, and use
the fact that COO(I) is dense in (P.C.)’’(I) in the norm of L,(I), < p __< 2. The
result of these operations and equations (2.12) is Theorem 2.

Returning now to the boundary conditions (2.5), we seek a solution pair
u 6 (P.C.)Z’P(I) and v e (P.C.)Zw(I). Observing that v’(q) iu’(q)) limz--,e,o (zf’(z))
and that E(v’) (1/n)[v](Cpo), we write the boundary condition (2.5b) in the form

(2.14)
F(u’)(cp)- Gc(u’)(q))= H2(cp)- [v](cpo + [u’](Cpo)(W4 + Ws)(Cp)
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3. Derivation of desired integral equation. Equations (2.5a) and (2.14) are
weakly singular integral equations of the first kind for the functions u and u’.
From these equations, we shall formally derive a weakly singular integral equation
of the second kind, equation (3.25); the solution of (3.25) will determine all other
functions of the problem.

To derive this equation, we begin by integrating (2.5a) by parts and then
differentiating with respect to (p. The result is

cot (q)/2)Fs(u’)(q)) + tan (q)/2)Gc(u’)(q)) H’l(q)
(3.1) K(cp, Oo)

[u] (qo) tan (q/2) cos (q)o/2)

qelx.

Under the assumption that lim_ H’l(q) exists and that u e (P.C.)Zw(I), equation
(3.1) implies that [u] (qo) 0. The jump in v at qo must also be zero, as stated by
the following lemma.

LEMMA 1. If [u](qo) 0, u e (P.C.)z’P(I), and u is even, then [v](qo) 0.
Proof. Integrating the integral representation of v(p, q)) in terms of u(q) by

parts and taking the limit as p --, 1-, it is easy to show that

u’(s) In(3.2) v(q,)
sin ((s q)/2)
sin ((s + q)/2)

ds.

It follows from (3.2) that v is continuous at qo.
The jump in u’ at qo is also zero, as stated by our next lemma.
LEMMA 2. If U (P.C.)2’’(I), then [u’] (qo) 0.
Outline of proof. We set [u] (qo) 0 in (3.1), integrate by parts, multiply the

result by sin q, and then differentiate with respect to q. These operations lead to
an equation which implies that [u’(Oo) 0.

The boundary conditions (3.1) and (2.14) now take the form

(3.3) cot (q/2)Fs(u’)(q) + tan (q)/2)Gc(u’)(q) H’(q)),

(3.4) Fs(U’)((p) Gc(u’)(q) H2((p) q e Iz.
The next step is to derive singular integral equations from (3.3) and (3.4).

To do so, we set q in (3.3), multiply by 1/K(q), t), integrate from 0 to q, inter-
change the order of integration, simplify, differentiate with respect to q, and use
(3.2). The result is

sin (q/2) 1" u’(s) sin (s) ds sec (q/2)v(q)
+ h (qo) q e I(3.5) cos (q/Z)u’(q) +

2r do K go) 2 1,

where

(3.6) H’l(th,(go) cos (go/2)
d

sin ((p/2) -and K l(S, q)= sin2 (s/2)- sin2 (q/2). In (3.4), we set q t, multiply by
sin (t)/[2K(q), t), integrate from q to r, interchange the order of integration, and
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differentiate with respect to qg. The result is

sin (q9/2) ( u’(s) sin (s) ds
(3.7) cos (,p/2)u’(cp) +

2 Jo
where

h2(qg), (pffl 2

d _I.- H2(t) sin (t) dt
(3.8) h2(q)) . 2K(o, t)

Equations (3.5) and (3.7) can be rewritten as a single singular integral equation
with the standard singular kernel, 1/(t x), by settingx sin2 (q)/2), sin 2 (s/2),
U(x) u’(rp), and

(3.9) G(x) g(q)= 2 cos (q/2)
+ hi(q))’ 0 (-D < (490,

hz(q0), (/9 0 < (.p <

Making these substitutions, we obtain

(3.10)
/1 x U(x) + x/ U(t)t dtx G(x),

0 < x < 1, x g= sin2(q0o/2).

Applying the technique of reducing a singular integral equation to a Hilbert
problem and then solving this problem, one finds that

(3.11) u’(q) g(o)cos (q)/2)
sin (q/2)7(q) g(s)sin (s)ds

Jo
where (o)= sec ((p/2)exp [(2/n)j’ In K(s, qg)ds]. Using a well-known fact about
integrals of periodic functions, one can show that j’ In K(s, qg)ds is a constant.

Equation (3.11) then becomes

(3.12)

u’(q) g(q)cos (99/2) +
tan (99/2)

g(s) sin (s/2) ds

sin q) o: g(s) sin (s/2) ds
2n K I(S, (49)

(P I.

In order that lim_= u’(q) 0, it is necessary that

(3.13) g(s) sin (s/2) ds O.

Since u’ is to be continuous at qo, it follows that g must be continuous at qo.
Substituting (3.13) into (3.12), setting q t, integrating from 0 < < q0, and
interchanging the order of integration, we obtain

u(q) u(0) _2 g(s) sin (s/2) In sin (s/2) ds
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(3.14) + g(s) cos (s/2) ds
0

+ g(s) sin (s/2) In K(q), s) ds.

Since g(q) contains v(q) in its definition, we proceed to eliminate u(o) from (3.14).
First, note that

f (a qg) sin q9 fo u(r)da
u(a)cot da(3.15) v()

2n 2 2n )
and that

(3.16) cot

It follows from (3.14) that

(3.17)

where

v(qg) 2 g(s) cos (s/2)K2(99, s) ds + g(s) sin (s/2)K 3(q9, s) ds,

sin [(s 99)/2] sin (no)sin (ns)
(3.18) K2(qg, s) In

sin [(s + 99)/2] nrc

(3.19) K3(q9 s)
sin (q) ff 2 In (K(a, s)) da

2re --- @
To simplify the expression for K3(qg, s), we note that the Fourier series for

2 In (K(a, s)) is

(3.20) 2 In (K(a, s)) -In (2) + a,,(s) cos (na),
n=l

where a,,(s) -2 cos (ns)/n, n >__ 1. It is an easy calculation from (3.20) to show
that

In (2K2(o-, s)) lim Re Log (1 2z cos (s) + 22)
(3.21) z--.e,

Re Log [2(cos (a) cos (s))

where Log denotes the principal branch of the complex log function. It follows
from (3.21) and (3.15) that

(3.22) K3(q, s)=
q) re, q0 > s,

qg, qg<s.

As a consequence of (3.22) and (3.13), equation (3.17) can be written as

(3.23) v(qg) 2 g(s) cos (s/2)Kz(q), s) ds g(s) sin (s/2) ds, q9 I.
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Differentiating (3.23), using definition (3.9), and dividing by cos (q/2) leads to

d(V(t) sec (t/2)) 2 sec (t/2) g(s) cos (s/2) K2(t, s) ds h l(t) tan (t/2),
(3.24)

tI
We integrate (3.24) from 0 to q, interchange orders of integration, and use (3.13)
to find that

p

(3.25) g(q) K(q, s)g(s) ds 4- h3((p), (p e I

where

(3.26) K4(q,s) ---ln
sin (q/2) sin (s/2)
sin (q/2) + sin (s/2)

K4(s, q)) > 0

fo: f6 h l(S) tan (s/2) ds(3.27) h3((p) K4(o, s)h2(s) ds 4- hl(qO
2

We proceed to analyze the Fredholm integral equation (3.25).

4. Properties of equation (3.25). In this section we assume that 0 =< qo < n.
Property 1. If h3 L2(Ia) then there exists a unique solution g of (3.28) in

L2(I1).
Proof. The kernel K is positive almost everywhere, and it is symmetric. It

is known [1, p. 285] that the characteristic values of (3.25) are positive. Hence,
is not a characteristic value of (3.25). The Fredholm alternative theorem for L2

kernels implies Property 1.
Property 2. If H C2(i1)and H2 C1(i2), then the solution g of (3.25)is con-

tinuous on l_

Proof. Under the above hypothesis, it follows that ha E C( a)" The logarithmic
character ofK implies that

K4(q, s)g(s) ds e C(i1).

Property 3. If H e C3(il) and H2 e C2(i2), then g e H(I1), where H(I1),
0 < 0 < 1, denotes the class of H61der continuous functions on I

Proof. Under these hypotheses h3 Cl(Ia). It is a straightforward technical
lemma to prove that j’o K(q, s)g(s) ds

Property 4. If H C3(ia) and H2 C2(2), then g C1(i1) L2(I1).
Proof. The fact that g e Cl(Ia) follows immediately from Property 3. and a

well-known lemma [5, p. 31] about derivatives of logarithmic integrals. The be-
havior of singular integrals at the endpoints of the interval implies that g has at
most a logarithmic singularity at q 0 and q Cpo [5, p. 85].

Equation (3.25) can now be differentiated and the resulting integrals integrated
by parts. If

(4.1) g(cp-) g(tp-)-- h2(tp-),

(4.2) Hi (0) H2(7) 0,
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then one obtains

fo
r

(4.3) gl(cP) g’(tP) sec (p/2) Ks(Cp, s)gl(s) ds + h4(qg),

where

(4.4) K 5(P, s) In (K(q s))

h4((.p) Ks(q), sec (s/2) ds + Ks(0, (h2 sec (s/2)) ds

(dh tan /2))+ -hl sec(/2).

Arguments similar to those mentioned in Properties 2, 3 and 4 when applied to
(4.3) lead to the following property.

Property 5. If Ha C(Ia) and H2 C3(2), then g C2(Ix) L2(I).
Let = {(H,H2)]HC4(I), H2C3(12), g(g)= h2(), H’(0)= H2()

=0}.
COROLLARY l. If (H1, H2) E , then the function v defined by (3.23) and the

function u defined by (3.14) are elements of (P.C.)2’p(I).
If the constant u(0) in (3.14) is selected so that (2.5a) is satisfied, then the

function u() generates a harmonic function u(x, y) which in turn generates a
solution w w(p, ) of the boundary value problem (I).

THEOREM 3. W(1, ), (OW/O)(1, ) and (Ow/Op)(1, ) are continuous at o.
The proof depends on the fact that if u() is continuous at o, then A(u)()

is continuous at o, and the abovementioned continuity properties of u and v.
Theorem 3 implies that w(p, ) has a normal mode expansion

(4.6) w(p, ) c,(p"P,(cos ())).
n=0

If w w,(p, )= p"P,(cos ()), then u u,()= cos (n), v v,()= sin (n)
and g g,()= -n sin ((n + 1/2)). It is easy to check that the orthogonality
condition (3.13) i satisfied for g g,. Since our problem is linear, it follows that
g(s) .o c.g,(s) and that

g(s) sin (s/2) ds c, g(s) sin (s/2) ds 0.

Thus, condition (3.13) is satisfied automatically under the hypothesis that
(H, H) e .

The zero flux condition (w/p)(1, o)sin(p)do 0, which is a con-
sequence of the differential equation Vw 0 and continuity conditions, is
automatically satisfied when the boundary functions H and H are elements of
N. Without the requirement that g(Og)= h(og), v’ would have a logarithmic
singularity at o. This in turn would imply that (/Oo)w(1, ) would have a
logarithmic singularity at o.
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Our uniqueness theorem for (3.25) leads to a uniqueness theorem for the
boundary value problem (I).

THEOREM 4. If (H x, H2) 6 , then the boundary value problem (I) has a unique
solution for all angles tpo, 0 <= qo <= .

Proof. Every solution of VZw 0 in G + can be put in the form (2.2) for
some two-dimensional harmonic function u. Property of the integral equation
(3.25) implies that u is unique for 0 __< qo < 7. For qo 7 the boundary value
problem (I) is simply the interior Dirichlet problem for a sphere which is known
to have a unique solution.
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ON SCHWARTZ’S HANKEL TRANSFORMATION OF CERTAIN
SPACES OF DISTRIBUTIONS*

WILL Y. LEE,

Abstract. To extend the result of A. L. Schwartz’s Hankel transformations to distributions, we
define two new testing function spaces F and G on (0, oc). These two testing function spaces are charac-
terized by their behavior near the origin and at infinity. We then prove that the Schwartz’s Hankel
transformation is a continuous linear mapping from F into G and therefore the generalized Schwartz’s
Hankel transformation is a continuous linear mapping from the dual space G’ into the dual space F’v.

1. Introduction. A. H. Zemanian [8] first investigated the distributional
Hankel transformation which is a generalization to distributions of the conven-
tional Hankel transformation g. defined for/ __> -1/2 by

(1.1) [,p(x)] (y) 8(x)x/J,(xy dx.

Here J,(xy) is the Bessel function of the first kind of order/. In order to do that,
he defined the testing function space H, and then proved that the Hankel trans-
formation (1.1) is an isomorphism of H onto itself, and therefore the generalized
Hankel transformation ’, defined by

<’uf, o> <f,

where f belongs to the dual space H,, is an isomorphism of H, onto itself. Later
on E. L. Koh and A. H. Zemanian [11] extended it to the complex plane using a
different testing function space ola. W. Y. Lee [5] did a similar work which is a
counterpart of the Fourier transformation of spaces of type S of I. M. Gel’fand and
G. E. Shilov [3]. Recently A. L. Schwartz [6 defined his Hankel transformation

for v >__ 1/2 as follows"

(1.2)

where

m’(x) [2T(v + 1)]-lx2v+ 1, old(x) 2T(v + 1)x-VJ(x).

Note that the kernel function in (1.2) is quite different from that of (1.1). Then he
proved the following inversion theorem [6, pp. 713-714].

THEOREM 1.1. lff L1 satisfies the inequality

if(x)lx+l/2dx <
o
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for x > 0 and iff is ofbounded variation in a neighborhood ofx, thenfor v >_ 1/2,

(1.3) -{f(x + O) + f(x 0)} lim o,,(xu) din(u) f(y)oC(uy) dm(y).

Subsequently, L. S. Dube and J. N. Pandey [1] generalized it to distributions
using two testing function spaces G,a and Ha,a, where 0 < =< v + 1/2 and 6 >= 0.
They then proved that the Schwartz’s Hankel transformation (1.2) is a continuous
linear mapping from G, into H,, and therefore the generalized Hankel trans-
formation is a continuous linear mapping from the dual space H’, into the dual
space G’,. The drawback of the two testing function spaces G,,a and H, is that
they are not closed under differentiation. However, closedness of testing function
spaces under differential operation is understood to be true in distribution theory.
The motivation ofthe present work is to modify G,a and H, so that differentiation
in the given space is allowed. Furthermore it is essential to define new testing
function spaces to satisfy the assumptions of Schwartz’s theorem so that we can
generalize his result to distributions. We define two testing function spaces Fv and
Gv, and prove that the Hankel transformation (1.2) is a continuous linear mapping
from F into G, and hence the generalized Hankel transformation is a continuous
linear mapping of the dual space G’ into the dual space F’. Here all the dual spaces
are equipped with strong dual topology.

2. The testing function spaces F and Gv. The space Fv consists of smooth
functions q on 0 < x < o0 for which

7,,,k(0) = sup [x"Akv,xq)(x)[ < oC m, k O, 1,2 ...,
0<x<oo

where A,x D2 + (2v + 1)x-iDa. The space G consists of smooth functions q0
on 0 < x < oo for which

sup ,,,q(x)l < o0,
0<x<oo

k =0,1,2...,

where A, is the same as before. We equip the spaces Fv and G with the topology
generated by the seminorms {7,,,k}2,= o and {7}=o respectively. It is easy to see
that both F and G are Fr6chet spaces. Obviously F is a proper subspace of Gv
algebraically and the topology of F is stronger than the one induced by G.
For instance q(x) 1/(1 + x2) belongs to G but not to F,.. From the definitions
we have the following inclusion relations:

(o, oo) = y(o, oo) = F = G = (o, oo).

Note that all the above inclusion relations are proper algebraically and topologi-
cally.

Remark 1. Every testing function in F and Gv satisfies the assumptions of
Schwartz’s Theorem 1.1.

Remark 2. Let H be the Zemanian space [10, pp. 129-130]. Then q0 F,,
if and only if x + 1/2q e H,,.

Suppose the Taylor expansion of (# near the origin has a form for each
k =0,1,2,...,

(2.1) q)(x) ao + a lx
2 -+- + akx

2 -+- O(x2k),
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where the ap(O <= p <= k) are constant depending on . An inductive argument on
k shows

-2 2k-2Akv boD2 + blX D2-1 + bex D, + + b2 1X (2k-1)D

where the b (0 =< p =< 2k 1) are constant (bo 1) depending on v. Thus we
have the following.

THZOREM 2.1. (i) A nonconstant smooth function on 0 < x < belongs to
the space F ifand only ifo has theform (2.1) near the origin and is rapidly decreasing
asx .

(ii) A nonconstant smooth function on 0 < x < belongs to the space G if
and only if has the form (2.1) near the origin and (x) O(x -) for any > 0 as
X.

Note that Theorem 2.1 is similar to [10, Lemma 5.2.1, p. 130]. This is con-
ceivable from Remark 2.

3. e Schwartz’s Hankel tramformation. Now we prove the main theorem.
THZORZM 3.1. For v 1/2, the Hankel transformation (1.2) is a continuous

linear mappingfrom the space F into the space G.
Proof. Let B be a bounded set in F and let be any element in B. Then since

A,r(xy) (- 1)x(xy)(differentiation with respect to y) and since

we have

(y) [vqg(x)] (y) qg(x)m’(x)(xy) dx

q)(X)X2v + l(xy)- J(xy) dx,

sup IA,y(y)l [qo(x)x2U+v+ sup (ly-J(xy)l)dx
0<y< 0<y<

=< | sup {lo(x)x2//l sup (ly-J(xy)l)}dx
0 0<x< 0<y<m

(3.1)
+ sup {Iqg(x)x2++1 sup (lY-J(xy)I)} dx

l<x< 0<y<

_-< ,o(O)+ +,o(O) <

where q is chosen to be a positive integer greater than v + 1/2. Note that
supo<,<ooly-VJv(xy)l O(Ixl-1/2). Since the inequality (3.1) does not depend on
the choice of q9 in B, it follows that the Hankel transformation maps a bounded
set in F into a bounded set in G, and therefore is continuous. This proves the
theorem.

Now let f belong to the dual space G’ and let q9 belong to Fv. Define the genera-
lized Hankel transformation ’ by

(3.2)

The above definition is meaningful from Theorem 3.1. Invoking [10, p. 29], we
obtain the following.
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THEOREM 3.2. For v >__ --1/2, the generalized Hankel transformation t;’ de-
fined by (3.2) is a continuous linear mapping from the dual space G’ into the dual
space F.

Theorem 3.2 is a generalization of Schwartz’s Theorem 1.1 to distributions.
Since F and the Zemanian space H are isomorphic under the isomorphism
q x+ 1/2q, Theorems 3.1 and 3.2 still hold for q in H replaced by x-+

For f in g’(0, ), define F by

(3.3)
F(y) (f(x), m’(x)J(xy))

(f(x), x2+ l(xy)-J(xY)).

Since X2v+l(xy)-J(xy) belongs to g(0, ), the equality (3.3) is well-defined.
Notice that we are not allowed to choose f either in F]. or G’,. because x2+

Jv(xy) belongs to neither F nor G. Here x2+ l(xy)-VJ(xy) is understood to be
the principal value. In view of [10, p. 146] and the Cauchy integral formula the
following theorem is not hard to prove.

THEOREM 3.3. For any f g’(O, ), F(y) defined by (3.3) is a smooth function.
Theorem 3.3 is similar to 10, Thm. 5.6-1, p. 146], but this is expected because

of Remark 2. Moreover, F(y) behaves like a polynomial. Indeedwe have the follow-
ing.

THEOREM 3.4. Let f g’(O, oo). Then F(y) defined by (3.3) satisfies the following
inequality:

IF(y)I < {C’ 0 < y =< 1,

Cyk, <y<,

for some constant C and a sufficiently large positive integer k.
Proof. Since f in g’(0, c) has a compact support according to [10, pp. 37-38].

set A supp f. Choose a smooth function 2(x) with compact support such that
2(x) on a neighborhood of A. Then there exists a positive integer k and a
constant C ([ 10, pp. 18-19]) such that

(3.4)
IF(y)I I(f(x), (xy)-J(xy)X(x)xZv+ 1)1

__< C sup max IA,x{(xy)-Jv(xy)X(x)x2+l}l.
xA O<_r<_k

An inductive argument on r shows us that

A,x{(xy)-,,j,(xy);t(x)x2,,+ 1}

(-- lfY2 a,,,p(xY) -O’+p)Jv ,++p(xy).(x)x2

p=O

r-1

+ (-- 1)r-1 2 ar 1,p(Xy)-v+P)Jv -1)+1+p(Xy)2(X)X2(v

p=O

+ + ao,o(xY)-j(xy)/],(x)x2t-r)+ 1,
where the aq,v (0 <= q <= r, 0 <= p <__ r) are constants (at,o 1) depending on v.
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In forming (3.5) we have used the following equalities"

A,x{(Xy)-Jv(xy)} (- 1)ryZr(xy)-J(xy),

Ox{(Xy)-VJv(xy)} f(xy)-J+ l(xY),

Dx{(xy)-J(xy)}D:,{2(x)x2+1} -(2v + 1)yZ(xy)-+ ’)J+ l(xy)2(x)x2+1

2(r)(x) 0 (g 1) on A.

Utilizing [7, p. 45], we can easily prove the following inequality’

(3.6) sup [(Xy) -(v+p)J p(Xy)(X)X2(V-q)+ 1 < Cq p
xeA

It follows from inequalities (3.4), (3.5) and (3.6) that

F(y) C max y la,elCo,p + - la_,eCp + + ao,oC,o
0NrNk p=0 p=0

N{C’, 0<yN1,

C’y < y <

This completes the proof.
Theorems 3.3 and 3.4 together yield the following.
ToN 3.5. Suppose f e g’(O, ). Then the generalized Hankel transfor-

mation ;f is a regular distribution in F, generated by F d@ned by (3.3).

4. Ne e rbles. In this paper we extended the Schwartz’s Hankel
transformation (1.2) for v -1/2 to distributions. But it is unknown whether
our results still hold for v < -1/2. We shall state some problems related to this
paper.

Problem 1. How can we extend Schwartz’s Hankel transformation for
v < 1/2? Once this is done we may easily extend it to distributions.

Problem 2. How can we extend our results to the complex plane? This prob-
lem is equivalent to finding appropriate complex testing function spaces suitable
for our theory. Note that we cannot use the same argument as Koh and Zemanian’s
[11] because the kernel function x+ (xy)-J(xy)does not belong to the testing
function space F.

Problem 3. Solve the Cauchy problem of the differential operator
+ (2v + 1)x-"

u(x, t P(,)u(x,

u(x, O Uo(X,

where u(x, t) is an m x column vector, and P is an m x m polynomial matrix
with constant coecients. Can we apply the Hankel transformation (1.2) to attack
the problem?

In [13], we gave a uniqueness class of the Cauchy problem of differential
operator S, D (4 1)/(4x) by using the Hankel transformation (1.1).
Gelfand and Shilov [14] solved the same Cauchy problem of differential operator
i(/x) by using the Fourier transformation.
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Problem 4. Since the Zemanian space H is isomorphic to our testing func-
tion space Fv via the mapping (p x-+ 1/2)(p, and since the Hankel transformation
(1.1) ((1.2)) maps H(F) onto (into) H(Gv) respectively, is there an isomorphism
from H into G, or equivalently, from G’ into H’ ? This problem is equivalent to
finding a relation between two Hankel transformations (1.1) and (1.2).
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AN OPERATOR EQUATION AND BOUNDED SOLUTIONS OF
INTEGRO-DIFFERENTIAL SYSTEMS*

J. M. CUSHING,"

Abstract. The main result gives conditions under which (locally) a one-to-one, bicontinuous
correspondence exists between bounded solutions (or bounded solutions tending to zero as + o)
of a linear, integro-differential system of Volterra type and such solutions of perturbations of the
system. The perturbations are allowed to be of any functional type which satisfy a local Lipschitz
condition near the origin. Certain recently proved stability results for such systems are special cases.
The results also constitute a generalization of similar results for ordinary differential equations, which
motivate the approach and proofs. The proofs rely on an abstract lemma proved for a certain operator
equation. In order to apply the perturbation theorems some results are also given concerning bounded
solutions of linear integro-differential systems. An application is made to Volterra’s predator-prey
population dynamics model with hereditary effects where it is shown, for certain specific, but reasonable
hereditary kernels, that the critical (or saturation point) of the system is unstable.

Introduction. Our main purpose is to investigate the existence of bounded
solutions of the n n system of integro-differential equations

(P) x’(t) A(t)x(t) + B(t, s)x(s) ds + h(t)(x) + g(t), _>_ to,

where h(t)(O) =_ O, >= to, which is to be considered a perturbation of the linear
homogeneous system

(U) y’(t) A(t)y(t) + B(t, s)y(s) ds, >= o

The goal is to place conditions on h and on (H), or more precisely on the related
nonhomogeneous system

(NH) z’(t) A(t)z(t) + B(t, s)z(s) ds + g(t), >= o,

under which it is possible to assert that (locally) there is a one-to-one corre-
spondence between the bounded solutions of (P) and those of (H). The pertur-
bation term h is to be thought of as an operator which maps the set of functions
defined for >= to into itself and which is in some sense small; this will be made
precise below. Typical perturbations are of the form

h(t)(x) h(t, x(t)) or K(t, s, x(s)) ds or x(t) K(t, s, x(s)) ds.

Obviously perturbations of Fredholm type could also be considered. Specific
conditions will be placed on the n n matrices A and B below.

First, in we will state and prove a result for an abstract operator equation
which, when applied to (P) in 2 will lead to our main results. In 3 we will study
the linear nonhornogeneous system (H) with regard to the hypotheses for our

* Received by the editors December 21, 1973, and in revised form July 15, 1974.
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main results. Finally in 4 the important special case A(t)= A const, and
B(t, s) =_ B(t s), which is the form of the vast majority of applications, will be
considered. Included in 4 is an application to Volterra’s equations for predator-
prey population dynamics with hereditary effects where, amongst other things, it
is shown that under certain reasonable assumptions on the hereditary factor such
populations will not have a stable critical or saturation point.

Our approach and results for (P) are motivated by (and generalize) certain
results for differential equations (B _= 0). See, for example, [3], [8]. They also
serve to generalize certain stability results for integro-differential equations [6],
7], [9], [11]. Our Lemma below bears an interesting relationship to the idea
of admissibility of linear operators and the results of Corduneanu and Miller
[4], 10], [12]. Lemma is independent of the abstract results of Miller in 10
and the admissibility approach in general in that it deals with closed operators
on spaces which are not necessarily complete as opposed to continuous linear
operators on Banach spaces.

1. An operator equation. Consider the equation

(1.1) Lx f(x),

where L is a linear operator with domain D(L) and range R(L) contained in
Banach spaces X and Y respectively and where f(x) is an operator from X into. Let N(L) denote the null space of L. Our goal is to obtain a correspondence
between solutions of (1.1) and N(L) by making suitable assumptions on L and f.
First, we assume the following.

H1. L is closed on D(L) and there exists a subspace S
_

D(L) such that the
restriction of L to S (denoted L) is closed and one-to-one and has closed
range.

Here the domain D(L) and the subspace S are purposively not assumed to be
complete as this will be the case in our applications to (P) below. Let R(L) be
the range of L and set (r) {x X’lxlx <= r}. Concerning the operator f we
assume, without loss of generality, that f(x)= h(x)+ g where h(0)= 0 and
g Y; in addition we assume the following hypothesis.

H2. h maps D(L) into R(Ls) continuously in such a way that for some con-
stants 0 and r, 0 < 0 < + , 0 < r _< + oe, we have ]h(x) h(y)l r <- Olx Ylx
for all x, y D(L) f) E(r).
Under H1 it follows by the closed graph theorem that L has a bounded

inverse L-1. From this we can conclude the following basic lemma.
LEMMA 1. Suppose H1 and H2 hold. Suppose also that 0 in H2 satisfies

OIL[ 11 < 1. Then there exists a constant c > 0 such that for each g R(L) satisfying
[g[r --< cr, a one-to-one bicontinuous mapping Q exists from the set N(L) 2(cr)
into the set of solutions of(1.1) contained in D(L) f’l E(r).

Proof. We first show that Q is well-defined. Given n N(L) f) E(cr), define
the operator T:D(L) D(L) by Tx n + L f(x). For x E(r) it follows from
H2 (with y 0) that

[Txlx [c(1 + ILl-’I) + [L-l[O]r.

Thus, if we choose c < (1 -[L-110)(1 + 1L11)-1, then T maps D(L) f-] E(r)
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into itself. Moreover, by H2 we have Tx Tylr <= IL; l[Olx Ylx and hence T
is a contraction on D(L) f’l Z(r). Choosing x D(L) f’l E(r) and setting

X Txn_ e D(L) f-I Z,(r), n >= 2,

we know that x,- Xo in X and that f(x,) f(xo) R(Ls) in Y (by H2). Since
Lx, LTx,_ LLf lf(x,_ 1)= f(x,_ 1) f(xo) in Y and since L is closed on
D(L), it follows that the point xo lies in D(L) f"l E(r) and Lxo f(xo); that is,
xo solves (1.1) and we have a well-defined function Q:Q(n) xo.

Suppose nie N(L)f’l (cr) for i= 1,2 and Q(nl)= Q(n2)= x; i.e., x ni
+ L if(x) for 1, 2. By subtraction we find that nl rt2 and that Q is con-
sequently one-to-one. Finally, Q and Q-1 are continuous as is shown by the
following inequalities:

]Q(nl) Q(nz)lx Ix1

or

and

xlx IZx Txlx In1 n=lx + IL2-alOIx
n2lx + ILl llOIQ(nl)- Q(n2)lx

10(nl) Q(n2)lx (1 -IL-10)-tin,

--Inx nzlx --Ix1 Txl

Ix1 X2lx -+ ILU lOIx
(1 -+- IL- 10)lx Xzlx.

IQ-I(X1) Q-l(x2)[x

n2lx;

X 2 "+- Txzl x

Remarks. (a) If R(L) is closed in Y and N(L) admits a projection, then we
may take S M in H1 and Lemma where D(L) N(L) M(L). Then L is
the pseudo-inverse of L on D(L) and, by the closed graph theorem, L is continuous
on D(L). These circumstances do not hold, however, in our application to (P)
below.

(b) We can further assert that if Igl, -<_ cr/[L 11, then there exists a constant
r* > 0 such that the range of Q contains all solutions of (1.1) contained in
D(L) f’l Z(r*). To see this, choose r* so small that Ix- L[lf(x)lx <= cr for

Ixlx _-< r*. This is possible by the way g is chosen since I L-if is continuous.
Let x D(L) f] E(r*) be a solution of (1.1) and define n s L] if(x) which,
by the assumption made, lies in N(L) fq Z(cr). Thus, there exists a unique solution
x’ eD(L) Y(r) of (1.1) such that x’= Q(n); i.e., x’= n + Llf(x’). But then
x’ x L[ l(f(x’) f(x)) which implies Ix’ xlx <= IL2 l[0[x’ xlx or x’ x
in as much as [L- 110 < 1. Hence, x is in the range of Q.

(c) If it is assumed that S is a Banach space and that R(L) is contained in a
Banach subspace Y* of Y, then Theorem can be proved with X and Y taken as
Fr6chet spaces (instead of Banach spaces) whose respective topologies induce
topologies on S and Y* weaker than their respective norm topologies. In this
case L is continuous by the closed graph theorem and one obtains from this
modification of Theorem an alternate statement of a theorem of Miller [10,
Thm. 1]. Again, however, in our applications S is not complete.
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2. Integro-differential equations. We return now to systems (P), (H) and
(NH) where we assume the following.

H3. g(t) and A(t) are locally integrable in >= o and B(t, s) is locally in L
in (t,s), _>_ s > to.

Under these conditions, the Volterra integral equation obtained from (NH) by
integration has a kernel k(t, s) A(s) + ’s B(r, s)dr for which, it is not difficult to
see, conditions sufficient for the existence and uniqueness of a continuous solution
for >= o (as given by Miller in [12]) are fulfilled for each initial vector X(to)

Xo R" and each g(t). This continuous solution, by virtue of the fact that it
solves this integral equation and that k(t, s) has the properties described in H3,
is in fact absolutely continuous and consequently is the unique solution of (NH)
for >= to and X(to) Xo. Our goal now is to apply Lemma to the perturbed
system (P).

Let

BC {x(t) 6 C[to, / )’lxlo- sup,>_,olx(t)l <

and Lp, =< p < + , be the Banach space of functions defined and measurable
for _>_ to for which Ixlp--ff,+o Ixl *’ dx < / . For convenience, we let L also
denote BC and Ixlo- Ixlo. We take X BC and Y Lp, _<_ p <_ + , in
Lemma 1. Define the linear operator L by

Lx x’ A(t)x B(t, s)x(s) ds

whose domain we take to be the linear subspace DP(L)= {x BC’x(t) is ab-
solutely continuous for >= to and Lx LP}. (By a solution of (P), (H), or (N) we
mean an absolutely continuous function satisfying the corresponding system for
almost all _>_ to.) Define X1 to be those vectors in R which, as initial conditions
at to, give rise to bounded solutions of (H); X1 is clearly a linear subspace of R.

R=X ff3X2 and let PbetheLet X2 be any space supplementary to X1
projection of R" onto X. In H1 we take S to be Sp {x DP(L)’x(to)e X} which
is easily seen to be a subspace of DP(L). In order to fulfill H1 we assume the following.

H4p. for each g(t)e Lp, <= p <= + oe, there exists at least one bounded
solution z BC of (NH).

Under this hypothesis the range R’ of L restricted to Sp is all of Y Lp and
hence is closed. For by H4p, given g e Y there exists z DP(L) such that Lx g
and if y(t)e BC is the unique solution of (H) satisfying y(to)= PlZ(to), then
x z y e Sp and Lx g. Moreover, L is one-to-one on the subspace Sp for if
Lx Lx2 for x x, x2 e Sp, then L(x x2) 0 and x x2 Sp, which means
y x x2 is a bounded solution of (H) with initial state in X2. Since X2 is
supplementary to X it must be that y 0.

Finally all that remains in order to show that H is fulfilled is that L is closed
on DP(L) and Sp. To this end suppose x, DP(L) and g, Lx, converge in BC
and Lp respectively to x BC and gO Lp. Integrating g, Lx,, we have

x.(t) x.(to) + A(s) + B(r, s) dr x.(s) ds + g.(s) ds.
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For fixed, but arbitrary >= to, we find (using H3 and the dominated convergence
theorem) that

x(t) x(to) + A(s) + B(r, s) dr x(s) ds + g(s) ds

and consequently x(t) is absolutely continuous and solves Lx gO. This proves
that L is closed on DP(L). If on the other hand x,(t) Sp, then in addition to
x(t)e DP(L), it is obvious that x,(to)e X2 implies that x(to)e X2 and hence
x(t) SP; i.e., L is also closed on Sp.

Having fulfilled H 1, we can assert the conclusion of Lemma for (P) provided
the perturbation term h and the nonhomogeneous term g(t) satisfy the necessary
conditions. The following two theorems contain our main results.

THEOREM 1. Suppose H3 and H4p hold. Further suppose h(t)(x) maps BC into
Lp, <= p <= +

< Olx Ylo(2.1) [h(t)(x)- h(t)(y)lp
holds for all x, y BC satisfying Ixlo, lylo <-_ r. Then there exist three positive con-
stants a, b and 0 with the following properties" if 0 <= 0 then

< a, there exists a one-to-one bicontinuous corre-(i) for every g e Lp, Igl v
spondence Q between the bounded solutions y BC of (H) satisfying [Y(to)[ <-_ b and
the bounded solutions x BC of (P) satisfying [X[o =< r, ]Pxx(to)[ =< b; and

(ii) the correspondence Q is such that if x Qy, then Px(to) y(to).
Proof. For all the bounded solutions y(t) of the linear homogeneous system

(H) it is possible to assert that [Y[o --< M[y(to)[ for some constant M > 0. The stated
assumption (2.1) on h allows us to apply Lemma in the context described above.
Let c be the constant whose existence is guaranteed by Lemma and take
0 1/2IL- 11-1 (where S SP), a cr, and b M- cr. Given a bounded solution
y(t) of (n), ly(to) =< b (hence, y(to) X 1), it follows that lY [o <- cr and by Lemma
there exists a unique corresponding solution x Qz of (P) satisfying Ixlo _-< r;
moreover, Q is invertible and bicontinuous. Referring to the proof of Lemma 1,
x y + L[ lf(t)(x) and, hence, Px(to)= Py(to)= y(to) since y being bounded
implies y(to) X and since L[ f(t)(x) Sp implies that L-f(t)(x) at to lies in
X2. Finally, Q is onto the set of solutions of (P) as described in the theorem, for
if x is such a solution of (P) (Ixlo <= r and [Px(to) <= b) then we may define
y--x- L-lf(t)(x) and find that y is a bounded solution of (H) satisfying
[y(to)[ IPy(to)[ --[PlX(to)[ <= b. Hence, [Y[o <- cr and x’= Qy exists. But then
x’= y + L f(t)(x’) and hence x x’= L[ [f(t)(x)- f(t)(x’)] and Ix X’[o
-< ILU Xl0lx x’lo by (2.1). Since ILs-1[0 1/2, we conclude x x’ and that Q
is onto.

As a second application of Lemma we consider the question of the existence
of bounded solutions of (P) which in addition tend to zero as --, + oe. We define
BCo-- {x Bf’lx(t)[ 0 as t--, / o} and let X

_
R" be the linear space of

initial vectors at to which give rise to solutions of (H) in BCo. Let X2
___

be such that X @ X2 R" and pO be the projections of R" onto X. If we take
X BCo and Y= BCo f-I L under the norms Ixlo and Ixl- 1/2(Ixlo / Ixlv)
respectively, and if we consider L as defined above on the domain Dry(L)
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{X BCo’x is absolutely continuous in => o and Lx BCo LP}, then setting
S S {xDg(L)’x(to)X} it is not difficult to modify the argument for
Theorem to obtain the following.

THEOREM 2. Suppose H3 and H4 hold where
H4). for each g(t) BCo Lp there exists at least one solution z(t) BCo of
(H).

If h satisfies the condition (2.1) with L replaced by BCo L, then the conclusions

of Theorem hold with L replaced by BCo L, BC replaced by BCo, and P
replaced by pO.

Remarks. (a) Inequality (2.1) is satisfied if for example Ih(t)(x)- h(t)(y)l
<= O(t)lx Ylo, >= o, where L or 0 BCo VI L. Note also that the hypotheses
on h are satisfied when h is "higher order" in x from BC to Lp (or BCo VI L to
L); i.e., if given any > 0 there exists a b() > 0 such that Ih(t)(x)-
_-< lx Ylo for all IXlo, lYlo b. In this case we simply take r b(0). Such per-
turbations appear frequently in the theory of differential, integral and integro-
differential systems [1], [, [61, [7, [91, [111. As a simple illustration (applicable
to our application below) h may have the form

h =- a(t, x) + k(t, s)b(s, x(s)) ds + k(t, s)c(s, x(s)) ds,

where a(t, ), k(t, ) and k.(t, ) are all o(11) uniformly in >= to and

sup Ikl(t, s)l ds < + , sup Ik2(t, s)l ds < +
>=to t>__to

(b) The spaces X2 and X (and hence S and S) are not uniquely determined
R" R"(unless X1 or XI in which case X2 {0} or X2 {0}) It is to be

noted that the constant c whose existence is asserted by Theorems and 2 depends
on X2 or X respectively.

Many recent papers [1], [6], [7], [9], [10], [11] (and the references therein)
have dealt with stability properties of integro-differential and Volterra integral
equations. Theorems and 2 have implications about the stability or instability
of (P). To point this out explicitly we make the following definitions for (P) (and
its special case (NH) and (H)). System (P) (or more precisely the zero solution of
(P) corresponding to g 0) is called conditionally stable on L if there exists a
set of vectors M

_
R" whose closure contains the origin for which, to any e > 0,

<6, gL’, and xoM,there corresponds a 6 6(,to)> 0 such that ]glp
]Xo] _-< 6, implies the solution of (P) satisfying X(to) Xo exists for all >= to and
satisfies ]X]o _-< . If, in addition to possessing conditional stability on Lp, (P) has
the property that all solutions x(t) corresponding to xo M, ]Xol _-< 6o, and
[gl, 1/2([g[ + [glo) -<_ 60, g BCo f’l L’ for some fixed constant 60 > 0 tend to
zero as + c, then (P) is called conditionally asymptotically stable on BCo VI L.
If M is an entire n-dimensional sphere in R", then (P) is called stable or asymp-
totically stable on the corresponding space. (These definitions of stability are
special cases of more general definitions given for Volterra integral equations in
[1].) System (P) is called unstable on L if it is not stable on LV; i.e., if there exists
a 6* > 0 and an e* > 0 such that for every initial vector Xo, [Xo[ =< e*, and every
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< e*, the corresponding solution of (P) satisfies Ix(t)l > e* for someg LP, Iglp
=> to. Finally, we say that (H) preserves a given stability (or instability) property

under the perturbation h if (P) has this stability (or instability) property. From
Theorems and 2 we can assert the following.

COROLLARY. Under hypotheses H3 and H4p system (H) preserves conditional
stability, stability and instability on Lp for perturbations h satisfying the conditions
of Theorem 1. Under H3 and H, (H) preserves conditional asymptotic stability and
asymptotic stability on BCo f-I Lp for h satisfying the conditions of Theorem 2.

The case of stability and asymptotic stability preservation (which corre-
Rsponds to the special case X1 or XI R") under these conditions, is known

(although proved and usually stated quite differently); see [1], [63, [11]. The
preservation of instability and conditional stability is a generalization of known
results for differential equations, where B(t, s) 0 [3], [8].

3. The hypotheses H4p and H4g. We wish now to discuss briefly the assump-
tions H4p and H4f for the linear system (NH) in order to give some insight into
when they are fulfilled and how this can be determined. Further discussion of this
question appears in 4 below for the very important special case when A(t) A

const, and B(t, s) B(t s). If H4p holds, then given g(t) L, there exists a
unique bounded solution z(t) of (NH) satisfying zo Z(to) e X2 for, if z and z2
are two such solutions, then y z -z2 is a bounded solution of (H) with
y(to) X2 and, hence, by the way X and X2 are defined, it follows that y(t) O.
This then establishes a function from Lp into X2 e R". The Corollary above in
2 applied (with h 0) to (NH) implies that this function is continuous. For
=< p < + oe it follows easily from well-known theorems in functional analysis

that there exists an n x n matrix P(t), IP(t)l Lq[to, +oe), q- + p-= for
pC landq- +oeforp- 1, suchthat

/+
(3.1) Zo | P(s)q(s) ds.

dto

The solution of (NH) is given by the variation of constants formula

(VC) z(t) Y(t, to)Zo + Y(t, s)g(s) ds, > to,

where Y(t, s) is the so-called fundamental solution matrix (or differential resolvent)
of (NH); i.e., Y is the solution of the matrix equation

Yt(t, s) A(t) Y(t, s) + B(t, r)Y(r, s) dr, >= s > to,

Y(s, s) I,

I n x n identity matrix. This can be seen by straightforward substitution into
(NH) (also see [6]). Thus, under H4p, the unique bounded solution of (NH) with
zo e X: is given by

(3.2) z(t) Y(t, to) P(s)g(s) ds + Y(t, s)g(s) ds,
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or

(3.3) z(t)-- f’
where

V(t, s)g(s) ds + W(t, s)g(s) ds

V(t, s) Y(t, s) Y(t, to)P(s), o <= s <= t,
(3.4)

W(t, s)= -Y(t, to)P(s), o <= s.

Using standard arguments (see for example [3], where the arguments used for
differential equations carry over almost verbatim), one can show that (recall
p4: +)

(3.5) IV(t, s)] ds + W(t, s)[ q ds <__ K, >= o, p 4= 1,

(3.6) V(t,s)l_-<K for 0__<s__< and W(t,s)l NK for to N t__<s, p4: 1,

for some constant K > 0.
It is the converse of this fact which interests us here. If a P(t) can be found

such that (3.5) or (3.6) holds, __< q N + oc, for W and V defined by (3.4), then
given any g(t) e Lp, <= p <= + (including now the case p + oe corresponding
to q 1) it follows that the function z(t) defined by (3.3) is a bounded solution of
(NH) and, hence, H4p holds. That z(t) is a solution follows from the fact that it can
be rewritten in the form (3.2) and that it is bounded follows from a simple
application of H61der’s inequality.

THEOREM 3. If an n x n matrix P(t) can befound such that (3.5) holds for some
integer q, 1 <= q < + , for W and V defined by (3.4), then H4p holds for p such
that p- + q- if q 4:1 or p + oc if q 1. If (3.6) holds, then H4p holds
forp= 1.

In the differential equations case (B 0), it turns out that P(t) P2 Y- (t),
where Y(t) is a fundamental solution matrix. Since Y(t, s)= (t)Y-(s) in this
case, one easily finds that W(t, s) Y(t)P2 Y- (s) and V(t, s) Y(t)P Y- (s)
(note" P + P I). The conditions (3.5), (3.6) are, in this case, familiar in the
study of bounded solutions [3], [8]. In the autonomous case A(t) =_ A, the pro-
jections P and P2, roughly speaking, "select out" the eigenvalues of A with
nonpositive and nonnegative real parts respectively. Thus, H4p for p is
satisfied if those eigenvalues with zero real parts are simple; and, if all eigen-
values of A have nonzero real parts, then H4p holds for all =< p __< + oc. In the
next section 4 we indicate how these features roughly carry over to (NH) in the
case B 4:0 but B(t, s) B(t s).

For the hypothesis H4g we have the following result.
THeOReM 4. Suppose an n x n matrix P(t) can be found such that, in addition

to (3.5)for some q, q < + oe, the condition

(3.7) V(t,s)ldsO as +

for every fixed T >= o. Then H4 holds for p such that p- + q -1 =lifqlor
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p + ifq 1.
If (3.6) holds and in addition

(3.8) IV(t, s)l - 0 as + o

for every s >= to, then H4 holds for p 1.

Proof. If (3.5) holds for q = 1, then z(t) defined by (3.3) (or by (3.2)) is a
bounded solution of (NH), as pointed out above, for each g e BCo f) Lp. We
want to show in addition that Iz(t)l---, 0 as ---, / c. Given any e > 0 choose

+ [glp ds)l/p < e/2K. Then fromT T(e) > 0 so large that (j" T

Z(t) V(t, s)g(s) ds + V(t, s)g(s) ds + W(t, s)g(s) ds

for _> T, follows (after an application of H61der’s inequality and (3.6)) that

Iz(t)l _-< r(t,s)l ds Iglo +

which implies, upon letting t- / , that lim sup,+oo Iz(t)l <-_ . Inasmuch as
> 0 was arbitrary it follows that [z(t)l 0 as + c. The case p + is

similar.
If (3.6) holds, then we have

Iz(t)l _-< IV(t, s)l Ig(s)l ds +

where T >= to is chosen so that r Igl ds <_ c/2K. Using the dominated con-
vergence theorem and (3.8) we again conclude that Iz(t)l

4. The convolution case and an application. Suppose A(t) A const, and
B(t, s) B(t s) in (NH). Take o 0. Most applications of (P) have this form
so it is important to develop techniques for testing H4’ and H4f in this case;
specifically, we wish to determine some conditions on A and B under which H4p

and H4f hold for p= and +oe. In this case Y(t,s)= Y(t-s), where Y(t)
solves the matrix equation

Y’(t) A Y(t) + B(t r)Y(r) dr,
(4.1)

Y(O) I.

We assume from now on that B eLO, +c). Letting * denote the Laplace
transform, we have from (4.1) the equation

(4.2) (sI AB*(s))Y*(s)= I

for Y*. A straightforward application of Gronwall’s lemma to the equivalent
integral equation for (4.1) together with the assumption B e L implies Y is ex-
ponentially bounded. A necessary and sufficient condition for what Miller [7],
[9], [11] calls uniform asymptotic stability of (NH) is that

(4.3) p(s) det (sI A B*(s)) 4:0 for Re s > 0.



442 J.M. CUSHING

In terms of our hypotheses above, this result supplies necessary and sufficient
conditions for the stability of (NH) on L BC (i.e., for the validity of hypothesis
H4 in its strongest form" all solutions are bounded for each choice of g). This is
because, as shown in [7], this condition implies Y L and hence the stability on
BC (see (VC)). For conditional stability and instability we expect the eigenvalue-
like condition (4.2) to be relaxed in such a way as to allow for roots in the right
half-plane.

Let us suppose then that p(s) has roots in the right half-plane. We do not
intend to study this situation in depth here, but instead to restrict our attention
to remarks appropriate to our application below. See [13] for a more extensive
study of this problem. Let r be any root of p(s). We say that r has algebraic
multiplicity p __> ifp")(r) 0 for 0, 1, ...,/t 1, pU)(r) # O, and has geometric
multiplicity m >__ if the n x n matrix sI A B*(s) at s r has rank n m.

Let k, 0 _< k < + oe, be the number of roots of p(s) such that Re s >= 0. For
+ < p < k, have algebraic multiplicitysimplicity assume all of these roots rv,

p 1. Let rp, p 1, 2, ..., denote the remaining roots (which may be infinite
in number); Re r- < 0. Set Y(t) [yi;(t)], ei-- col (6i), and pi;(s) equal to the
cofactor of the ijth entry of the matrix sI A B*(s). Solving (4.2) for the jth
column of Y*(s) using Cramer’s rule, we find y.*,j(s) pij(s)/p(s), <__ i,j <= n. We
now assume (i) B*(s) is meromorphic in the entire complex plane and (ii) the
estimate [pij(s)/p(s)[ <= K/ls[ holds for some constants K, e > 0 and all s, Re s

+} Since Y and hence ygj are exponentially bounded, the>= So ->_ max Re rp
complex inversion formula of pj/p along Re s so exists and represents Y(t),
> 0 [2, p. 183. Also (ii) guarantees the validity of the residue series expansion

for yi;(t) [2, p. 193]. Thus, if pi.(r3) is the residue of epi.(s)/p(s at s r (for the
+ +simple roots s rp, pj(rp Je’pj(r-)/p’(r)), then

k

(4.4) Vij(t) p,(r; + pi;(r2 e" tip’(r;), > O,
p=l p=l

for __< i, j __< n. The residues pii(r;) are all of the order t",-1 er’. We can write
then Y(t) Y (t) + Y + (t), where Y (t) p__ pij(r and Y+(t)
with yf/- pj(r)/p’(r).

Now we wish to construct P(s) as in Theorem 3. Referring to (3.4) we have

V(t, s) Y- (t s) Y- (t)P(s)] + Y + (t s) Y + (t)P(s)],

w(t, s) v-(t)e(s) + Y + (t)e(s)

If we choose P such that

(4.5) Y + (t s) Y + (t)P(s) 0

(and only if we do this), then as we will point out below, V and W will satisfy (3.5)
+ lie on the imaginary axis and (3.6) in case some r-with q if none of the rv

are on the imaginary axis.
To solve (4.5) for P we first consider the equation

(4.6) [yf;]P(s) yfj] e-r;
/ which implies thatfor fixed p, =< p __< k. Now sI AB*(s) is singular at s rp
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the sum of the products of the cofactors of any row times the corresponding
+I A B*(r are in theelements of any row is zero. This means all rows of rp

kernel of [7’j] which in turn implies that the nullity of [7’j] is greater than or equal
+I A B*(r), where mp > 0 is the geometric multi-to the rank, n mp, of rp

plicity of rp.+ Thus, rk[7] n nullity =< n (n rap) me. Assume now that
+ in the right half-plane also have geometric multiplicity one" mpall roots rp

for all p 1, ..., k. Then rk[7 <= 1. It is obvious in (4.6) that [7f] and the aug-
mented matrix [717 e-r;s] have the same rank. Thus, if Po(S) is the qth column
of P(s), we can eliminate all but one equation for each p from (4.6) and obtain a
k x n system to be solved for P0" This can be done for every column =< q =< n
of P(s). Notice that P(s) is a linear combination of exponents e-r; and thus

+ 0 for some p. MoreoverP(s) BC or L depending on whether or not Re rp
we have

V(t, s) Y- (t s) Y- (t)P(s), W(t, s) Y- (t)P(s) + Y + (t)P(s)],

and it is easily seen from the properties of P(s) and Y- that (3.6) (or (3.5) with
+ 0 for some p (or not)q 1) holds depending on whether Re r

As an application of this approach and the perturbation Theorems and 2
we consider the system

N’ Nl(e

e2 + 72N1 + f’ b(t s)NI(S ds),
where ei > 0, 71 > 0 and 72 0 are constants and where b(t) > 0, b L110, + o).
This system is Volterra’s model of a predator-prey population with hereditary
effects [14, Chap. 4]. Besides initial conditions for N1 and N2 at o 0, it is
assumed that N1 is known for (-,0]; say Nl(t)= Nl(t). Defining K1

el/71, K2 e2(72 -+- Ibla)-, X1 log(N1/K1), x2 log(N2/K2) and x
col (x l, x2), we find that this system transforms to (P) with

I [ 01A B(t- s)=
72K1 0 Klb(t- s)

h(t)(x)

g(t)

i _71K2(q(xf02 x2 sJ7211(q(x1)- x1)+ K1 b(t- s)(q(x1)- Xl)d

K b(t s)q(N) ds

where q(x)= ex- 1. Observe that Ih(t)(x)l LIxI for all x eBC and some
constant L > 0. Thus, h maps Z(r) VI L (-- BC) into BC in such a way that (2.1)
holds for small 0 (=< 0) provided r is small; that is, the hypotheses of Theorems
and 2 for the perturbation term h are fulfilled with p + . (Note that Iglo is

small if INlo is small since b L1.) Thus, to draw the conclusions of Theorems
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and 2 and the Corollary we need only verify H4 and H4 ; respectively (H3 is
obviously fulfilled). This we will do by using Lemma 2 above. We will only con-
sider the following case" b(t) (at + fl)e -’ for e __> 0, fl >= 0, 6 > 0 and 0

2
nt- 2

4: 0. The ecological interpretation of b(t) can be found in Volterra’s original
work [14]" b(t) b(t)bz(t), where b(t) is the probability of a predator born at
time 0 surviving to time and b2(t) is the expected number of offspring (per
predator) per unit time born to the population of predators at time per unit
encounter with prey at time 0. The case z 6 0 was considered numerically
by Davies in [5], where instability was found. However, this case (where
b(t) =_ const.) is not particularly realistic in view of the physical interpretation of
b(t) (and also not amenable to our analysis since we demand, as does Volterra,
that b e L). The case z 0, 6 > 0 falls into the case of monotonically non-
increasing kernels b(t) considered by Miller [11]; however, his results appear to
have a mistake (Corollary 3 on p. 264 seems to be false) and are in fact con-
tradicted by our results below. This case is more reasonable than the one con-
sidered by Davies in that the hereditary effects represented by b(t) decrease
monotonically with time. Perhaps an even more reasonable case is z - 0, where
the full measure of the hereditary effects on predator births due to past encounters
with prey are not instantaneously felt, but gradually increase to a maximum
before decreasing monotonically to zero with time.

Proceeding as above, we must investigate the matrix sI A B*(s) which
in this application is

S /K21-7.K1 Kb*(s) s

where b*(s) (fls + z + fl6)/(s + 6)2. Obviously b e L and b*(s) is meromorphic
in the complex s-plane. Now p(s) s2 + aa2 4- azb*(s) or

(4.7) p(s)
n(s)

n(s) s4 + 26s3 + (2 4- ala2)s2 4- (26axa2 + a2)S 4- 2ala2 4- a2( 4-

where a 72 ->_ 0, a2 7xKK2 > 0. It is not difficult to check that condition
(ii) above holds (with z 1). Thus, we have only to investigate the roots of p(s)
lying in the right half-plane; these roots coincide with those of the numerator
n(s) in (4.7). An application of the Hurwitz criteria to n(s) shows that not all roots
lie in the left half-plane (the third Hurwitzian determinant is negative for
/2 4- 02 0 and zero for/ z 0). Moreover, making the substitution -s
in n(s) we find that n() also cannot have all of its roots in the left half-plane (since
the coefficient of g3 is -26 < 0); i.e., n(s) cannot have all of its roots in the right
half-plane. Finally it is easy to check that n(s) has no roots on the imaginary axis
nor on the positive real axis. Hence, we conclude that n(s) has two roots in the
left half-plane and k 2 complex conjugate roots in the right half-plane both of
algebraic multiplicity one. Thus, p(s) has two such roots in the right half-plane.
Whether the roots of n in the left half-plane are roots of p depends on whether
either of these roots equals -6 or not. It is not difficult to investigate n(s) at
s -6. We find that (a). p(s) has two conjugate roots (a6) in the left half-plane
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if - 0 or (b) p(s) has one negative root of multiplicity one (4: 6) if 0. Since
n 2 and sI A B*(s) at any of these roots is singular but not identically
zero, the geometric multiplicity of all (and in particular the two roots in the
right half-plane) is also one. One can verify that the system (4.6) reduced by
elimination of all but one equation for each p is solable for the matrix P. Hence,
the linearized, nonhomogeneous system for this example satisfies both H4 and
H4. This means, by the preservation Theorems and 2, that the nonlinear
Volterra model above preserves the instability of its linearized system. To be more
specific about this instability we must determine X The general solution of the
linearized system is Y(t)yo, where Y(t) is given by (4.4), n 2. Clearly, Yo can be
chosen so that Y(t)yo BC or BCo if and only if [pij(r-)]yo [pij(r)]yo O.
Recalling the definition of pj and that r- ?- in our example and referring to
A above, we can show without difficulty that the only solution to these simul-
taneous systems is Yo 0; i.e., X {0} and no solutions of the linear system
exist in BC or BCo (except the zero solution). This means (cf. Theorem 1) that
there exist constants r, b’, and a > 0 such that for any g BC, Iglo _-< a, all solutions
of the Volterra system (except x 0) satisfying Ix(t0)l -<_ b’ must satisfy Ix(t)l > r
for some > to. Or, in other words, if the initial size of the prey population
Nl(t) is small enough, then no solution Nl(t), N2(t) exists to Volterra’s model
which for all remain close to the "critical points" K1, K2 respectively, no matter
how close the initial populations Nl(0), N2(0) are taken to K, K2 respectively.
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CONTINUOUS DEPENDENCE OF SOLUTIONS OF
VOLTERRA INTEGRAL EQUATIONS*

ZVI ARTSTEIN

Abstract. The nonlinear Volterra integral equation

x(t) f(t) + g(t, s, x(s)) ds

is considered. We discuss topologies on the collection of functions g such that the solution of the
equation varies continuously with the data g andJ; where the topology onfis the uniform convergence
on compact intervals. We give a necessary and sufficient condition (on such a topology) for the
continuous dependence to hold. In a particular case where a Lipschitz condition is added we show that
there exists a smallest topology which satisfies the condition, and characterize it.

(E)

1. Introduction. We consider the nonlinear Volterra integral equation

x(t) f(t) + g(t, s, x(s)) ds,

where belongs to a half open (possibly unbounded) interval I [0, c), and x, f,
and g have values in E,, the n-dimensional Euclidean space. We assume that f
is continuous and that g satisfies assumptions which are somewhat weaker but
similar to those given in Miller’s book [6]. The assumptions will be. given in 2.
We will be concerned with the problem of how the solutions x(t) of (E) vary with
changes of the data f and g. The topology on the functions f will be the topology
of uniform convergence on compact intervals. In his book [6], Miller defines a
topology on the functions g which, briefly speaking, implies that the solutions of
(E) vary continuously with respect to these topologies on f and g. In [5], Kelley
proved the same type of continuity, with the same topology but under less re-
strictive assumptions.

In this paper we discuss possible topologies on the functions g. The main
result is obtaining necessary and sufficient conditions for the continuous de-
pendence to hold. The topology given by Miller satisfies (of course) the conditions
but it is not the smallest topology with this property. We show that in general,
there is no smallest topology.

We shall deal with subcollections of the functions g. Some properties of such
a collection and topologies on it will be given in 3, while 8 is devoted to more
discussion of the related literature.

The main theorem will be presented in {} 4.
Uniqueness ofthe solution of(E)is not assumed. In 5, we give a reformulation

of the main theorem in terms of continuous dependence of the set of solutions.
Another version of the theorem is its formulation as a theorem of continuous
dependence on parameters. This will be done in 6.
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If a Lipschitz condition is added, then the conditions for convergence have
a simpler form that generalizes a theorem for ordinary differential equations.
Again, we are able to show that the conditions are also necessary conditions and
here a smallest topology does exist. We will do it in 7.

In Appendix A, an example which answers a question by Miller is con-
structed. A proof of the inexistence of the smallest topology is postponed to
Appendix B.

2. Assumptions and preliminary results. We denote by Ixl the norm of x in
E,. The space C[0, b] is the space of E,-valued continuous functions on [0, b]
with the sup norm, i.e., if tp belongs to C[0, b], then its norm is

[[b[[ sup {[4(t)[ "0 __< _<_ b}.

Recall that I [0, c) is the domain of the variables and s. We will assume that
the function g in equation (E) satisfies the following..

(G1) g maps I x I x E, into E,, g is measurable in s and continuous in x,
and (without loss of generality) g(t, s, x) 0 if < s.

(G2) For each b e I and each positive N there is a function re(t, s), integrable
in s for a fixed t, such that Ig(t, s, x)l =< m(t, s)if Ixl _-< N and 0 __< _<_ b.

(G3) For each b e I and each positive N, if e I then the following expression

sup{ (g(t, s, dp(s)) g(z, s, (s)))ds "beC[0, b], 141 _-< N}
tends to zero when z tends to t.

Our assumptions differ from hypotheses (H2)-(H4) which were used by
Miller [6] (and Kelley [5]) in two respects. Miller assumes that the function
m(t,s) in (G2) satisfies sup {.[ m(t,s)ds’O =<t__< b} < oe. He also states (H4),
(which is similar to (G3)), with the integration of the absolute value rather than
the absolute value of the integral. However, the author (of this paper) checked
the proofs of Theorems 1.1 and 2.2 in [6, Chap. II-I and found that essentially
only assumptions (G1)-(G3) were used. Therefore, we have from [6] the following
information about equation (E), when f is continuous and g satisfies (G1)-(G3).

(i) Equation (E) admits a local solution, i.e., a b > 0 and a continuous
function x(t) on [0, b] exist such that x(t) satisfies (E) for 0 __< =< b.

(ii) If x(t) is a solution on [0, b) where b < c sup I, and x(t) is bounded on
[0, b), then x(t) can be extended to a continuous solution on [0, d] where b < d < c.
Therefore, if x(t) is a solution on [0, b) which cannot be extended, then either
b c or lim suPt_ b_ Ix(t)]

In Appendix A, we shall construct an example where the lim sup in (ii) can-
not be replaced by lim. The example will satisfy also (H1)-(H4) and (H7) of [6].
Thus it is an answer to the open problem [6, Problem 15, p. 145].

3. The space (( and jointly continuous topologies on it. We shall be concerned
with subcollections of the collection of all functions g that satisfy (G1)-(G3).
Briefly speaking each subcollection is formed by considering (G3) being fulfilled
uniformly.



448 ZVI ARTSTEIN

DEFINITION 3.1. Let U(t, z, b, N) be a function defined on t, z, b in I and
positive numbers N, with values in 0, oo] such that

lim U(t, z, b, N) O.

The space aj associated with U is the collection of all functions g that satisfy
(G1), (G2) and the following uniform version of (G3)"

(G3, U) If 4 C[0, b] and ll4l] <- N, then

(g(t, s, 4(s)) g(z, s, 4(s))) =< U(t, r, b, N).ds

DEFINITION 3.2. A topology - defined on is jointly continuous if for every
fixed the mapping

(g, 4) - g(t, s, 4)(s))as

from aj x C[0, t] to E, is continuous with respect to the product topology of -and the sup-norm in C[0, t3.
We shall see in the coming section that a necessary and sufficient condition

for the continuous dependence to hold is that the topology on the functions g
will be jointly continuous. The natural question arises, namely, is there a smallest
jointly continuous topology? The answer is the following.

PROPOSITION 3.3. There is no smallest jointly continuous topology on q.
The proof is postponed to Appendix B.

4. The main result. Equation (E) was defined in the Introduction. If the
functions f and g appear with an index, i.e., fk and gk, we shall use (E) for

(E) x(t) L(t) + g(t, s, x(s)) as.

Recall that the convergence of the functions f is the uniform convergence on
compact subintervals of I. We shall use the Moore-Smith convergence of nets
(sometimes called generalized sequences). Of course a simple sequence will do as
well. A reference for convergence and nets is Kelley [4].

THEOREM A. Let - be a topology on ft. A necessary and sufficient condition

for the following property,(C) to hold is that - is jointly continuous.

(C) Suppose that the net g converges to g in the topology -. Then for every
net f converging to f the following holds. Let x(t) be a maximally defined solution
of(E)k. Then there exist a maximally defined solution x(t) of (E), with domain [0,
and a subnet x,(t) of x(t) such that x,,(t) converges to x(t) uniformly on compact
subintervals of [0, ). In particular, if [0, e,,) is the domain of x,,(t), and if 0 < d
< , then for m large enough, d <=

Proof. (a) The sufficiency part. Let e be defined by

sup {d" For k => k0 the functions x(t) f(t) are
defined and equicontinuous on [0,
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First, we show that 0 < e. Let b e I. Since fk(t) converge to f(t) uniformly on
[0, b] it follows that a bound N exists such that Ifk(t)l =< N for every large k, and
every te [0, b]. Let d be such that U(0, r,b,N + 1) < if 0 N __< d. We claim
that x(t) exists and satisfies Ix(t)l < N + on [0, d]. If not then let z e [0, d] be
the smallest r such that Ix(r)l N + 1. Then Ix(s)l _-< N + for 0 __< s __< and
the following inequality leads to a contradiction"

IXk()l =< I/k()l / gk(, S, Xk(S)) ds

<-_ N + U(O,z,b,N + 1) < N + 1.

Since Xk(t exist on [0, d] and are uniformly bounded there by N + it follows
that for t, z in [0, d],

Ix(t) A(t) (x() L())l

__< (gk(t, s, x(s)) g(r, s, x(s))) ds <= U(t, r, d, g + 1)

and this implies the equicontinuity of x(t) fk(t) on [0, d.
Next, we show that a subnet of x(t), say x(t), exists such that either for

every the function x(t) is not defined on [0, e] or every subnet of x(t) f(t) is
not equicontinuous on [0, e. Suppose that for every k the function x(t) is de-
fined on [0, e] and there is no such subnet x(t). Since x(0) f(0) is bounded it
follows that {xk(t)} is a precompact collection in C[0, el. Therefore, it is bounded,
say by N. Let e < b < c and suppose that N is also a bound for If(t)l if 0 __< <__ b.
Let < : < b be such that U(e, t, b, 3N + 1) < if __< __< :. We claim that
x(t) is defined for [0, :] and bounded there by 3N + 1. The argument is similar
to what was used in the preceding paragraph. Let e < =< : be the smallest
such that Ix(t)l 3N + 1. Then

IXk(t) Xk()l =< ]fk(t) fk()l + (gk(t, S, Xk(S)) gk(0, S, Xk(S)) ds

<2N+l.

This implies IXk(t)l < 3N + 1, a contradiction. Since Xk(t) are bounded on [0, z]
it follows from (G3, U) that Xk(t)- fk(t) are equicontinuous on [0, z], and the
sup property of is a contradiction to < r.

Let x(t) be the net given in the last paragraph. A diagonal process will now
show the existence of x(t) on [0, ) and a subset of Xl(t) which will converge to
x(t) uniformly on every interval [0, d] with d < . To see this let . The net
Xl(t) f(t) is equicontinuous on every [0, tin], and bounded there, therefore it is
compact in C[0, tm]. Let Xl,1 --fl,1 be a subnet of it which converges on [0, tl]
uniformly to a certain x(t)- f(t). Since f/(t) converges to f(t) it follows that
Xl, l(t) converges to x(t). Similarly a subnet Xl,z(t of Xl,(t exists which converges
uniformly on [0, t2] to an extension of x(t), and denote this extension again by
x(t). Inductively, Xl,j(t) is a subnet of Xl,j_ (t) which converges uniformly to x(t)
on [0, tj]. The desired subnet is the diagonal net defined as follows. The net con-
sists of all the elements Xl,j(t) for j 1, 2,.... The order is defined by (ll,j)
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>__ (l., i) if j __> i, and if l’ >= 11, then the element (1’1, j) when it appears in the net
(l, i) has index (l’, i) with l’ >= 2. (Recall that (l,j) is a subnet of (l, i) ifj _>_ i.) It is
easy to check that this diagonal process defines a net, and that in our case this
net converges to x(t) uniformly on compact intervals. (If the nets are actually
sequences, then the standard diagonal process will show the existence of a con-
verging subsequence.) Denote the subnet constructed in this paragraph by x,(t).

We claim that x(t) is a solution of (E) on [0, ). Indeed, if < , then

(4.1) x,.(t) f,,(t) + g,.(t, s, x,.(s)) ds.

Since Xm(S converges in C[0, t] to x(s) and since g,, converges to g in the topology
-, it follows from the jointly continuous property of - (Definition 3.2) that the
limit of (4.1) is

x(t) f(t) + fl g(t, s, x(s)) ds.

In order to complete the proof of (a) we have to show that x(t) cannot be
extended to [0, fl], where < ft. If c, there is nothing to prove. Suppose that
< c and that Ix(t)l is bounded on [0, ), say by N. Assume also that N is a bound

for Ifm(t)l when 0 <__ <- . Let < a be such that r __< __< implies U(t,,,a,
3N + 3) < 1. For rn large enough, Ix,,(t)l < N + for all 0 __< =< :. An appli-
cation of the inequality

Ix(t) x()l =< If(t) f()l + (g,(t, s, x,,(s)) g,,(z, s, x,,(s))) ds

<2N+2

for z =< =< e and Ix(s)[ =< 3N + 3 shows that there is no smallest e [z, e] such
that [x,,(t)[ 3N + 3. Since the integral part of the inequality is bounded by
U(t, , , 3N + 3) and since without the absolute values equality holds, it follows
that x,,(t) f,(t) are equicontinuous on [0, el, in contradiction to the definition
of the net x(t).

(b) The necessity. Let - be a topology on a which is not jointly continuous.
Then a e I exists, and a net Ok(S) of continuous functions, that converges uni-
formly on [0, t] to a function 4(s) and such that

gk(t, s, dPk(S)) ds do not tend to g(t, s, dp(s)) ds.

Let g be a subnet of gk such that

(4.2) (g,(t, s, bt(s)) g(t, s, b(s)))ds

where e > 0 is fixed. Define the net f(z) in C[0, t] by

f’() 4’()- fo g,(, s, (h,(s)) ds.
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We claim that {I)/(T)- f/(T)} is a precompact collection in C[0, t]. Its equicon-
tinuity follows from the inequality

I/(T1) f/(T1) (/("C2) f/(T2))l "( U(’I, "2, t, N),

where N is a bound for I111 in C[0, t]. Since f(0)= (])l(0) is a bounded net, it
follows that f/II is bounded. A bounded and equicontinuous family is precompact.
Let fro(r) be a subnet of f/0:) which converges uniformly on [0, t] to a certain
function f(r). Such a subnet exists since 41- f is compact and 41 converges to
4). Notice that bm(r is a solution of the equation (E),,. If property (C) holds for
the topology -, then it follows that a subnet of b,,(r) converges uniformly on
[0, t] to a solution of (E), but since qm converges to q(r) it follows that q(-c) should
be a solution of (E). This is not possible since going to the limit where m --. oe
in (4.2) gives

g(t, s, dp(s)) ds

a contradiction. Thus property (C) does not hold.
Remark. Notice that if the elements of the net fk in Theorem A belong to a

compact set, then during the proof we could conclude that Xl(t) (and not only
Xl(t)- fl(t)) are equicontinuous. A particular case is where we refer only to
sequences fk rather than generalized sequences or nets. In this case, it is enough
to deal with topologies which are jointly continuous on compacta, and then the
compact-open topology is the smallest topology which has this property. See
[4, Thm. 5, Chap. 7].

5. Continuous dependence of the solutions. In the special case where equation
(E) in Theorem A has a unique solution, a conclusion of the theorem is that the
net x(t) converges to this solution uniformly on compact intervals. Without
uniqueness we can only conclude that x(t) converges to the set of solutions of
(E). To make this idea precise we introduce the following distance between two
continuous functions. Let _x x(t) be a continuous function with domain [0, e)
and let .y y(t) be a continuous function. We define

d(x, y) sup {min (Ix(t) y(t)l, h(t))’O <= < },

where h(t) if < oc and h(t) 1/(1 + t) if o. (If y(t) is not defined
for a certain t, then we set Ix(t) y(t)l oe.) Notice that d(.,. is not symmetric,
i.e., in general d(x, g) 4: d(y, _x), but it is a metric on collections of functions with
the same domain. Convergence of d(x, g,) to zero is equivalent to convergence of
y,(t) to x(t) uniformly on compact subsets of [0, ). If _X is a collection of functions
we denote d(X, )= inf {d(x, y)" x X}. The following theorem is an immediate
consequence of Theorem A.

THEOREM B. Let ’- be a topology on c. A necessary and sufficient condition
for the following property (C’) to hold is that - is jointly continuous.

(C’) Suppose that the net gk converges to g in the topology -. Then for every
net f converging to f the following holds. Let x. be a maximally defined solution
of (E) and let X_ be the co.llection of maximally defined solutions of (E). Then
d(_X, x) tends to zero when k tends to .
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6. Continuous dependence on parameters. Let A be a topological space. For
each 2 e A let f(t, ) be a continuous function on 0, c), let g(t, s, x, ) belong to
if, and let

(E) x(t) f(t, ) + g(t, s, x(s), ) ds.

We shall investigate the continuity of the solutions of (E) on the parameter
2. Since uniqueness of the solution is not assumed we shall consider again the
distances d(x, ,) and d(_X, y) which were introduced in the preceding section. The
following theorem is a reformulation of Theorem B.

THEOREM C. (a) Suppose that - is a jointly continuous topology on ft. Suppose
that the mapping 2 - g(., 2) is continuous with respect to -, and that 2 f(., 2)
is continuous with respect to uniform convergence on compact sets. If the net 2k

converges to 2, if xk is a maximally defined solution of (E)xk and if X_ is the collection
on maximally defined solutions of(E), then d(X_, xk) converge to zero.

(b) If - is not jointly continuous, then the conclusion of (a) does not hold.
The continuity of 2 --, g(., 2) with respect to a jointly continuous topology

has the following characterization which is easily verified.
PROPOSITION 6.1. Let 2 g(. ,2) be a function from a topological space A

into ft. If it is continuous with respect to a jointly continuous topology, then for
every the expression

Q(, 2) g(t, s, (s), 2) ds

is jointly continuous in 2 e A and dp C[0, T].

7. The results with a Lipschitz condition. Suppose that ffl is a subcollection
of ff and that we want to obtain continuous dependence theorems for ffl of the
same form as Theorems A, B and C. Since the proof of Theorem A uses only
generalized sequences of the space, it is clear that the theorem holds also when
a subcollection f replaces ft. Namely, a sufficient and necessary condition for the
continuous dependence properties (C), (C’) to hold is that the topology on
will be jointly continuous with respect to the members of . For some sub-
collections this necessary and sufficient condition has a nice representation. One
case is as follows, where a Lipschitz condition is assumed. Moreover, in this case
there exists a smallest jointly continuous topology.

Let K(t, s, N) be a real-valued function, defined for s =< in I and for positive
numbers N, and such that K(t,., N) is integrable on [0, t], for fixed t, and N. Let
ff be the subcollection of ff of the functions g which satisfy [g(t, s, x) g(t, s,

<= K(t, s, N)ift <= b and Ix[, lyl <_- N,
PaoPOSITION 7.1. A topology - on is jointly continuous if and only if for

every and every continuous function (s) on [0, t] the expression

fl g(t, s, (s)) ds

is continuous in g.
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Proof. If )- is jointly continuous, then the expression is continuous in
(g, b), and therefore for a fixed 4 it is continuous in g. This completes the "only
if" part. In order to show the "if" part let gk converge to g in - and let thk converge
to in C[0, t]. We have to show that

fO gk(t, S, Ok(S)) ds converge to s, d?(s)) ds.

In order to verify this observe that

(gk(t, S, bk(s)) g(t, s, t(s))) ds (gk(t, s, 4)k(s)) gk(t, s, $(s))) ds

(g(, s, (s)) g(t, s, O(s)))ds

=11 +Iz

The expression I 2 tends to zero by the convergence in the proposition. The mag-
nitude of 11 is less than [[4k (11". K(t,.s, N)ds, where N is a fixed bound for
]$k(s)], 0 =< s __< t, and therefore also 11 tends to zero.

As was mentioned before, on the subcollection aJ defined above, there is a
smallest jointly continuous topology. The following theorem also gives a rep-
resentation of it.

THEOREM 7.2. Let fa be the subcollection of which satisfies the above
Lipschitz condition. There exists a smallest jointly continuous topology on c1.

This smallest topology is the weak topology induced by the functionals

g - g(t, s, d?(s)) ds,

where [0, ) and 4) C[0, t], namely it is the smallest topology with respect to
which all these functionals are continuous. (A base of this topology is the collection
offinite intersection of sets of the form {g :j’ g(t, s, c/)(s) ds Q}, where Q is an open
set in E,, [0, ) and C[0, t].)

Proof. In view of Proposition 7.1, the continuity of g .( g(t, s, c(s))ds for
e R and 4 e C[0, t] is a characterization for the joint continuity of the topology.

Obviously the described weak topology is the smallest one which satisfies this
condition.

8. Remarks on the literature. Continuous dependence theorems for differ-
ential and integral equations have been extensively studied. See Miller [6] for an
extensive bibliography and 6, p. 1383 for historical remarks. Continuous de-
pendence without uniqueness in the form of Theorem A appears in 3, Thm. 3.2,
p. 14], and this form was also used by Kelley [5] and Miller [6; II, Thm. 4.2].
We formulated Theorem B in order to show that the continuous dependence of
the set of solutions has meaning too. The topology used by Miller is defined on
all the functions g which satisfy (H2)-(HT) (see [6, Def. 4.1, p. 106]) but it is easy
to verify that if gk converge to g in Miller’s topology then almost all the members
of the sequence belong to a fixed class (, and moreover the bounds U(t, z, b, N)
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which correspond to gk converge to the bound that corresponds to g. Jointly
continuous topologies were used already in the form of Proposition 6.1, by Hale
[2] and Neustadt [7, Thm. 6.73, and in the form of uniform convergence on com-
pact sets by Neustadt [7, p. 154]. The only place known to the author where
necessary conditions for continuous dependence were discussed is [13.

Appendix A. We construct here an integral equation on [0, oo) with a max-
imally defined solution x(t) with domain [0, 1) such that Ix(t)l does not converge
to infinity when 1. The equation will satisfy (H1)-(H4) and (H7) of [6] (and
thus also (G1)-(G3) of 2), and therefore the equation is an answer to problem
15, p. 145 in [6].

The equation will be a scalar equation. Let r(t) be a real-valued function on
[0, 1), continuous, increasing, with r(0) 0 and r(t) when - 1. For instance
r(t) t/(1 t). Let x(t) be a continuously differentiable function on [0, 1) with
the following properties. (i) x(0)= 0, (ii) x(ri)= 0 for a sequence ri 1. (iii)
x(rj) for a sequence rj --, 1, (iv) For every 0 < there is a z < such that
x(z) > r(t). For instance x(r) (r(z) + 1) sin r(r). Define gl(t, s, y) by

gx(t,s,y)=x’(s) (=-(s)
Then g is continuous in the three arguments if s < and x(t) satisfies

(A.1) x(t) gl(t, s, x(s)) ds.

Define g2(t, x, y) as follows. If 0 < < 1, then

x(t)(y r(t))
g2(t’s’Y)

0

where (t) is defined by the equality

if y- r(t)>=O,
ify r(t) < O,

x(t) (t) fl max (0, x(s) r(t)) ds.

Property (iv) implies that (t) is well-defined, and obviously 0(t) is continuous on
(0, 1). We now extend g2 to __< by setting

gz(t, s, y) 0 if _< t.

Since g2(t, s, y) 0 if < and y =< r(t), and since r(t) when 1, it follows
that gz(t,s, y) is continuous in its arguments when 0 < t. Furthermore, the
definition of 0(t) implies

(A.2) x(t) g2(t, S, X(S)) ds.

Let O(t) be the function given by

0 ifO<=t<=1/4,

O(t)= 2(t-1/4) if1/4<= t_<_1/4,

if1/4<= t.
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Define g(t, s, y) by

g(t, s, y) (1 0(t))g (I2, S, y) At- O(t)g2(t, S, y).

Since O(t) is 0 on an interval containing the origin, and O(t) is 0 on an interval
containing 1, it follows that g is continuous in all its arguments for >__ s. This
implies that g satisfies (G1)-(G3) and as a matter of fact (H2)-(H4) of [6] are
satisfied as well (see [6, p. 87]). Also (H7) of [6] is satisfied. To see this, notice that
if 114 -< N, then

+h

[g(t 4- h, s, b(s))l ds <= h[N max {e(r)’1/4 __< r, r(’c) __< N}

+ max {x’(s)’0 =< s _<_ 1/4}].
The definition of g as a convex combination, together with (A.1) and (A.2) imply

x(t) g(t, s, x(s)) ds,

which means that x(t) is a solution to the equation.

Appendix B.
Proof of Proposition 3.3. We shall use the Moore-Smith convergence as a

characterization of a topology (see Kelley [-4, Chap. 2]). Let us define the fol-
lowing convergence concept on aj.

The net gk converges to g if for every t, every subnet gl and every convergent
net (/)l in C[0, t] with limit qS, the net j’ g(t,s, c(s))ds converges (in E,) to
; g(t, s, ok(s)) ds.

We claim that if a smallest jointly continuous topology does exist, then the
above convergence is the Moore-Smith convergence relative to this topology,
and in particular it induces a convergence class (see [4, p. 73]). In order to prove
this claim notice that if gk converges to g in a jointly continuous topology, then
it fulfills the above convergence criterion. On the other hand if g converges to
g in the above sense, then we can define a topology on a as follows. Every point
different from g is an isolated point. A neighborhood of g is a set which contains
a residual set of the net g. The convergence above assures us that this topology
is jointly continuous. Therefore the smallest jointly continuous topology is
smaller than this one, and hence g has to converge to g also in this smaller
topology.,

In order to conclude the argument of the inexistence of the smallest jointly
continuous topology we show that the convergence defined above fails to satisfy
property (d) of [4, p. 74] and thus it is not a convergence class. This will be demon-
strated by a counterexample.

Let f,,(t) (for m 1, 2, 3...) be the function from [0, oe) to [0, 1] defined as
follows. The function fro(t) is a piecewise linear function where the "pieces" con-
nect the points (0, 0), (l/m, 1), (2/m, 1), (2/m, 0), (3/m, 1), (4/m, 0), (5/m, 1).... Let
(/)n,m (for n 1, 2, m 1, 2, ...) be the functions n,m(t) (1/n)f,,(t).

Let g,,m(t, x) be the continuous function defined on [0, oe) x R into R as
follows. We set g,,,,(t, x) if x dPn,m(t Also g,,m(t, X) 0 if IX b(t)[ >__ 1/m.
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Now gn,m is the continuous extension with values in [0, 1] given by the Tietze
theorem. (An analytic formulation can be easily given in this case.) It is easy to
verify that our functions g(s,x) satisfy conditions (G1)-(G3) and (G3, U) and
thus belong to a fixed collection aj. (As a matter offact, the corresponding equations
will be ordinary differential equations.)

We now claim that for a fixed n the sequence g,,,, converges in the sense
given at the beginning of the proof, to the identically zero function. In order to
show this suppose that (s) is a continuous function on [0, t]. We have to show
that if b is close to 4) and if m is large enough, then j’) gn,m(S, (/)I(S)) ds is close to
zero. We shall do it (w.l.o.g) for and n 1. Also, without loss of generality,
4) is from [0, 1] into [0, 1]. Let Q be the open set in [0, 1] x [0, 1] defined by
Q {(t, x)’lx 4)(01 < e}. The area of Q is less than 2. From the definition of
f,,(s) it is clear that the proportion of the graph of fm which intersects Q to the
total length of the graph tends to the area of Q as m tends to infinity. Since the
slope off,, is fixed (for a fixed m)it is clear that the measure of {t:(t, fm(t)) Q}
tends to the area of Q as m oo. If now 1 satisfies [l(S) qS(s)[ < e/2 and if
1/m < e/2, then the measure of {t:g,,,m(S, dpx(S)) 0} is less than the area of Q,
thus less than e. Since gn,m has values in [0, 1] it follows that for such a b and for
m large enough, Io gn,m(S, dpx(S))ds[ <= . This proves our claim.

So far we showed that for a fixed n the sequence gn,m converges to 0. Thus
the iterated limit exists and

lim lim gn,m =- O.

On the other hand our definitions imply that for each n, m,

fol gn,m(S n,m(S)) ds 1.

Since the product net b,,,, converges to the function 0 it follows that the product
net g,,,, does not converge to the zero function. Thus the condition on the iterated
limit [4, (d), p. 74] does not hold and our convergence is not a convergence class.

We proved earlier that if a smallest jointly continuous topology exists then
the convergence defined at the beginning of this proof does define a topology,
i.e., it is a convergence class in the sense of [4]. Therefore, our contradiction shows
that such a smallest topology does not exist.
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ELEMENTARY CONVOLUTION INEQUALITIES*

R. P. BOAS, JR." AND C. O. IMORU:

Abstract. We formulate inequalities of the kind discussed in Chapter IX of Hardy, Littlewood
and P61ya’s Inequalities [5] in the language of integration on a locally compact Abelian group. We
illustrate the effectiveness of this approach by deriving a number of superficially disparate inequalities,
some of which appear to be new.

1. Introduction. A number of useful inequalities that involve convolutions,
explicitly or implicitly, are discussed in [5, Chap. IX]. We present a different
approach which brings out the underlying structure of these inequalities and can
be used systematically to generate new inequalities as well as some old ones that
seem not to have been recognized as belonging to the same type. This approach
also lets us regard some inequalities that seem to be merely analogues of one
another as being actually equivalent. Within its limitations our method is quite
successful, although it is ineffective for more refined inequalities such as the two-
parameter inequality for fractional integrals ([5, p. 290]; [9]) or the inequalities
of Pr6kopa [13] and Leindler [8].

Our work is quite elementary, although we state our basic theorem in the
language of topological groups. A reader who is not familiar with this language
has only to interpret the theorem in one of the ways explained below.

THEOREM 1.1. Let G be a unimodular locally compact Abelian group (written
multiplicatively), with Haar measure . Let E be a measurable subset of G. Let
be a nonnegative measure, not identically zero, on G, with (E) < . Let f be a
real-valued function on G, measurable ith respect to . Let be continuous and
convex on the convex cover of the range off. Then

( (f(x))d(x).

If is concave, (1.1) holds with the inequality in the opposite sense.
We make the usual convention that when we write an inequality it holds

whenever the large side is finite.
We list some of the particular interpretations of (1.1).
(a) G is the integers under addition; then (1.1) says that

(1.2) ,=E- ( EmeE bm J Z -Z (an)"

(b) G is the circle under addition and # is Lebesgue measure:

(1.3) e d2(t)
dx e(f(x)) dx.
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(c) G is the real line under addition and/ is Lebesgue measure"

f

_
{f , f(x + t) d2(t) } f

_
(1.4) rp dx < go(f(x))dx.

(d) G is the positive half-line under multiplication and d(x) x- dx"

;o(1.$)
d2(t)Jx

(Compare ], [2] .)
(e) G consists of the real numbers greater than under the operation xg:

(1.6) (xl92(t) dx < o(f(x))
dx

d2(t) J x log x x log x

There are multi-dimensional cases corresponding to all of these; for example,
the two-dimensional analogue of (1.5) is

,} ;o Io(1.7) o f(xt, yu) d2(u, dx d (f(x, y))d d

In 2 we prove Theorem 1.1 and discuss some of the general inequalities
that arise by specializing or A. The question of equality in (1.1) and of the exact-
ness of the (unit) "constant" is discussed in 3. In 4-7 we illustrate the theory
with examples.

2. General equalities. We need a version oP Jensen’s inequality or convex
functions.

LMMA 2.1. Let 2 be a nonnegative measure, E a set measurable with respect
to 2, and d2 > O. If is convex over the convex cover of the range of f, then

(2.1) ([Ixf(t)dX(t) } I e(f(t)) dX(t)
g da(t)

if is concave the inequality is reversed.
Any standard proof of a special case of (2.1) can be adapted to our situation,

e.g., the one given in [15, p. 24]. It is also possible to take (2.1) as a definition of
convexity [6].

To prove Theorem 1.1, apply (2.1) to f(t) f(xt), and integrate the resulting
inequality over G with respect to Haar measure"

By Fubini’s theorem we can integrate in the opposite order on the right of (2.2);
then by the invariance of Haar measure,

cp(f(xt)) d#(t) fo p(f(x)) dla(x),

and (1.1) follows.
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Most applications deal with more special situations. We first note the form
that Theorem 1.1 takes when q(u) uP; we then require f(x) >__ O, and this con-
dition will be tacitly assumed in all theorems dealing with this choice of

THEOREM 2.1. With the hypotheses of Theorem 1.1,

(2.3) d#(x) f(xt) d2(t) d2t f(x) dp(x), p < 0 or p > 1;

the inequality is reversed when 0 < p < 1.
Inequalities with 0 < p < have usually received less attention than those

with p > (and inequalities with p < 0 have received almost no attention at all).
However, it is easy to put (2.3), with 0 < p < 1, into a form involving an index
greater than 1. We have only to write 7 lip and replace f by f; then we get

(2.4) dp(x) f(xt) d2(t) >__ d2(t) f(x) dp(x), 7 > 1.

If we now specialize G and 2 we can read off a number of known inequalities
from (2.3) or (1.2)-(1.7).

When a _> O, b >= O, we have

(2.5) am+,bm < b,, a,p, p < 0 or p > 1.
mE

When 0 < p the inequality is reversed. The case p was applied to the
theory of entire functions by Plancherel and P61ya [12, p. 135].

Now take d2(t) K(t)dt in (1..3) or (1.4), and E G; we get

(2.6) dx x + OK(t) dt <= K(t) dt t)p dr, p < 0 or p >

when 0 < p < 1, the inequality is reversed. Here integration is over either
(- oe, oe) or (0, 2n) in the second case f has period 2n.

Similarly from (1.5) (or by an exponential change of variable in (2.6)) we
have

(2.7)

x-1 dx f(xt)K(t) dt

K(t) dt x- if(x)p dx, p < 0or p > 1;

when 0 < p < the inequality is reversed. (Cf. [4].)
In (2.7) replace xt by u in the inner integral on the left, replace f(x) by

x/Pf(x), and replace K(t) by t-/PK(t). We get

dx f(u)x- K du <= K(t)t- X/p dt f(x)p dx, p > 1,

which can also be written

(2.8) dx f(u)K(x, u) du <_ K(t, 1)t- /v dt f(x)p dx,
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where K is homogeneous of degree- 1. This is one form of Theorem 3.19 of
[5], on which most of Chapter IX of [5] is based. It can be given alternative forms
corresponding to the other forms of Theorem 3.19.

In (2.6) and (2.7) we can interchange f and K, and replace x + by x + t,
xt by t/x. This remark is almost too trivial to make, but it is justified by leading
to special inequalities that have not always been recognized as coming from the
same source (see 5). We quote the general inequalities for reference: if p < 0 or
p > (with reversed inequality for 0 < p < 1),

(2.9) dx f(t)K(x + t)dt <__ f(t) dt K(t)p dt

(integration over a period for periodic functions, or over (-, ));

(2.10) x- dx g(xt)f(t) dt <= f(t) dt t- 1g(t)P dr.

We can also use Theorem 1.1 to obtain a general version of Young’s two-
parameter inequality ([5, Thm. 276]); various forms of this, some of them still
more general than the one we present, are well known when the parameters all
exceed ([10], [11, Chap. 4).

THZOREM 2.2. With the hypotheses of Theorem 1.1, and d2(t)= K(t)dt, let
r-X p-1 + q-1 (i.e., r pq/(p + q pq)). Then

2.)

ffG }l/qffG t 1/p
<_ K(t) dp(t) f(t)p d#(t)

provided that p > 1, p’> q > 1 (or equivalently q’> p > 1). The inequality is
reversed if p < l and p’ < q < (or q’ <p < 1).

Here, as usual, p’= p/(p- 1). We can change the appearance of (2.11)
considerably by taking rth powers (reversing the inequality when r < 0), replacing
p, q, r respectively by a/y,/3/7, 1/7, and replacing f, K by f, K. We then have
the following result.

THEOREM 2.3. With the hypotheses of Theorem 2.2, we have

(2.12) dla(x) f(xt)K(t) dp(t) <_ K(t) dp(t) f(x) dla(x)

V-1 -1
__
-1 1, provided that either 0 < < and 0 < vq < 1; or 0 < o

< 1, fl < O, o > fl’; or 0 </ < 1, < O, fl > ’. We have (2.12) with the inequality
reversed if > 1,/ > (and hence 7 > 1).

We first establish (2.11) when p > 1, p’ > q. Put

I f f(xt)K(t) d#(t),

and write

(2.13) l= fG f(xt)K(t) -K(t) dp(t).
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The proof involves four steps.
Step 1. We use Jensen’s inequality (2.1) with index p, d2(t) K(t)q dp(t), and

f(t) replaced by f(xt)K(t) x-q, to get

(2.14) I <__ K(t)q d(t) f(xtFK(t)x -qP+q d(t).

Step 2. Since r > 0 we preserve the inequality by raising both sides of (2.14)
to the positive power rip (positive since p/(p 1) > q). We then have

(2.15) I K(t)q d(t) f(xt)PK(t)p+q-pq d(t

Since q > we have r > p.
Step 3. Apply Jensen’s inequality with index r/p and d2(t)= f(xt)pd(t),

obtaining (by the invariance of Haar measure)

I K(t) dp(t) f(xt)p dp(t) K(t)tp+ q-- pq)r/Pf(xt)P dp(t)

2.16)

Step 4. Integrate over G, use Fubini’s theorem, and take (1/r)th powers to
get (2.12).

If we try to repeat the argument with different values of the parameters we
observe that the signs and magnitudes of the parameters are relevant at each of
the four numbered steps. Thus, in Step we could have either a sign (p >
or p < 0), or a N sign (0 < p < 1). In Step 2 we preserve whichever inequality
we had as a result of Step provided that rip > 0, but reverse it if rip < 0. In
Step 3 we are operating on only one side of the inequality, so we must preserve
the sense of the inequality that we had in Step 2; thus we need rip > or rip < 0
if Step 2 had N, but 0 < rip < if Step 2 had . Finally Step 4 preserves the
sense of the inequality resulting from Step 3 if r > 0, and reverses it if r < 0.

We now have to see which values of q (if any) are admissible in Steps 2, 3, 4
for each possibility in Step except when p > and q > (which has already
been taken care of). A detailed analysis (which we omit) shows that the possible
cases are as stated in Tkeorem 2.3.

We use Theorem 2.2 to obtain an inequality of a type that seems to be
exemplified in the literature by only one instance ([3, Thm. 339], [6]), although
there is an inequality of this kind corresponding to every choice of K in Theorem
2.2. We start from the well-known fact (a natural generalization of [5, Thm. 3.19])
that an inequality of the form

(2.17) dp(x) H(yx- f(y) dp(y) k f(x) dp(x), p > l,

is equivalent (by HSlder’s inequality and its converse) to

f f H(yx-1)f(x)g(y) dp(x) dp(Y)

(2.18)
k f(x)p dp(x) g(y)P’ dp(y)
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We generalize (2.18) by introducing a parameter 2, 0 < 2 < 1, and consider

By HNder’s inequality with index 1//l, the right-hand side does not exceed

{G H(t) d/(t)} {f dl(t)If g(ty)f(y) d/(y)] 1/(1-)}1-.
Now apply (2.11) with r=l/(1-2), K=f, and we get, with 1-2=p-
+ q-1 1, i.e., 2 2 p- q-1 lip’ + 1/q’,

(2.19)

I4(yx-1)f(x)gO,) a,(x) a,(y)

<= { f H(t) dt(t)} z {ff(x)P dx} ’/P{f g(y)q dy}
3. Exactness of constants. There is equality in Theorem 1.1 only in rather

trivial ways. (The question is investigated in detail in [61.) When G is compact,
there can be equality in Theorem 1.1 for any 2, since G has finite measure and we
can take f(x) 1. When G is not compact we cannot in general have equality
in (1.1). However, in this case, when p > the constant E d2(t)}P in (2.3) is best
possible for each 2, at least when E G, the case that occurs in most applications.
In establishing this it is convenient to write G additively. We consider measurable
subsets E of G which contain the identity and contain -x when they contain x.
By E + H we mean the union of all translates a + H for a E.

Now suppose that for a particular 2 and for every f in LP(G) we had

fd#(x){fGf(x + t)d2(t)}P< c fd2(t) ff(x)Pd#(x),
with c < (j’ d2)P-
be compact; then

< oo. Take e > 0 so small that e/(1 e) < 1. Let E and H

fnd#(x){fEf(x+ t)d,(t)} p< c fd2(t) fGf(x)Pd(x).
Let f be the characteristic function of E + H; then f(x + t) for E and
x e H, and we have

P(H){fe d2(t)} p

< c

#(H)/g(E + H)< c

d2 #(E + H),

We can take E so large that



ELEMENTARY CONVOLUTION INEQUALITIES 463

and then

p(H) c
dR s < 1.

p(E+H)
<
1-e

When G is the integers, the line, or the plane (or any Euclidean space) it is easy
to see that H can be chosen so large that p(H)/p(E + H) > s, and we have a
contradiction. We omit the proof in the general case, since the only applications
of (2.3) in this paper are to Euclidean spaces.

The proof breaks down for p < and we do not know whether the constant
in (2.3) is best possible.

For Theorem 2.2, the constant in (2.11) is not best possible for every g. This
is shown for p > by Theorem 383 of [5] (see also [10]); and for 0 < p < 1,
0 < q < 1, by the sharper inequalities of Pr4kopa [13] and Lei’ndler [8]. However,
(2.11) is best possible in a weaker sense when p > l’no smaller constant makes
it hold for all pairs (f, g).

We give the proof when G is the line. Suppose that

dx f(x + t)g(t) dt c g(t) at f(x)" dx

with c < 1, p > 1, q > 1, 1/r lip + 1/q 1, for allfand g for which the right-
hand side is finite. Take f(x) on [-R 1, R + 1] and 0 elsewhere, g(x)
on [-R, R] and 0 elsewhere; then the inequality would say

(2R)1 + /r c(2R)/q(2R + 2)/,
and hence R/(R + 1) N cp, a contradiction for large R.

4. Variatio on Hary’s inequality. In the rest of this paper we Nve some
illustrations to indicate the scope of the general theorems in and 2. We begin
with Hardy’s inequality ([5, Thm. 327]), which states that

fo{ fo }P fo(4.1) f(t)dt dx (p’)" f(t)pdx,
x

where the constant is best possible.
We begin with an inequality involving a general convex ; this inequality

resembles (4.1) superficially, but does not reduce to it when O(u) u. We start
from (1.5), specialized to the case d2(t)= K(t)dt, E G, the half-line, and put
xt u on the left. The result is

< o((4.2) -q K(t) dt x

If we now take K(t) for 0 < < 1, K(t) 0 for > 1, we get

(4.3) --q) f(u) du <__ q(f(x))--
X X

where q is convex. (Compare [1], [2].)
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To get (4.1) we specialize K differently. First take q(u) uP:

n, p>l.(4.4) - .- f(u)K du < K(t) dt f(x)
x

Now replace f(u) by u/Pf(u):

(4.5) f; dxl u1/pf(u)K(ldu}P <= {f; K(t)dt}P fof(x)Pdx, p>l

This inequality persists when p < 0 and is reversed for 0 < p < 1, provided that
the integrals on the large side converge. If we now take p > 1, K(u) u- /p for
0 < u < 1, K(u) 0 for u > 1, we obtain (4.1). There is no analogue of (4.1) for
0 < p < since f K(u)du would diverge; but (4.1) remains valid for p < 0, as
was noticed by Knopp [7].

The dual of Hardy’s inequality,

(4.6) dx f(u pP f(x) dx, p > 1,

is (4.5) with K(u)= u -1-1/p for u > 1, K(u)= 0 for 0 < u < 1. Here the in-
equality is reversed when 0 < p < 1. The series analogue of (4.6) (which is de-
ducible from the integral inequality) has an application in the theory of orthogonal
series 14].

More generally, take K(u) u", 0 < u < 1; K(u) 0, u > 1. Then

ff K(u) du <

if > 0. Replacing f(t) by tl-f(t) in (4.4), and writing r + p, we get

(4.7) x dx f(t) dt (p’)P t-(ff(t))p dt,

provided thatr> if p> orr< if p<0. If0<p< andr> wehave
the inequality in the opposite sense. The case p > is half of [5, Thm. 330]; the
other half corresponds to K(u) u for u > 1, K(u) 0 for 0 < u < 1.

When K(u) u- /p for 0 < a < u < b, and K(u) 0 otherwise, y K(u)du
is finite for all p, and we get

dx f(t)dt (p’)P(b /p’ a 1/p’) f(t)p dt, p > or p < 0;

(4.8)
dx f(t) dt (p’)P(a lip’- b lip’) f(t)p dt, 0 < p < 1.

The convergence theorems arising from (4.8) are interesting in themselves.
By the usual technique ([5, Chap. IX]) one can deduce the corresponding theorems
for series" If 0 < p < 1, 0 < a < b and a 0, then a converges if

a
n=l lrl
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converges; if p > 1 and a, converges, then

y a
2 then a, converges ifconverges. For example, take p 1/2 and replace a, by a,

(4.9)
=1

converges.
Next we obtain some illustrations of (2.10) that are suggested by Hardy’s

inequality. Accordingly these inequalities involve (j" f(x) dx)p instead of J" f(x)p dx.
The K used in Hardy’s inequality is K(u) u-lip for 0 < u < 1, K(u) 0

elsewhere. Since o t-’K(t)p dt diverges there is no direct analogue. However
(cf. (4.7)) we can use K(u) u" on (0, 1) or K(u) u-" on (1, ) if e > 0. The
first yields

x"p-’ dx t’f(t) dt <= (ep)- f(t) dt p > 1, >0,

with the inequality reversed if 0 < p < 1. The second choice yields

x -’p-’ t-’f(t) d <= (ap)-’ f(t) dt p>l, a>0.

When p < 0 we can take K(u) u-" on (0, 1) or K(u) u" on (1, oe), a > 0. We
get, for example,

x"Ipl dx t-’f(t) dt

In particular, when p -1, this is

x’- dx t-’f(t) dt

and when a 1;

(lpl)- f(t) dt

<= - f(t) dt

dx <o t-’f(t)dt f(t) dt

We now obtain a two-dimensional version of Hardy’s inequality. Up to
this point we would have been about as well off with Theorem 319 of [5], but it
does not seem to be obvious how that theorem should generalize to higher
dimensions. Here we take the group G to be the Cartesian product of the half-line
with itself. We take K(s, t) s- ’/Pt- ’/p for (s, t) in a convex set S whose boundary
contains the origin, and K(s, t) 0 outside S. Let S,r be the set of points (xu, yv)
with (u, v) S. Proceeding as in obtaining (4.1), we get

(4.10) dx dy f(s, t) ds dt <= Lp f(s, t)pds dt, p > 1,
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where

L IIu- 1/Pr- 1/p du dr.
s

Finally we obtain a generalization of Hardy’s inequality by using Theorem
2.2. An inequality of the form

d#(x) K(x, y)f(y) d#(y) <= kp f(xF d#(x)

is, as we observed at the end of 2, equivalent to

K(x, y)f(x)g(y) dp(x) dp(y) <- k f(x)p dp g(y)P’ d#

To put Hardy’s inequality into this form we start from (4.4),

f(y)K d <__ kp f(x)p-, k K(t)dt,
X X

and write it in the form

f(y) K <__ kp f(x)p-,
x (.o x

which is like (2.17) but with H(u) uK(u). Then (2.19) gives us

K f(x)g(y)

Replacing f(x) by x/Pf(x), g(y) by y/"g(y), we find

K f(x)g(y)x/p)- y/)- dx dy

Taking K(u) u-lip for 0 < u < l, we then obtain

dx f(x)g(y)x-X/p’- 1/p’yMp’- 1/q’ dy

5 g(Y)qdy} ’/q.

When 2 we have q p’, q’ p, and so

X- 2 + 2]pf(x dx yl 2/pg(y) dy

which is an alternative form of Hardy’s inequality.
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One can of course give corresponding generalizations of any other special
case of Theorem 1.1.

5. Hausdorff means and Laplace transforms. Hausdorff means are transforms
of the form

(5.1) F(x) f(xt)d2(t);

we are concerned with the case when f is positive and 2 is nondecreasing. Since
(5.1) is of the form considered in (1.5) and (2.7) we can read off several inequalities.
For example, if p > 1, (2.7) says that

F(x)p <- d2(t x-Xf(x)P dx.
x

Replacing f(x) by f(x) lip and d2(t) by t-1/p d2(t), we have

(5.2) F(x)p dx t- */p d(t f(x)p dx

([3, p. 277]). For 0 < p < the inequality is reversed.
We can treat the Laplace transform

(5.3) F(x) e -xt d2(t)

in the same way, with modifications required by the divergence (in general) of
both sides of (2.7) when f(x) e-’. When > 0 we can consider

xF(x) e-Xt(xt)t d).(t),

take f(u) u e-" in (2.7), and replace d2(t) by d2(t). Then we have

Xap- 1F(x)p dx <= d2(t) e-pttp- dt,

that is,

(5.4) xt,- F(x), dx <= F(p)p-p d2(t p > 1, o > O.

In particular, when e lip we have an inequality parallel to (5.2),

F(x)p dx < p- d2(t p >

On the other hand, we can put xt u and then replace x by l/x, so that

x/p. x- F(x-) u- / e-"f(xu)(xu) lip du, p > 1.
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Here we take d2(t) e -t dt and go(u) up in (1.5), and obtain

dx
{x,/p)_ ’F(x-’)}’ < x-’{x’/Pf(x)}p dx

that is,

(5.6)

(see [4]).

xp- 2F(x)P dx <= f(x)p dx

We can also get inequalities for Laplace transforms from Theorem 2.2. With
F(x) still defined by (5.3), we can write

x-aF(x-1) (xu)l-af(xu)(ua e-,)
du
--, >0,

where the integral has the form of the inner integral in (2.11). Hence

Ya- IF(Y) dy x- -f(x- ) dx

xp-’p- If(x)p dx u"q- e -q" du

x-- f(x) dx {F(q)q-q}/q

whenp > 1, q > 1, r- p- + q- 1, p’ > q, e > O. The result is particularly
simple when er and p ep 1, that is, r p’, lip’, q p’/2, and we get

(5.7) F(y)p’ dy -- f(x)p dx < p < 2,

([5, Thm. 352]). For the case r p, e 1/p, see [4]. Further inequalities can be
generated from other cases of Theorem 2.2.

6. Fractional integrals. Our method is not powerful enough to get the deeper
inequalities ([5, Thm. 383], [10]), but it does give a convenient approach to the
more elementary ones. We start from (4.5) and consider the two cases

Kl(U) b/a- 1(1 U)r-1 0 < u < 1; Kl(u) 0, u > 1;

K2(u)=ua-l(u- 1)r-l, u> 1; K2(u)=0, 0<u< 1.

It is customary to suppose that 0 < r < 1, but all we really need is r > 0. Then
k=j- ooo K(u) du is finite provided either s and a > 0 or s 2 and a < r’,

we have k F(e)F(r)/F(e + r), k2 F(1 e r)F(r)/F(1 ). Using K1, we
then have, for p > and 0 < r < 1,

fdx{f__x bll[Pf(bl)()a-l(1- b/)r-lX rib/)P <= k f(x)p dx,
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and therefore

o {; } oX- 1-p(a+r- 1) dx (x u) f(u)u + 1/p du

_
kP f(x)p dx.

Now replace f(u) by f(tt)U l-a- I/p, and we get

(6.1) x-l-re+r-l) dx (x u)"-If(u) du

Proceeding similarly with K2, we have

(6.2)

<= kl f(x)Pxp- -p dx.

x -I-re+r-I) dx (u x)’-lf(u)du <- k f(x)Pxp- I-ap dx.

To get an inequality with a simple right-hand side, take lip’, and then

o { o: } ;o(6.3) dx x-" (x t) if(t) dt <= k f(t)p dt, p > 1.

This is half of [5, Thm. 329]. There is an inequality with a simple right-hand side
for 0 < p < 1, but it comes from (6.2) rather than (6.1):

o { } o(6.4) dx x (t x) if(t)dt >= k f(t)p dt, 0 < p < 1.

There is no exact analogue of (6.3) when 0 < p < 1.
On the other hand, if we want a simple left-hand side we take (1/p’) r

and then we have

(6.5) dx (t X) if(t) dt <= k {Vf(t)} v dt

this is the other half of [5, Thm. 329]. We also have

(6.6)
o {’ }dx (x ty- f(t) at _>_ k {fir(t)} p dt,

0<p<l, p>

(hence not when 0 < r < 1).
One can interpret (6.3) loosely as saying that the fractional integral of f, of

order r, is "more integrable" than f itself in a neighborhood of 0, since when

f e Lp, p > 1, the fractional integral belongs to Lp even after being multiplied by
the large factor x -. This is, of course, true whether or not f is positive, since the
inequality holds for fl. On the other hand, if f is positive, (6.4) says that the
other fractional integral off is somewhat less integrable than f in a neighborhood
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7. Periodic functions. Here G consists of the real numbers (mod 2n) with
addition as the group operation. The general inequality is (1.4), which we write
with d2(t) K(t) dr,

(7.1) p L -1 f(x + t)K(t)dt dx <= p(f(x)) dx, L K(t) tit,

99 convex. Let us take, for example,

K(t)
sin2 1/2(n + 1)t

(n + 1)n 2 sin2 1/2t
the Fej6r kernel. Then

2f(x + t)K(t) dt

is the nth arithmetic mean a,(x) of the partial sums of the Fourier series off, and
L 1. We therefore have

o(a.(x)) dx <= q(f(x)) dx

when f(x) >= O, and consequently (as is well known)

p(l,(x)l) dx <= p(If(x)l) dx

when p is both convex and increasing. When p(u) up, p > l, this can be inter-
preted as saying that ]a,(x)l tends to be smaller than ]f(x)l. On the other hand
when f(x) 0 we have

dx f(x)- " dx p > O,

and

{a,(x)}p dx >__ f(x)p dx, 0 < p < 1;

either of these inequalities could be interpreted as saying that when f(x) is
positive, a,(x) tends to be larger than f(x).

By using K(t)= (sin 1/2t) 1, r > 0, we could obtain inequalities similar to
those of 6 for the integral

f] {sin t)} dt.
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UNIFORM APPROXIMATION OPERATORS GENERATED BY
A POWER SERIES IDENTITY*

J. BUSTOZ AND C. W. GROETSCH"

Abstract. The classical Bernstein polynomials B.(f; x) may be regarded as transforms of the
sequences {f(k/n)} by the Euler summability matrix with parameter x. T. H. Gronwall has shown that
the Euler matrix is generated by a certain formal power series identity. In this paper these ideas are
corhbined to produce a wide class of approximation operators which generalize the Bernstein oper-
ators. A uniform convergence theorem, an order ofconvergence result and an asymptotic error formula
are given.

!. Introduction. In 1912 Bernstein [1] introduced the polynomials B,(f;x),
which for a given function f with domain [0, 1] are defined by

(1.1) B.(f x) i
k=O

xk(1 X)"-kf

Bernstein showed that lim, B(f; x)= f(x) uniformly in x for each f s C0, 1].
In recent years several authors [2], [3], 6], [7], [10], [11] have investigated classes
of uniform approximation operators which contain the Bernstein polynomials.

In this paper we shall study a class of uniform approximation operators
which generalize the Bernstein operators and are generated by a formal power
series identity. We begin as in [2] by noting that (1.1) can be written

B,,(f x) E,,k(x)f
k=O

where Enk(X is the Euler summability matrix with parameter x. For a given
function h(w) of a certain type which is analytic for Iw] < and satisfies h(0) 0
and a fixed > 0, Gronwall [5] defined the [h, (1 w) "]-transform of a sequence
{s.} to be the sequence {U.} defined by the formal power series identity

(1.2) (1 h(w))(1 w) Skh(w)]k 0
n /

UnWn
k=O

Furthermore,

where

Un AnkSk,
k=0

(1.3) (1- h(w))(1--W)-[h(w)]k=,k(nd--l=n

In the particular case and

h(w)
XW

(1 x)w’

AnkW
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the transform (1.2) is the Euler summability transform and the matrix in (1.3) is
the Euler matrix. We will study the operators L,(f; x) defined for f e C[0, 1] by
Lo(f;x f(0) and

(1.4) L,(f x) A,k(x)f
k=O ), n>O,

where the matrix A,k(X is generated by the identity (1.3) and h(w) is some function
involving a parameter x [0, 1].

2. A class of uniform approximation operators. Our first result shows that if
the operators L,(f;x) of type (1.4) are to have the uniform approximation
property, then h(w) must have a very special form and must equal 1.

THEOREM 2.1. If the operators (1.4) have the uniform approximation property,
then land

xw + Q(w)
h(w)

-(1 x)w + Q(w)’

where Q(w) is analytic in Iwl < 1, Q(0) 0, and Q(w) 0 as w inside a Stolz
angle at 1. Furthermore, the power series expansion of Q(w) about w 0 does not
have all power series coefficients nonnegative unless Q(w) O.

Proof. If the operators L,(f; x) have the uniform approximation property,
then in particular for the functions f(t) t, z respectively we have

(2.1) L,(ti;x) x + d,i) for 1,2, where d,i) O.

Moreover, by (1.4) and (1.3), U Lo(t, x) 0 and

u.,
(2.2) L,(ti, x)

ni (n > 0),

where

(1 h(w))(1 w) ki[h(w)]’
k=O n=O

n + lu(ni)wn
n

Summing the left-hand side we obtain

h(w)
(2.3) (1 w)--h(w) (n+a-

n=l ?/
U(nl )W

and

i= 1,2.

(2.4) (1 w) 2 1 h(w)J
+

n+-I
U(n2)W

By (2.1) and (2.2) we may write

(n+-iUt,1)w" xw , n
=1

wn- -l" n=
(n+--oxw(1- w)-- + n

n=l F/

)W



474 J. BUSTOZ AND C. W. GROETSCH

Substituting this into (2.3) gives

h(w)
(2.5) (1 w)-h(w)

oxw(1- w)--1 + n
n=l

Hence we have

where

h(w)
xw + Q(w)
(1 ox)w -+- Q(w)’

n+- 1)(w) ( wr +1 Y n .’w".
n=l

Clearly Q(0) 0 and Q(w) is analytic for Iwl < 1. We now show that Q(w) 0
as w --, inside of a Stolz angle. Given e > 0, suppose N is large enough so that
n > N implies ]e)1 < e. Then

u n+-I
IQ(w)l l1 wl+1 n

n=l

+ll-wl* n Iwl
n=N+l

N (n+-- 1) {l--w,+1
I1 wl"+ Z n l w" + .ewl ( w),+ .n=l

As w inside of a Stolz angle the quantity .Iwl(] wJ "+ /(1 ]wJ)+ ) remains
bounded and the first term above approaches zero. hence Q(w) has the properties
asserted in the theorem. We now show that. 1. By (2.1) and (2.2) we may write

i n+--
+ i n+--

’2’
n + t2) X2 2 W n2O w n n w

n=l n=l

(2.6) ( + 1)x2w2(1 w)-- 2 + X2W(1 w)-

(n+e-1+ 2 n2

n=l ///

(2)W

It can be shown as above that

(1- w)+2 n2

n=l

as w --, inside of a Stolz angle. By (2.5) we have

h(w)
h(w)
(1 w)--oxw + Q(w)

--, ,x as w inside of a Stolz angle.
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Therefore,

h(w) 12 h(w)
2 h(w(1 w) + h(w(1 w)2 + 22x2

However, by (2.4) and (2.6) we obtain

h(w) 12 h(w)
w)22 h(w(1- w) + h(w)(l-

( + 1)x2w2 + ox2w(1 w) + (1 w)+2 n2

n=l

e(e + 1)x2 as w inside of a Stolz angle.

Therefore we must have 1.
Finally, if Q(w) ,o q,w", then

h(w)(1 w) -1
h(w) (1 w)2

so that by (2.3),

xw + ,,__
o q,,w"

U(n1)
L.(t ;x) x +- q(n + k).

n nk= o

as w--. 1.

n+-I
,(n2 W

We now observe that if qk 0 for all k and some coefficient qk is positive, then
the second term above does not converge to zero as n- and hence
lim, L,(t; x) 4: x. Therefore Q(w) cannot have all power series coefficients non-
negative unless Q(w) =_ 0, which completes the proof.

It is clear from (1.4) that if Ank(X 0, then the operators L,(f; x) are mono-
tone in the sense that f(t) >_ 0 for e [0, 1] implies that L,(f; x) >= 0 for x e [0, 1].
The remarkable theorem of Korovkin [8, p. 14] then asserts that these operators
have the uniform approximation property if L,(ti; x) x uniformly in x for
=0,1,2.

In order to produce a class of uniform approximation operators we set
Q(w) (x (x))w(w 1)or

(2.7) he’(w) t(X)W -t" (X t(X))W2

-(1 qb(x))w + (x (x))w2’

where 4)(x) is a bounded function with domain [0, 1]. We then define the oper-
ators L,(f;x) by

(2.8)

where

(2.9) (1 he(w))(1 w)- ’[h4’(w)]k A.k(X)W".
n=k
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By considering the power series representation of (2.7) for Iwl sufficiently small
and the identity (2.9), it is easy to see that the matrix entries A,k(X) are poly-
nomials in x and b(x) and hence so are the operators L,(f;x). We also note that
L,(f x) B,(f x) if b(x) x.

THEOREM 2.2. If ((1 + 4(X))/2)2 >= X >__ Ok(X) >--_ O, then the operators L,(f x)
have the uniform approximation property.

Proof. First we show that A,k(x)> O. By (2.7) and (2.9) we have for Iwl
sufficiently small,

A,k(x)w [qS(x)w + (x b(x))w2]
k=o [1 (1 dp(x))w + (x dD(x))w2]k+l"

Since x >= b(x) >= 0, it is therefore sufficient to show that

(2.10) [1 -(1 ck(x))w + (x q(x))w2] -1

has nonnegative power series coefficients. Clearly we may assume that x > b(x)
and then we have

where el and ez are the roots of the quadratic in (2.11). Using the hypotheses of
the theorem it can now be routinely verified that el and e2 are positive and hence
(2.10) has nonnegative coefficients.

By substituting sk in (1.2) we note that L,(1 ;x) for all n. If we take
and h(w) h4’(w) in (1.2) and set Sk k and Sk k2 respectively, we obtain

as in (2.3) and (2.4),
t)

fori- 1,2 (n>O),L,(ti x)
ni

where

(2.12) Ul)w" --(1 w) -1
h4’(w) dp(x)w + (x b(x))w2

,=o h4’(w) (1 w)2

and

(2.13)

u,Z)w"=(1 -w)-1 2
1-h4’(w)_]n=O

h4’(w) }h4’(w)

[(X)W --(X (X))W2] 2 (X)W -+- (X (X))W2

2 +
(1 w)3 (1 w)2

Straightforward calculations using (2.12) and (2.13) give

(2.14) x-
U(n1) (X
n n

and

(2.15) U2)= X2
X (X

n2 +-(ln + 4b(x)- 5x) + n2 (6x- 2b(x)- 1).
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Therefore L(ti; x) x uniformly in x for 0, 1, 2 and the proof is completed
by an application of Korovkin’s theorem.

3. Order of convergence and asymptotic form of the remainder. As we pointed
out prior to Theorem 2.2, the matrix entries A,k(X) are polynomials in x and
b(x). Hence in order for L(f; x) to be a polynomial operator we must choose
b(x) to be a polynomial satisfying

0 < b(x) < x < [1 + b(x)] 2

A particularly simple class of such polynomials was pointed out to the authors
by R. F. DeMar. We take b(x) x[1 a(1 x)2], where 0 <_ a _< 1/4. When
a 0 the resulting operators L,(f; x) are just the Bernstein operators. We will
now give an order of convergence result for these operators. We recall that the
modulus of continuity of a real function f(x) is the function 09(6) defined for
fi>0by

09(6) sup {If(x) f(Y)l "Ix Yl < 6}.
THEOREM 3.1. Suppose that b(x) x(1 a(1 x)2), where 0 <= a <__ 1/4. Then

5 [x/4n- 2a(n a 2)
If(x) L,(f; x)l -<_ o91 2n

Proof. The argument of Lorentz [9, p. 20] gives

If(x)- L,(f
k=O

for each 6 > 0. Therefore if

k
q(n) >

k=O n

for each x [0, l, then

[f(x)- L(f;x)l <= o9(6){1 + fi-2q(n)}.

Setting 6 2q,,/ we obtain

(3.1) If(x)- L,(f; x)[ (2).
If (x) x(1 a(1 x)2), then we have by (2.14) and (2.15),

ux2 2xL(t;x) + L(t2;x) x 2x
UI)

n2

2

A,k(x) x2 2xL,(t; x)+ L,(t2;x)

[2x(x b(x))+ x(1 + 4b(x)- 5x)]/n + (x qS(x))[6x 24(x)- 1]/n2

__< [nx(1 x) + (4 2n)ax2(1 x)2 + 2aZx2(1 x)4]/n2

< [nx(1 x) + (4 2n + 2a)ax2(1 x)Z]/n2

=< [4n 2a(n a 2)]/16n2.

Substituting this into (3.1) completes the proof.
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We note that for a 0 the bound given in Theorem 3.1 agrees with that
given by Popoviciu for the Bernstein polynomials (see [9, p. 20]). It is also of
interest to note that if a > 0, then for n > 2,

x// 4n- 2a(n- a- 2)
2n x//-

and hence the operators L,(f; x) have a more favorable order of convergence
bound than the Bernstein polynomials if b(x) x(1 a(1 x)2) (a > 0).

Our final theorem extends Voronowskaja’s asymptotic estimate of the re-
mainder of the Bernstein polynomials (see [9, p. 22]) to the operators L,(f; x),
where 4) is any function satisfying the hypothesis of Theorem 2.2.

THEOREM 3.2. Suppose that ((1 / t(x))/2)2 >= X >= dp(x) >__ O. Iff is bounded on

[0, 1] and has a second derivative at x [0, 1], then

-x(1 x)
lim n[f(x) L,(f x)]

2
d

f"(x) + (x ck(x))[tf’(t)],=,.
at

Proof. By L’Hospital’s rule we have

L.(f x) f(x) + f’(x)L.(t x;x) + f"(X)L.((t_ x)2. x) + p.(x)
2

where

(3.2) p.(x) L((t- x)2e(t); x) and e(t)0astx.

It follows from (2.14) and (2.15) that

(3.3)
f(x) L.(f x) f’(x)

(x c(x)) f"(x) [,x(1 x)
2

2x(x b(x))]
f"(x) (6x- 2b(x)- 1)(x- (x))

2 /,/2

By (2.8) and (3.2) we have

2

Given e > 0, suppose that 6 > 0 is small enough so that Ik/n xl <= ,5 implies
that Ie(k/n)l < e. Denote by 1, the sum of the terms in (3.4) extended over all k
satisfying Ik/n xl <= ,5 and denote the complementary sum by 2. Using (2.14)
and (2.15) it is easy to see that 1 < ex(1 x)/n for all large n.

For a given n, we will denote by X, a random variable with distribution
AOnk(X), i.e., P{X, k} Ank(X). Then the mean #, of X, is given by

la, nL(t ;x) nx (x ok(x))
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and the variance is

n2Ln(t2 x) 2nt.t,,L(t; x) +/,2,L(1 x)

O(n),

For n sufficiently large (n > N(6)),

k x qS(x)
X

n n

by (2.14) and (2.15).

> 26 implies
k

Therefore if M is an upper bound for (k/n- x)2le(k/n)l, we have by use of
Chebyshev’s inequality [4, p. 219],

Ez_-<MZ Ak(X)

<= u Y A,*,():
n

x >6}
x+

x

MP{IX.- k.l > 2n6} <=M
2

7

42n2

It follows that p,(x) o(1/n) and therefore by (3.3),

f(x)- L(f" x)=
-x(1 x)

2n
f"(x) +

(X -ndp(x))[f,(x) + xf"(x)] + o(),
completing the proof.
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MULTIDIMENSIONAL STATIONARY PHASE
AN ALTERNATIVE DERIVATION*

NORMAN BLEISTEIN]" AND RICHARD A. HANDELSMAN

Abstract. The method of multidimensional stationary phase is derived via a technique which
makes strong use of integration by parts. The "diagonalization" of the matrix of second derivatives at
the stationary point is carried out here in such a manner as to make all coefficients in the exponent 1.
This modification of existing technique allows for the explicit calculation of the nth term of the asymp-
totic expansion in a closed form which involves the amplitude of the integrand in transformed co-
ordinates. The first correction term in the multidimensional stationary phase formula is readily
calculated from this result.

1. Introduction. The analysis of multidimensional Fourier integrals,

(1.1) 1(2) f go(x)exp (i2th(x)} dx, x (xl, x,,)

has been discussed by many authors, notably Focke [3], Jones and Kline [6],
Lewis [7], Chako [1] and Jones [5]. A major result of this analysis is the multi-
dimensional stationary phase formula on which all of the authors, including us,
agree. Our derivation, however, differs from those in the literature. This alterna-
tive derivation allows for the calculation of new results.

Our analysis makes strong use of integration by parts (the divergence
theorem), and thus the relation between the standard one-dimensional develop-
ment and the multidimensional case becomes more transparent. We find, more-
over, that the integration by parts procedure allows for easy identification of the
critical points. This means of identification of critical points was previously used
by Erdlyi [2] for the two-dimensional integral.

All derivations of the multidimensional stationary phase formula begin with
a transformation that "diagonalizes" the matrix of second derivatives (the
Hessian) of the phase function at the stationary point. The phase now is locally
quadratic having only square terms, i.e., no cross-product terms. In previous
derivations, the coefficients of the squares are the eigenvalues of the Hessian. In
our derivation, we diagonalize so that these coefficients are + 1. Furthermore, we
do this via a transformation which makes this diagonalization valid in a neighbor-
hood of the stationary point. This change allows us to write down the nth term
of the asymptotic expansion in a closed form which involves the amplitude of the
integrand in transformed coordinates. From this result, we are readily able to
calculate the first correction term in the multidimensional stationary phase formula
in terms of the original variables, thereby correcting a result in Chako [1]. Higher
order corrections are still, admittedly, tedious to calculate.

* Received by the editors January 7, 1974, and in revised form August 5, 1974. This work was
supported in part by the Office of Naval Research under Contract N00014-67-A-0394-0005, and in
part by the National Science Foundation.

i" Mathematics Department, University of Denver, Denver, Colorado 80210.
: Mathematics Department, University of Illinois, Chicago, Illinois 60637.
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Because of the extensive background literature cited above, we shall minimize
motivational discussion and primarily discuss those aspects of the development in
which our result differs from previous results.

We remark that the same techniques are applicable to n-fold Laplace integrals,
and thus we could recapture the results of Hsu [4].

2. Integration by parts and critical points. We first use integration by parts to
recast (1.1) in another form when Vb :/: 0. This is accomplished in the following
lemma.

LEMMA 2.1. Suppose that in , (i) Vb 0, (ii) b and go are M times continuously
differentiable. Then

M-1

1(2) (- i2)-+’ (Hi. N) exp {i2ff} dE
(2.1)

i=o

+ i2)- jg(x) exp {i2(x)} dx.

Here F denotes the (n 1)-dimensional boundary of, dE denotes the differential
element ofcontent ofthe boundary, and thefunctionsH and g are defined recursively
by

v6(2.2) H glVl 2, g+ V. H, j 0, 1, ....
Remark. One sees in (2.2) the generalization of the recursion formula for the

one-dimensional case. Also, in one dimension, the sum in (2.1) involves only the
integrand evaluated at the endpoints of integration (boundary of ).

Proof In (1.1), set

go(Xo) exp (i2} (i2)-’V. g(X)v6 exp

(2.3)
 o(Xo)v  -()-v. vl j

xp{i}.

Upon substituting this into (1.1) and applying the divergence theorem to the first
integral, we obtain (2.1) with M replaced by 1. We now apply the expansion
procedure (2.3) to g and integrate by parts to obtain (2.1) with M replaced by 2.
Upon applying the expansion procedure (2.3) and integrating by parts M times,
(2.1) is obtained. This completes the proof.

Under somewhat stronger conditions we have Lemma 2.2.
Lmmn 2.2. Suppose that (i)V 0 in, (ii) and go are infinitely differemiable

(C) in , and (iii) go vanishes C-smoothly on F. Then

(2.4) () o(-), ay .
Proo Each of the boundary integrals in (2.1) is now zero, and the integration

by parts process may be repeated an arbitrary number of times to yidd (2.4).
This completes the proo[

Derivatives on the boundary are taken as their limits from the interior.
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Remark. We conclude from Lemma 2.2 that the candidates for critical points
of a multidimensional Fourier integral are

(i) points where Vth 0, i.e., stationary points,
(ii) points where 4) or go fail to be C,

(iii) the boundary of 9.
Through the use of neutralizers, we may isolate the various critical points of

an integral. Indeed, we introduce the following definition.
DEFINITION. A function v(x, Xo) is said to be a neutralizer about x Xo if

(i) there exists a neighborhood No of Xo throughout which v(x, Xo) 1,
(ii) there exists a neighborhood N1 of Xo, containing No, outside of which

v(x, Xo) 0,
(iii) in all of x-space, v(x, Xo) is a C function with respect to its arguments

and 0 _< v _< 1.
Let us suppose that the integrand of I in (1.1) has isolated critical points of

types (i) or (ii) in 5 located at x l, ..., Xk. Then we set

(2.5)

Here we have taken the supports ofthe neutralizers to be disjoint from one another
and, for interior critical points, disjoint from the boundary as well.

We substitute (2.5) into (1.1), thereby obtaining k + 1 integrals, the first k of
which contain isolated critical points of types (i) and (ii), while the last has only a
portion of the boundary as critical points. We could now discuss the various
types of critical points and the contributions to the asymptotic expansion of 1(2)
arising from them. We remark that the neutralization process could certainly be
extended to cover the case of interior critical curves, surfaces, hypersurfaces, etc.,
as well. We choose however to limit our considerations here to stationary critical
points and refer the reader to Jones [5] for a detailed analysis of nonstationary
critical points.

3. The multidimensional stationary phase formula. We consider now tho
integral

(3.1) Io(2) f go(x)v(x, Xo) exp {i2th(x)} dx

in the case where 4) has a simple stationary point at Xo i.e.,

(3.2) Vb(Xo) 0,

but

(3.3) det A :/= 0, A (b,,x), i,j 1,..., n.

The neutralizer v(x, Xo) is chosen so that, in its support N, xo is the only critical
point of Io(2). The positive eigenvalues of A are denoted by 2x, ..., 2,, the nega-
tive eigenvalues by 2/ 1, "’", 2,. The signature of A (denoted by sig A) is given by

(3.4) sig A 2r- n.
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As is well known, there exists an orthogonal matrix Q which diagonalizes ,4.

Furthermore, when one sets (x Xo)r QRz, with R the diagonal matrix

(3.5) R diag {12,1-/2},

then

(3.6) f(z) q(x(z))- (Xo)
i,= i=r+

as Izl--+ 0. To make this approximate behavior hold throughout the effective
domain of integration in (3.1), we introduce the second change of variables
defined by

(3.7) i hi(z), 1, n; hi(z z -- o([z[), [z[ -- 0;

and

(3.8) h/2- h/2 =2f.
i= i=r+

Milnor [8, pp. 6-8 proves that such a nonsingular transformation exists in
some neighborhood ofthe stationary point. This reference was cited for the authors
by the referee.

Since, in N1, Vtk vanishes only at x Xo, the functions hi can be chosen so
that the Jacobian

(3.9) J()

is finite and nonzero throughout R1, the image of N1 under (3.5), (3.7). Further-
more, one can readily check that

(3.10) J(0)--Idet AI-1/2 fi IAjl
j=l

In terms of {, (3.1) becomes

1/2

(3.11)

Here

lo(2 exp {i24)(Xo) f Go({)v({, 0)exp {i2p. {/2} d{.

and v(, 0) is a neutralizer with support in
We set

(3.14) Go() Go(O) + p" Ho,

(3.12) O--(1, "’", r,- r+ 1,’’’, n),

(3.13) Go() go(x())J(),
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with Ho chosen so that it is well-behaved throughout r For example, we may
take the components of Ho to be

(3.15)

/4o, =-EGo(, ..., C)- Go(O, , ...,
gl

Ho,2 2[Go(0, 2, 3’ n) Go(0, 0, 3, n)],

-EGo(0,..., 0, +, +2,..., ,)
Go(O,..., O, ,+2,..., .)3,

Ho,n ,[Go(0, ..., 0, ,)- Go(0)].

We shall see below that the ambiguity in Ho will not affect the asymptotic expan-
sion we derive. We substitute (3.14) into (3.4) and obtain

(3.16)

Here

Io(2) exp {iAtP(Xo)} [I(o2)(2)].

Itol)(2 Go(O f v({, 0)exp {i2p. {/2} d,
(3.17)

I(o2)(/].) f (D" Ho)v({, 0)exp {i/lp. {/2} d{.

We first consider I Application of the divergence theorem yields

Iff(2) [vV. tto + Ito Vv] exp {i2p. {/2} d{,

The support of tto Vv is that annular region A on which v itself is nonconstant.
In this region Vp. {/2 0. Thus, for the integral in (3.18) with Ito Vv as ampli-
tude, Lemma 2.2 applies, and we conclude that

f v(, 0)GI() exp {i2p. /2} d + o(2- R),(3.19) lto2)(,;t.) =--- ,
for all R. Here

(3.20) G I() V. Ho

Upon applying this procedure n times, we obtain

I(2) exp {i24(Xo)
/14"-1

(3.21) (-i2)-mGm(0) v({, ) exp {ip. {/2} d{

+(i2)- G({)v({, ) exp {i2-{/2} d{.
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The functions Gm() are defined recursively by

Gin+ 1() V. Hm()

This result is simplified with the aid of the next lemma.
LEMMA 3.1. Let

m=0,1,...

(3.23) K(2)

where p is defined by (3.12) and v is any neutralizer about O. If the support of v
is in , then

(3.24) K(2) exp (2r- n). + o(2-),

for all R.
Proo Let v(, 0), j 1, ..., n, be one-dimensional neutralizers such that

the support of

(3.25) 9(, 0) vj(j, 0)
j=l

is completely inside the domain in which v({, 0) 1. Set

(3.26)

K(2) f v;(;, 0)exp {i2p,. ,/2}
j=l

+ f (v )exp {i2p. /2} d{.

By Lemma 2.2, the second integral is 0(2-R) for all R. For the first integral, we can
apply the one-dimensional theory to each factor, say Kj(2), to show that

(3.27) Kj(2)= exp sigp +o(2-),

for all R. By multiplying these factors together and adding the estimate on the
second integral in (3.26), we obtain (3.24). This completes the proof.

More surprisingly, the coefficients Gin(O) in (3.21) can all be simply expressed
in terms of Go(). This is one of our main results and is proved in the following.

LEMMA 3.2. For the functions Gm() defined by (3.22),

(3.28) Gm(O ;AmGo(0).
2ram!-

Here the operator A is defined by

(3.29) A
(2 (2 (2



486 NORMAN BLEISTEIN AND RICHARD A. HANDELSMAN

Proof For any vector F, we have

(3.30) A(O. F) p. AF + 2V. F,

and by direct computation,

(3.31) "(p F)= o 2m, I(V. F)[= o.

We thus find, for any j,

(3.32) ,mGj(O mp. HI=o 2m,m- 1W" HI=o.
By starting with j 0 and using (3.22) repeatedly to replace V. Hi, we arrive at
(3.28) after m applications of (3.22). This completes the proof.

By using the results of these two lemmas in (3.21), we obtain

()"/ { ’} (i)mG(O)(3.33) Io(2) exp (2r n) + i2(Xo m"
By using (3.10) and (3.13), we can express Go(0) in terms of go and . Thus, to

leading order, we obtain the well-known multidimensional stationary phase
formula

exp 4(2r- n) + i4(xo(3.34) Io(2)
det A

In order to find the first correction term to this expansion, we must use
(3.53.8) along with (3.9) and (3.13) to express { derivatives of Go and . After a
great deal of computation, we find that

NGo() IAI- /[4BqB,(go) + tr (CB)

Here we have used the summation convention where repeated indices are to be
summed from to n. A subscript x denotes differentiation with respect to x.
The matrices B and C are defined by

(3.36) B (B), Bq4,(xo) ,, C (go(xo)),
and tr denotes the trace of the matrix.

We remark that for the integral with real exponent,

(3.37) I(2) fe go(x) exp (- 2(x)) dx,

with xo a simple absolute minimum of in , the same results obtain with very
minor modification. Namely,

(i) replace the exponent in (3.33) and (3.34) by
(ii) replace (i/22) in (3.23) by (2)-;
(iii) replace in (3.33), (3.35) by - (since all eigenvalues are now positive,

but 4 and B have been replaced by their negatives).
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If the point x0 is located on the boundary F at a smooth point of F with a
tangent hyperplane defined there, then it is fairly easy to show that (3.34) must be
multiplied by 1/2 and that the same factor must be introduced in the integral (3.37),
above. In either case, the first correction term is difficult to obtain.
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THE CHARACTERIZATION OF THE CYLINDER FUNCTIONS
BY A FUNCTIONAL EQUATION*

A. McD. MERCERS"

Abstract. The following is a well-known identity involving the cylinder functions. If Xro =_ Ix
+ y2 2xy cos 0] 1/2, i.ff(x) (px)-Zv(px) and if H(y) n-1/2F(I) t_ 1/2)(2/lay)Vjv(lty), then

ff’f(x,,o)lsin 0 2 dO f(x)H(y), 0 < y < x < , >
2n

It can be seen that the limit limyo+ y-2[H(0) H(y)] exists.
In the present paper the author proves two theorems. One shows that if v > -1/2 and f e C(0, o),

then there are no other real, nontrivial solutions of this functional equation for which the stated limit
exists. His other theorem shows that provided v >= 0, then the condition fe C(0, ) will follow merely
from the assumptions that the functional equation is meaningful (the left-hand side being a Lebesgue
integral) and that H is continuous from the right at zero. H concludes by referring briefly to similar
problems which have been considered by other authors.

1. Introduction. If Z denotes any cylinder function of order v > -1/2, then the
following identity holds (see 1, 7.7.2 (14)3)"

2nr(2v)
Z(z)J(()(1.1) (Z,o)-VZ(z,o)(sin 0)2 dO

(2z()F(v)

where z, Ez2 + (2 2z( cos 0] 112 and 0 _<_ I(] < ]z] < . From this it follows
that the functional equation

(1.2)
2n f(xY’)]sin 012 dO f(x)H(y), 0 <= y < x < ,

is satisfied by

(1.3) f(x) (laX)-vZ(lax), H(y)
r(v +

where la denotes any nonzero complex number. Note that for this solution the
limit

(1.4) lim y-2[H(0) H(y)] exists.
yO+

The value of this limit is

r(v + 1/2)
x//F(v + 2) 4

* Received by the editors January 28, 1974, and in revised form March 25, 1974:
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The solution in (1.3) is meaningless if we put/ 0. However if we formally let
/ --. 0 in (1.3) we are led to expect that solutions of (1.2) will be

(1.5)

f(x) P + Qx-2, H(y)
F(v + 1/2)

v > -1/2 v - 0

f(x)= P + Q logx, H(y) 1, v-- O,

and in fact these are easily verified. The case v 0 is elementary and the case
v - 0 can be deduced from [1, 3.15.1 (18)]). In these cases the limit limy_o+y -2
[H(0) H(y)] again exists and has the value zero.

It is our purpose to study the functional equation (1.2) subject to the side
condition (1.4). We shall assume throughout that v > -1/2 and that all values
are real with the single exception of the variable 2 introduced in Theorem below
for which we assume that 22 is real.

For the functional equation (1.2) to be meaningful at all, some condition on f
must be imposed to ensure the existence of the left-hand side. Clearly the most
desirable hypothesis would be merely that this integral exists. It will be found
that this hypothesis is sufficient if v >= 0, but for -1/2 < v < 0 we shall assume
continuity off in (0, oe). Our results are embodied in the following two theorems.

THEOREM 1. Suppose that v > -1/2 and that f 6 C(O, ). Then the only real
nontrivial solutions of (1.2)for which

lim y-Z[H(0)- H(y)] exists (= r(v + 1/2) 22

y-o+ x//F(v + 2) 4
(say)

are given by (1.3) with l put equal to 2 in case 2 0 and by (1.5) if 2 O.
THEOREM 2. If V >--_ 0 and (1.2) is meaningful, the integral on the left being a

Lebesgue integral and if H is continuous from the right at zero, then f
We shall make use of an operator Av defined as follows:

(1.6) (Ag)(x) lim xfF(v + 2) 2 "’|’
h--,O+ F(v q- 1/2) 7ch2

{g(Xh,o) g(X)} Isin 0l2 dO,

and certain properties of this operator must be obtained before proceeding.
This will be done in 2.

We conclude this section by mentioning how the present problem arose.
In [2] we considered the uniqueness of representation of a function defined in
(0, 1) by series of the form 1/2ao + , a,Jo(s,x)" To this end, the operator A0 was
introduced and was found to be effective largely due to the existence of the identity

Jo(x,o) dO Jo(x)Jo(y).

The question then arose of the further usefulness of the operator A0 in connection
with other series expansions, and this led to consideration of the functional
equation obtained by putting v 0 in (1.2). For the investigation carried out
in [2] it was essential that the limit lim_o+ y-2[H(0) H(y)-I should exist. Hence
so far as our original motivation is concerned the side condition (1.4) is no restric-
tion at all. The condition (1.4) is equivalent to the hypothesis that (Af)(a) should
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exist at any one point a for which f(a) 4: 0, and it is not obvious how this condition
can be dropped or even relaxed.

2. The operator Av. The following two lemmas will be needed.
LEMMA 1. Let g"6 C(O, oo). Then Ag exists in (0, oo) and (Avg)(a)= g"(a)

+ ((2v + 1)/a)g’(a).
COROLLARY. If X > 0 then A(1)= 0, Ao(logx 0, A(x-2) 0 and

Av(x2) 4v + 4.
LEMMA 2. Let g C(a, b) where a > 0 and suppose (Ag)(x) 0 for each x

in (a, b). Then there are constants P and Q such that g(x) P + Qx-Zv(v =/: O) or
g(x)=P+Qlogx(v=0).

Assuming for the moment that Lemma has been proved, let us indicate
how the proof of Lemma 2 proceeds. If we write

u(x)
logx, v O,

then the proof of Lemma 2 follows the same lines as the proof of Schwarz’s
theorem given in [3, p. 431]. We use the functions

u(x)- u(a)
ok(x) g(x)- g(a)- [g(b)- g(a)]

u(b)- u(a)_
{x aZ(u(x)- u(b))- bZ(u(x)- u(a))

O(x) ok(x) - 4v + 4 uv(b)- uv(a)

instead of the b and used there. The essential features of these functions are
that Ab 0, AO e, whilst the expression in curly brackets is negative in (a, b).

Proof of Lemma 1. Write

G(h) g(ah,o)[sin 0[ 2v dO, 0 < a <

If the limit exists, then

(Ag)(a) F(v + 2)
lim

2
F(v + 1/2) h-.O+ -h-y[G(h) G(0)].

We will write [a2 + h2 2ah cos O] /2 a + u(h, O) and we note that

(2.1) lu(h,O)l <= h for0<=0<_2rt.

Since g’ C(0, o), then G’(h) exists and is given by

h a cos 0lsin(2.2) G’(h) g’(a + u) 012 dO.
a-Fu

Now

2 G’(h)
/l:h2

[G(h) G(0)]
nh

for some{in0<{< 1,
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so that, if the limit exists, then

(Avg)(a)
F(v + 2)

lim
G’(h)

F(v+1/2) h-*O+ rth

We write the integral in (2.2) as the sum of two integrals and integrate the latter
one by parts. We get

G’(h) f: g’(a + U)lsin 012v dO
rth rc do a + u

a2f] +_u_)4- sin 012 + 2

r [ (a + u)2 (a + u)3J
dO

2av ff g’(a + U)lsin 012v cos 0 dO

11 + I2 + 13 (say).

By (2.1), u--, 0 as h--, 0 uniformly with respect to 0 in [0, 2r]. Since g’(x)/x is
continuous in (0, oo), then

g’(a + u) g’(a)
a+u a

uniformly and so

g’(a) ’’ g’(a) 2 F(v + 1/2)
I [sin O[ 2v dO

rt a do a x/F(v+ 1)

In the same way we find that

F(v+2)"
Now consider 13 We can write

2avfd’g’(a_+_u g’a,}I3= { a+u lsin0lcos0d0

since the latter integral here is zero. By an application of the mean value theorem
it is easy to see that

1g’a,a+u, g’’} {g’?’ g’(a,

uniformly in [0, 2z]. It is also easily seen that u/h -cos 0 uniformly in [0,
Hence as h 0 +, then

2vg’,a) ,}fd1 3 k g"(a [sin 012v COS2 0 dO

a + 1)-F(+ 2)
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Collecting these results we find that

2v+l
(Avg)(a) x/ F(v + 2)

lim {11 + I 2 + 13} g"(a)+ g’(a),
F(v + -) h0+ a

which completes the proof of Lemma 1. The proof of the corollary is immediate.

3. Proof of the theorems. We now proceed to prove the first theorem.
Proof of Theorem 1. Throughout the proof we shall assume that 2 is nonzero,

but only minor alterations are needed to prove the case 0. Put y 0 in (1.2)
and choose a value x for which f(x) 4: 0, and we find

Next

H(0) Isin 0l 2v dO

2n {f(xr,o) f(x)}lsin 0[ 2 dO f(x){H(y) H(0)}.

Multiplying this by (4/y2)(w/- F(v + 2)/F(v + 1/2)) and letting y 0 +, we get

(Af)(x) -22f(x).

Since f C(0, ) we can define a function F in (0, ) by

F(x) u-2- v2 + v) dv du, 6>0.

By Lemma 1, AvF exists in (0, ) and (AF)(x) f(x). Hence A(f + 22F)(x) 0
when x > 0. By Lemma 2, (f + 22F)(x) P + Qua(x) in any interval (a, b) with
a > 0 and so in (a, ). As before we have written u(x) to mean uv(x) x-2

(v 4: 0), u(x) log x (v 0). Accordingly,

f(x) P + Qua(x) 22 u-2v-1 D2v+ lf(D) dv du, x>0,

so that if x > 0, then f" C(0, ) and f satisfies

f"(x) + ((2v + 1)Ix)f’(x) + 22/(x) 0, x>O.

Hence

f(x) (2x)-Z(2x), x>0, 22 real.

If this function f is now inserted in the left-hand side of (1.2), then the right-hand
side (2x)-Z(2x)H(y) is obtained. But in view of the known solution (1.3), this
must equal

1/2)
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Hence

H(y)
r(v + 1/2)

Jv(2y), y > 0,

and the proof of Theorem is complete.
Proof of Theorem 2. We assume that v >_ 0 and that the Lebesgue integral

of f(Xr,o)lsin 012v exists over the 0 interval (0,2t) and hence over the 0-interval
(0, rt/2). Furthermore this integral is to exist for all x, y satisfying 0 _< y < x < .

Taking 0 < y < x, we make the substitution w Ix2 + y2 2xy cos 0] 1/2

and obtain the existence of the integral

wf(w)[wz (x y)2]- 1/2[(x + y)2 w2]- dw.
+ y

1/2

-y

This implies that [w (x y)]- I/2f(w) L(x y, x). Since we can choose x and
y so that x y is arbitrarily small and x is arbitrarily large, this means that

(w )-/2f(w) L(e, X) for all e > 0 and X > 0.

Now it is easily proved that this is equivalent to the existence of the double
Lebesgue integral of

[v/u2+v2-elv-1/2E(u,v) over the annuluse2=<u2+v2 =<X2,

where we have written E(u, v) f(v/U + v2). Hence the double integral

ff E(u, v) doo

will exist over any disc S(xo, b) {(u, v)’(u Xo)2 -[--/)2

____
b2} provided that the

origin is exterior to it; that is, provided that 0 < b < xo. If v > 0 this, in turn,
ensures the existence of the integral

(3.1) ffs E(u v) Iv12
(xo,b) E(Ig X0)2 -[" V2

dog, 0 < b < xo.

Having established this, we turn to the proof that f C(0, ). Since H(0) > 0
and since H is continuous from the right at zero, then H(y) will be positive for
all y in 0 __< y < b provided that b is sufficiently small. If Xo denotes any number
in (0, or), let b be chosen and fixed so that both

H(y)>O in[O,b) and O<b<xo

hold. With this choice of b and Xo, consider the integral in (3.1). Putting u Xo
-ycos 0, v-- -ysin 0 and appealing to Fubini’s theorem, we find that the
integral in (3.1) is equal to the repeated integral

ydy f([x + y2 2xoY cos O]/Z)lsin OI z dO.
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By virtue of (1.2), this in turn must equal

f(xo) yH(y) dy,

and by our choice of b the integral here is not zero.
Now if {x,} is an arbitrary sequence such that x, - Xo, then for all sufficiently

large n we will have 0 < b < x., and we can argue as before with x. instead of xo.
Thus to show that f is continuous at Xo it is sufficient to show that

(3.2) Iffs Ef,,doo-ffs Efodco -,0,

where we have written S, =_ S(x,, b) and f, Ivl2V[(u x)2 / v2]-v. Now the
left-hand side of (3.2) is dominated by

IEIfo do + f;sSO Sn
IEIfo doo + ;s IEI IL fol do.

The first two integrals here tend to zero with n because meas (S, So) 0 and
meas (So S,) 0. For all sufficiently large n the third integral is dominated by

(3.3) ff. IEI If. fol dco,

where

T_= {(u, v)" (u x0)2 +v2 =< O<b<fl<xo.

Clearly T = S, for all sufficiently large n, but the origin is exterior to T.
Since

ffT lEl lf.l d <= ffT lEl do,

and since f, --, fo almost everywhere, then the integral (3.3) tends to zero by the
theorem of dominated convergence. This completes the proof of Theorem 2.

4. The product formula (1.1) can be obtained from Gegenbauer’s addition
theorem for the cylinder functions (see [1 ]) by treating the series there as an orthog-
onal expansion of Gegenbauer polynomials. To what extent the addition theorem
itself characterizes the cylinder functions is a problem which has been considered
by A1-Salam and Carlitz in [4]. A problem similar to the one considered in the
present note originates from the product formula for the Gegenbauer poly-
nomials themselves and this has been studied by Bingham in [5]. We note also
that in [6], Koornwinder has proved a product formula for the Jacobi poly-
nomials, but as far as we are aware, the question of whether this formula charac-
terizes these polynomials is still open. In conclusion we mention that the solution
provided by Theorem 1 to the functional equation obtained by taking H(x) f(x)
in (1.2) has application to a problem considered--and solvedmby Schwartz in
[7] (see particularly his Theorem 4.1). Considerable space would need to be
devoted to explaining the context of this problem, and so we merely refer the
reader to Schwartz’s paper.
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SOME IDENTITIES CONCERNING THE LAPLACIAN OF A
FUNCTION SATISFYING MIXED BOUNDARY CONDITIONS*

ALAN R. ELCRAT"

Abstract. The identity

for functions satisfying u, + u 0 on S, is established, where II is the second fundamental form of S,
E(X, X) X] 2, and (.)s indicates projection of a vector onto S. This identity is applied to obtain an
isoperimetric characterization of eigenvalues for mixed boundary value problems and a maximum

principle for an elliptic equation satisfying Cordes conditions.

Introduction. In what follows, we will derive an integral identity involving
the second derivatives of a smooth function on a bounded n-dimensional region
with piecewise smooth boundary, where the function in question satisfies either
the Neumann or Robin boundary condition of potential theory. This identity is
a companion to one derived by Talenti [1] for functions satisfying the Dirichlet
boundary condition, and we will use it to establish isoperimetric inequalities
characterizing the eigenvalues of the Laplacian relative to the Neumann and
Robin conditions as was done by the author in [2] for the Dirichlet boundary
condition. These inequalities in turn imply coercivity inequalities for the Laplacian
which can be useful in dealing with semilinear equations. All of this can be put
together in a straightforward manner to yield similar results for the case of mixed
boundary conditions. The paper is concluded with an application to a mixed
boundary value problem for an elliptic equation whose coecients satisfy Cordes
conditions.

1. Deriving of identities. The identity

which holds for u W],o(R) (the closure in W](R) of functions in C2() that
vanish on S, the boundary of R), is well known [1], [3], [4]. The surface S is
assumed piecewise smooth, H is the mean curvature of S, and the summation
convention on repeated indices is employed. We will derive here analogous identities
when u satisfies other boundary conditions on S.

The starting point of this derivation is the identity

fR (UX,Ux,) IR (AU)2 fs (U Au u,u,),

which holds for u C2(), and follows from two integrations by parts [3, Chap. 1].
The identities to be derived here follow from manipulation of the boundary
integral when u satisfies the Neumann or Robin boundary condition on S.
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THEOREM 1. Suppose that u. + u 0 on S ( a constant). Then

fl (Ux’’ux’) f (Au)2 fs (II + 2eE)((Vu)s’ (Vu)s) + (n 1)2Hu2),

where II is the second fundamental form of S, E(X, X) IX[ 2, and (.)s indicates the
projection of a vector onto S.

Proof. We begin by observing that the boundary condition implies the
identity

fi (Ux,Ux,x) fl (Au)2 + fs (u Au + ux,,Ux).

In these integrals the indices are summed from to n. We will carry out the proof
in the case n 3, other cases going through in the same way. The proof consists
of appropriate manipulation of the above boundary integral. Suppose that we
focus our attention on a point P e S, and that S is given locally by a function

Y3 W(Yl, Y2), where P is the origin of coordinates and the y3-axis is directed
along the exterior normal to S at P. The integrand can then be written

(1) au Au + u,3u3 + uy,u,
with the repeated index summed from to 2. Since (-w,, -w2, 1) are direction
numbers of the exterior normal to S, the boundary condition can be written

Uy WyiUy Wy2Uy -t- (1 - W2 + 2
Y Wy U 0

and

Uyon UyBy lddy Uy,ey Wy -lu Uy,ey3 1,2.

Using the above form of the boundary condition, we find an expression for
uya,uya which reduces to

uywry euuy
when evaluated at P. If the Y l- and y2-axes are chosen along the principle
directions of S at P, the Hessian matrix of w at P becomes -diag (k l, k2), where
k and k2 are the principle curvatures of S at P.

We turn now to the first term in (1). It is known ([8, Chap. 8]) that

(2) Au AsU + (n 1)Hu, + Ux,xninj,

where As is the Laplace-Beltrami operator for the surface S. Therefore the surface
integral can be written as

At P the first two terms in the last integral cancel. We observe that

uAsu fs [(VU)s[2"

The proof is completed.
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It should be remarked that (2) is derived in [8, Chap. 8] in the case n 3.
Using [9, 43-50], the argument in [8, Chap. 8] can be extended to general n.

Each of these theorems holds for functions in WZz(R) whose traces on OR
satisfy the boundary conditions as is seen by taking limits of smooth functions.

A theorem which implies Theorem in the special case n 2 and ki 0,
i.e., R a polygon, has been proven by Grisvard [7]. It is worth noting that if

ki __> max {0, -2}, the inequality

holds, and if R is a polyhedron and u, 0 on OR, equality holds here.

2. Some inequalities involving the Laplacian. In order to establish the main
result of this section we need this preliminary result.

LEMMA. Suppose that u satisfies u, + u 0 on S. Then

fR(U2- [VulE) / ;sU2 <= (1 / I)/P2 ;R(AU)2,
where is the first (positive) eigenvalue of -A subject to this boundary condition.
(If 0, we must require (u, l) g U 0 since 0 is an eigenvalue.) Both sides
are equal when u is an eigenfunction of -A corresponding to l.

Proof. From

we get

fR NAu-- fR [Vb/[2 -" fs UU

IVul2_ u + (Au)2-

From the variational characterization of p,

U2

The last two inequalities imply

(2p

and then

/22 < fR (AU)2

;a(U2+lVu’2)+;sU2<=(l+la)/e(21a--e)a(AU)2.

The required inequality follows by minimizing with respect to e. The equality
when u is an eigenfunction corresponding to # follows simply by substitution.

Suppose that the nonzero eigenvalues of -A with the boundary condition
u, + u 0 are/1,/2, "’", enumerated in increasing magnitude. Then the con-
clusion of this lemma also holds if one restricts the discussion to functions u
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such that (u, ul) (u, u,_l) 0, where u, ..., u,_ are eigenfunctions
corresponding to tl, ...,/,_ 1, respectively, and

THEOREM 2. Suppose the eigenfunction of -A subject to u, + u 0 corre-
sponding to is an element of W22(R). Then

inf( u 2)2 --]- J’s u2 -]- (Ii+ 2eE)((Vu)s,(Vu)s) + (n 1)2Hu2} - -2

J’ (au)
where the infimum is over functions in WZz(R) satisfying the boundary condition,
and I" 112 is the norm in WZz(R).

Proof. We need only combine the lemma with the identity derived in
paragraph one.

Verification of the hypothesis about the eigenfunctions belonging to W(R)
is intimately connected with regularity of OR and will be commented on below.

If u satisfies u 0 on cqR instead of Un + U 0, a similar theorem holds
with the boundary integral replaced by

(n 1) fs (Hu2")"

In the general case of mixed boundary conditions, say

u =0 onS1,

Un 0 on

un + zu 0 on $3,

and R Sx + Sz + $3, the boundary integral would be replaced by

(n-1)fs Hu+;s II((Vu)s,(Vu)s)+fs (u2 + (II + 20E)

((Vu)s, (Vu)s) + (n 1)02Hu2

If S 0, and R is a polyhedron, the boundary integrals vanish. More generally,
ifH >= 0, on $1, kg _>_ 0 on $2, and ki >= max {-2e, 0} on Sa we have

(ull2)z=fi(uZq-lVulZq-ux,oux,x)<=(lq-la-1 1- P-2) fR(AU)2,
where/ is the smallest eigenvalue corresponding to the above mixed boundary
conditions.

All of the above can be applied to functions orthogonal to the first n
eigenfunctions, and a similar inequality is obtained with/ tn.

Since + t- +/- is a decreasing function of t,/ > 0, each of the above
may be thought of as an isoperimetric inequality characterizing the eigenvalues
of -A subject to the appropriate boundary conditions.

If A maps the subspace of WZz(R) defined by the boundary condition(s) onto
Lz(R), the above results yield upper bounds on
and R is a polyhedron,

A -1 (1 + -1 + //-2)1/2,
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and, more generally, if H _>_ 0 on $1, ki _>- 0 on $2, and ki >= max {0, -2} on $3,

A -1 (1 + fl-1 + -2)1/2.
Unfortunately, knowledge does not seem to be complete in this regard. For the
Dirichlet boundary condition it is true (for all n) if and only if R is convex [5].
For n 2, fairly complete results can be derived from [6]. In particular corners
where the Dirichlet boundary condition is imposed on both incoming arcs, and
those where the second or third boundary condition is imposed on each arc must
have an opening not bigger than , whereas a corner at which one arc has the
Dirichlet boundary condition and the other either the second or third must have
an opening not bigger than r/2.

3. A maximum principle for an equation of Cordes type. We conclude by
showing how the results of paragraph one can be applied to mixed boundary
value problems for the elliptic equation

Pu oijUxix f,

where aj are bounded and measurable and satisfy a Cordes condition, that is,
with the normalization

aii
i=1

we assume

a< (n- + e) -1
i,j=l

for some0<e< 1.

P may be thought of as an operator mapping W(R) into L2(R). In particular
we will think of P as restricted to the subspace X of functions which satisfy the
boundary conditions u 0 on $1, u, 0 on $2, u, + eu 0 on $3. (In the case
$1 $3 , the further condition R u 0 is imposed.) We then have the

following theorem.
THEOREM 3. Suppose that the curvatures of S satisfy H >= 0 on $1, k >= 0 on

S2, and k >__ max {0, -2} on $3. Then P is an isomorphism of X onto LE(R).
Further, if u X and Lu >= O, then u <= 0 in R unless $1 $3 J and u is

a positive constant.
We need the following lemma, which is a consequence of the Cordes con-

dition. It is proven in [1], where a result similar to the above was proved for

S=S1.
LEMMA. If Pij is a real, symmetric matrix, there is a positive constant A such

that

P,
i,j i,j Pij P22

=< B2( . aijPiJ
2

where

B2 g-2(n + e)((n + e) 1/2 + ((1 e)(n 1))1/2)2.
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Proof. Set Pij Ux,xj, and integrate the above inequality. After observing
that

Y (u,,Ux Uxiu,) (au) Ux,Ux,x,
i,j

applying the identities of paragraph one, and invoking the hypotheses on the
curvatures of S, we have

(*) fg (Ux,xjUx,x) <= B fg (PU)2.

Observe, now, that

ul 2 J. (uu)
is a norm on X which is equivalent to the one used earlier. In fact, using the
lemma of paragraph two, our fundamental identity, and the hypotheses on the
boundary curvatures, we have

fR(U2 + {VU[2 + ’D2u{2) <= (1 + ,u-1 + ,U-2) fRiD2u’2.
(We have assumed > 0 here.)

It now follows that P is an isomorphism of X onto P(X), and our first con-
clusion will be verified if we can show that P(X) Lz(R). This and the second
conclusion as well are demonstrated using a device introduced in [1]. We extend
aij to R by defining it to be 6ij/n outside of R, and introduce the functions

a!"(x) h-" fR d X-Yh ai(y)dy,

where h l/m, and d is the usual "mollifier". Then it follows that uo..t,,,) COO, they
satisfy the Cordes condition, and that uij’t") converges to aij in the weak topology
of LOO. Observe that (*) holds for the operators pt,,,) as well as P.

For P(X) LE(R) it suffices that P(X) contain C(R). Choose f in C(R).
By known theorems for elliptic equations with smooth coefficients there is u(’’)

in X such that pt")u(’’ f. Since

ut")
2 =< B f o,

the sequence {ut")} contains a weakly convergent subsequence and it is easily
shown that the limit of this subsequence is a solution of Pu f.

Suppose now that f L2(R) is nonnegative, let ft") be defined as above, and
suppose that u’) X is the solution of P")u’’) f’), and that Pu f. Then,
since

(P + P")(u" u) (f(,m f) + (p P(")u,
we have

]]u(")- u]12 =< 2B(llf(")- fl]o + II(P- P("))Ul]o).



The first term on the right tends to zero since f") approaches f in L2(R), and the
second does because ,ij") converges weakly to aj in L, and we deduce that u
converges strongly to u in X. Therefore, since each u") 0 (unless it is a positive
constant and $1 $3 ) the second assertion of the theorem follows.

Acknowledgment. The author is greatly indebted to L. E. Payne and H. F.
Weinberger for helpful suggestions in regard to this work.
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ON A FREE BOUNDARY PROBLEM, THE STARLIKE CASE*

DAVID E. TEPPER’

Abstract. Let be a doubly connected region limited by the infinite point and a starlike boundary
component F which does not reduce to a point. If 2 is a given positive number, we show there exists
a unique annulus oz having F as one boundary component and another boundary component
such that there is a harmonic function V in
on yz. We also show that y is starlike.

In this paper we generalize results proven by the author in [2]. We begin
with a doubly connected region @ limited by a compact boundary component F
and the point at infinity. Suppose F is starlike, i.e., if z F, then the line segment
[0, z[ contains no points in . If 2 is a given positive constant, we are concerned
with finding an annulus o c @ having F as one boundary component and another
boundary component 7, the "free boundary", such that there exists a harmonic
function V in o satisfying:

(a) V=0onF,
(b) V= onT,
(c) [grad V[ 2 on 7.

We will show that the above problem has a unique solution for fixed 2 whose
free boundary is also starlike. In [1], Beurling proved that the above problem has
a unique solution when F is convex. Therefore, we give a generalization of his
result in this paper.

Let cg denote the family of all subannuli of having F as one boundary
component. If co s g, the harmonic function in o) with boundary values (a) and (b)
will be denoted Vo and referred to as the stream function of co. We will make use
of the following result which is proved in [1].

THEOREM (Beurling). If there exists an annulus
such that

(1) ]grad

then there exists a solution
We now prove the following theorem.
THEOREM 1. For fixed 2 > O, there exists a unique solution f.
Proof We first prove existence. Consider the ring region

where

and

At,R {z’r < [z[ < R},

r (z.lzl < r},

R(log R log r)
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Let o) be the annulus in whose free boundary is Izl R. For z e At,R, the
maximum modulus theorem gives

(2) > log !z! log r
V(z) logR-logr"

Since equality holds in (2) when z lies on the free boundary of co, we have

(3) [grad V(z)[ <__ <_ 2.
R(log R log r)

Hence, by Beurling’s theorem, there exists a solution fla c o.
We now prove uniqueness. It is shown in [1] that if there exist two solutions,

then there exists a case where one solution is contained inside another solution.
Suppose fa and fx are such a pair of solutions with fx c fx. Let 7x and 7a denote
the respective free boundaries off and f. There exists a largest positive number
Po such that

A {z" p-1Z t ]1}
lies inside 7. We note that Po < 1. Let

F’ {z’to" 1Z e F},
and let D be the annulus with boundary components F’ and A. If V is the harmonic
function in f such that V 0 on F’ and V on A, then

(4) V(z) Vn;(plz).
By the maximum modulus principle, for z f FI f we have

(5) V(z) > v,(z).
However, there exists at least one point z0 6 A 7. From (5), we obtain

Igrad V(zo)l <__ ]grad Vn,(Zo) .
Igrad V(zo)l pg llgrad Va:; (p 1Z0)

(7)

>2.

This proves uniqueness.
Using techniques of [2], the following theorem may be proved. We omit the

proof.
THEOREM 2. If/]1 > 22, then

() , .
Furthermore, if is the free boundary of, then

(9) U
>0

(6)

From [4) we obtain
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In [-23 it is shown that if F is convex then y is convex. The following theorem
shows that this "convex" may be replaced by ’starlike".

THEOREM 3. If F is. starlike, then 7 is starlike.
Proof Let p > 1. Consider the annulus whose boundary components are

F’= {z’p-lzF},
,,, {z" p z e,,,}.

Let f’ be the annulus in cg whose free boundary is 7,. By the maximum modulus
theorem, we have

(10) Vn,(z) >= Vn(p- lz)

Therefore, on the free boundary of ’, we have

Igrad Va,(z)l p-lgrad Va(p-z)l
(11) p-1

<2.

Hence, by Beurling’s theorem, fl’ = fl and 7a is starlike.
In 2], the author proved that as ). - 0, the free boundaries 7a are in a certain

sense asymptotic to a family of circles. We remark that similar reasoning applies
in the starlike case which we consider in this paper. One could thus easily prove a
theorem similar to Theorem 4 in [2].
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A STABLE MANIFOLD THEOREM FOR A SYSTEM
OF VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS*

R. K. MILLER" AND J. A. NOHEL

Abstract. We study the behavior of solutions of the perturbed system

(N) z’(t) Az(t) + B * z(t) + Hz(t), 0 <- < ,
with initial condition z(0) Zo, for IZo] sufficiently small" z is an.n component vector, A is a real n n
matrix, B is a real n n matrix of functions in L(0, ), B * z is the convolution, and the perturbation
vector H of nonlinear functionals defined on appropriate Banach spaces represents higher order
terms in z. The underlying hypothesis is that the equation

(E) det (sI A (s))= 0, Re _> 0,

where is the Laplace transform of B has N roots {st,s, ..., ss}, Re s > 0, _< N < o, where
each root s has multiplicity m, j 1,..., N, and (E) has no roots s with Re s 0. The principal
result is a stable manifold theorem for (N)" the classical such theorem of H. Weyl for ordinary dif-
ferential equations (B _= 0) is a special case.

1. Introduction. We consider the perturbed system of integro-differential
equations

(N) z’(t) Az(t) + B * z(t) + Hz(t), 0 <= < o,

with initial condition z(0) zo, where

z(t) (t )z() d.

We shall assume throughout this paper that A is a real constant n x n matrix
and that the real matrix B(t) LI(0, o); the perturbation vector H of nonlinear
functionals satisfies H0 0 and represents higher order terms in z defined on
certain natural Banach spaces. Let

io/(s) exp sOB(t) dt

denote the Laplace transform of B. It is well known (Grossman and Miller [4],
Shea .[12], Shea and Wainger [13]) that if the equation

(E) det (sI A -/(s)) 0, Re s >_ 0,

where I is the identity matrix has no roots, then the resolvent kernel R e L(0, oe)
R is defined to be the solution ofthe linear problem, called the resolvent equation"

R’L(t) ARL(t + B * RL(t), RL(O I, 0 <

* Received by the editors June 14, 1974.
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In this case the behavior of solutions of (N) with IZo] sufficiently small has been
thoroughly studied for a variety of perturbations H. (See Grossman and Miller
[3], Miller [6], 7], Nohel 9], [10], [11]).

In this paper we investigate the situation in which

(H)
equation (E) has N roots {$1, $2, SN} Re sj > 0, N < oc,
each root sj has multiplicity mr, j 1,..., N, and (E) has no
roots s with Re s 0.

Our object is to studythe behavior ofsolutions ofthe system (N) on0 <__ < c
for [Zo[ sufficiently small. This will be done in Theorems and 2 below; these
theorems will establish the existence of a stable manifold for equation (N) through
the origin of ". It may be remarked that assumption (H1) and the Proposition
in {} 2 imply that the linear system arising from (N) by taking H 0 has an m-
parameter family of solutions which tends to infinity as +oe, where
m m + m2 -t-- + mv is the total multiplicity of all roots s of (E) with
Re sj > 0. The classical stable manifold theorem for ordinary differential equations
(see Coddington and Levinson [2, Chap. 13, Thm. 4.1]) follows from our results
by taking B(t)=_ 0 and H to be sufficiently smooth functions from R" into R"
satisfying assumption (H2) below. The stable manifold for (N) is analysed in
Corollary below for the case that the roots sj, Re sj > 0, of equation (E) are
simple. A general result about the stable manifold for (N) is proved in Theorem 3.
As will be seen in all these cases, the natural and interesting situation arises when
the total multiplicity m m + + ms < n. To prove Theorem 3 an extension
of Theorems and 2 is needed to systems more general than (N); this is done in
Theorem 4.

2. Summary of results. Define

(2.1) F(s) sI A B(s).

Near each root sj of E with Re sj > 0 the matrix F-t(s) has the Laurent series
expansion

j-

2 Pjk(S Sj) -k-1 -’[- 2 Ljk(S- Sj)k’
k=O k--O

where Pjk, Ljk are constant n x n matrices. It may be noted that the resolvent
kernel RL is also completely determined by the relation/L(S) F- (s) as may be
verified by taking Laplace transforms in the resolvent equation together with the
initial condition RL(0) I. It will be convenient to decompose Rt, in the following
way. Define

N m k

(2.2) W(t) P;k exp (s;t), < < ,
j-- k=O

and define

(2.3) R(t) RE(t W(t), 0 <- < ,
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or equivalently by its Laplace transform,
N j-

R(s) F- ’(s) 2 2 Pjk(S Sj)-k-
j=l k=O

From the initial condition RL(0) I and from (2.2), (2.3) one has
N

(2.4) R(0)+ W(0)=R(0)+ P;o I.
j=l

It may be noted further that while
N j-

W(s) 2 Pjk(S sj) -k-1
j=l k=O

the function W is well-defined on - < < . The following result is known
concerning the decomposition (2.3) of the resolvent kernel RL and the represen-
tation of solutions of linear systems ofintegro-differential equations on 0 =< <
Let BC {f’[0, ) into R", f bounded and continuous} with uniform norm;
let BCo {f BC’lim,_ f(t) 0}.

PROPOSITION (for a proof see Miller [8, Thms. 1, 2, 3]). Let B(t) LI(O,
and let hypothesis (H1) be satisfied; then R(t) C[0, ) VI L’(0, v), < p __<
and lim,_ R(t) O. Moreover, iff Lq(O, ), <= q <= , or f BC or f BCo,

then the solution x(t) of the linear initial value problem

(L) x’(t) Ax(t) + B * x(t) + f(t), x(O) xo,

is given by (the variation of constants formula)

(2.5)
x(t) R(t)xo + W(t)xo + R f(t) + W(t )f() d

W(t )f()d, 0 <__ < .
Remark. If one uses (2.2), elementary properties of Laplace transforms and

the binomial theorem in (2.5), one obtains the following equivalent form of the
solution (2.5) of (L)"

(2.6)
x(t) R(t)Xo + . exp (sjt) kXo

j=l k=O

Pji
(i k)

f(i
i--k

+ R,f(t)- -.j= k=O
(t )k exp sj(t )f()d,

where

f(k)(sj) fffis exp (- st)f(t) dt
S:Sj

To state the main results let X with norm denote any of the spaces
BC, BCo, LP(0, ), =< p =< , of functions q from 0, )into "; let I. denote
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any vector norm and the corresponding matrix norm. Concerning the pertur-
bation functionals H in (N) assume

The mapping H’X-- X is continuous, H0- 0 and for every
(H2) e > 0 there exists a 6 > 0 such that IIHz Hz211 <= e z z21

for all Zl, z2 e X for which IIzjll <_- 6, (j 1, 2).

Define the operator K on X by the relation

(2.7) Kq)(t) R(t)a + R * Hip(t) W(t )Htp()ds, q e X, 0 <__ < o,

where a e [" and where the matrices R(t), W(t) are defined in (2.2), (2.3) respectively.
It may be noted that according to the Proposition, R(t) X; moreover from (2.2)
and (H1) there exist constants M, r > 0 such that

(2.8) W(t)l _-< M exp (at), -oe < __< 0.

The first result concerns the Volterra equation

(V) z(t) Kz(t), 0 <= < .

HO(-, a) )(si) ffsk exp (-- st)Htp(t, a) dt
S=Sj

The proof of Theorem is carried out in 3 using a contraction mapping
argument.

We next turn to the question of finding sufficient conditions in order that
the solution O(t, a) of (V) in Theorem will satisfy the initial value problem (N)
for some small lal. It may be noted that (V) and (N) are not equivalent problems.
It follows from (N), the Proposition and (2.6) that (N) is equivalent to the Volterra
equation

N m tk
z(t, Zo) R(t)zo +

1 . exp (sjt)
j= k=O

Hz(., Zo)(i-k)(sj) -- R * Hz(. Zo)(t
i=k (i- k)!

w(t )Hz(, Zo)cl, 0 <= < oc,

where z(t, Zo) is the solution of (N) satisfying the initial condition z(O, Zo) Zo.
The solution of equation (V) with lal sufficiently small is bounded in the sense

where

THEOREM 1. Let B(t)eLl(O, oe) and let hypotheses (H1) (H2) be satisfied.
There exist constants 61, t 2 0 such that if [a[ _<_ 61 the integral equation (V) has
a unique solution t(t,a)6 X and IlO(.,a) _<-62; moreover, O(t,a) satisfies the
condition

(2.9) 0(0, a)= a jl= Pjoa +
k=O

H0(’, a) )(sj)
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of Theorem 1. The solution z(t, Zo) of (N) is bounded and satisfies the integral
equation (V) provided the coefficients of the terms k exp (sjt) in (2.10) vanish for
k 0, 1,..., mj- 1, j 1,..., N. This is equivalent to the requirement that
zo be chosen to satisfy the system of equations

m Pi H(z( Zo))i-k)(si) 0PJkZ +
(i k)---5(M) i=k

j= 1,...,N, k=0,1,...,mj- 1.

By uniqueness of solutions of (V) for lal sufficiently small and by uniqueness of
solutions of (N) for Izol sufficiently small (implied by the Lipschitz condition in
(H2)) it follows that z(t, Zo) q(t, a) for some a, and it is bounded in the sense of
Theorem 1. Moreover, if a in (V) is chosen to be a Zo satisfying (M), then (2.9)
becomes q(0, Zo)= Zo. We shall refer to equations (M) as defining the stable
manifold for the system (N). This terminology is justified further by the following
result.

THEOREM 2. If X L(0, ) or BC, if the hypotheses of Theorem are

satisfied and if Yo ", lYol <- 61, but Yo is not on the manifold defined by (M), then the
solution z(t) of(N), z(O, Yo) Yo, must leave the ball {z:lzl <- 62} infinite time.

Theorem 2 is proved in 4.
Theorems and 2 generalize the familiar stable manifold theorem for ordinary

differential equations (see Coddington and Levinson [2, Chap. 13, Thm. 4.1]).
Hale [5] has obtained such a result for functional differential equations with
finite time lags using strongly continuous semigroups and the Hille, Phillips,
Yosida theorem to obtain an exponential dichotomy for solutions of the ap-
propriate linearized equation. That method is not applicable here.

We also remark that Antosiewicz [1] has considered some abstract problems
using fixed point methods which are related to theorems about stable manifolds.
However, his technique does not yield our results.

We now consider several special cases.
Example 1. The ODE case. This arises from (N) and Theorems 1 and 2 by

choosing X BC or BCo, B(t)=-0 and the functionals H to be continuous
functions from E" into E" satisfying hypothesis (H2); (E) is the characteristic
equation for the matrix A and hypothesis (Ha) means that A has N eigenvalues
21,’", 2s with positive real parts. If their multiplicities are ml,m2, ..., ms
respectively, let rn m + m2 -f- -f- ms. Let tn < n; then in accordance with
(H) the remaining n- rn eigenvalues of A have negative real parts. Without
loss of generality we may assume that the matrix A is block diagonal:

A diag [A, A2],

where the matrix A of n m rows and columns has all eigenvalues with negative
real parts and the m x m matrix A 2 has all eigenvalues with positive real parts.
The resolvent kernel is RE(t) exp tA; the kernels R(t) and W(t) of (2.2), (2.3)
are given by

exp tA2
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and the hypotheses of Theorems and 2 are satisfied. The stable manifold is of
the form

(2.12) xj vj(x,, x,_,,) W(-)HO(, x) d

for j n m + 1,..., n. This can be seen as follows. From (2.5) with f replaced
by the functions H(z), the special form of R(t), W(t) in (2.11) implies that (2.10)
has the form

z(t, Zo) R(t)zo + R * H(z( Zo))(t W(t )H(z(, Zo) d
(2.13)

+ w(t) Zo + w(-)14(z(, Zo)) d

Using the special form of W(t) in (2.11) again, equations (M) take the form

(MX) Zo + W(-)H(z(,Zo))d =0, j--n-m+ 1,...,n.

If zo is a vector satisfying (MX), the solution z(t, Zo) of (N) satisfies (V) and by
uniqueness z(t, Zo) is (t, a) for some a. For any such bounded z(t, Zo) the con-
vergence of the integrals in (2.13) and in (M 1) follows from the hypothesis and
from (2.11). From (V) and the special form of R(t), W(t) in (2.11), d/(t,a) satisfies

j(O, a)
W(- {)H((, a)) d ifj=n-m+l,...,n;

it is clear that in view of (2.11) only the first n m components of a enter and a
may be taken as a vector whose last m components are zero. Thus the initial
values xj qj(0, a) satisfy the set of equations of the form (2.12). These define a
manifold in x-space of dimension n m or codimension m.

Returning to the general case of (N) it is possible that the stable manifold
(M) is the single point {zo 0}; indeed, this is the case if, for example, m ml
+ + mN => n and n 1. It is also clear that, in general, the equations in (M)
are not independent. We now analyse the stable manifold (M) in another special
case.

Example 2. If equation (E) has only simple roots sj, Re sj > 0, j 1, -.., N,
the following result is true.

COROLLARY 1. Let the hypothesis of Theorem be satisfied and let the roots
sj, Re sj > 0, j 1,..., N, of equation (E) be simple. Then the stable manifold
(M) for the system (N) is given by the relations

(2.14) )r + Hkz( Zo)(S) 0 j NlkkOk
k=l

where

Hz( Zo)(S (Hlz( Zo) H,z( Zo)

exp (- st)Hz(t, Zo) dt,
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and where 0)Oik are the elements of the matrix Qf and Qj is the constant nonsingular
n x n matrix such that QfIF(sj)Qi is in Jordan canomical form (5.3) below,
j 1, N. Moreover, if N (= m) < n the stable manifold defined by (2.14) has
codimension at most N. In particular, if N and n > 1, this stable manifold has
codimension one.

The smoothness of the stable manifold is determined by the smoothness of
the perturbations as illustrated by the following result.

COROLLARY 2. Let the hypothesis of Theorem be satisfied and let

(2.15) Hz(t) A lgl(Z(t))

where A1 is a constant n x n matrix, B, B2 L1(0, 09) are given n x n matrices,
gl, g2, g4 are vector functions and g3 is a scalar function, all in the class C) (or
analytic) with respect to the components of z, in a region containing the origin
z 0; moreover, g#(0) 0, j 1, 4, and g’(z) o(1) as ]z] 0, 1, 2. Then
the degree of smoothness of the manifold defined by equation (M) assuming the
form (2.15) is the same as the degree of smoothness of the perturbations.

Corollaries and 2 are proved in 5.
When equation (E) has N roots s;, Re s# > 0, which are not necessarily

simple we have the following characterization of the stable manifold extending
Corollary 1.

THEOREM 3. Let X BC, let the hypothesis of Theorem be satisfied, and let
0 < m m -F mE -t- -F m < n. Then the stable manifold for the system (N)
defined by equations (M) has codimension at most m.

This result is proved in 6.
In the proof of Theorem 3 the following extension of Theorems and 2 and

of the associated stable manifold will be needed for an integro-differential system
more general than (N) of the form

(2.16) z’(t) Az(t) + (B * z)(t) + h(z,zo)(t), z(O) Zo,

where A, B are as in (N) and where

(2.17) h(z, Zo)(t g(z, Zo)(t + 7(t)zo

in which g is a mapping from BC " into BC satisfying the hypothesis

(H3)
g(0, 0) 0 and for every e > 0 there is a 6 > 0 such that if tpj BC
and IqjI =< 6 (j= 1,2) and if IZol _-< 6, then IIg(ql, Zo)- g(q2, zo)ll
_-< ellq91 q921

and in which

(H4) ’(t) is an n x n matrix in BC ["1LI(0, ) and 7(+) 0.

In what follows it will be assumed that X BC or BCo. Define the operator
on X by the relation

(2.18)

(/qO(t) R(t)a + R(t )h(o, a)()d

W(t )h(qg, a)() d, oX, 0__<t< o,
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where the matrices R, W are defined by (2.2), (2.3) and a e ,, lal N 6.
THEOREM 4. Let B(t) LI(O, oo) and let hypotheses (H1), (Ha), (H4) be satisfied.

There exist constants 61,62 > Osuch that.if la] <= 61, the integral equation

(V) z(t) Kz(t)

has a unique solution O(t, a) X such that qt(., a)ll <- (2. The solution qt(t, a) will
coincide with the solution z(t, Zo) of the system (2.16)for some at ", ]al <- 61 if
IZol is sufficiently small and if zo satisfies the stable manifold equations

j-1 Pji j-1 PjiPJ +
(i k)p’i-)(sJ) zo + (l k[h(z(" zo), zo)’i-,(sJ) O,

j= 1,...,N, k=0,1,...,mj_.

Moreover, if Yo R", iYoi small, but Yo does not satisfy equations (M), then the
solution z(t, Yo) of (2.16), z(O, Yo) Yo, must leave the ball {z’lzl 62} in finite
time.

The proof of Theorem 4 is an easy extension of the proofs of Theorems
and 2 and it will not be carried out in detail. It suffices to note from (2.17), (2.18),
(Ha) and (H4) that for lal 0 and Oil N 6 one has

IIKcPll sup IR(t)l lal + IR()ld + W()ld IlcPll + sup 17(011al
O=<t<oo O=<t<oo

Thus for suciently small, it is easy to obtain an estimate like (3.5) in the proof
of Theorem and then establish that/ is a contraction on the appropriate ball
$2. Equations (M) are obtained from (M) by replacing Hz(., Zo) by h(z(., Zo), Zo)
and using (2.17) and 7(t) LI(0, oo). To prove the last statement one follows the
proof of Theorem 2 with Hz replaced by h(z, Zo).

3. Proof of Theorem 1. Let be the norm in X and let
o

sup IR(t)l, RII, IR L’, W(t)l dt
O_<t<oo

Fix e > 0 so that eM <__ 1/4 and choose a corresponding > 0 in accordance with
(H2). Let 0 < 62 < 6 and consider the ball

s2 q x. IIp 2},

It will be shown that the mapping K defined by (2.7) is a contraction on S2 for
la] sufficiently small.

It is readily shown using R(t)e LI(O, oo) and inequality (2.8) that the map-
pings R and W defined respectively by

(3.1) Rf(t) R(t )f() d, 0 <= < c, f X,

(3.2) Wf(t) W(t )f() d, 0 <= < , f X,
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are continuous mappings from X into X. Note that for X LP(0,
one has the well-known inequality

(3.4) II Wfll, _-< W()I dllfllo.
and similarly,

0

(3.4) wfl w()l dllfl .
If X BCo or BCo LP(0, ), one has from (3.1), (3.2) as well as (3.3), (3.4)
that lim, Rf(t) 0 and lim,_, Wf(t) 0, wheneverf X and lim, f(t) O.

Let fil min (5, fi/(2M)). It follows from (2.7), (2.8) and R(t)L(O, ) that
if S: and if X is any one of the spaces listed, then K X and

IK] Mlal + IIHII IR()l d + IW()l d

here in case X LP(O, ) use has been made of the Minkowski inequality and
of (3.3), (3.4). Moreover, using the definitions of M, e and 61 and of hypothesis
(H2), one obtains

(3.5) Kll 5 MI + 2Me 11 + 62 (lal 1)"

Hence KS2 $2 provided lal
Now let 1, 2 $2. Then (2.7) and (H2) imply

IIKee Kel He2 gelll. IR()I de + IW()l d

Thus K is a contraction on S: and the existence and uniqueness of the solution
if(t, a) X of the Volterra equation (V) follows from the contraction mapping
principle. Returning to (V) and using the definitions (2.2), (2.3) yields the initial
condition

N mlpkO0(0, a) R(O)a (-) exp(-t)HO(, a) d.

The initial condition (2.9) results from this by using (2.4) as well as elementary
properties of the Laplace transform. This completes the proof of Theorem 1.

4. Proof f ere . The proof is similar to the corresponding result in
ordinary differential equations (see [2, p. 332]). Suppose the solution z(t, Yo) of
(N), z(0, yo)= Yo, lYol , Yo (M), does not leave the ball {z’lz N } in
finite time. The solution z(t, Yo) of (N) satisfies the Volterra equation (2.10) with

zo replaced by Yo and Iz(t, Yo)l e, 0 < . Let

M max IR()I d,

K sup lHzl, K M( + 2K).
Izl 2
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If Yo (M) one has from (2.10) (with zo replaced by Yo)
U j- tk

(2 Iz(t, Yo)l >= exp (s/)
k=O -"

PjkYo +
(i- k)Hz(’’y)(’-k)(sJ) K x’ 0 <= < .

i=k

Since the exponential terms on the right-hand side have Re sj > 0 and since this
exponential polynomial is not identically zero, this yields a contradiction and
completes the proof of Theorem 2.

5. Proof of Corollaries 1 and 2.
(a) Corollary 1. Equations (M) for the stable manifold in the case of simple

roots sj, Re sj > 0, are

(5.1) Pjo[Zo + Uz(O, Zo)(Sj) 0, j 1,..., N.

Near each root sj, F- (s) has the Laurent expansion

F-I(S) Po(S s)- + Ljk(S s)k,
k=O

from which one readily obtains the relations

(5.2) PjoF(sj) F(sj)njo O.

Since sj is a simple zero of det F(s) 0, zero is a simple eigenvalue of the matrix
F(sj). Hence there exists a nonsingular matrix Qj such that

0 0

(5.3) Q; F(sj)Qj

’tn-

where 2k 4: 0, k 2, ..., n and 62, i are either zero or one. From (5.2)
one has

0 Q-; PjoF(sj)Qj Qj- PjoQjQf ’F(sj)Qj.
Let Mj Qj-PjoQj v,,kt’*’J), i, k 1,... n. It then follows from (5.2), (5.3) that

0 22m2 6zmz + 3m3 6,_lm,,_l "[" 2,m{,1
/

0 Q]-IpjoF(sj)Qj 2zmi2z 6zmi2z + 23mz3 6,_xmi2,,_ +

0 22mi.: 6zmJ,2 + 23m3 6,_lm,,_l +2,mi,,.J
Then/k 0, k 2,.-, n, readily yields

mJl 0 0

|m 0 0
I
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A similar calculation using the second relation in (5.2) yields
ml 0

i(5.4) M ml O.

l_ 0

Since Pjo QjMjQ-f 1, (5.1) may be written as

(5.5) mjQ-f [zo + Hz(., Zo)(S)] 0, j= 1,...,N,

which in view of the special form (5.4) means that "the first component of the

vector Q-[zo + Hz(.,Zo)(Sj)] 0", and this written out gives the relations
(2.14) for the stable manifold for j 1, ..., N.

If N 1, (2.14) is exactly one nontrivial relation. Hence if also n 1, the
stable manifold is the single point {Zo 0}. If n > 1, the stable manifold has
codimension 1.

If n > and =< N < n, consider the vectors

(5.6)

The stable manifold has codimension N if and only if the N vectors (5.6) are
linearly independent. Therefore, if n __> and N > 1, the N vectors (5.6) contain
a linearly independent subset which spans a subspace of dimension =< k __< N.
If k >__ n, the stable manifold consists of the single point {zo 0}; if <_ k < n,
the stable manifold has codimension k <_ N. This completes the proof of
Corollary 1.

(b) Corollary 2. Here the stable manifold is defined by equations (M) with

H(z( Zo))(s Algl(Z( Zo))(s + Bl(S)gz(z( Zo))(s

(5.7)
+ e-S e-SUg3(z( + u, zo)Bz(u du) g,(z(, Zo) de,

where the last integral was obtained after an application of the Fubini theorem.
Thus if the g Ck or if the gj are analytic near the origin, j 1, ..., 4, the stable
manifold defined by (2.14), (5.7) has the same type smoothness property. Use is
made here of the differentiability (or analyticity) of solutions (., a) of equation
() and of solutions z(., Zo) of (N) with respect to a and Zo respectively where the
perturbation functionals H are replaced by the functions (2.15). Such results are
well known for ordinary differential equations and essentially the same proofs
carry over to the present situation. For a proof of the smoothness of the stable
manifold in the ODE case the reader is referred to [2, Thm. 4,2, Chap. 13]. This
completes the proof of Corollary 2.
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6. Proof of Theorem 3. The result has already been established when each
root sj of (E) with Re sj > 0, j 1, ..., N, has multiplicity m and if m ml
+ + ms N; in particular the result is true if m (= N) 1. We proceed by
induction. Suppose that the theorem is true if m m + + ms k and con-
sider the case m k 4- 1.

Without loss of generality we may assume that s is at least a simple root of
equation (E); this means that the matrix F(s) defined by (2.1) has the Jordan
canonical form

0 0

,2 (2
F(s)

where 32, (n-1 is zero or 1, the possibility 2j 0, j 2, is not excluded and
where all the entries not shown explicitly are zero. Otherwise a linear change of
coordinates applied to (N) can be used to achieve this without changing the form
or character of (N).

Define the n x n matrix

C(t) diag [es’t, e-t, e-t],

and note the formula (obtained by integration by parts)

c(t s)z’(s) ds z(t)- C(t)z(O) + C’(t )z() d.

Let z(t, Zo) be a solution of (N). If both sides of (N) are "convolution multiplied"
by C(t), it follows that the solution z(t, Zo) satisfies the integral equation

(6.1) z(t, Zo) C(t)Zo + C * Hz( Zo)(t + a * z( Zo)(t),

where

(6.2) a(t) -C’(t) + C(t)A + C * B(t).

It follows from [8, Lemma 5] that a(t), a’(t) L(O, ) and since a(t) is continuous,
also limt_.o a(t) O.

Define y y(t, Zo) by the relation

(6.3) y’(t, Zo) 4- y(t, Zo) z(t, Zo), y(O, Zo) zo.

Thus

(6.4) y(t, Zo) e-’zo + e-"-z(, Zo) d.

(6.5)
y’(t, Zo) A y(t, Zo) + BI * y( Zo)(t)

+ [C(t)- a(t)]zo + C * H[y(., Zo)+ y’(., Zo)](t),



518 R.K. MILLER AND J. A. NOHEL

where

(6.6) A1 a(O) I, B l(t) a(t) + a’(t).

LEMMA 6.1. If z(t, Zo) BC is a solution of (6.1) on 0 -< < c, then

(6.7) Zol + nz( Zo)(Sx) O,

where Zo is the first component of zo and Hxz is the first component of Hz.
Proof of Lemma 6.1. Since z(t, Zo) is bounded and since a(t) LI(0, oe), the

last integral in (6.1) is bounded. Thus the quantity

(6.8) C(t)Zo + C * nz(., Zo)(t)

is also bounded. From the definition of C(t) the jth component of (6.8) is bounded
for j 2, ..., n. The first component of (6.8) is

e"Zol + H1z(., Z0)(S1)
(6.9) [ fo ftes’t zol + e-’Hz( Zo) d e-’t-H z( Zo) d

Since the last integral in (6.9) is clearly bounded, but e’’ is unbounded on
0 _<_ < , (6.7) must hold. This completes the proof of Lemma 6.1.

It follows immediately from (6.4) that if z(t, Zo) is bounded for 0 =< <
then so is y(t, Zo). The converse of this statement is also true provided Zo and
z(t, Zo) satisfy (6.7); this will follow as a consequence of Lemma 6.2 below. Define
the mapping G’BC x [" - BC by the relation

(6.10) G(q, Zo)(t Htp(t, Zo).

It follows from hypothesis (H2) and from Theorem that a natural assumption
for the functional G to satisfy is

(6.11)
G(0,0) 0 and for every e > 0 there is a 6 > 0 such that if
qj BC and IIqjII _-< 6 (j 1, 2) and if IZol =< 6, then

G(q 1,z0) G(qgz,Zo) 3 (/91 (#2

LEMMA 6.2. Let h e BC be a given function and let the functional G satisfy
(6.11). For ]Zo] and IIhll sufficiently small the system of integral equations

(6.12)
Wl(t) eS’"-)Gl(h + w, Zo)( d,

Wk(t e -(t- Gk(h + w, Zo)( d, k 2,..., n,

where G [G1, G,], w [wx, "’", w,], has a unique solution w w(t, Zo) BC
which may be written in the form
(6.13) w(t) (h, Zo)(t),

where the functional satisfies (6.11).
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Proof ofLemma 6.2. If e in (6.11) is regarded as a function of 6, then e(6) --} 0
as60+ Fix 6o>0suchthat0<e(6)< 3, 0 _<_ 6 <__ gi o. Equations (6.12) have
the form

(6.14) w(t)- G(h + W,Zo)(t),

where G denotes the operator defined by the right-hand side of (6.12) and (3
satisfies (6.11). Let Bo {w e BC; [[w[[ __< 60/2}. Let h e BC such that [[h[[ <__ 60/2
and let zo " such that ]Zo[ __< 60/2. Then

((h+ wlzo)ll __<-llw+ h __<(Iw + I1h11)_-<6o/2.

for all w e Bo and all h e BC, IIh <- 6o/2. Thus maps Bo into Bo. Moreover, if
v, w e B and h e BC, IIhll <= 6o/2, zo e [", IZol <= 6o/2, then

6(h + v, Zo)- ,(h + W, Zo) <__ -}llv- wll.
Thus G is a contraction on Bo and th6 system (6.12) has a unique solution as
asserted.

To show that the solution (h, zo) satisfies (6.11), let hje BC, IIhjll <-_ r <= 6o/2,
let IZol -< r __< 6o/2 and let w(J), j 1, 2, be the corresponding solutions of (6.12).
Then

w(J)= tJ)(hi, Zo)= ((h + wtJ), Zo) j= 1,2,

and therefore,

w()-- wt2)l --II(hx + w(1),Zo)- (h2 + wt2),Zo)l
__< ,(o-)[llh h2l nt- IIwtl) w(2)ll
-<_ 1/2ll w(1)- w(2)l[ + e(a)llhx h2ll.

Thus {[w{1)- w{2)11 =< 2e(a)llhl hzl[, and since e(a)---} 0 as (r - 0 +, the solution
w ((h, Zo) satisfies (6.11) as asserted. This completes the proof of Lemma 6.2.

To apply Lemma 6.2 to the system (6.5), let [x]k denote the kth component
of x. Using Lemma 6.1 and (6.7) one has

y’(t,zo) [Aly(t, Zo) + BI * y(.,Zo)(t)]l. [a(t)Zo]

eS-)G y,I(Y -- Zo)( d.

An easy calculation using (6.2), the definition of C(t) and the canonical form
F(sl) shows that

e e[a(t)Zo] lt[F(s1)zo]l )B() dCzo
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Thus (6.5) becomes

y’(t,Zo) [Aly(t,Zo) + B1 * y(’,Zo)(t)] +

eS"-G(y + y’, Zo)() d,
(6.15)

y’(t, z) [A,(t, Zo) + B * y(., Zo)(t)], 4- [(C(t) a(t))Zo]k

+ e-t-)Gk(y + y’,zo)()d, k 2,..., n.

Define f col (f, ..., f,) by the relations

ft(t) [Ay + B1 y](t)- [a(t)Zo ,
(6.16)

f(t) [A,y + B, * y](t) + [(C(t) a(t))Zo], k 2,..., n.

Define w col (w, w,) by the relations

(6.17) wj(t) y)(t) fj(t), j 1,..., n.

Then equations (6.15) become

w(t) eS’(t-)Gl(y + f + w,zo)()d,
(6.18)

w(t) e-(t-)G(y + f + W, Zo)()d, k 2,..., n,

which is a system of the form (6.12) with h y + f. Since y e BC and since a(t)
is continuous and tends to zero as oe, one has f e BC and
+ [Zo[ 0. Thus Lemma 6.2, with h y + f, applied to the system (6.18) shows
that for [[y[[ and [zo[ sufficiently small (6.18) has a unique solution w of the form

w y’-f ((y + f, Zo),

or equivalently

(6.19) y’= f + (y + f, Zo)

where satisfies (6.11). Note that (6.11) is the same as hypothesis (H3). Writing
out the system (6.19) using (6.16) yields

(6.20)

y’(t, Zo) Aly(t, Zo) + B * y(., Zo)(t

+ (y + Ay + B * y + 7(’)Zo,Zo)(t) + 7(t)Zo,

y(0, Zo) to,

where

[7(t)Zo]l [a(t)Zo],, [7(t)Zo]k [(c(t) a(t))Zo],,

k 2, ..., n. Thus 7(t)e BC f’) L(O, o) and 17(+ oe)l 0.
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To see that the system (6.20) is of the right form to apply Theorem 4, define
the mapping h(q, Zo) by the relation

(6.21) h(q),zo)(t (q) + Alq) + BI *q) + 7(.)Zo,Zo)(t + 7(t)zo
for q e BC, where ( satisfies (6.11) for ]Zo], q sufficiently small and for 7 e BC.
From (6.11) it follows that h(q),zo) satisfies (H3). Moreover for e > 0 given and
I[qll =< 6, [Zo[ -< one has

]lh(q),zo)ll []((q + Aaq + B1 *0 + 7(’)Zo,Zo)ll + [17111Zol

Thus h(q, Zo) satisfies the hypothesis of Theorem 4.
It is clear from (6.20), y BC and B e L(0, o) that y’e BC; thus if (6.7) is

satisfied and if y e BC, it follows from (6.3) that z(., Zo)e BC. Hence the stable
manifold for the solution z(., Zo) of (N) can be regarded as the intersection of the
stable manifold of the solution y(., Zo) of the system (6.20) and of the surface
defined by (6.7). To complete the proof of Theorem 3 it therefore suffices to prove
that the stable manifold of the solution y(., Zo) of (6.20) has codimension at most
k. This will be done using Theorem 4 and the induction hypothesis.

Using the definition of C(t) and (6.2), (6.6) it is easy to compute

F(s) sI A B (s) (s + 1)C(s)F(s),

and therefore

(6.22) det F(s) (s s)- (s + 1) -"+ 2 det F(s).

Thus as in [8, Lemma 5] the multiplicity of the root s s of equation (E) has
been reduced by one by means of the "convolution multiplication" of (N) by
C(t) and by the change of variable (6.1) which has transformed (N) to the system
(6.20). In particular, from (6.22), note that s will not be a zero of det F(s) in the
case that s is only a simple root of equation (E). Relation (6.22) also shows that
the roots s2, "’, sN of (E) are unaffected by the above procedure.

Returning to the induction proof assume that the total multiplicity of all
the roots st, Re s > 0, of the equation (E) is k + 1. Then the total multiplicity of
the roots st, Re s > 0, of the equation

() det F(s) det (sI A B(s)) 0, Re s > 0,

is k. Equation () is the appropriate form of equation (E) with respect to the
system (6.20). By the induction hypothesis and the theory of the stable manifold
for the system (6.20) as extended in Theorem 4, it follows that the stable manifold
of the solution y(t, Zo) of (6.20) has codimension at most k. Hence that of the
stable manifold of the solution z(t, zo) of the system (N) is at most k + 1. This
completes the proof of Theorem 3.
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ASYMPTOTIC EXPANSIONS OF SOLUTIONS OF QUASI-LINEAR
ELLIPTIC EQUATIONS WITH SMALL PARAMETER*

MIN MING TANGf AND PAUL C. FIFES:

Abstract. The Dirichlet problem for singularly perturbed elliptic equations of the type_, ao(x, u, e.u,)ux,x + ., a,(x, u, eux)u, u + f(x, e) 0

is treated. An asymptotic series for the solution, containing boundary layer and interior terms is
developed, and its uniform asymptotic validity proved under certain (not too restrictive) conditions on
the coefficients and the boundary data.

1. Introduction. Let ) be a bounded domain in E", Euclidean n-space, with
boundary c3f. The boundary is a smooth (n- 1)-dimensional manifold.
Points x belonging to E" are given by x (x 1,,.." ,x,). We denote
Ux (uxl,’", Ux,).

Consider, for each e > 0, the Dirichlet problem for a quasi-linear elliptic
equation

(1,1a)

,g2 aij(X, U, e,ux)Ux,, + e ai(x, u, eu,)Ux,
i,j=l i=1

+ e.a(x, u, eUx) u -f(x, e)

for x fl, and

(1. lb) u(x, e) g(x, e) for x c3f.

The functions aij, ai,f, and g have continuous partial derivatives of all orders
with respect to the arguments x, u, Ux, and e; and cf is infinitely smooth. These
smoothness conditions are made for simplicity; only a finite degree of smooth-
ness is actually needed in our proofs.

We assume that there exists a classical solution u(x, e) of (1.1) for e in some
range 0 < e __< to, satisfying

(1.2) lu(x, e)l < Mo
for some Mo independent of e and x. Such existence results, with such a priori
bounds, may be found, for example, in [5]. In particular, under the assumption
that a(x, u, 0) 0, it follows from Lemma 3.2 of this paper that hypothesis (1.2)
will be satisfied.

The purpose of this paper is to obtain an asymptotic expansion of the solu-
tion which is valid as e 0+. Under certain hypotheses, we shall obtain a uni-
formly valid expansion in the form

(1.3) u(x, ) - v(x, e) + U(x, e),

where V(x, e) and U(x, e) are inner and outer expansions respectively.

* Received by the editors September 20, 1973.
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Certain generalizations of these results are immediately suggested. For
example, consider, in place of (1.1a), the equation

(1.4) auU,x + a,u, + ca(x, u, eu)- h(x, u, )= O.
i,j=l i=1

If we assume that the equation h(x, u, e) 0 has only a single solution u f(x, e),
and that h,,(x,f(x, e), e) > 0, then we may express h in the form h(x, u, e) (u f
(x, e))k(x, u, e) with k > 0. We may then divide (1.4) by k to obtain an equivalent
equation of the form (1.1a), which may be treated by the methods of this paper.

A second, minor, generalization would allow au, at and a to depend on e as
well.

The case when all the ai are identically 0 involves enough simplifications to
merit special consideration. Sections 2 and 3 are devoted to this case. The general
case is then taken up in 4.

Ladyenskaja and Ural’tseva [5] studied the question of existence and unique-
ness of solutions of problems of the type given by (1.1). Tang [8] obtained L2 and
L convergence estimates (as e 0) for the solution u of some quasi-linear
elliptic equations given in divergence form with small parameter e.

An introduction to the literature of obtaining expansions of differential equa-
tions with small parameter is given in O’Malley [6]. Viik and Ljusternik [9]
obtained expansions of solutions of linear elliptic equations with small parameter.

De Villiers, generalizing earlier work of Berger and Fraenkel, proved in [1]
the validity of Vi,ik-Ljusternik type expansions for equations of the form
e2Au + f(x, u, e) 0. Fife independently obtained such results for general second
order semilinear elliptic problems [2] and for quasi-linear elliptic problems [3] of
a certain type. In the present paper fewer restrictions are made on the higher
order terms of the differential equation than in [1]-[3], but the reduced problem is
of a more special type. Also our hypotheses on the boundary data are different
from those in [1]-[3].

Murray in [7] used the type of asymptotic methods treated in this and the
above papers to study singular perturbation problems in a cell biochemical
context.

2. The formal expansion. Here we treat the special case of (1.1 a),

(2.1) 2 i au(x, u, eUx)Ux,,, + ea(x, u, eu,,) u f(x, ).
i,j-"

In addition to the assumptions of smoothness, ellipticity, and existence of a solu-
tion made in 1, we make two additional hypotheses--the first to be used in
obtaining the formal expansion, and the second to be used in 3 to establish its
validity. For this purpose we define the function

(2.2) B(x, v, p) vi(x)v(x)aij(x, f(x, O) + v, pv)
i,j=

for all x e cf, and all real v and p. Here v (v l, ..., v,) is the inward-directed
unit vector normal to cf at x. Also let h(x, ) =- g(x, e) f(x, e).
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Hypothesis I. The function B may be estimated below in the manner

(2.3) B(x, v, p) >__ q(x, v)s(lp

for some positive functions q and s satisfying

flhtx’)l dt foq(x, t)
< ps(p) dp

for all x cfl.
Hypothesis II. There exists a number xl > 0 such that for all x cfl and

hil real numbers v l, v2, and p,

h(x, O)(cB/c3v)(x, v l, p)
<_1-.

B(x, U2, p)

Assuming that an estimate of the form (2.3) holds for some positive q and s,
both hypotheses will be satisfied if h is small enough. On the other hand, Hypothesis
places no restriction at all on h if B is bounded away from zero (q s const.

this is true if the operator in (2.1) is uniformly elliptic) or, more generally, if
B >__ s(lp]) with j’ ts(t)dt o. Similarly, Hypothesis II is satisfied if cB/v is
small enough, or if h and cB/cv have opposite signs.

We begin by estimating a formal Taylor series expansion of the solution
u(x, e) about e 0. To obtain the coefficients of the expansion, we differentiate
(2.1) successively with respect to e, and then set e 0 in the results. We thus obtain
the system of equations

(2.40) Uo fo,

and in general for r > 0,

(2.4r) u fr + Rr(x uo DuO D2u Dr D2Ur0 Ur-2 -2, -2

where R are known functions. In this way, we obtain an expansion

(2.5) U(x, ) u.
r=O

We map a suitably small neighborhood N of a portion Z of the boundary cfl
in a smooth invertible fashion into (-space, where (1, 2,"’, (,), so that
2; is mapped onto part of the hyperplane 1 0, and points in fl are mapped
onto points with 1 > 0. We denote the image of N by N’. For any given function
of x, we shall denote by the same symbol the corresponding function of resulting
from this transformation; thus for example, we write simply f(, e) in place of

f(x(), ).
In the new coordinate system, the equations (2.1), (1.1b) assume the following

form

(2.6)

(2.7)

2 L bu(, u, eu)u,j + eb(, u, u, e) u -f(, e);
i,j=

u(0, g(0,
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where

Thus, for example,

(2.8) b, 1(0, , f(0, , 0) + v, pv) B(, v, p).

We stretch the normal coordinate by defining ’l/e, and seek a formal
solution of (2.6), (2.7)in the form

u((, e) U(et, , e) + V(t, , ),

where

(2.10o)

(2.o)
where

Formally substituting this expression for u into (2.6), we obtain

(2.9) b11(w)V, V + eP f(et, , e) + U(et, , e),

where P is a function of ’, e, and derivatives of V of orders 0 to 2 involving at
most one differentiation with respect to t, and where

(w) (t, , u + v,u + v,, (u + v)).
To obtain the terms v,, we differentiate (2.9) successively with respect to ,

and set e 0 in the results. We obtain the system of equations

b (Wo)Vo, Vo O,

L1)r bll(WO)l)rtt + Cl(t’ )/)rt -+- C(t, )l) Sr(t ),

(Wo) (o, , uo(O, ) + ,o(t, ), ,o,(t, ), o),

8bll

c(t, ) b lu(Wo)Uot 1,

and the functions S may be expressed in terms of the functions Vo,
and their derivatives, and known functions. They vanish when Vo,
identically zero.

LEMMA 2.1. There exists a unique monotone solution of (2.10o) satisfying

2.) oO, ) ho) go0, ) oO, ); o, ) o.
It decays exponentially as .

Proof. If there exists a monotone solution, then we may write W
a function of Vo and . Thus (2.10o) becomes

UOWWvo bl l(Wo
0,

as

where wo (0, ,Uo(0, )+ Vo, Wv) and the second condition (2.11) becomes
W(O, ) O. Any monotone solution will have the property that Vo and ho have
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the same sign, and W has the opposite sign. We consider the case Vo > 0 and
W < 0; the other case may be treated similarly. We define Q(vo, ) WZ(vo, ),
so that the equation becomes

dQ H(,vo, Q)=_ 2vo/b,l(O,,uo(O, + Vo,-x/v)
dvo

(2.12)
Q(0, ) 0.

By [4, Lemma 5.2, the initial value problem (2.12) has a unique positive
solution defined in some interval Vo e [0, a). To estimate a we do the following.
By Hypothesis and (2.8), we know that

H(, vo, O) <= 2vo/q(, Vo)S(x/--).
Therefore a standard comparison argument shows that Q(vo, ) R(vo, ), where
R satisfies

hence

dR
2V.o/q(, Vo)S(x/-); R(0, ) 0;

dvo

5 (,/;Id q(g )
Setting z x/, we have fo s(z)z dz fo v dv/q(, v). By Hypothesis I, there
exists a solution R R(vo, ) defined for 0 __< Vo _-< ho(); hence a > ho(), and
there exists a solution Q(vo, ) of (2.12) defined for the same range. Solving

dvo -,/(, o). o(0, ) ho()
dt

we obtain automatically that Vo(, ’)---0, and hence the desired monotone
solution of (2.10o). Its exponential decay follows by the same argument as in
[1, Lemma 2.1.

LEMMA 2.2. For each r > 1, there exists a unique solution vr(t, ) of (2.10r)
satisfying

with

(o, ) h(() =_ g(O, ) (0, ),
(, ) =_ O,

t(t, ) <= C, e -’.

_Proof. Differentiating (2.10o), we see that Z(t)= rot is a solution of the
homogeneous part of (2.10). The rest of the proof proceeds as in [2, Lemmas 2.2,
3.4.

We have thus obtained a formal expansion of V(t, , ) in the form

(2.13) V(t,
r=0
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Let X(x) be a smooth cut-off function such that

(2.14)

O <= X(x) < 1, xe O

X(x) when dist (x, cf) < #/2.

X(x) =- 0 when dist (x, cX) >= #,

where # < dist (2;, #N).
We write the solution u(x, ) in the form

(2.15) u(x, e) U(x, e) + V(t, , e)X(x).

This formal expansion has been constructed only in the neighborhood N
of 2;. This was so that the differential operators involved could be written in
terms of a local coordinate system on 2;. However, this restriction to only a
patch of c?f is not necessary; in fact, we may interpret " as a symbol for any point
on cf, l(X) as distance from x to cXL and (as before) l/e. We may then,
in a unique way, write (2.1) as a formal power series in e, the coefficients being
differential operators in and in , the latter type now being interpreted in the
usual way as differential operators in the manifold cXL no reference to a local
coordinate system being necessary. With this understanding, our expansion V
is now defined in a neighborhood of the complete boundary

3. Proof of the validity of the asymptotic expansion.
THEOREM 3.1. Let u(x, e) be a C2(’-’) solution of (2.1), (1.1b) satisfying (1.2).

Let N be a fixed positive integer, and define

(3.1)

where

S(x, ) u(x, ) u(x, e),

N

(3.2) u(x, ) (u(x) + G(x, e)X(x))e,
r=O

and ur, vr and X are defined by (2.4), (2.10), and (2.14) respectively. Then for some
constant C independent of e,

(3.3) IS(x, e)ln =< CaN + .
Before we can prove the above theorem, we will need some preliminary

results. By LadyZenskaja and Ural’tseva 5], we have the following.
LEMMA 3.2. Let u(x, ) be a C2(f) solution of

(3.4) aj(x, u, ux, )uxixj + A(x, u, Ux, ) 0 in f,
i,j=

and

u(x, ) ok(x, ) for x
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Suppose the matrix (aij) is positive definite for all arguments x, u, ux, and e > O.
Suppose

Then

U2 for all u and e, > O"A(x u O, e)u < b + b2
b > 0, and b2 >_-0.

(3.6) ]u(x, e)]n _-< max {v/b2/bl, IqS(x, e)lon}.

Since us, as constructed, is bounded in maximum norm independently of e,
and since S- u- us, we obtain from (1.2) that for some M1 > 0, possibly
depending on N,

(3.6) ISI. < M x,

Proof of Theorem 3.1. Substituting u(x, e)= S(x, e) + uS(x, e) into (2.1), we
obtain the following equation in S’

or

where

a,(x, u + s, (u + Sx))(Ux,x +
i,j=

+ a(x, u + s, (Ux + s))

us S -f,

,2 aijSxix
i,j=

+ A(x, S, Sx, e) O,

A(x,S,O,e)=e2

i,j=

N Nau(x, us + S, eUx)Ux,x

+ ea(x, us + S, eu) us- S + f

N Naij(x, us, e.Ux)Uxix
i,j=

+ ea(x, u, eu) u + f

+ 2 au.(x u + OS UUx) Uxixj.S
i,j=

+ ea,(x, uN + OS, eu)S- S

A .(x, S, e)S + A2(x, ),
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where

AI --1- {2 i,j=
aiju(x’uN + OS’guUx)UUxixj-k- gau}

A2 e2 aij(X bin N N
bl
Ne.Ux)U,,xj + a- + f.

i,j=

2 N O(e) as e 0 except thoseBy construction, we know all the terms e Ux,xj are
involving normal (1) derivatives of Vo. Pursuing this further, we find

A l(x, S, e) b lu(0, , uN q- OS, t)otV)Vott(t, ) -F gp(x, S, ),

where IPl < M2. From (2.10o) we may replace Vott by bo/b11 and from Hypothesis
II, we obtain

(3.7) A1 >_- 1 em3 >_- 1/2Xl for small

LEMMA 3.3. For some constant M4 independent of
(3.8) IA2(X, ,)l M4eu+ 1.

Proof. This proof may be patterned after the proof of the analogous Theorem
3.6 of [2].

Combining this result with (3.7), we find

82 +1 $2 )2SA(x, S, O, e) N --t + m4e S <= --4 + __(m4eU+

hence from Lemma 3.2,

(3.9) ’Sln <= max {lSlon’2M4eu+l}
Finally, by the construction of the uN, we know they are within the order of

eu + of satisfying the correct boundary values: ISI0. _-< Ms/ . Combining this
with (3.9), we have

Ial, -<_ C,N + 1,

which completes the proof.

4. The general case. Here we return to the more general equation (1. a) and
outline the changes in the above treatment necessary to account for the additional
first order terms.

Hypotheses and II are changed in the following manner. In addition to the
function B defined by (2.2), we also define a function B by

Bl(x l), o) vi(x)ai(x f(x, O) + v, pv).
i=1

We then require the following.
Hypothesis I’. The estimate

v + BI(X,/),/9) < Q(X, V)
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holds for positive functions Q and s satisfying

flh(x’)l foQ(x, v) dv < ps(p) dp

for all x c.
Hypothesis II’. Let Ro(x) be defined as.the unique function satisfying

f,/-R- ps(p) dp Q(x, ) dr, x
0

Then there exists a number K 0 such that

for all x , all real numbers v l, p, and all real numbers v, R satisfying

Iv[ 5 Ih(x,O)l, IR] 5 Ro.
As before, these hypotheses are satisfied if h is small enough, or if B/Ov

and OB/v are small enough.
The construction of the asymptotic expansion and the proof of its validity

are entirely analogous to those in the special case. For example, the expression
on the left of (2.6) now includes terms e bu, in place of (2.9), we have

b,(w), + b,(w)- V + eP’= -f +
and (2.10o) becomes

bll(WO)uOtt + bl(wo)ot- o O.

Thus (2.12) is replaced by

dvo
2

b (. .)
Q(O ) 0

Similar changes are needed in the other formulas; details will not be given.
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JACOBI POLYNOMIALS, III. AN ANALYTIC PROOF
OF THE ADDITION FORMULA*

TOM KOORNWINDER"

Abstract. The addition formula for Jacobi polynomials is derived from the integral representation
for the product P,’ (x)P, (y) of two Jacobi polynomials. The proof uses integration by parts and some
new differentiation formulas for Jacobi polynomials. Several formulas related to the addition formula
are also discussed.

1. Introduction. This paper completes the analytic proof of the addition
formula for Jacobi polynomials, which was initiated in [13 and [83. In [13 Askey
gave an elementary proof of the Laplace type integral representation for Jacobi
polynomials. The author [8] derived from this formula the integral representa-
tion for the product Pt,’e)(x)Pt,’)(y) of two Jacobi polynomials. The present paper
contains the derivation of the addition formula from this product formula.

For the proof we need some new second order differential recurrence relations
for Jacobi polynomials. These are obtained in 2. The addition formula can be
considered as an orthogonal expansion in terms of certain functions in two
variables. It can be rewritten as an expansion in orthogonal polynomials in two
variables. This is discussed in 3. The addition formula is equivalent to a number
of integration formulas which represent the respective terms of the orthogonal
expansion. In 4 these integration formulas are derived from the product formula
which was proved in [8. This is done by repeated integration by parts and by
applying the differentiation formulas obtained in 2. In a similar way the degener-
ate addition formula for Jacobi polynomials and a generalized addition formula
for Bessel functions are obtained. Several related results are finally discussed in 5.

Three different proofs of the addition formula for Jacobi polynomials have
now been published. The first two proofs applied group theoretic methods. In
[4, [5, [6 it was used that certain Jacobi polynomials are spherical functions on
the homogeneous space SU(q)/SU(q 1). The proof given in [73 was based on the
interpretation of Jacobi polynomials as spherical harmonics. The present proof
uses only analytic methods. A slightly different analytic proof by Gasper is unpub-
lished (cf. 5, Remark 2). The author can announce yet another proof of the addi-
tion formula which is rather short and involves a certain class of orthogonal
polynomials in three variables.

Remark. In the following some elementary formulas for gamma, hyper-
geometric and Bessel functions and for orthogonal polynomials will be used
without reference. For these formulas the reader is referred to the chapters 1, 2, 7
and 10, respectively, in Erd61yi [3.

2. Some new differentiation formulas for Jacobi polynomials. Let the hyper-
geometric function be defined by

(2.1) 2F(a, b’, c; x) o (a)"(b)"x"z, Ixl <

Received by the editors February 5, 1974.
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There are a number of well-known first order differential recurrence relations for
hypergeometric functions (cf. [3, 2.8, (20)-(27)] with n 1). In this section some
second order differential recurrence relations for hypergeometric functions and for
Jacobi polynomials will be derived, which are probably new.

Replacement of x by x2 in (2.1) and termwise differentiation gives

(2.2) + F(a b" c" x) 4ab F(a + b+ l" c" x)
X dX

Using the identity 2Fl(a, b; c; x) (1 x)c-a-b 2F1(c a, c b" c; x) we derive
from (2.2) that

(dx22C-ld 2)a+b-c+2n [(1 x 2Fl(a + b + 1; c;x2)
X dx

(2.3)
4(c a 1)(c b 1)(1 X2)a+b-c2Fl(a, b’, c’, X2).

Jacobi polynomials P’a)(x) can be expressed as hypergeometric functions by
the formula

(-1)"(fl + 1),
2Ft _n n + 0 + fl + l’fl + 1"

+ x)p,t)(x)
n! 2

Substituting this in (2.2) and (2.3) we obtain the pair of differential recurrence
relations

(2.4)

d

(2.5)

d

Repeated application of (2.5) gives a Rodrigues type formula

(2.6)
22"n !(n + o + 1),,(1 x2)P(,,’)(2x2 1)

d2 23 + d
dx2 + x ax (1 X2)2n+.

If the variables x, y are expressed in the variables r, q5 by x r cos qS, y r sin ,
then

Hence formula (2.6) can be rewritten as

(2.7)
22"n!(n + 0 + 1),(1 x2 y2)P(’e)(2(x2 + y2)_ 1)

(Dt)"(1 x2 y2)2,, +,
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where De denotes the partial differential operator

2 2 2fi c
(2.8) De 6X2

-[- y2 -- y y"

Let the region R {(x, y)lx + y2 < 1, y > 0} denote the upper half unit disk.
LZMMA 2.1. Letf be a C-function on the closed unit disk {(x, y)[x2 + y2 =<

such thatf(x, y) f(x, y). Then the same holds for Daf Furthermore, if >
and > -1/2, then

ddR

(2.9)

ffR22"n!(n + 0 + 1), ((Dt)"f(x, y))(1 x2 y2 dx dy.

Proof It follows from (2.8) that Def is a C-function in x and y which is even
in y. Let e be fixed and larger than 1. Both sides of (2.9) are well-defined and
analytic in fl if Re > -. Since by (2.8),

D# =y-2# (y2e + (y2#y
it follows by repeated integration by parts and by application of Gauss’s theorem
that for k 0, 1,-.., n and fl > 0 we have

ff ((D#)"-(1- x2 y2)2n+)((D#)tf(x’ Y))Y2# dx dy
R

l(l X2 y/)Z"+)((D/)k+ f(x, y))y2 dx dy.

By these equalities and by (2.7), formula (2.9) is proved if > 1,/3 > 0. The case
of general fl follows by analytic continuation with respect to ft. Q.E.D.

We mention two other second order differential recurrence formulas for Jacobi
polynomials, although we do not need these formulas in the following sections. If
the identity

n 2 2F -n -n-fl’e+ l’x+
is substituted in (2.2) and (2.3), then we obtain the formulas

(de_X2+ 2+1dxdx (1 --}-" X2)"P’t) -1-+- )2X2)
(2.10)

X2

4(n + )(n + fl)(1 + X2) l__._l
+XSP’/){

d2 20 + d
2)- --/-x2 "1"-

x
(l --}- x --n-1 + X2

(2.11)
4n(n + 0 + fl)(1 + x2)-"---
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Repeated application of (2.11) gives a Rodrigues type formula

1)"22"n !( + / + 1).(1 + x2) a- 1p.,t) i+x21
x2

(2.12)

(d 2+ d)"/ (1 / xe)--a-
x

This formula is particularly nice, since for fixed and it expresses Jacobi poly-
nomials P’), n 0, 1, 2,..., as functions which are obtained by n-fold applica-
tion of a second order differential operator to an elementary function not depend-
ing on n. Tricomi obtained a simpler formula of this type for Gegenbauer poly-
nomials C, n 0, 1, 2, where 2 is fixed. His formula [3, 10.9 (37)] involves the
first order operator d/dx. There does not exist a straightforward generalization of
Tricomi’s formula to general Jacobi polynomials, because they cannot be written
as a solution of Truesdell’s F-equation (cf. Truesdell [11], Miller [9, ff 6.2]). How-
ever, formula (2.12) may be considered as a substitute.

3. A class of orthogonal polynomials in two variables. The addition formula
for Gegenbauer polynomials (cf. [3, ff 3.15.1 (19)] or (5.1)) can be considered as an
expansion of the function P’")(xy + y2t)(x, y fixed, > -)in
terms of the orthogonal polynomials P-/2’-/2(t), k 0, 1,2,..., i.e., with
respect to the weight function (1 t) / on the interval (- 1, 1).

Similarly, the addition formula for Jacobi polynomials (cf. [4, (3)] or (4.14))
can be considered as an orthogonal expansion of the function

P’a)((1 + x)(1 + y) + (1 x)(1 y)rz +i ye r cos 1)

,)tr(x,y fixed and a>> ) in terms of the functions ,l ,), k>l>0,
defined by

(3.) ’/(, ) e’--,+-/(2 )-/e5/,"-/(cos ),

which are orthogonal on the region {(r, )[0 < r < 1, 0 < < n} with respect to
the measure (1 re)--r2#+ (sin )a dr d. We shall prove that in terms of
suitable coordinates the functions , are orthogonal polynomials.

Let us define the functions o,)t, v) n > k > 0, in terms of Jacobi poly-
nomials by

(3.2) p,a)t,, V) p,#+n-k+ 1/2)(2v 1)Vn-k)/20#,)tV- /2U)an,k an-k

Since a Gegenbauer polynomial of degree n is even or odd according to whether n
is even or odd it follows that o’,)(u, v) is a polynomial in u and v. Comparing (3 1)In,

and (3.2) we obtain that

(3.3) ,a)t. (7- fl- 1,fl 1/2 r2, ,., ) , (r cos , ).

Let S denote the region {(u, v)lu2 < v < }, bounded by the straight line v and
by the parabola v u2 (cf. Fig. 1). The mapping (x, y) (u, v) defined by u x,
v x + y2 is a diffeomorphism from the upper half unit disk R onto the region S.
If r, 6 are polar coordinates on R such that x rcos , y r sin 4, then u

r cos , v r2 and #(u, v)/(r, ) 2r2 sin 4.
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FG.

THEOREM 3.1 Let , fl >- Then the polynomials Pt’t)tu v) satisfy then,k

following properties"

(n + + fl + 3/2)k(n- k + 2fl + 1),_ku,_kvk(i) --.,kP(’t)t"", V)
2" kk (n k)

is a polynomial ofdegree less than n;

an, ,., v)P,)(u, v)(1 v)(v u2) du dv 0

if (n, k) (m,l).

Furthermore, conditions (i) and (ii) define the polynomials Pt’)tu v) uniquely.n,k

Proof It is clear from (3.2) that for some constant c the polynomial
Pt’)(u, v) Cu"-kvk has degree less than n. The value of c follows from [3, 10.8,n,k

(5)].

To prove (ii) note that if u r cos , v r2, then (1 v)(v- u2) dudv
2(1- rZ)r2+2(sin 4)2+ldr dO. Hence part (ii) follows by using (3.2) and

the orthogonality relations for Jacobi polynomials. It is clear from (i) and (ii)
that

for each polynomial q of degree less than n.
Conditions (i) and (ii)’ uniquely determine the polynomials Pt’)tu ) Q.E.D.
Since the region S is bounded, it follows that the polynomials t’)t,, ) formn,k

a complete orthogonal system on S with respect to the weight function (1 )
( u). Hence the functions t’)tk. v, ) form a complete orthogonal system with
respect to the weight function (1 r)--lr X(sin ), 0 r l, 0 .

The author is preparing a paper in which the orthogonal polynomials
Pt’)t,, ) and the related classes of orthogonal polynomials inside the circle andn,k

inside the triangle are discussed in more detail.

4. The proof of the addition formula. It was pointed out in [8, 5] that the
integral representations for a Jacobi polynomial P’)(x), for the product P’)(x)
P’)(y) of two Jacobi polynomials and for the product J(x) J(y) of two Bessel
functions (cf. [8, (3.1), (3.7), (3.8)) all have the form

(4.1) f(ar + 2abr cos 4 + b) dm.(r, 4),
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where f is a C-function, a and b are positive real numbers, and
> > -1/2, denotes the measure

(4.2) dm=,/3(r, ) =/.t,/3(1 r2)a-fl- tr2/3+ t(sin b)2t dr dqb,

with the constant p,/3 such that

fffodm,(r, ck)=l, i.e., p,/3
2F( + 1)

,f r( fl)r( + 1/2)

The functions ,/3ttrg,,, qS), defined by (3.1), are orthogonal with respect to the
measure dm./(r, di)). Hence the integral (4.1) can be considered as the first term of
the orthogonal expansion of f(aZr2 + 2abr cos q5 + b2) in terms of the functions
i/3)(r, 4)). For the three cases mentioned above we shall derive this expansion in
an explicit way and thus obtain three different addition formulas.

If f is a C-function on [0, o), then let f" denote the nth derivative of f
and define the function fk,l, k >= O, on [0, ) by

(4.3) f,l(t2)
d2 2(/3 + kt- 1) + _7)/f(k_/)(/2).

LEMMA 4.1. Let > fl > -1/2 and k >= >= O. Then jbr all C-functions f and
positive real numbers a, b there is the identity

fo: f(a2r2 + 2abr cos q + b2)0a,i/3)(r, 4)) dm,/3(r, dp)

(4.4)
(0 fl)l(fl nt- 1/2)g- ag + ’bg-

22tl!(k 1)!(z 4- 1)g+

fg,l(a + 2abr cos + be) dm+g+l,/3+g_l(r, 49).

(4.5)

Proof The idea of the proof is to substitute Rodrigues’ formula

d
/( /1)"2"n !(1 x)(1 + x)/3P’/3)(x) x [(1 x)" + x)" /3]

and the Rodrigues type formula (2.6) in the explicit expression (3.1) for .g.’)t-,., qS)
and then to perform repeated integration by parts. Let I be such that/z,/3I equals
the left-hand side of (4.4). Then

I f(a2r2 + 2abr cos 4) + b2)p_- 1/2,/3-1/2)(C0S )

(sin b)2/3 dq)lPl-e- 1’/3+-l}(2r2 1)(1 r2)-/3- ’r2/3+g-’+ dr.
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By using (4.5) and by repeated integration by parts it follows that

fk-t)(a2r2 + 2abr cos q5 + b2)

PI-- 1’//+k-/)(2r2 1)(1 r2)a-it- ’(r sin )2(/+k-/)r drd49

(ab’-l f f(k -[i! fk-l)((ax + b)2 +

pla-/-1,/+k-/)(2(x2 _at_ y2)_ 1)(1 x2 y2)-a-1(y2)+-/dx dy,

where R denotes the upper half unit disk. Then, by Lemma 2.1,

(ab)k-I

2211!(k- 1)!(1 + - )l

2 2 2(fl + k- 1) c )’ f(-’)((axx2 + y2 +
y

+ b)2 + (aY)2)

(1 X2 y2)7-fl+2l-l(y2)+k-I dxdy.

Note that if ax + b cos ,, ay sin ,, then

Hence, by substituting x r cos 4) and y r sin 05 in the last expression for I, it
follows that/A,aI is equal to the right-hand side of (4.4). Q.E.D.

For the three choices of the functionf in which we are interested the functions

f, can easily be evaluated. We have

(4.6)

(4.7)

(4.8)

f(t2) 2",

221n!(n + fl + 1)/ t2n_ 2k k < ?lf"(t2)
(n k)!

f(t2) n’t)(2t2- 1),

fl(t2) 22/(n + a + fl + 1)(n- + fl + ln+k+l’t+-t)(2t2 1)II

f(t2) t-/J/(t),
f,(t2) =(_1)2 +t IS + lJe+k_l(t).

k<=n,

In (4.6) and (4.7),f./= 0 if k > n. Formula (4.6) is evident. Formula (4.7) follows
lp(+ 1,/+ 1)(2x 1).from (2.4)and the formula (d/dx)P.")(2x- 1)= (n + a + fl + -,_._
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To prove (4.8) we need the formulas (d/dt)(t-Jt(t))=-t-Jt+l(t)
((d/dt)2 + (2fl + 1)t- l(d/dt))(t-tS(t)) t-tS(t).

(4.9)

and

Using (4.4), (4.6), (4.7), (4.8) and [8, (3.1), (3.7), (3.8)] we obtain

fl f (1/2(x+ 1)+ 1/2(x- 1)r2+ x//x2-1r cos q)"i’(r, b)dm,(r, d)

n!(o- fl)l(n -l + fl + 1)/(fl + )k-l
2kl(k- l)(e + 1).+/

"(X- 1)(k+l)/2(X + 1)(k-l)/2D(+k+l’B+k-l)(x) if k < nan-k

(4.10)

fol 

P?’t)(1/2(1 + x)(1 + y) + 1/2(1 x)(1 y)r2

+ -w/1 y2r cos 05 1)ia’(r, 4))dm,(r, 49)

(n- k)!(n + o + fl + 1)k(O fl)t(n --l + fl + l)/( + 1/2)k-l

(X 2 4- y2r2 4- 2xyr cos b) -/2

ifkn,

(4.11)

The left-hand sides of (4.9) and (4.10) are zero if k > n.
By using (3.1), (4.2) and 3, 10.8 (4) it follows that

(4.12)
.k,t ,., 4))2 dm,l(r, dp)

(k 4- o)((k- I)/2 4- 3)(3 4- 1/2)k-l(3 4- 1/2)k-l( 4- 1)k(@
(k + + a)(k + fl)(2fl + 1),_(k l)!(a +

Hence the expansions corresponding to (4.9) and (4.10) are

(1/2(x + 1)+ 1/2(x 1)r2 + x//x2 r cos 05)"

(4.13) L L (k + l+ )(k -l+ /3)(2/3 + 1),_t(n- 1+ + 1)In!
,=o/=o’2’(k + )((k 1)/2 + fl)(fl + 1/2),_t(fl + 1),(e + k + 1),,_,+t

(X 1)(k +/)/2(X 4- )(k-l)/2p+ + l, + --l)(x

pl-t-,,+-)(2r2 1)r-lpt 1/2,- t/2)(cos b),
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p(,,)t+/-t 4- x) (1 + y) + 1/2(1 x) (1 y)r2

+x//1-x2x//1-y2rcosch- 1)- (k+l+)(k-l+fl)
k=0 /=0

( + +/ + )(2 + )_( + + 1)( k)
(4.14) 2(k + )((k )/2 + )( + )( + )_(k + +

(1 x)t/2(1 + x)-/2’-.._(x)
(1 y)t/2(1 + y)t-/2pt,a-(y)--n-

p-a-.ak-)(2r2 1)rk-pta- /2.-/2)(COS )k-l

Formula (4.14) is the addition formula for Jacobi polynomials (cf. [4, (3)]). We
call (4.13) the degenerate addition formula for Jacobi polynomials (cf. 5,
Remark 4).

The formal expansion corresponding to (4.1 l) is

(x2 + y2r2 + 2xyr cos )-a/2Ja((x2 + y2r2 + 2xyr cos )/2)
2r( + )(-)(k + + )(k- + )(2 + 1)_( + 1)

=0 =o (k + )((k )/2 + )( + )_( + 1)

x-ad_(x)y-d_(y)
p-a- .a+k-)(2r2 1)rk-pa 1/2,a-x/2)(cos ).

By rough asymptotic estimates it follows that in the right-hand side of (4.15) the
term of index (k, l) is of order (F(k c))- if k , where c is some real constant.
This estimate is uniform in l, 0l k. Hence the series in (4.15) converges
absolutely and the identity holds.

5. Discussion of the results. We conclude this paper with some remarks about
the addition formulas (4.13), (4.14), (4.15). No proofs will be given in this section.

Remark 1. If both sides of (4.13) or (4.14) are differentiated once with respect
to , then the same formula is obtained with n, , fl replaced by n l, + l,
fl + respectively. If the partial differential operator

2 2fl+ 2 cotO
Or2 2flr r r2 OOz r2

is applied on both sides of (4.13) or (4.14), then the same formula is obtained with
n, ,/3 replaced by n 1, + 2,/3, respectively. The same is true for (4.15) except
that the parameter n does not occur here. Both sides of(4.13) and (4.14) are rational
functions in and/3. It follows that if these two formulas are known in one specific
case (o, flo), then they can be proved in the case of general (,/3) by repeated
differentiation and by analytic continuation with respect to and/3.

Remark 2. Using the results in [8] Gasper obtained another analytic proof of
the addition formula (4.14) (personal communication to the author). He first
proved (4.9) by reducing the left-hand side of (4.9) to a multiple summation and by
manipulating this sum, and next he derived (4.10) from (4.9) by using Bateman’s
formula [8, (2.19)].
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Remark 3. If either e fl > -1/2 or e > fl -1/2, then (4.13), (4.14) and (4.15)
degenerate to orthogonal expansions in terms of functions of one variable. For
instance, putting e fl and r in (4.14) we obtain Gegenbauer’s addition
formula

P’’(xy + x//i x2v/1 y2 cos tk)

(5.1)
(k + e)(n + 2e + 1)k(2 + 1)k(n- k)!

=o/-" 2(k/2 + )( + 1/2)( + 1).

(1 x’2k/219(+k’t + a’2k/2D(+k’a+
--,-k k)(x)( k)(y)ptk 1/2,-1/2)(COS q).Y an-k

The same formula with n, x, y, cos th replaced by 2n, ((1 + x)/2) 1/2, ((1 + y)/2)/2, r,
respectively, is obtained by putting fl 1/2 and b 0 in (4.14) and by substituting
the quadratic transformation formulas for Gegenbauer polynomials.

Remark 4. We call (4.13) the degenerate addition formula for Jacobi poly-
nomials, since it can be derived from the addition formula (4.14) by dividing both
sides of (4.14) by y" and then letting y

Remark 5. The generalized addition formula (4.15) for Bessel functions is also
a limit case of (4.14). The formula is obtained by dividing both sides of (4.14) by
pt,,,a(_ 1) and then letting n , where the formulas [8, (3.9), (3.10)] are applied.

Remark 6. In Fig. 2 it is indicated how several related results concerning the
addition formula for Jacobi polynomials follow from each other. Here an arrow
denotes a direction of proof.

Laplace representation
for fl

Laplace representation degenerate

general T addition formula
and fl/

I, product formula addition formula

addition formula
for any one specific (a,

FIG. 2

In the approach used in [4], [5], [6] the author started at the bottom of Fig. 2
( 1, 2,... and fl 0). In the approach used in the present series of papers we
start at the top of Fig. 2.

Remark 7. The addition formula (4.14) in the case that fl 0 is also a special
case of the addition formula for the so-called disk polynomials (cf. apiro [10,
(1.20)] and Koornwinder [6, (5.4)]. In these two references the addition formula for
disk polynomials was proved by group theoretic methods. An analytic proof of
this formula might be given by using the methods of the present paper, starting
from the product formula [5, (4.10)] for disk polynomials.

Remark 8. There is yet another limit case of the addition formula (4.14).
Replacing the variables x, y,r in (4.14) by 2e- x l, 2y l, t- /2r, respectively,
letting 0 oe and using that lim_ Pt,’a)(2e- ix 1) (- 1)"L(x) and
lim_, e P, ’a)(2x 1) x"/n , we obtain that
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L.(xy + (1 y)r2 + 2w/y( y)r cos

@ (--1)k+t(k- 1/ fl)(2fl + 1)k_t(n
k=O =0 ((k- 1)/2 + fl)(fl + 1)k(fl + )k-t

(5.2)
X(k-l)/Zl+k-l(x)yn-(k+l)/2(1 y)(k+l)/2n-k

+-(r)?-p- /,-1/2(cos )k-l

This is a kind of addition formula for Laguerre polynomials L(x). Integration of
(5.2) gives

L.(x)y 2
L.(xy + (1 y)r2 + 2x/xy(1 y) r cos b)

(5.3) x/ F(fl + 1/2)
+e r2/ (sin (/))2fl dr dO, fl > -.

Dividing both sides of (5.3) by y" and letting y + m we finally obtain

L(x) 2( 1)"

r( + )
(.4)

(x r2 + 2i r cos

It was pointed out by Askey (personal communication) that the integral representa-
tion (5.4) can also be proved from the Laplace type integral representation for
Gegenbauer polynomials by using Askey and Fitch [2, (3.29)].
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JACOBI POLYNOMIALS. IV: A FAMILY OF VARIATION
DIMINISHING KERNELS*

ROBERT HORTON-

Abstract. A natural analogue of the de la Vall6e Poussin kernel is considered for Jacobi poly-
nomial series and is shown to be variation diminishing.

1. Introduction. Positive summability kernels have been extensively studied
throughout this century. Fej6r, whose results on (C, 1) summability of Fourier
series and (C, 2) summability of Laplace series started this subject, gave the field
another type of problem when he proved that the (C, 3) means of even functions
which are convex on [0, n] are also convex [8]. The next important refinement
was given by P61ya and Schoenberg [13] when they proved that the de la Vall6e
Poussin means of a Fourier series are variation diminishing. In particular, this
includes an analogue of Fej6r’s convexity preserving theorem for de la Vall6e
Poussin means.

Fef6r was the first to extend positive summability theorems to other
orthogonal expansions when he proved that the (C, 2) means of Laplace series
are positive. Recently there has been interest in finding the smallest C6saro mean
which is a positive operator for Jacobi polynomial series and for Hankel trans-
forms [2]. Only partial results have been obtained for Jacobi series, but best
possible results have been obtained for Hankel transforms.

The first attempt to define the analogue of the de la Vall6e Poussin kernel
for Legendre series was made by Kogbetliantz [10]. He had the right idea but,
unfortunately, he was unaware of an even earlier formula of H. Bateman [5]
which would have allowed him to say more about this method. This formula of
Bateman has recently been rediscovered [3] and Bateman’s second proof [6] has
been analyzed [12] and used to give a simple proof of another important formula
for Jacobi polynomials. H. Bavinck [7] had defined an analogue of the de la
Vall6e Poussin means for Jacobi series and he observed in a letter that Bateman’s
formula gave an explicit formula for the kernel associated with the summability
method. In this paper an analogue of the P61ya-Schoenberg theorem is proved
by use of this explicit formula.

Section 2 will contain background information on variation diminishing
transformations, and the relevant facts about Jacobi polynomials will be given
in 3. Section 4 will contain the specific kernels and sumrnability methods men-
tioned above, along with further comments, and the proof of the main theorem
will be given in the last section.

2. Variation diminishing transformations. Iff(x) is a rational function defined
on an open interval (a, b), Zta,b)(f(x)) will denote the number of zeros, counting
multiplicity, off(x) in (a, b).

* Received by the editors April 19, 1974.
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Given a finite sequence of real numbers {el, 2,’’’, an}, the number of
variations of sign in the terms of the sequence will be represented by vl _i_,(0i).
A zero term in the sequence does not count as a variation; the sign must actually
change from positive to negative or vice versa.

Iff(x) is a real-valued function on the interval [a, b], to define the variation
off(x) choose a finite sequence of values xl, Xa, "’, x, such that

(2.1) a<x <x2<...<xn<b.
Then the variation off(x) on [a, b], denoted by V.,bl(f(x)) is

v (f(x))= sup v (f(xi)),
[a,b] <_i<_n

where the supremum is taken over all finite sequences xl,x2, .", x, which
satisfy (2.1).

Finally, a real-valued kernel K(x;y) defined on [a, b] [a, b] is said to be
variation diminishing if

v (Kf(x))<= v (f(x))
[a,b] [a,b]

for all real-valued integrable f, where

Kf(x) K(x y)f(y) dy.

If we are considering a sequence of kernels K1, Kz, "’", K,, then

K,,f(x) K,,(x y)f(y) dy.

See Karlin [9] for further information about variation diminishing transfor-
mations.

3. Jacobi polynomials. The Jacobi polynomials, P’)(x), e, fl > -1, are
orthogonal with respect to the measure co(x) (1 x)(1 + x)t on the interval
[- 1, 1 and, as such, have no zero outside this interval.

A function f(x) can be expanded on [- 1, 1] in a formal Jacobi series of the
form

where

and

f(x) akhkRtk’O)(X),
k=O

p’l)(x)
R’I)(x) P’)(1) 2Fl(_k k+a+fl+ 1.a+ 1.1-,,,x)2

ak f(x)R’)(x)co(x) dx,
-1

[R?’//)(x)] 2co(x) dx,
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providing all the ak’s exist and are finite. Notice that the polynomials are normal-
ized to take the value one at x 1; this minimizes the number of extraneous
constants in the formulas we will be dealing with.

When f(x) is expanded in this way, we will define the generalized translate
off to be

(3.1) f(x y) a,h,Rtk’a)(x)R’a)(y).

This translate has the following familiar property. Let f(x) be as before, g(x) be
expanded similarly with coefficients bk, and hk x_x f(x’, y)g(y)co(y)dy. Then,
using the expansions for f and g and the orthogonality of the Jacobi polynomials,
it can easily be shown that the expansion for h is

(3.2) h(x) (a,bk)h,R’a)(x).
k=O

See Askey and Wainger [1].
If we have a polynomial kernel K,(x), i.e., K,(x)

(3.2) and the expansion for f indicate that

(3.3) K,f(x) f-1
k=o ckaR’a)(x), then

K,(x y)f(y)co(y) dy (a,c,)hkRtk"’a)(X).
k=0

4. Family of kernels. Let us choose as our family of kernels the simplest
possible set of positive bounded functions on [-1, 1, namely, the polynomials
((1 + x)/2)". However, because we want these kernels to reproduce constant
functions, they must first be normalized so that their integrals over [-1, 1] with

respect to co(x) equal 1. Thus, if

]- F(n+a +fl+2)
/

+ x
co(x)dx -2+a+XF(n + fl + 1)F(a + 1)2

we will consider

Using (3.1),

K,(x) t, 2 t, c,,hkR’l)(x).
k=O

(4.2)
c hR xRK,(x" y) t, ,, ’ ’ (y)
k=O

x + y
t 2

+ xyl.
x+Yl

The simplification in (4.2) is due to Bateman [5]. Also see Koornwinder [11].
The result depends very strongly upon Ck,,, being the particular coefficients for
((1 + x)/2)".

Because I(1 + xy)/(x + Y)I >_- for -1 =< x, y __< 1, it is clear from (4.2) that
K,(x;y) is nonnegative in the stated domain.
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Also,

+x
"’ , , dx

2

F(n + e + + 2)F(n + 1)
r(n+k++fl+2)r(n-k+l)
rl-kglk aS /’/ -+ 00.

Thus the kernels K,(x) provide us with a positive, finite summability method
which is an approximate identity in the sense that the like coefficients in the
orthogonal expansions of K,f(x) for n 0, 1,2,... (see (3.3)) converge to the
coefficients in the expansion off(x).

One other kernel known to be positive for all , fl > is the Poisson kernel
Rr(x; y) Z= o rkhkR?3)(x)R’O)(Y) which transforms

into

f(x)= ahR(’)(x)
k=O

/r(x; y)f(y)co(y) dy rkakhkRtk’l)(X).
k=O

See Bailey [4].
Notice that, in the Poisson case, the multiplier coefficients r" are very simple,

but the associated generating kernel R,(x) is, in general, fairly complicated. On
the other hand, our family of kernels, t,((1 + x)/2)", is certainly simple enough,
but the multiplier coefficients they generate,

r(n + +/ + 2)r(n + 1)
F(n+k+a+fl+2)F(n-k+ 1)’

are rather messy. This suggests that we can have either simple multiplier co-
efficients or simple positive generating functions, but not both.

Now expressing Jacobi polynomials as

(n-k+a+ 1)k (k+fl+ 1),-k
P’)(x) 2-" (x 1)k(x 1)n-k+

=o k! (n k)!

where (a)k a(a + 1)... (a + k 1) is Pochhammer’s shifted factorial, (4.2) can
be rewritten as

(4.3)

t, i (n- k +a + 1)k (k + fl + 1),_ kK,(x y) 4,prO)(1)(x + Y)"
k=0 k (n k)

+1 -1
x+y x+y

dk(1 + x)k(1 + y)k(1 X)"- k(1 y)"-
k-O
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where

d 4.p(,,)(1)
(n-k +a + 1)k (k +fl+ 1)._

k! (n k)!

5. Main result.
THEOREM. If f is an integrable function on -1, 1], K,(x)= t,((1 + x)/2)"

(see (4.1)), and K(x; y) and Kf(x) are defined as in (3.1) and (3.3) respectively, then

v (K.f(x)) <= Z (K,f(x)) <= v (f(x)).
[-1,1] (-1,1) [-1,11

Note that this is a stronger result than just variation diminishing. Not only
is the variation of f bounded below by the variation of K, acting on f, but it is
also bounded below by the number of zeros of K, acting on f, as in the P61ya-
Schoenberg result.

Proof. Since K,f(x) is continuous, the first inequality is clear. For the second
inequality, consider the integral

K,f(x) f-1 K,(x y)f(y)co(y) dy.

We will approximate this integral with finite Riemann sums and show that the
inequality holds for these sums.

So we must consider expressions of the form

(5.1) S(x)= cvK,(x;v),

where -1 < 1 < 2 < < m < and c are constants.
Using (4.3) and factoring out (1 x)’, we have

S(x)
d c( 3 ( +

(1 x)" k=0

Let z (1 + x)/(1 x) and note that z s (0, oe) when x s (- 1, 1). Then

z (S(x))= z1,1) 1)

S(x)
(1

(5.2) Z ( dk
(0, o) k=0

Okn

(1 )n- k(1 + )k
=1

cv(1 )"-k(1 + )k
v=l

Zk

(by Descartes’ rule and dk > 0).
Setting (i + )/(I v), the last expression becomes

O<_k<_n
c( )

v--1

where 0 < (X < (X 2 < < (X < (30 and (1 ) > 0 for =< v =< m. In matrix
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form, this system becomes

2 c(1-)"\

\ ,/\c(l--ml!
An induction argument then shows that all k k determinants of the

Vandermonde matrix on the left are nonzero and have the same sign. This is a
sufficient condition for the matrix to be variation diminishing ([9, p. 219]); so

v c(1 )"0 __< v (c(1
O<_k<n v=l 0_<v<m

v (c),
O_<v_<m

Combining (5.1), (5.2) and (5.3), we see

(5.4) Z cK,(x ) < v (c)
(- 1,1) v=l O<_v<_m

In particular choose c to be

c =/()co(),

(1 > 0).

where f(x) satisfies the hypothesis, are chosen as in (5.1) and 6 is the length
of the appropriate subinterval of [- 1, 1]. Then (5.4) becomes

z 2 K(x; If(to( _-< v
(- 1,1) =1 l<<m

v (f(tt, (co(t
<v<_m

<= v (f(x)).
[- 1,11

Since the sums on the left converge to K,,f(x)= 1_1 K,,(x’, y)f(y)co(y)dy as

m c, we clearly have the second inequality of the theorem.
Now recall from (4.1) that

K,(x)= t,
2 2 + +lr(n+fl+ 1)F(+ 1) 2

Lete=fl= -1/2andx=cos0. Then

K.(cos 0)=
Lr(n + 1/2)r() 2 nF(n)22"

[F(n + 1)]222"(cos 0/2)2"
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But the term in brackets is F(2n), so

[F(n+l)]2 ()2n (n!)2
K.(cos 0) IF(1/2)] 2 F(2n + 1)

2 cos
zr (2n)!

2 cos

This last expression is the de la Vall6e Poussin kernel.
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ON THE POSITIVITY OF SOME IF2’S
JERRY L. FIELDS AND MOURAD EL-HOUSSIENY ISMAILt

Abstract. By using asymptotic methods and fractional integration, it is shown that

1F2 /A
p2 + b,p/1 + c---4- >0, real,

0 <__ a __</l, 0 _<_ b, <__ 2c, and either 2p >= 3,/l _> or p >__ 2,/1 >__ 0. From this, it is deduced that for

x > 0, x2-2x-b(1 + x2)- is completely monotonic for b >__ 0 and either 2p >__ 3, /l >_ 1, or p >__ 2,
/l _>_ 0. This extends the results of [3] and proves some conjectures of Askey 1].

1. Main result.
THEOREM 1. If

then

G(p 2; l.t) F2

=1-

p, ox + - (pA > 0)

2) ( =o,, >o),

(1.2) G(p 2 p) > O, la real,

2p 3, <2;orp=2,0<2.

Proof of Theorem 1. From hypergeometric function theory [4, p. 198],

F(2p2) -22 -2)G(p, ;/)=
F(2p2 22)/ {1 + O(/

# oe, larg Pl < r/2,

and it follows that a necessary condition for the positivity of G is 2p > 3,/t > 0.
Moreover, as G(p, 2;0) 1, it is sufficient to show that these "local" estimates
overlap. First we extend the p 0 estimate.

Let

G(p, 2; p)
k=O (2PA)4k(Zk)

c(a), (e)o _=
r(a + co)
r()

c(a) - /[/2(2 -- 2k)
(2k + 1)(4k + 2p2)(4k + 2p2 + 1)

* Received by the editors April 8, 1974.
]" Department of Mathematics, University of Alberta, Edmonton, Alberta, Canada.
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Then

Ck+ 1(/A) Ck(Jg

(2k + 1)(2k + 3)(4k + 2p2)(4k + 2p2 + 1)(4k + 2p2 + 4)(4k + 2p2 + 5)’

Ak (2k + A)(2k + 3)(4k + 2p2 + 4)(4k + 2p2 + 5)- (2k + 2 + 2)(2k + 1)

(4k + 2p2)(4k + 2p2 + 1)

128k3 + (240 + 962 + 64p2)k2 + (112 + 1442 + 64p2 + 64p22)k

+ [823p2 + 422p(13 2p) + 41(15

_>_0, 2>-0, 02p<- 13.

This implies that ifC => 0, then C > 0,j > k, in the cases of interest. In particular,
0 =< p -< a//2p(1 + 2p2)implies that Co(p) -> 0 and

G(p, 2;p) > 0, 0 __</ __< x//2p(1 + 2p).

We now develop the asymptotic estimates for # >__ 2. A simple computation
shows that

F(2p2) f(o, +_ ,)

G(p 2;u)=
2rti

Deforming this loop contour, which is shown in Fig. into the contours shown
in Fig. 2, which includes branch cuts to make the binomial factors single-valued,
we can write

(, X;U)= (U)= o.()+ 6,(U) + -(U),

F(2p2) fo +
ev-ox(p2 + v2) dvG()=

2ri

F(2p2)f "+,(tG + (p)
2rti

e" + i/A)2’- 2Pz(t + 2ip)- At- dt,

and G-(#) is the complex conjugate of G / (#). Each of these three functions has an

asymptotic expansion for/ , and we must estimate them for/ _>_ 2.

FIG. 1. v-plane FIG. 2. v-plane
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Let

Then

nV2

1 +
j=o J! P + m! rm(V)"

r(2p2)#-2 /m ().)j(22 + 1- 22P)2j )}G(P)
1-’(2p2- 22)j= o j!(-#)J + Gm(p

a()
F(2p2 2)()(- 1) -2m eVv2z-2o+2mrm(v) dv

m2i P

()m( 1)m 2m _f.mF(1 + 22 2p).
e-UuZZ-2o+Zmrm(u)du’

provided 2m + + 22 2p2 > 0. Note that rm(v) takes on the same values at
Ivl eiE and Ivl e-,
From

o

(T- t)m-1
rm(v) mT-m

(1 + ti dt,

it follows that

(1 + T) <= rm(V <= 1, T>=0,

and

iGO()l < (2)ml(1%- 22- 2P&)2ml -2m

m! P

2m+ +22-2p2>0.

For p 2, we shall take m 1, while for 2p 3, we shall take m 2.
For G +(/0, set

22- 2p2

H(t) +

m-1

+ Hm(t), bo 1, 2bl 32 4p2,

G+(/0 F(2p)t)/x-2ox ein(2-2o,)/2 eiu2-xf+2i a_ e’t- ZH(t) dt,

6+(u) (ip)imr(2)f+ ettm-H,(t)dt
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With the binomial factors defined as in Fig. 2, the factors (t + i/a)24-202 and
(t + 2i#)-4 take the same values, respectively, at It] ei and ]tl e -i. Hence we
set

H,,(x e +i’) Rm(x), x >= O.

Then

(- i/a)-" e-xxm- 2Rm(x dx, m + 1 > 2.+()
r(1 )

In particular, with m 0,

F(42)
2- 4/a- 34 e- 3ni4/2 eiUG (/a),G + (2, 2 #)

r(2)

F(42)2 -4
IG +(2, 2;

4/2

dx

F(42)2- 4/a- 34

fO-<- F(2)F(1 2)
e- Xx 4 dx

F(42)2- 4/a -34
0<2<1.

r()

When 2p 3, we estimate H2(t as follows"

H2(t)
t/u

v + - 4V2 + 12iv)+ 5- 2V2 -+-6iv]
2+4

[2(22 + 1)lvl + (5 + 92) + 6(1 + 2&)lvl]. Idvl,

or

2(1 + 22)ltl (22 + 1)1tl2+ 92) + +
/a 3/a2

which leads to

8
5 + 92)1(1 2)1 + 2(1 + 22)l(1 2)31

3/a2

provided 0 < 2 < 3.
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Now we derive our G(2, 2;12) estimate for p >__ 2, and 0 < 2 < 1. Clearly,

G(2, 2; 12)
F(42)
F(22)
12-2a{1 + G(12)} + 2 Re {G+(12)}

F(42)>-- r(2,;t) 12 -2x{1 IG(t)l} 21G+()I

F(42) 2Xg(2 12)--> F(22)12

g(2, 12)
21(1 22)21

2

21 F(2,;t)

=1-
r(1/2)

22(1 2)11 221
122

To estimate g(2, 12), consider the function

F(2) 1-
+

fo e-,Ss- 1/2[1 sz] ds.

(a > 0,2 >__ 0)

From the integral representation, it is clear that for a fixed,

d2

d)t2F(2) < 0,

implying that F(2) is concave down, or that the graph of F(2) lies above the straigh
line connecting F(0) 0 and F(1) (2a)-1 for 0 < 2 < 1. Thus

2(2- 1)
F(2)>

2o
o-<O, 0<2< 1,

and

g(, 12) >
2(p- 1) 2;t(1-2)11-221

12 122
> 2(12 2)(12 + 1)

>0
122

> (4122 412 1) ,(12 2)(12 + 1)
> >04122 122

(0<2=<1/2,12>2)

since

(1 L)I(1 21 < ,
Clearly g(2, 12) > 0 implies G(2, 2;12) > 0.
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Our G(, 2;/) estimate for / >_ and < 2 =< 2 is more complicated.
For convenience, let e =/l 1, 0 < e -< 1. Then, as before,

F(32)
e(1 e2) cos (t 2r0 3e(1 + e)

+ 2 + Gz(P) +
2 + sin (p

p 2

+ Re {2 ei(u-’’G(l)}

>= + 2 cos (p ;in) 2-1-3e(1 + e)p- sin (p 2n)

e(1 e2) (

2-F(14 + 9e)
/ 8

(4- e2)(3 e)
2it2

(3 + 2e)(2 e)
+ +

4/1
(3 + 2e)(2- e)(3

24/*2 e)l}"
Denote this last expression by G(e,/z). We need to find a positive lower bound for
G(e,/) when 0 < e _<_ or < 2 _< 2, and/ >= x//. We have

9e2(1 "]- /02 (1 e2)
G(e,t) > 2 + + /242

a 2a
23 + +

_>_ 2-[1 + (.375)e] + e(1 e2)[(.0416)- 2- (.2817)]

>__ +e(1-e2)(.0416)+ [1 +(.2817)e(1 -e)

+ (.375)e2 [- + e(log 2) ea2 1(log 2)

>__ (.453) (.42)e2 + (.432)e (.286)e + (.067)e

>0,

Note that log 2 .6931.... Thus,

G(p, 2 >0,

2p= 3,1<2_<_2;orp=2,0<2< 1.
Next, from the Laplace transform

(1.3) e-tZt2r-

real,

F2 B,C

Re(a)>0, Re(z)>0,

0<e=<l,

A,a,a + 1/2
B,C

it follows that the function

R(p, 2 x) x22- 2192(1 + x2) a

{F(2p2)} e-t2- 1G(p, 2; t) dr, x > O,

is completely monotonic for x > 0 and either 2p- 3, 1 < 2 __< 2, or p 2,
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0 < 2 < 1. But as the product of two completely monotonic functions is again
completely monotonic, and R(p, 2;x) is multiplicative in 2, that is,

R(p, 2; x)R(p, 2’; x) R(p, 2 + 2’ x),

it is clear that R(p, 2;x) is completely monotonic for x > 0 and either 2p 3,
1 < 2 or p 2, 0 < 2. Theorem then follows from Bernstein’s theorem [6].

2. Corollaries and remarks.
COROLLARY 1.1. /J’X >_-- 0, then

I1(;

>__0,
and

(X t) + 3/2t + 1j(t) dt

I2(; x) (x t)2tJ(t) dt

(2.2)
_>_0, 2> -1,

where J,(t) is the Bessel function of the first kind.

Proof Expanding J,(t) in powers of and integrating term by term, one obtains

F(2 + 2)F( + )x3+7/z 3 2 + 3
I I(;x)=

2"F(+ 1)F(3+-)
G ,;x

12(.x)=2--3"F(+1/2)x’+ 2+1
r(2 + 23-)

G 2,;x
COROLLARY 1.2.

(2.3) 0 <__ G

Proof.

3
,1;# #real.

0< lim G(2 2"/)= 1- G 1"
;t0+ - ,]2

THEOREM 2.

a
> 0 I real(2.4) 1Fa 2+b,,o2+c

O <= a < 2, 0 <__ b, N 2c, and either 2p >= 3, > 1, or,o>=2,2> 0.

Proof. Consider the beta transform,

f. F(fl + 1)F( + 1) (A, +Ea+(1- tE)tg(t)dt
2F(a+fl+2) 2F3 B,C,a+fl+ 2

g(t)
B, C

zt2 fl + a + > 0

_z),
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With the conditions

and

K’2p 3,2> or p =2,2>0

go(t)=F -zt >0, z>=0,
+

0+ =p2, fl+ =b>0,

one obtains via the above transform,

gl(t) 1F2 p2 + 1/2, p) + b
-zt2 > O, z >= O,

under the conditions K. Next, applying the Beta transform to gl(t) under the
conditions K, and with

2+ 1=2p2, +fl+2=p2+c, c>1/2,
one obtains

g2(t) ,F -zt2) >0, z >_ O,

under conditions K.
To relax the conditions K, we note that we can let e be a nonnegative number

and set

b=2e+ b’,

c=

p’=p+e.

Then our result for g2(t) implies that

b’ >0,

C’ >1/2,

g3(t) 1.F2 p’2 + b’, p’2 + c’
zt2 >0, z>0,

2p’ -> 3, 2 > 1, b’ > 0, c’ > 1/2, or p’ _> 2, 2 > 0, b’ > 0, c’ > 1/2. Finally, if the beta
transform is applied to g3(t), with + 2 fl 2 a, 0 < a < 2, one
obtains Theorem 2, except in the special cases when a 0, b 0 or c 1/2, which
can be established directly.

COROLLARY 2.1. For x > O, X22-2P;t-b(1 + X2) -;t is completely monotonic for
b>- Oandeither2p >= 3,2 > 1, orp_> 2,2 >0.

Proof In Theorem 2, let c b / 1/2, a 0 and apply the Laplace transform
(1.3) used in the proof of Theorem 1, with tr p2 + b.

Remark 1. The above results partially answer some conjectures made by
Askey [1].

Remark 2. A direct proof, not using asymptotic estimates, for the above results
when p __> 2, has been given by Askey and Pollard [2], and the authors [3]. The
methods used there are not applicable when 3 __< 2p < 4.
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Remark 3. If 3 < 2p < 4, it is an open question whether G(p, 2;/0 > 0 for
some value of 2 < 1, and if so, how small ;t has to be.

Remark 4. Recently J. Steinig [5] proved that

1F2II.9 v + 3 c + v + 3;-x2.12 2 4
>0 forx > 0

ifo9 1/2 and vl < 1/2, or if 09 > 1/2 and ]vl -< 09, v real. These results are only partially
contained in Theorem 2 when 2 1, 2p 3, a 0, 2b 09 v, 2c co + v.
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UNIFORM ASYMPTOTIC APPROXIMATION FOR VISCOUS FLUID
FLOW DOWN AN INCLINED PLANE*

S. M. SHIH AND M. C. SHEN"

Abstract. An asymptotic method is developed for the linearized Navier-Stokes equations governing
the time-dependent motion of a viscous fluid flow down an inclined plane. A diffusion equation for the
first order approximation of the fluid surface elevation in a perturbation scheme is derived and a

critical Reynolds number is defined based upon the well-posedness of the equation. Under a set of
sufficient conditions it is shown that the solution of the diffusion equation is a uniform asymptotic
approximation to the generalized solution of the full equations for all time by means of various L
and pointwise estimates.

1. Introduction. The purpose of this paper is to develop an asymptotic
method for the study of surface waves on a viscous fluid. The underlying ideas of
this method center around the so-called long wave approximation, which has
become an indispensable tool in dealing with problems.of surface waves on ideal
fluid [1]. Therefore, it should be of interest to extend such an approach to a
viscous fluid system, and to give a rigorous justification of the asymptotic method.

In this paper we shall restrict ourselves to the linear time-dependent problem
of a viscous fluid flow down an inclined plane. Based upon some of the ideas due
to Ladyzhenskaya [2], Krein [3] and Kopachevskii [4], we first prove the unique-
ness and existence of a generalized solution of the initial value problem posed
by the linearized Navier-Stokes equations. Then by a formal asymptotic approxi-
mation we derive a two-dimensional diffusion equation as an asymptotic equation
of the full equations. The solution method of this equation is well-known, but it
is not well-posed if one of its coefficients changes sign. We make use ofthis property
to define a critical Reynold number Rc by setting this coefficient equal to zero.
Our main contribution is the following result. If the Reynolds number R of the
flow is less than Rc and the initial data satisfy a compatibility condition at the
free surface and a long wave condition, then the first order approximation ob-
tained from the asymptotic expansion is shown to be an asymptotic approximation,
uniform for all time, to the solution of the full equations. The uniformity in time
of the asymptotic approximation is important in justifying the definition of the
critical Reynolds number. Hence we not only show that the solution of the
linearized equations in the long wave limit is stable for R < Rc, but also present
a simple method to find an approximate solution to our initial value problem.

The linear instability of the flow down an inclined plane and similar problems
were studied by Benjamin [5], Yih [6] and many others using a normal mode
analysis under the long wave assumption and a critical Reynolds number was
determined for each problem. Therefore, it is not coincidental that the critical
Reynolds number we have defined is equivalent to the one obtained in 63. More-
over, the theorems proved here may furnish an indirect justification for the
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" Department of Mathematics and Mathematics Research Center, University of Wisconsin,
Madison, Wisconsin 53706. This research was supported in part by the U.S. Department of Interior
under Allotment Grant 14-31-0001-3250, National Science Foundation under Grant GP-28699, and
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normal mode approach used before. We also note that a discussion of formal
results for nonlinear waves on viscous fluid may be found in [7].

In 2, we formulate the problem and introduce some function spaces for
later use. In 3, we prove the uniqueness and existence theorem by use of the
Galerkin method. The formal asymptotic expansion is carried out in 4, and
justified by various L2 estimates in 5, where pointwise estimates are also ob-
tained as a consequence of Sobolev inequalities.

2. Formulation. The fluid domain f in our problem is a three-dimensional
strip: -1 <z<0 bounded by an upper plane F:z=0 and a lower plane
S:z 1. We choose a moving coordinate with speed 2o in the direction of the
x-axis (Fig. 1).

y

FIG. 1. Viscous fluid flow down an inclined plane

It is assumed that the undisturbed flow under gravity has only a velocity
component in the x-direction given by [8]

(1) Uo(Z -(aR/2)(1 z2) /o,

and the linearized Navier-Stokes equations in this case are

V + uoV + V.VU -Vp + R-1V2V, " in f,
V.V=O,

(2)

(3)

(4)

(5)

(6)

(7)

(R- 1T(V) p) l3, + Uo- w O,

V=0 onS,

V=Vo, =o

a b3, }
att =0.

on F,

Here a point is denoted by (x, y,z) or (x ,x2,x3) V (Vl,/)2, u3)= (b/,/), w) is
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the velocity, U (u0,0, 0), p the pressure, ( the surface elevation,

v vT(V) -t
cOxi’

the unit vector of the coordinate system, R the Reynolds number, a sin O,
b cos O, is the angle of inclination of the plane bottom and

OV l" V3 V2 V3T(V). 3 Ox3 Ox Oo3 x’ x3]
We note that all the variables have been nondimensionalized by appropriate
units.

In the following we introduce some function spaces pertaining to our prob-
lem. Let J(fl) be the class of all solenoidal C-vector functions with compact
support in U F, and J(fl) be the Hilbert space obtained by completing J(fl)
with the scalar product

(V, ) f vicki d,

where V (01,/)2, u3), (I) ((D1, (])2, (])3) and the summation convention has been
adopted. For simplicity, we shall write a for aiai. The Lz-norm of a vector function
V on f is defined by

/)/2

It is known that the space L2( of all square integrable vector functions has the
orthogonal decomposition [4]

L2( J ()@) Gr().

Here Gr(f) consists of all vector functions Vp, and p is a single-valued locally
square integrable scalar function on f and possesses first order Lz-generalized
derivatives such that if Vp e Gp(f), then p 0 on F.

Let H(f) be the Hilbert space obtained by completing J2(f) with respect to
the norm

Ilvll = an.

Let E()) be the completion of J(f) with respect to the energy norm [3]

and the scalar product in this case is

E(V, O) +
xil x2

+
#xi]

That 11Vlt indeed defines a norm can be readily seen from Lemma 1 to be given
later.



UNIFORM ASYMPTOTIC APPROXIMATION 563

We also need the standard Sobolev spaces W’(), m 1, 2, ..., and W’(F),
which are respectively the completion of C-vector functions defined on f and
C-scalar functions defined on F with respect to the norms IlwS-(n) and II"

To put the Navier-Stokes equations in an abstract form, we introduce spaces
of abstract functions of a real variable e [0, T], where T is a positive number.
By Lz(T; X) we denote the class of functions f:[0, T] X square integrable in
norm over [0, T], that is,

f(t)[12 dt < c,

where II" is the norm of X. L2(T; X) is a Hilbert space with the scalar product

f (f(t g(t)) dr.

We denote by C(T; X) the class of continuous functions with respect to the norm
of X and by C’(T; X) the class of continuously strongly differentiable functions.
C(T; X) and C’(T; X) are Banach spaces under the norms

If(t) c;x) sup If(Oil,
t[O,T]

IIf(t)IIc’T;X)- sup IIf(t)ll + sup IIf’(t)ll,
t[O,T] t[O,T]

where f’ is the strong derivative off.
We say f L2[T" X] has a generalized derivative fi L2[T" X] if

(f(t), g(t)) dt (f(t), gt(t)) dt

for all gC’(T;X) such that g(0)= g(T)= 0. The generalized derivative so
defined is unique and coincides with the strong derivative if the later exists.

In the lemmas given below, we shall establish some integral inequalities and
properties pertaining to abstract functions.

LEMMA 1. Norms and n are equivalent. More precisely, for Ve J(f),
the inequality

Vll _-< VIl =< 211vi ,
holds.

Lemma may be proved by use of the Fourier transform or Korn’s inequality
[4]. The details are omitted.

LEMMA 2. For Ve J[(), we have

(8) 11V __< 2xf V ,
(9) Vll _-< 2x/ v I,
where

viii- f (v)2 dF.
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(10)

Proof. Assume that -1 < z < 0. For Vc J(f), the inequality

V dx dx2 <= 2 dx 3 v +
Oxil

dx dx2,

3--z -1

holds. Hence

[IV[[2 dz v2i dx dx2 2N// V V E,

-1

and (8) follows.
Now by setting z in (10) equal to zero, we obtain

VIl Z /2 dx, dx2
<_ (2x//)21[

3=0

and (9) follows.
LEMMA 3.
(i) Suppose that f L2(T" X) has a generalized derivative f L2(T; X). Then

f(t) is continuous in [0, T] with respect to the norm of X. Furthermore,

f) ds 1/2(]]f(t)l[ 2 IIf(0)ll2).

(ii) If f"c C’(t; X), n 1, 2,..., is a sequence of functions such that {f’}
converges weakly in the space Lz(T; X) to an element f Lz(T" X), then {f"}
converges weakly in Lz(T X) to an element f Lz(T; X), and f is the generalized
derivative off.

(iii) If f" C’(T" X), n 1, 2, is a sequence offunctions such that f"(O)
fo X for all n and {f’} converges weakly to f, in L2(T; X), then f(O) fo.

(iv) If f" Lz(T; X1), n 1,2,..., is a sequence of functions converging
weakly tof in Lz(T; X ), then {f"} also converges weakly to f in the space Lz(T" X)
if X c X and the norm of X is stronger than the norm of X.

Lemma 3 is a direct consequence of the definition of the generalized derivative
of a function in Lz(T" X) and the proof is omitted (see [9]).

The notion of a generalized solution follows the one given in [2], [4]. { V, (}
is called a generalized solution of (2) to (7) if V Lz(T" E()), V Lz(T; E(f)),

L2(T" L2(F)), , Lz(T; Lz(F)), , c Lz(T; L2(F)) and V, } satisfies (5), (7)
and the following integral equality"

(11)

dt (V + uoV + V. V U). dD

f ofdt (adp, bqb3) dF - dt T(V). T(ap) df

for all ((/)1, )2, (3)C L2(T; E(f)). It is easy to show that a classical solution
is a generalized solution if this solution and its partial derivatives appearing in
the differential equations also possess finite Lz-norms.

We say the initial data Vo, o in (7) are compatible with the free surface
condition (4) if there exists a Po Lz(F) such that Vo, o and Po satisfy (4). We also
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use the following standard notations"

/ (1,/,

Dx 3x’ Dr S-5..,
y

where//1 and/2 are nonnegative integers.

3. Uniqueness and existence theorem. In this section we shall prove the
following theorem regarding the uniqueness and existence of a generalized
solution to (2) to (7).

THEOREM 1. If the initial data Vo and o are compatible with the free surface
condition (4), and if Vo and o possess generalized derivatives with respect to x
and y such that DVo E(f) f-I W22(f) and Oo, Dox, Doxx Lz(F for any fl
in 0 <= Ifll <= m, where m is a nonnegative integer, then there exists a unique general-
ized solution {V, } of (2) to (7) such that DIVC(T E(f)), DtV Lz(T" E(f)),
Dt C(T; Lz(F)) and Dtt Lz(T; Lz(F)) for all T > 0 and any fl in 0 <= 1131 =< m.
Furthermore, for each in 0 <-I/1 <= m, {OAF, D} is the generalized solution of
(2) to (7) corresponding to the initial data {DaVo, Da’o}.

Proof. Let in (1 1) be such that O(s) V(s) for 0 __< s =< and (s) 0 for
< s =< T. By using (5), the Schwarz inequality, Lemma 2 and Lemma 3, we

obtain from (1 1) an estimate as follows"

IIV(t)ll 2 + bll(t)ll 2 __< I[V(0)II 2 + bll(0)ll z + M (llV(s)[I 2 +

where M is a positive constant. If IIV(0)[I [1’(0)11 0, then [dg(t)]/dt <= Mg(t),
where g(t) ([I V(s)[[ 2 + b[l(s)ll 2) ds. Hence g(t) 0 and the uniqueness follows.

To prove the existence, we use the Galerkin method. Let Vo, (I) Js()
for k >__ 2 form an orthonormal basis in J(). The differentiability assumption
made on Vo implies thatDE(fl) W() and D(I) W(F) on F for any fl
in 0 =< ]fl] =< m and any k >_ 1. For each n 1, 2, let V" and ’" be constructed
as follows"

(12) V"(t) a"(t)Ok,
k=l

and V", " satisfy

(13)

for alll =<k=<n,

(14) ’’ -}- U0c /’)3 on F,

(15) V"=Vo, C=o att=0.
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The solution " of (14), when expressed in terms of v, is given by

(16) "(t, x, y) o(X yUo(0), y) + v"3(s, x (t S)Uo(0), y, 0)ds.

Substituting (12) and (16) into (13), we obtain a system of integro-differential
equations"

(17) A
dt

+ Ba’ C(t- s)a’(s)ds + d(t),

(18) a’l(0)= 1, a(0)=0 for2__<k__<n,

where the matrices (A), (B), (C(t)) and vector (d(t)) are given as follows"

(19) Akl DO(Jl" D#f df,

(ot (uo% + D%. VUIO dn + r(%I r(%Idn

(21) I/1=o

bDackl3(x tuo y, O)Dack3(x, y, 0)] dF,

bDao(X tuo, y)DadP3(x, y, 0)] dF,

where uo in (21) and (22) are understood to be u0(0 which is a constant.
Since Da0,Dao,L2(F) and Daqb3, Dob3,6L2(F on F for all fl in

0 =< Ifll _-< m, we can show that Cl(t and d(t) are continuously differentiable. It
is also not difficult to show that the matrix (Al) is invertible. Therefore, the
system (17) subject to (18) has a unique twice continuously differentiable solution
a,(t), k 1, ..., n. This further implies that (12) to (15) possess a unique solution
{V", ’"} such that DaV"(t) E(E), Da"(t) L2(1-’), DaV" C2(T; W22()), Dt""
C2(T; L2(1-’)) and Dt] CI(T; L2(1-’)). The continuous differentiability of DO(t)

and the twice continuous differentiability of Dt"(t) with respect to in L2(F
follow from the fact that q, b, Lz(F) on F and o, o,, o,,,, Lz(F).

From (13) and (14), we easily obtain

(23) DaV,(t)II2 + bllDa,(t)[12) <= e
, (llDaVoll 2 / bllDao 2),

II =o ll =o

Itl-o Itl--o

Dt V" dt <= At DV" m dt + A2 Dt" 2 dt

(25) I =o I1 =o

/ A311DaVoll 2},
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(26)

y ov7 t <= D 2 Da7 2 dtE A1 V, dt + A 2
Ifll =o

+ A 3 Da V’(0)II 2,
where M, A1, A2 and A 3 are positive constants independent of and n. From the
compatibility and differentiability assumptions made on Vo and ’o, we see that
DaVo and Da’o are compatible with the free surface conditions (4) for any fl in
0 __< Ifll _-< m. Hence, one can show that for each fl in 0 =< Ifll _-< m, IlDflV’(0)
and IID’’(0)II are uniformly bounded for all n >= 1. This implies the uniform
boundedness of the right-hand sides of (23) to (26) for all e [0, T] and all n >= 1.
We, therefore obtain that

IIDaV"I : dt, IlOaV’; I dt, IlDa’"ll 2 dt, Oa(,;i z dt
o

are uniformly bounded for all fl in 0 < Ifll m and all n >= 1. From Lemma 2
and the uniform boundedness of DaV" in L2(T; E(f)), we also obtain the uniform
boundedness of Dav on F in the space L2(T; L)(F)) for all fl in 0 =< Ifll =< m and
all n >= 1. By the weak compactness in Hilbert spaces and Lemma 3, it follows
that {V} and (("} have respectively weakly convergent subsequences (V"} and
{,k} such that

and

D V" D V, D V7 --% D V in L2(T; E(f)),

DOv3 --% Dv3 in Lz(T; Lz(F on F,

DI(" --% DI(, DI(", --% DI(, in Lz(T" Lz(F)) as nk

for any/3 in 0 =< Ifll m. Furthermore, from DaV Lz(T; E()), D#, Lz(T; L2([’))
and Lemma 3, we have DaVe C(T; E(f)) and Da. C(T" L2(1-’)) for all fl in
o 5 Ifll _-< m.

By use of a similar argument as given in [2], [4], the weak limit ( V, .}, which
possesses generalized derivatives with respect to x and y up to order m, can be
shown to be a generalized solution of (2) to (7). Since if T’ < T", the generalized
solution corresponding to the initial data (V0, ’o} and the interval [0, T’] can be
regarded as the restriction of the generalized solution corresponding to the same
initial data and the interval [0, T"], we conclude that for each nonnegative integer
m, there exists a generalized solution (V, (} such that DaVC(T:E(f)), DaV
L2(T; E(f)), DI C(T; L2(1-’)) and Dt, Le(T" L2(F)) for all T > 0 and all fl in

0 =< Ifll _-< m. This proves the first part of the theorem. To prove the last part,
let fl satisfy 0 __< Ifll =< m. Replacing in (11) by Da and performing integration
by parts with respect to x and y ]ill times, we see that DV and Da satisfy (11). A
similar argument shows that DaV and Da satisfy (5). Furthermore, the continuity
of DaV(t) and Dab(t) at 0 in Lz(T" E()) and Lz(T" L2(1-’)) respectively shows
that DoV(O) DtVo and Da(0) Dao Therefore, {DaV, Da} is the generalized
solution corresponding to the initial data {DaVo, Dao}, and the proof of the
theorem is completed.
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COROLLARY. If the initial data Vo and (o are compatible with the free surface
conditions (4), and if Vo and (o possess generalized derivatives with respect to x
and y of all orders such that DVo E(f) f’) W22(f) and D(o LE(F for all fl in
0 __< [fl[ < , then there exists a unique generalized solution {V, (} of (2) to (7)
such that

DaV6C(T;E(f)), DaV6L2(T;E(f)), Da6C(T;L2(F))and Da,6L2(T;L2(F))

for all T > 0 and any . Furthermore, for each fl, {DaV, Da(} is the generalized
solution of (2) to (7) corresponding to the initial data {DaVo, DO,o}.

Proof. For each m 0, 1, 2,... such that 0 =< I/1 _-< m, the initial data Vo, o
satisfy the condition of the above theorem, that is, DaVo E(f) f-I W() and
DO,o, Daox, Daoxx L2(F). Therefore, there exists a unique generalized solution
{V,(m} of (2) to (7) such that DVC(T;E(t))), DV’L2(t;E(K)), D
L2(T; L2(F)) and Da( L2(T; L2(F)) for any T > 0 and all fl in 0 __< 1/31 _-< m.

Since all {Vm, (m} are generalized solutions corresponding to the same initial
data {Vo, (o}, by the uniqueness of the generalized solution, we see that all
{Vm, (m} are equal. Denote this unique generalized solution by {V, (}. We then
have DaVC(T; g(f)), DVtL2(T; g(f)), D(C(T; L2(F)) and DL2(T; L2(F))
for all T > 0 and all fl in 0 __< Ifl[ < . Furthermore, integration by parts with
respect to x and y and the continuity of DaVand Da( at 0 show that {DaV, Da.}
is the generalized solution of (2) to (7) corresponding to the initial data {DaVo,
Da(o}. This completes the proof.

4. Formal asymptotic expansion. Let a be a small positive parameter.
Physically a may be considered as the ratio of the length scale in the x, y-direction to
that in the z-direction. Suppose Vo, (o} has the property that c/t?x O() and
t?/c3y O(). This means that ck+lf/t?xkc?y= O(k+l), where f stands for o or
any component of Vo. Let {V, , p} be the solution of (2) to (7) corresponding to
the initial data {Vo, (o}. We assume that {V, , p} also has the property c3/cx

0(), t?/c3y O() and c3/c3t O(2), and that {V, (, p} possesses asymptotic
expansion of the form

(27)

In (27), it is assumed that bl O(1), (2 O(() when b stands for u, v, p and ,
and b O(), (2 O((Z2) when b stands for w. We further assume that R and
0 are fixed. Substituting (27) into (2) to (7), and comparing orders of , we obtain
the following equations for the first order approximation:

(28)

R-aulzz 0 (-1 < z < 0), R-Xvz 0 (-1 < z < 0),

R-ua al (z O), R-vz O (z O),

ux-0 (z= -1). v-0 (z-- -1).

Plz O (-1 < z < O), ux + vr + wz O (-1 < z < O),

Px bx (z 0). wl 0 (z -1).

/A0(lx W1 (Z 0).
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From (28), we obtain

(29) Ul l(Z)l(t, X, Y), /)1 0, W1 l(Z)lx, Pl fil(Z)l,

where ill, 1 and a are independent of z and given by

(30) fi(z) aR(1 + z), (z) -(aR/2)(1 + z)2, (z) b.

The remaining equation Uo’lx w on z 0 in (28) then implies that 2o, called
the critical speed, should assume the value

(31) 20 aR.

The equations for the second order approximation are

R- bl2z blOb lx "ll-" blOzW AI-" P Ix < z < 0),

R-Xuz a2 (z 0),

122 0 (Z 1).

R-vZzz Ply (-1 < z < 0), Pzz R-wlzz (-1 < z < 0),

(32) R-lv2z=0 (z=0), P2 =b2 + 2R-lwz (z=0).

/)2 0 (Z 1).

U2x "[" V2y -[- W2z 0 (--1 < z < 0),

w 0 (z -1).

, w (z 0).

The solution for the second order approximation can be expressed as

u (z) + (z)2, v (z),
(33)

p p(z) + (z), w (z),x + (z) + (z).
fi2, 2, 2, 21 and 22 are independent of z and are solutions of the following
equations"

R-lffl2z Uofi --[- UOzl ---[- b (-1 < z < 0),

R-l2z 0 (Z 0),

fiz =0 (z- -1).

R-XZzz=b (-1 <z<0), fi2z -a (-1 <z<0),
(34)

R-XZz=0 (z=0), Pz -2a (z=0).

fi2 =0 (z= -1).

2 lz fi2 (-- < z < 0), 22z 2 (-- 1 < z < 0),

21 0 (Z --1). 22 0 (Z 0).

The remaining equation (t w2 on z 0 in the second order approximation



570 s.M. SHIH AND M. C. SHEN

then gives the following linear evolution equation for (l(t, x, y).

(35) (lt /21(lxx 2r" /22lyy’

where /21 21(0), /22 "-22(0) After some calculation, all the functions
"’’, if2 are found to be polynomials in the variable z only, and the constants

and/22 are given as

/21 21(0) R
Rb

/22 22(0)
3

The evolution equation (35) is well-posed if/21 > 0 and/22 > 0. Since/22 is
always positive, the condition/21 0 then gives a criterion for the stability of
the surface wave motion and defines a critical Reynolds number

(36) Rc 5ab2) 1/2 (52ct )1/2sn"
If the Reynolds number R is subcritical (i.e., R < Rc), then (35) coupled with the
initial condition

(1 =(o att=0

gives a unique solution (1. Hence we obtain a first order approximate solution
{ul, vl, wl, (1} according to (29) and (35). It is noted that (ul, vl, w) cannot
assume arbitrary value at 0. This is due to the fact that the above perturbation
scheme is a singular one.

5. Uniform asymptotic approximation. Let V (u v l, Wl) and (1 be the
first order approximation of the asymptotic expansion (27). According to (29)
and (35), V1 and (1 are determined by

(37) ul ill(i, vi 0,

(38) (, ul(xx + u2(l,,

(39) (1 =(o att=0.

W1 W1 lx

To prove that the first order approximate solution obtained in 4 is a uniform
asymptotic approximation to the generalized solution of (2) and (7), we make the
following assumptions:

A1. R < Rc and 0 < 0 < r/2. For the case of 0 0, see Remark 2 at the
end of this section.

A2. The initial data Vo and (o satisfy the conditions given in the corollary to
the existence theorem of 2, that is, Vo and (0 possess generalized derivatives
with respect to x and y of all orders such that DVo E() FI W2(), Dt(o L2(F
for all fl in 0 < lfll < oo, and Vo, (o are compatible with the free surface conditions
(4).
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(40)

A3. Long wave condition. There exist positive parameters and p such that

ilOa((0)ll =< 2pl#l, ilOa((0)ll
D(V(0) Vl(0))II

o(v(o) v,(o))II p, o(v(o) v,(o))

for all fl in 0 =< I/1 < , where V(0), ((0) and VI(0) denote the initial conditions
for V, ( and V1, respectively, so we have V(0) Vo, ((0) o,

v(o) (o, 0, o)

according to (37) and (38).
Remark 1. e corresponds to the perturbation parameter in 4 and we shall

always assume that 0 < < 1. It is noted that each term in (40) is well-defined.
Since R < Rc by A1, we have pl > 0 according to (36), hence (38) is a well-posed
heat equation. Since Da0 e L2(F) according to A2, by means of the Poisson
formula for heat equation, it is not difficult to see that Da(t) is continuous at

0 in the space L2(F) for all ft. It follows that DtV(t) is continuous at 0
in the space J(F) for all fl since fi and 1 are independent of x and y. Therefore,
DaV(O) is well-defined and can be expressed as

Dao 0 Daox).

It is also noted that conditions in A3 are not mutually independent.
Since Vo and (o satisfy the assumptions in the corollary to the existence

theorem of 3, equations (2) to (7) have a unique generalized solution {V, }
corresponding to the initial data {Vo, (o}. This solution possesses generalized
derivatives with respect to x and y of all orders, and for each fl, {DoV, Dt(} is
the generalized solution of (2) to (7) corresponding to the initial data {DtVo,
D(o}. Let

(41)

where

V (u,v,w)= V’+ V" + V*,

W l(x "[- 21(xx -[" 22yy "[- W* W’ Av W" Av W*,

V* (u*, v*, w*).

1, 1, 2, 2, 21 and 22 are the same as defined in (30) and (34), and are given
functions depending on z only. Since V and ( are the generalized solutions of (2)
to (7), substituting (41) into (5) and making use of the properties of fi, ..., 22,
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we obtain

(42)

(43) (=(o att 0.

If we substitute (41) in (11) and choose in (11) in such a form that O(s) 0 for

=< s =< T, we obtain

(44)

Let

ds Iv; + v;’ + v,* + uo(V’ + v2 + v*)

+ (v’+ v"+ v*).VU].dn

ds (a;dp, b;q3) dr" ds T(V’)

+ T(V")+ T(V*)]. T() dO.

(45) P’ =/,’, P" PZx,

where/x and 2 are defined in (30) and (34). Since possesses generalized deriv-
atives with respect to x and y of all order, and fix, x, fi2, 2, 2x, 2, P and
are polynomials of z only, we see that V’, V"e W(t2) and p’, p"e W(f), and
integration by parts yields

if2R
[T(V’) + T(V")] T(O) df

f(-vp, + R-xV2V’- Vp" + R-1V2V").d

f [(R -x T(V’) p’). l3 + (R- T(V") p"). 3]" (I) dr.

Hence (44) can be written as

(46)

where

ds (Vt* + uoV* + V*.VU).O

ds G.OdF + ds F.dpdf- ds T(V*).T(O)

(47)

(48)

G -(R-XT(V’) p’). l3 (R- T(V") P")" 3 + (zx b3),
F (-V’,- uoV’, V’. VU Vp’ + R-xV2V’)

+ (V’; uoV; V".VU Vp" + R-Iv2v").
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By (44) and (45), (47) and (48) can be expressed as follows"

(49) G Go(xr + (G1 + G2Dx + G3Dr)(xx + (G4 + GhDx + G6Dr)(rr,
F Foxr + (FI + F2D + F3D + F4Dxx + FhOrr)xx

(50) + (V6 + F7D + VsD + F9Dx + F, oDrr)rr
+ (F + F2D + F3D + F4Dxx + FhDrr),

where Fo, ..., F and Go, ..., G6 are vector functions of z related to the known
functions fi, ..., 2 and Uo only. We are now in a position to prove the following.

THEOREM 2. There exists a positive number Po which depends only on the
Reynolds number R and the angle of inclination O. If the initial data Vo and o satisfy
the assumptions A1 to A3, and if p in A3 satisfies 0 < p < Po, then the first order
approximate solution {Vx, }, which is obtained from the perturbation scheme in
4, is a uniform asymptotic approximation to the generalized solution {V, } in
the following sense If we denote the L2-norm (f u2 d)’/2 by Ilull and the L2-norm
( 2 dF)l/2 by II(ll, then

Ilu=uxll_-<Zo, IIv-vlll_-<Zo, IIw-wxll_-<2Zo, II(-(lll_-<Lo

for all >= 0, where Lo is a positive constant depending on R and 0 only.
Since the proof of this theorem is fairly long, it will be divided into a series

of lemmas. In the following many constants will appear in various estimates.
Unless specified otherwise, Ai, Bi, Ci and Li will denote positive constants de-
pending upon R and 0 only.

LEMMA 4. There exist positive constants Co, C1 and C2 such that

l Iloav*ll2 ds < CollOaV*(O)ll 2

(51) / IlOa(xA0)ll 2 / IOa(yy(0)l 2)

+ c (1 * *D V + V, )ds

for all fl in 0 <= I/1 < and any >= O.
Proof. Let

sup 6 sup

By Cemma 2, 7 =< 2xf, 6 < 2x/. Replacing (I)in (46) by V* and using Lemma 3
and the fact that .[ uoV* V* df 0, we obtain

([] V*(t) 2_ [IV,(0) 2)= ds UoW*u*d+ ds G V* dF

(52)

+ ds F.V*d-R- V*]]ds.

From (1), (49), (50), Lemmas and 2, Schwarz inequality, integration by parts,
and noting that ]w*] 2 dfl 2y( Y ] + Y ]), we can obtain the following
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estimates"

(53)

(54) AI[Q()-at- Q(x) +

(55) < A2[Q(’)+ Q(.,) + Q()]IIV*II,

where

(56) Q(() (2ll(xxtl2 / 11(.112 / 11(,112) /2.

By (53) to (55), the left side of (52) can be estimated as follows"

IIr*(t)ll 2 -Ilr*(O)ll 2 _< 2x//aR72 ([[V*[[ +

(57) 2R-1 IIV*[[ ds

N A (llVllg + v )ds + As (IO(Q21

+ e(A + I(,tls - l*ls,

where we have made use of the inequality 2ab a + b/e, e > 0. It follows that

IIg*lds Co r*(ol + C (1(01 + I()1

Now by (42), (56), Lemma 2, integration by parts and noting that V- V* 0,
we have

(59)

IQ(0I z ds __< lll(x(O)ll = / pzll((0)ll = / ds Iw*l z dF

lllffx(O)ll + 211C(0)112 + 272 (llV*ll + IIV’ll)ds.

According to the corollary to the existence theorem of 3, for each fl in
0 _< 131 < c, DtV and Do( are the generalized solutions of the same equations
(2) to (6) corresponding to the initial data DtVo and Dao Now, if we replace
in (46) by D2tV* and perform integration by parts 131 times with respect to x
and y, we see that (52) still holds except that V* is to be replaced by DtV*, V*(0)
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by DtV*(O), G by DtG and F by DtF. Since the given functions Go,.-’, G6 and
Fo, "’, F15 are independent of x and y, we see that (49) and (50) are still satisfied
by DtG, DtF and Da. Therefore every estimate made above also holds for
DtV(t), Da*(t), DtV*(O) and Da*(0), and, in particular, we have the following
estimates which are similar to (58) and (59):

(60)

and

(61)

IlOaV*ll2ds CoIIDtV*(O)[[ 2 + C3 (l(Oa.)l 2 + I(Oa)l2

+ IQ(O)12)ds + C (IOVxll2 + IIOVll2)ds,

I(Da)12 +/z 110a.r(0)ll zds /x Da.x(0)[I 2

2) ds+ 272 ([]DtV[lz + IIDaV{]e

for all fl in 0 Jill < . Furthermore, by Lemma 2 we also obtain

Hence, by replacing in (59) by Da, we have

(62) IQ(Da(x)I 2 ds llDa(xx(O)ll 2 + 211Da(x,(0)ll 2 + 2 IIDaVllds,

for all fl in 0 I1 < . Similarly,

(63) IQ(Da(r)I= ds PlllDaxy(0) z + 2 Darr(0)l 2 + 2 DaV ds,

for all in 0 I1 < . It then follows from (60) to (63), integration by parts
and 2ab a2 + b2 that the following estimate holds"

Cl(IOx(0)12 + O(0)lColIDV*(O) II2 + 2

(64) + IIOx(0)ll 2 + IIO(0)ll 2)

for all in 0 N B < . This proves the lemma.
LEMMA 5. There exists a positive number Po depending only on R and 0 such

that if p in the long wave condition (40) satisfies 0 < p < Po, then for any O,
we have

(65) IIV*ll ds a2g/(1 r),

where r is defined by r (p/po)2.
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Proof. According to (40) and (41), we have

DaV*(0)II _< D’(V(O)- V(0)) / IDaV"(0)

(66) <= plal / A6(IIDax(O)II / iiDa.(0)ll
/ IIO’xx(O)ll / IIO’(y(0)ll)_-< zZTpI/l.

By means of (40) and (66), (64) reduces to

(67) [IDaV*[I ds <__ 2Lp21al / C2 (I[DaV*[I + [[DaV’[I ds,

for any fl in 0 < Ifll < . If we multiply (67) by CI2al, sum over fl for all fl in
0 <- Ifll _-< N 1, where N is a positive integer, we obtain that

(68) CI21 DoV* ds <= 2L21 2 (C2p2)I/1 + CI2/1 DaV, 2 ds,
Itl=O I/1=o =x

where

IIDV,II2 + iiOVy, 2 D,+aV, 2.

Since

(68) becomes

(69)

u- u- (2C2p2)N
(CzpZ)ltl=< 2k(Czp2)k=

I1- o k= o 2C2/92

V*ll2 ds <= 2L2[1 (2C2p2)U](1 2C2p2) -’

for all N 1, 2, ....
To make an estimate on the last term on the right side of (69), we first make

estimates on the generalized solution {V, (} of (2) to (7). By (5) and (11), it is
shown that

(70)

(71)

IIV(t)ll 2 + bll(t)ll 2 e*’(llv(0)ll 2 + b[l(0)ll2),

fO V I ds 4R e’n’( V(0)ll: ).+ bll((0)

Since {DIV, Dt() is the generalized solution corresponding to the initial con-
dition (DaV(O), Dt((0)}, we also have

(72)

(73)

iiDaV(t)ll 2 + bllDa(t) 2 e,n,(IDaV(0) 2 / b IDa(0) 2),

DaVllds <= 4R era’( IDaV(0)II 2 + bilBaO(0) 2).
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From (41) and the definition of I1" , we see that

(74)
DV*II =< IIDVI + DaV’ e + DaV"II

_-< IIDaVll / Z8( Oll /... + D#ry ),

where IIDt + + IlDa.L’vyy represents the sum of all derivatives of Da with
respect to x and y up to order 3. Since derivatives Of mixed type can be estimated
in terms of derivatives with respect to one variable by means of integration by
parts, it follows from (40) and (70) to (73) that, for 1/31 >_- 1,

(75)

Let

e,,(llOaV(O)ll2 OtVxx,(O) 2 2IlOaV*llZds < A9 -t- + IIDa(0)

+ + IlDxxx(O)ll 2 + IIDVv(0)l 2

+ ...-4-IIDev(0) 2 -4- ID’(0)t 2 + + D(0)II 2)
< A1 en,o2p21tl(p-2 + + p6).

PO (2C2)- 1/2,

where C2 is the constant appearing in (67). It follows that Po depends on R and
0 only. Suppose that the parameter p in (40) satisfies 0 < p < Po, and let

r (p/po).
From (69) and (75), it is obtained that

V* <-_ 2L21(1 rU)(1 r) -1

+ AloC 2e,n(p-2 + + p6)pZltl

xZL2(1 r)N(1 r)-X + AlorNz2 etn(p-2 + + p6).
Since 0 < r < 1, N is arbitrary and A10 is independent of N, by letting N --* ,
we obtain (65). This proves the lemma.

LEMMA 6. If the assumption in Lemma 5 is met, then we have

II*(t), x(t), v(t), V*(t) zL2,

*x(t), xx(t)ll, (t), w*(t) 2L2,

for all >= 0, where
Proof. According to (38), (39), (42) and (43), ’* satisfies

* + u*)= w*(76) * (#1

(77) * =0 art =0.

If we multiply (76) by *, integrate over [0, t] F, and perform integrations by
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parts, we see that

(78)

II*(t)ll + (11 Ixll 2 +/21]ll2)ds ds w** dr

-_< (xll(*l 2 _1__ ]A N yl 2) ds + Cs IIv*ll 2 ds.

From Lemma 2, (65) and (78), we obtain that

(79) II.*(t)ll -<- oL1C6/(1 r) 1/2 for all > 0.

Following a derivation similar to that of (78), we multiply (42) by -.xx, integrate
over [0, T] F, and perform integration by parts to obtain

(80)
I].x(t)ll 2 -I]x(0)]l 2 2C IIVx*ll 2 ds < 2C IIV*llds

_<c IIV*llds,

by Lemma 1. Therefore, by (40) and (65), we have

(81) II(t)ll =< II(0)ll + C8aL/(1 -r)/ <-_ aC9 for all >__ 0.

Similarly,

(82) [ly(t)[I [ly(0)l[ + LIC8/(1 r) 1/2 <= C9 for all >= 0.

Since V, and , are the solution of the same problem corresponding to the initial
data Vx(0) Vox and (0) o, (64) also holds if we replace V*, (0) and V*(0)
by V*, (0) and V*(0) respectively. Hence

llDaV*llds Ioav*(0)ll / Cl(llDa.xx(O)ll 2 / IlOa.xr(0)ll 2Co

-k-l o#.xxx(O)ll 2 + Iloa.xyr(O)ll 2)

/ C2 (llDarx*ll ds + tlDaV*ll2)ds.

From (40), (41) and (76), we find that

Dt v*(0)ll __< O(Vx(0) Vax(O)) 4- Dt V(0)
__< 2pltl + All( DtS,x(O) l+ iiDa(y(0) /

2p I/1/ IIDx#0)ll) < 02A1
An estimate similar to (67) is then obtained as follows"

[[DV*xll 2 ds < zLp21tl + C2 (llDaV*xxll + IIDtSV*xl )dsE

Since the last inequality is in the same form as (67) except that in (67) is to be
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replaced by 2 and V* by V*, using the same arguments to derive (65), we obtain

(83) v*l 2 ds <= L/(1 r) for all >= O.

Similarly,

(84) V’I 2 ds o4L/(1 r) for all >_ 0.

Furthermore, estimates similar to (80) can be obtained as follows"

(*(t)ll 2 =< C7 V*ll2

II(xx(t)ll 2- II(xx(0) 2 C10 IIrllds,

IIyy(t)l 2 iiyy(0)ll2 Ca IIr]llds.

Hence from (40), (83) and (84), it follows that

(85) I1(011 ClxL3/(1 r) x/2,

(86) IIxx(011 2C2L3/(1 r) x/2,

(87) IIyy(t)ll 2CL3/(1 r) 1/2,

for all 2 0.
Estimates on V*(t) can be made as follows. By Schwarz inequality, Lemma

2, (52), (54) and (55), we arrive at

V*(011 = V*(0)ll

Cx3 r*l ds + A x3 (IO()l 2 + IQ(x)l 2 + IQ(,)I 2) ds.

Now by (40), (59), (66), (83), (84) and Lemma 2, we have

,2IO(x)l 2dS < llxx(0)ll 2 + 211x,(0)l 2 + ds Iwxl dr

ZpgC + 8 VI ds zC,

Ie((,)l s :C6, I(()1: C, IIV*(0)II A.
By the above estimates and (65), (88) then reduces to

(89) v*(t)ll c,.



580 s.M. SHIH AND M. C. SHEN

In exactly the same manner, we also have

(90) v*(t)ll _-<

(91) V’(t)ll =< 2C2o.
Since

IIw*(0112 dx dy dx3 w
-1

we obtain from (90) and (91) that

<= f(w:)2 df < 2(live* 2 + Vy* 2),

and

where ill, fi2, 2, 1, 2, 22 are all bounded functions of z. Therefore, the first
order approximation {V, (} is a uniform asymptotic approximation for all

__> 0 to the exact solution { V, }. Furthermore, if the perturbation parameter
in the asymptotic expansion is explicitly expressed, then we have the following"

/2 /21 + O((Z), V O(00, W (ZW + O(t2), 1 21- O(t),

for all >_ 0. This completes the proof of the theorem.
COROLLARY. Theorem 2 also implies the following pointwise asymptotic

approximation

IDa((t, x, y) Da(l(t, x, Y)I _-< 0Mo,

for all fl in 0 <= 131 =< m, where m is a nonnegative integer and Mo is a positive
constant depending only on R, 0 and m.

Proof. The long wave condition (40) implies that

IIOO’/0)ll __< MpI1, IIDD’(V(O) V(0))I _-< MpI1,

DD’C(0)II _-< MpI1, IIDDX.(0)II _-< -MpI1,

IIOO’((0)- Vx(0))ll =< t2MPI1, IIOO’((0)- Vx(0))ll =< 02MPlal,
where M ploal which depends on R, 0 and Itrl only. From the similarity between

(92) IIw*(t)ll 2C21 for all >= 0.

It follows from (79), (81), (82), (85) to (87), (89) and (92) that the proof of the
lemma is completed.

Proof of Theorem 2. By Lemma 5, there exists a positive number Po, which
depends on R and 0 only. If the initial data Vo and (o satisfy the long wave con-
dition (40) with p < Po, then all the estimates in Lemma 6 hold. Let the L2-
norm q/22 df)1/2 be denoted by IIull. From (41) and Lemma 6, we obtain

*Ilu- ulll _-< I11 / 11211 / Ilu*ll < Lo,

IIv vii _-< 112yll / v*l -< 0Zo,

IIw- wxll =< IIC*II / 1l2x(xxll + 1122(r11 + Ilw*ll _-< 2Lo,
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the above condition and the long wave condition (40), we see that all the estimates
in Theorem 2 still hold if we replace V, , V1 and 1 by DV, D, DV1 and D,
respectively. The positive constants acting as numerical upper bounds in those
estimates now depend on R, 0 and M. Therefore, according to Theorem 2, we
obtain that

IIO Dal D*II _-< M1,
where M is a positive constant depending on R, 0 and M only. According to the
Sobolev inequality [10, for functions in W(F), we have

max Il CIlllwr),
F

where C is a constant which does not depend on any other parameters. Hence,
we obtain that, for any in 0 I1 m,

IDa Daxl CIIDa( )llr C IIDa+( 1)112 Mo,
I1 =o

where Mo is a positive constant depending only on R, 0 and [m[. This proves the
corollary.

Remark 2. If 0 0, by starting from

u 1 + 21 + u*, v 2r + v*,

w 11 + 21x + 221r + w*, 1 + *,

and following the same ideas, it is easy to prove the following result.
If the initial data Vo and o satisfy the condition in Theorem of 3 for

m 0, that is, Vo and o are compatible with (4) and Vo E() W(), o,
o, Ox Lz(F), and if o and o have generalized derivatives with respect to
x and y up to third order in L2() and L2(F), respectively, such that

x(0), (0) I(0) 1(0) ,
xx(O) (0) xxx(O) I,

then for any R > 0, we have

for all 0.
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A THEORY OF FRACTIONAL INTEGRATION FOR
GENERALIZED FUNCTIONS*

ADAM C. McBRIDE’

Abstract. In this paper, we develop a theory offractional integration for certain classes ofgeneralized
functions and give one simple application.

First, we introduce the appropriate spaces of testing-functions and generalized functions and
state some of their basic properties. Next, we discuss the various operators of fractional integration
including the Riemann-Liouville and Weyl fractional integrals and the Erd61yi-Kober operators.
Use of analytic continuation enables us to obtain a precise description of the mapping properties of
these operators relative to the testing-function spaces. We extend the operators to the generalized
functions using adjoints and deduce the corresponding mapping properties using standard theorems.
Finally, we solve a differential equation involving generalized functions using the previous theory.

The theory is much more general than that developed in Erd61yi and McBride [6].

1.1. Conventions. We begin by making certain conventions which will be
adhered to throughout. Generalized functions will be denoted by letters such as
f, g, etc., while testing-functions will be denoted by Greek letters such as b, p, etc.
The value assigned to a testing-function b by a generalized function f will be
denoted by (f, ).

Our testing-functions will be complex-valued infinitely differentiable functions
on the open interval (0, o). The space of all such functions will be denoted by C.
For each p, 1 5 p < , Lp is the set of (measurable) functions th for which

I(x)l’ dx

Lp will denote the set of equivalence classes of such functions which differ on a set
of measure zero. L will denote the space of (measurable) functions for which

[bl essential supremum of b over (0,

is finite. L is the corresponding space of equivalence classes. The numbers p and q
will always be related by

-+-=1
P q

and unless otherwise stated, 1 p c.
For any x (0, ) and complex number Ft, x" means exp (p log x) where

log x is real.
Where any term is not defined explicitly, we shall use the terminology of

Zemanian [16].

* Received by the editors March 26, 1973, and in revised form March 12, 1974.

" Department of Mathematics, University of Strathclyde, Glasgow, Scotland. This research was
supported by the Carnegie Trust for the Universities of Scotland.

583



584 ADAM C. McBRIDE

1.2. Introduction. We shall be concerned with the following operators of
fractional integration:

(1.1)

(1.2)

(1.3)

(1.4)

Here m > 0 is real, Re > 0, r/is a suitably restricted complex number and is
defined on (0, oe). When m 1, we obtain Ixb and Kx, which are respectively the
Riemann-Liouville and Weyl integrals of order of b, while I’ and K"2 are the
Erddlyi-Kober operators [9].

Such operators arise in many situations, notably in connection with certain
ordinary and partial differential equations (see, for instance, [3], [4] and [11]),
integral transforms ([2], [10] and [14]) and dual and triple integral equations
([1] and [7]). On the other hand, the theory of generalized functions, or distribu-
tions, has led to great advances in the theory of differential equations ([8], 15]) and
elsewhere. In this paper, we combine these two methods in developing a theory of
fractional integration for a class of generalized functions.

It is possible to develop a theory for Ux and K based on the concept of the
convolution of distributions [8], but this cannot be extended to the more general
operators above. Instead, we pursue an approach based on adjoint operators. In
[6], a space of testing-functions was introduced such that (under suitable re-
strictions on the parameters) K2 is an automorphism of J and I"x is an auto-
morphism of the generalized function space f. In this paper, we introduce classes
F’p,, of generalized functions, relative to which the mapping properties of all four
operators above can be obtained. The theory is much more general than that in [6]
and also more flexible, since other operations such as differentiation and multi-
plication by arbitrary powers of x are easily handled.

In 2, we study the spaces Fp,, proceeding via the spaces Fp F,o Certain
simple operators are also discussed. The results are then extended to Fp,,, and, in
addition, we obtain a structure theorem for Fp,u in the case p <

Section 3 is devoted to a detailed study of the operators of fractional integra-
tion on Fp,u and Fp,,. It appears easier to obtain results for I and K; first,
deducing properties ofI and K,,, rather than to proceed in the opposite direc-
tion. The whole theory depends on the work of Kober in [9].

As indicated above, we would expect to obtain applications of the theory to
generalized integral transforms (notably the Hankel transform) and to integral
equations. These we hope to discuss in .future papers, and we refer the interested
reader to the author’s thesis [13]. Here we content ourselves with just one applica-
tion. In 4, we discuss relations between fractional integration and the operator

d2 2v+l d
(1.5) Lv dx2 x dx"
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Formulas are given for the solution of

Lvf=g,

where f and g are generalized functions. Again, the results are much more general
than those in [6].

2.1. The testing-function spaces F. For each p, =< p =< oe, we define Fp by

(2.1) kdkb )tFp dp dp C and x xL(k=O, 1,2,...

With the usual pointwise operations of addition and scalar multiplication, Fp
becomes a complex linear space. For b Fp, k 0, 1, 2, ..., define 7’ by

(2.2) (4))

The collection

(2.3) Mp {7"k 0, 1,2,

is a countable multinorm and, with the topology generated by Mp, Fp becomes a
countably multinormed space. We define convergent sequences and Cauchy
(or fundamental) sequences as in 16, 1.6]. As usual, every convergent sequence is a
fundamental sequence, but the converse is also true, i.e., Fp is complete.

THEOREM 2.1. For <= p <= , Fp is a complete countably multinormed space
(and hence a Frchet space).

Proof. Define an operator 6 on Fp by

(2.4)
(6)(x) x

dx

d

Since xk(dkdp/dxk) Lp, k 0, 1, 2, ..., ,=, 6k e Lp, k 0, 1, 2, ..., we may re-
write (2.1) as

(2.5) F {’ e C and 6kb Lp(k 0, 1, 2,... )}.

The proof is completed by an argument analogous to that in [16, pp. 253-4]
using H61der’s inequality rather than Schwarz’s inequality at the appropriate
stage.

It can be shown similarly that Fp is a testing-function space in the sense of
[16, p. 39], and we will call the elements of Fp testing-functions.
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We conclude this section with an easy lemma which will be used frequently.
LEMMA 2.2. dp Fp = xl/Pc(x) is bounded on (0,
Proof. It is sufficient to consider the case when b(x) is real-valued. Suppose

first that 1 _<_ p < oe. Choose a, b with 0 < a < b < oe. Integrating by parts, we
have

f lfXi)t(X) { (D(X)}p-1 dx --[X I)(x)}Pba

Now ck F xdp’(x) Lp. Also b(x)}p- L so, by HiSlder’s inequality, the left-
hand side is bounded as a 0 + or b -, . Since the same is true of the integral
on the right, the result follows in this case.

The case p oe is trivial since then x/ck(x) b(x) is essentially bounded and
continuous and hence bounded on (0,

2.2. The generalized function spaces F,. A functionalf on F, is (sequentially)
continuous if, whenever q, converges to q in the topology of Fp, (f, b,)--* (f, b)
as n --. oe. F will denote the complex linear space of continuous linear functionals
on Fp with the usual operations of addition and scalar multiplication. We assign
to Fp the topology ofweak (or pointwise)convergence. From Theorem 2.1 and also
[16, Thm. 1.8-3] we have the following.

THEOREM 2.3. Fp is complete, <= p <= .
Any function f 6 Lq generates an element f 6 F’p by means of the formula

(2.6) (jr, q) f(x)dp(x) dx, dp e Fp.

Generalized functions with an integral representation of this form will be called
regular; those with no such representation will be called singular. An example of a
singular element of F’p is provided by 6, a > 0, defined by

(6,, ) q(a), 4) Fp.

We shall use regular functionals to motivate the definition of various operators on
Fp in the sequel.

It is interesting to compare the spaces Fp with other spaces of generalized
functions, in particular with ’, the distributions on (0, c), and g’, the distribu-
tions on (0, ) with compact support. For the theory of (= N(0, oe)), ’,
o(=d(0, oe)) and ’, see [16]. It is clear that for each p, 1 <= p <__ o,

both inclusions being strict. Further, since @ is dense in , [16, p. 37], Fp is dense
in g. Also it can be shown that if 1 __< p < oe, @ is dense in Fp; the proof, which is
rather intricate, is omitted. However, @ is not dense in F for instance, we cannot
approximate a (nonzero) constant function in the F-topology by functions with
compact support.

Now suppose __< p < oe. Let {b,} converge to b in (i.e., in the topology of
9). The supports of b and b,, n 1, 2, ..., are all contained in some closed
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interval [a, b] with 0 < a < b < oe, so that

dx

d
,

<= bk(b a) ’p sup )
axb {-

asn ,
by definition of convergence in 9. Hence

convergence in convergence in Fp, =< p <

and hence, Fp c 9’. We can also show that

convergence in convergence in

but since is not dense in Foo, we cannot deduce that F’ c 9’. In the other
direction, however, we can show that for =< p =< oe, ’ c Fp. In summary, we
have Theorem 2.4.

l<p<oc andF’ c !’,l<p<oe.THEOREM 2.4. d Fp ,
After we have defined generalized differentiation below, we will be able to

prove a structure theorem for the elements of Fp, p <

2.3. The spaces F, and F,,. In order to be able to consider certain operations
such as multiplication by arbitrary powers of x and differentiation, we must
introduce generalizations of the spaces Fp and F’p. For any complex number p and

__< p =< oe, we define F,.. by

(2.7)

F... is given the topology generated by the multinorm

(2.8) Mp.. {7’’u’k 0, 1,2,... },

where, for 4 e F,.,

(2.9)

where 7’ is given by (Z2). It follows that the mapping b --. xUq is an isomorphism of
Fp onto Fp,,. From Theorems 2.1 and 2.3 we immediately have Theorem 2.5.

THFORF,M 2.5. For each complex number # and <= p <= oe, Fe,u is a FrOchet
space and Fp,u is complete.

Note in passing that we will continue to write

(2.10) Fp Fv,o.

For each complex number 2, we define the operator x on Fp,, by

(2.11) (xdp)(x) x4)(x), 0 < x < .
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No confusion should arise from using the same symbol for the function xx and the
operation of multiplying by this function. We define 6’ on Fp,. by

(2.12) (6’b)(x) ,d-d-(xb),
ax

while for m > 0 we shall write

Note that

d
D

dxm, D1 D.

6’=6+1,

where I is the identity operator and fi is defined by (2.4). It is easy to prove the next
theorem.

THEOREM 2.6. Let 2, lz be complex numbers and <= p <= .
(i) x is an isomorphism of Fp,u onto Fp,u+ x with inverse x-z.

(ii) 6, 6’ are continuous linear mappings of Fp,u into itself.
(iii) D is a continuous linear mapping of Fp,u into Fp,u_ m.
To define the corresponding operators on Fp,u, we use adjoint operators. For

f F’p,u we define x’f, 6f, 6’fand Dmf by

(2.13) (xf, ) (f, xZqS), e F,u_ ,
(2.14) (6f, ) (f, 6’), e Fp,u,
(2.15) (67, ) (f, -6), e F,,,

(Dmf, 4) f, --Dx-m+
m

(2.16)

The motivation for (2.14)-(2.16) is supplied by taking f to be a regular functional,
b and integrating by parts. Using Theorem 2.6 and [16, Thm. 1.10-1] we
immediately obtain the following.

THEOREM 2.7. Let 2,/a be complex numbers and <= p <_ .
(i) x is an isomorphism of Fp,u onto Fp,u_ with inverse x 4.

(ii) 6, 6’ are continuous linear mappings of F’p,u into itself.
(iii) D, is a continuous linear mapping of Fp,u into F’

p,la +
We conclude this section with the following structure theorem.
THEOREM 2.8. Let p be any complex number and <= p < . Any f Fp,u is of

the form

(2.17) f x -u x’D,,
k=O

where r is a positive integer, h L, k 0, 1, ..., r, and/ is defined as in (2.6).
Proof. The proof is analogous to a number of proofs in the literature and is

omitted. (See, for instance, [15, pp. 272-274].)

3.1. The operators I: on F,,,. We are now ready to discuss the mapping
properties of the operators (1.1)-(1.4) of fractional integration. In this section we
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study I,, and I"; and the corresponding results for K,,, and K"x are given in the
next section.

It is convenient to begin with I since (under suitable conditions) it maps
Lp into Lp whereas I,, does not. The mapping properties of I,, can be derived
using the relation

(3.1) I(x) o,=x Ix(x).

This approach has the slight disadvantage that some of the more obvious results
such as

d +(3.2) I Ix
appear much later than usual.

LEMMA 3.1. For p , Re > O, 1 is a continuous linear mapping of
Lv into L provided m Re q + m > 1/p.

Proof. The result for m is proved by Kober in [9, Thm. 2]. The general
result follows by a simple change of variable.

This leads to Theorem 3.2.
THEOREM 3.2. For p , Re > O, 1 is a continuous linear mapping of

F,u into F,u provided Re (mq + ) + m > 1/p.
Proof. Suppose first that 0. Since F is a subspace of L, Lemma 3.1

shows that I is a continuous linear mapping of Fv into Lv. From (1.1) and (1.3),

(. 4(x ( t-t"*-4(x0 t.

Differentiating under the integral sign in (3.3) gives

from which it follows by induction that for k O, 1, 2,...,

d dkck(3.4) v’k lr/’r] /’r/’t v’k
dxk,, x,,,,e, --.x. dxk"

By Lemma 3.1, for some number M (depending only on r/, a and m),

(i) <__ M(),
and the theorem is proved for p 0.

The general result follows from the previous case using the relation

Ix;;,p(x) xUI+u/m),,x up, dp Fp,u
and Theorem 2.6 (i).

We shall, in fact, prove much more about I, shortly. One result we shall need
is

(3.5) r+
-x. -x

valid provided Re > 0, Re fl > 0 and Re (mr/+ p) + m > 1/p. Theorem 3.2
involves restrictions on q and 0. That the restriction Re (mr/ + p) + rn > 1/p is
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necessary is seen by taking p oe, 4(x) x", whence

F(r/ + (p/m) + 1)
Ix’dP(x)-

r( / r/ / (/m) + 1)

which belongs to Foo,u provided Re (r/+ (/m) + 1) > 0. On the other hand,
we now proceed to remove the restriction Re > 0 using analytic continuation.
We make the following definition.

DEFINITION. Let V, V2 be two countably multinormed spaces. Suppose that to
each 0 in some domain D of the complex plane there corresponds a continuous
linear mapping T, from V1 to V2 We shall say that T, is analytic with respect to in

D if there exists a continuous linear mapping c3T/c of V into V2 such that, for
each fixed b e Va,

1[T+h T]

__
converges to zero in the topology of V2 as the (complex) increment h --, 0 in any
manner.

It is easy to show that iff(e) is an analytic function ore in D (in the usual sense)
and T, is analytic in D (in the sense ofthe above definition), then the operator f(e)T,
is analytic in D.

THEOREM 3.3. On Fp.u, I is analytic with respect to o for Re e > 0, provided
that Re (mr + ) + m > 1/p.

Proof. See 13].
Notes. 1. It is clear that, under the hypotheses of Theorem 3.3, Ix,,Ck(x) is, for

each fixed x, an analytic function of in the usual sense for Re e > 0.
2. A similar argument shows that, for each fixed e with Re e > 0, I"x; is

analytic on Fp,, with respect to r/in the half-plane Re r/> (1/m)((1/p) m Re p).
We shall be concerned with analytic continuation with respect to e. We

require the following lemma which can be proved by straightforward differentia-
tion.

LEMMA 3.4. Let Re > 0, Fp,u, Re (mr/ + p) + m > 1/p. Then

6I+ 49 I+ 6dp mlx,,,dp (mq + m + m)I"x+ dp.

Rearranging the result of Lemma 3.4 gives

(3.6) mlx,,dp (mr + m + m)I+ dp + Inx,+l
By Theorem 3.3 and the remark following our definition above, the right-hand
side is analytic with respect to for Re > -1. We use (3.6) to continue
analytically, in the first instance to < Re <= 0 and hence, step by step, to the
whole complex -plane.

Still assuming Re (mr/+ #) + m > 1/p, we may put= 0 in (3.6) to obtain

(3.7) I;b b.

We can now prove our first main result.
THEOREM 3.5. Let Re (mr/ + #) + m > 1/p, <__ p <= .

(i) For any complex number , I]2 is a continuous linear mapping of Fp,,
into itself.
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(ii) For fixed , I"x is entire with respect to on F,,,.
(iii) If, in addition, Re (mr/ + m +/z) + rn > 1/p, I is an automorphism of

F,, and
rl,ot(Ix,.) ,+,

XrVl

Proof. Parts (i) and (ii) follow using Theorems 3.2 and 3.3 along with suffi-
ciently many applications of formula (3.6). We now prove (iii).

By analytic continuation, (3.5) is valid provided only Re (mr/ + p) + m > 1/p
and Re (mr/+ me + p) + m > 1/p. (This second condition was redundant before
with Re > 0). In this case for q5 Fp,.,

by (3.7) and

by (3.7). The result follows.
Finally in this section, we state the mapping properties of 1,,, For Re e > 0,

we have, from (1.1) and (1.3),

=x Ix,,Ck(x).(3.8) l,,,dp(x) O,ot

We use (3.8) to define I,. for all e, this definition coinciding with (1.1) for Ree > 0.
By Theorems 2.6 (i) and 3.2, Hx.. is a contintinuous linear mapping of F,u into
Fv,u+m. provided Re p + m > 1/p. In this case also we can prove

d
(3.9) lmdp(x)

If we had developed the theory of I,,, without proceeding via I"x, we would use
(3.9) to continue I, analytically from Re e > 0 to the whole complex s-plane.

Still assuming Re p + m > 1/p, we have from (3.7) and (3.8) that, for b e Fp,,,

It follows from (3.9) that, for n 0, 1, 2, ...,

(.0 24

as might be expected.
It can also be proved using (3.5) and (3.8) that for e F,,, (l/p) m Re

< rain (0, m Re e, m Re ),

(3.11) Ix, I, I+ II.
This leads to Theorem 3.6.

TnzozM 3.6. I is a continuous linear mapping of Fp,u into F,u+ provided
Re + m > 1/p. I is the identity operator. I in addition, Re ( + m) + m > l/p,

I is an isomorphism of Fp,u onto F,u + and



592 ADAM C. McBRIDE

Equation (3.11) enables us to write down an explicit expression for I,, for any
;ifeFp,,,Re/+m> 1/p, Re+n>0, then

m ___)"fo um)a+n_lum_ldp(u)du(3.12) I,,dp(x)
F(e + n)

(xm-

We mention also the second index law for the operators I,,; if e Fp,,,
-Rep m + (l/p) < min(0, mRe?),e + fl + ? 0, then

(.3.13) xmIx,.xmdp(x I-x-mI-dp(x).
We shall not prove (3.13) here, but defer theproof to a subsequent paper where the
result arises naturally in connection with hypergeometric integral equations.
Equations (3.11) and (3.13) have been studied in the case m by Love [12] for
ordinary functions and by Erd61yi [5] for a class of generalized functions.

3.2. The operators K) on Fv,.. We now consider the operators K; on Fp,u.
For Re > 0, we have from (1.2) and (1.4) that

(3.14)

We obtain the properties of K"x using arguments similar to those for l"x. We shall
mention only the salient points.

THEOREM 3.7. Let Re (mr/ p) > -1/p, <= p <= .
(i) For any complex number ,K is a continuous linear mapping of Fp,, into

itself.
(ii) For fixed r/, K is entire with respect to on Fp,,.
(iii) If, in addition, Re(mr/+ m p) > -I/p, K] is an automorphism of

Fp,, and

(Kx) =--x

Proof. (i) For Re e > 0, the result follows using a result of Kober [9] and
differentiating under the integral sign in (3.14). We extend the definition of K]; to
Re <__ 0 using the formula

r/, ]q,t +(3 15) mKx,,Ck(X (mr/ + m)K]+1 (])(X)

which is an analogue of (3.6) and is valid for 4 e Fp,. if Re (mr/ p) > -1/p.
Use of (3.15) completes the proof of (i).

As regards (ii) and (iii), we proceed as for Inx using (3.15) and the additional
results

Kx,.4=dp,(3.16) ,,o

valid for b e Fp,,, Re (mr/ #) > 1/p, and

(3.17)

valid when 4 e Fv,", Re (mr/ t) > -1/p and Re (mr/ + m t) > -1/p.
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To obtain the results for K,,, we note first that for Re a > 0,

from (1.2) and (1.4). We use (3.18) to define K,, for all . Using Theorem 3.7 gives
the following.

THeOReM 3.8. If Re ( + m) < l/p, K is a continuous linear mapping of
Fp,u into Fp,u+m. If also Re < l/p, K is an isomorphism of Fp,u onto Fv,u+, and

(K) K.
K is the identity operator on Fp, Re < 1/p.

Using (3.15), we can show that, for Re ( + m) < 1/p,

(3.19) K(x) K2
d

(x), Fp,,,

from which it follows by induction that if Re g -mn < 1/p, n O, 1, 2, ...,

(3.20)

The first index law for the operators K is

(3.21) KK Kx KK,
valid when (l/p) Re > max (m Re, m Re fl, m Re ( + fl)). The second index
law states that for Fp,u, Re -(l/p) < min (0, m Re 7), + fl + ? 0,

x Kx(3.22)

For discussion of(3.21) and (3.22) we again refer the reader to [5] and [12].

3.3. The aetion of anK on F,. We are now ready to develop the
theory of fractional integration on the spaces F’v," of generalized functions. As
usual, our definitions are motivated by considering regular functionals.

Letf Fp,u" From adjoint considerations we are led to defineIf, for Re > 0,
by

q, q+ 1-(1(3.23) (Ixf

where Fp,u. However, the right-hand side is meaningful provided only
Re (mq ) + m > 1/q by Theorem 3.7 in this case, we can remove the restriction
Re > 0 and use (3.23) to define lxf for all complex

THEOREM 3.9. Let p and let be any complex number.
(i) 1 is a continuous linear mapping ofFp,

+m> 1/q.
(ii) If, in addition, Re (mq + m ) + m > 1/q, 1 is an automorphism of

Fp,u and

Proof By Theorem 3.7 (i), K"+ 1-1/"’ is a continuous linear mapping of
Fv," into itself provided Re re(r/+ (I/m)) -/ > -I/p, i.e., Re(mrl l)
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+ m > 1/q. Part (i) now follows by [16, Thm. 1.10-1]. Part (ii) follows similarly
using Theorem 3.7 (iii) in conjunction with [16, Thm. 1.10-2].

Using (3.17) and (3.23) we see that if f F’p,
(3.24) Y+,t, ,+

-x,- -x,-J Ix,- tf
provided Re (mr/-#)+m> 1/q, Re (mr/+m-/)+ m> 1/q, while from
(3.16),

(3.25) ,,oI2,.f f
provided Re (mr/ -/) + m > 1/q. Equations (3.24) and (3.25) are analogous to
(3.5) and (3.7), respectively.

It is now clear that to obtain results for Fp,, from the corresponding results
for Fp,, (e.g., to obtain Theorem 3.9 from Theorem 3.5) we interchange/ and -#,

p and q in the restrictions on the parameters. This trend, which continues below,
is to be expected from consideration ofH61der’s inequality. Ifb e Fp,.,I f(x)ck(x) dx
will converge if f(x) x-"g(x) with g Lq and, in particular, iffe F,_..

We note in passing that for fixed f e Fp,., e Fp,. and Re(mr/-/) + m
> l/q,

(Ix,f rk)

is an entire function of e by virtue of Theorem 3.7 (ii). However, this will not be
needed here.

Proceeding as before, we are led to defineK for any e and any f e Fp,, by

(3.26) (Kx,,,f, dp) (f Ix2. +(1/m)’al)), (D Fp...
Using Theorem 3.5 we obtain the following result analogous to Theorem 3.7.

THEOREM 3.10. For <= p <_ oe and any complex , K is a continuous linear
mapping of F’p,, into itself provided Re (mr/+/) > -1/q. If, in addition, Re (mr/
+ m + /a) > l/q,K is an automorphism of Fp,, and

rt,a q + ot,(K,) Kx,

Forfe Fp,., we have analogues of (3.16)and (3.17).

(3.27) K’,.f f
for Re (mr/ +/) > l/q; if in addition, Re (mr/+ ma + 1) > 1/q,

(3.28)

Finally we discuss the properties of I,, and K,, on F’
Let f e Fp,u. As before, from adjoint considerations, we are led to define

Px,,f for any complex e by

(3.29) (I,,,,f, ok) (f, X 1K,,,x m+l )).

The right-hand side is meaningful provided only that q5 e Fp,la_ma and m Re/z
> 1/q by Theorem 3.8. Similarly, for b e F,u_m, f e Fp,,, we define K,,,f by

(3.30) (Kf ) (f x IxX-+ 49).

Use of Theorems 3.6 and 3.8 proves the next theorem.
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THEOREM 3.1 1. (i) I,,. is a continuous linear mapping ofFp,u into Fp,u_mo provided
m Re # > 1/q. Ixm is the identity operator. If, in addition, m + Re (m0 #) > l/q,
I,.. is an isomorphism of Fp,, onto Fp,_mo and

(ix,) Ix.
(ii) K,,. is a continuous linear mapping ofF,, into Fp,,_mo provided Re (m #)

< 1/q. If, in addition, Re # < l/q, K, is an isomorphism ofF,u onto Fp,,_mo and

(K,,,)-1 Kx.
Kx is the identity operator on Fp, if- Re # < 1/q.

For f Fp,, we have the following index laws analogous to (3.11), (3.13),
(3.21) and (3.22).

Ix,.Ix..f -x,. J IxIxmf(3.3 1)

provided (l/q) m + Re # < min (0, m Re , m Re fl).

(3.32) x I.x f=I;jx

provided (l/q)- m + Re # < min (0, m Re 32), + fl + 32---0.
(3.33) Kx,K,f ..., KmKxf
provided (l/q) + Re # > max (m Re t, m Re fl, m Re (e + fl)).

(3.34) xmrKx,.xmotf K22x-maK2df
provided -(l/q)- Re # < min (0, m Re 32), + fl + 32 0.

4.1. The operators L,. For any suitable function q and any complex number
v, we define the differential operator L by

d2q 2v + d(4.1) (L,,dp)(x) x2 4
x dx

In this section, we consider connections between L and operators of fractional
integration which have been discussed for ordinary functions by Erdlyi in [3],
and one of which has been established for the class " of generalized functions by
Erdlyi and McBride in [6].

It is immediate from Theorem 2.6 that for all complex numbers/2 and v and
for < p < oo L is a continuous linear mapping of Fp, into Fe 2. For f F’

p,/z

we define Lf by

(4.2) (Lf c) (f xL _x dp), dp e Fp,u + 2.

The motivation for (4.2) is supplied by taking f to be a regular functional generated
by a C2 function, taking b and integrating by parts. Using [16, Thm. 1.10-1],
we immediately deduce Theorem 4.1.

THEOREM 4.1. For any complex numbers # and v and for <_ p <= , Lv is a
continuous linear mapping of Fp,u into F’p, + 2

As regards connections with fractional integration, we have Theorem 4.2.
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THEOREM 4.2. Let
(i) If Re (2v //) > i/p,

(4.3) Ix2Ld? L+flx2
(ii) If Re (2v -/) > l/p,

(4.4) L_Kx2 dp K

Proof. To prove (i) we can proceed as in [6, 6], or use (3.15). The proof of
(ii) is similar, so we shall omit the details.

(4.3) and (4.4) give perhaps the neatest relations between L and fractional
integration operators on G,,. We now give the corresponding results for F’p,,.

THEOREM 4.3. Letf
(i) If Re (2v g) > l/q,

(4.5) Ix Lf L+flxZ.
(ii) If Re (2v + g) >- l/q,

(4.6) L vKx7 f.KL__

Proof. (i) For f 6 Fp,,, 6 Fp,,+ 2, (3.23) and (4.2) give

and similarly

(I Lv+f ) (f, xKx’L__x-
The result now follows from Theorem 4.2 (ii) with/, replaced by g + and x- ,
respectively. Part (ii) follows similarly from Theorem 4.2 (i).

4.2. Solution of LvO = k. Suppose Fp,lt_ 2 is given. We wish to find
Fp,, such that Lb , i.e.,

(4.7)

d2 2v + db
dx2 x dx

d(x2v+dx x2v+l0::*
dx

The problem then reduces to inverting D d/dx, and for this we fall back on
Theorems 3.6 and 3.8, which tell us that D is an isomorphism of Fp,. onto Fp,._
provided Re/ :/: lip and

=,f I, Re> l/p,
D-

-Kx, Re#< lip.

As regards the case Re/z 1/p, take p oe so that g 0. Then DO 0 for every
constant function tk e Fo, and clearly D is not invertible in this case. Using (4.7)
we easily obtain the following theorem.
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THEOREM 4.4. For each / Fp,_ 2, the equation Lvc / has a unique solution
( Fp,u provided Re (2v + ) -#- 1/p and Re 1/p.

(i) lf Re(2v + )> l/p, Re > 1/p,

Ix-2-XIx2+$.

(ii) If Re (2v + ) > 1/p, Re < 1/p,

-Kx-Z-’Ix2+x.
(iii) If Re (2v + ) < 1/p, Re > 1/p,

(iv) If Re (2v + ) < 1/p, Re fl < 1/p,

Kx-2-.+.
The results are particularly simple when v (in which case (ii) is redundant)

and v 0 (when (ii) and (iii) are redundant). We can use these special cases in
conjunction with Theorem 4.2 to derive alternative expressions for the solution

in the general case. For instance, for the case v -, we obtain Theorem 4.5.
THEORE 4.5. If Re(2v + )# lip and Re fl l/p, the (unique) solution
Fp,u ofL , Fp,u_ 2, is given as follows:

(i) IZRe (2v + )> 1/p, Re (-1 + )> 1/p

/zl/2,v+ 1/2121-v- 1/2
(ii) If Re (2v + ) < l/p, Re (- 1 + ) < 1/p

K2,--/2I_KxK, + /2, 1/p < Re < (l/p) + 1,

K’ -a/2 2 -,+12- KK Re < 1/p.

Proof.
(i) Since Re (2v + fl) > 1/p, we may take v- in (4.3) to get

I-- I/2Lv L_ /21 /2
I;/,+/_/I--

using Theorem 3.5 (since Re + > l/p). Provided (L_ /2)- exists, we may now
invert obtaining

and we use Theorem 4.4 (i) to substitute for (L_ 1/2)-1.
Part (ii) is proved similarly using (4.4).
There are other possible expressions for b, but we shall not list them here.

4.3. Solution of Lvf= g. Suppose now that g Ftp,la+2 is given. We have to
find f 6 Fp,u such that Lf g. To obtain the solution, we can either imitate the
methods of 4.2 or else take adjoints.
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THEOREM 4.6. For each g Fp,u+ 2, the equation Lvf g has a unique solution
F’p,, provided Re (2v #) 1/q and Re # :P- 1/q.

(i) If Re(2v- la)> l/q,-Re/z > l/q,

f ixX-2V llxlX2V+ lg.

(ii) If Re (2v -/) > 1/q, Re/ < l/q,

f _Kx-2-XIxx2+Xg"

(iii) If Re (2v -/) < l/q, Re/ > l/q,

f Ix- 2v- 1Klxx2V + Xg.

(iv) If Re (2v -/) < l/q, Re/ < l/q,

f Klxx-2v 1Kxlx2v+ lg.

As an illustration consider (i). Under the given conditions, xL_ vx- is invertible on
Fp,u + 2, and from Theorem 4.4 (iv), if @ Fp,u,

xL_ 4) ’xx-
Hence taking adjoints, where g Fp,u + 2, we see that

2v 1. 2v-Lf g ,,. f x I,. IXxxg.
This is a perfectly acceptable expression for the solution, but to obtain the form in
(i) we use the index laws (3.31) and (3.32). Indeed,

2v 1. 2 lIxg I I., Ixxgf x ix. 1-2vX 2v 1._

Ilx(I2vx ’IZx+ ’)xg I(x-2’- ’IxxZV)xg,

from which (i) follows; the above steps are all valid under the given conditions.
Parts (ii)-(iv) are similar.

Again other equivalent solution formulas can be obtained if required via (4.5)
and (4.6).
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ERRATA" CONNECTION FORMULAS FOR ASYMPTOTIC
SOLUTIONS OF SECOND ORDER TURNING POINTS IN

UNBOUNDED DOMAINS

ANTHONY LEUNGt

The correction on line 32 of p. 98 for the matrix N(e) is the most important
one. The rest are misprints or arithmetic errors in computations leading to the
correction for N(e).

On p. 95, the entries of the lower left-hand corners of the 2 x 2 matrices
displayed on lines 3, 16 and 25 should be

g-- + q2 +

On p. 96, the formula for a(#) on line 19 should be "a(#) -exp[+ 2zi
1/4)],,,

On p. 97, the formulas for z2(t, e), v(t, e) and Vz(t, e,) on lines 15, 21, and 24
respectively should be changed to

"z2(t e)-- [,(1/2)2 2 21/’tl/2 F(1/2) + O(e log e) (e-

(ei/4 + O(e log e)) et2/t2)/
"v 11(t, e) -el/2 1/4t- 1/Z[e-t2/tE)(x/ + O(e log e))

e’/t2)(ei/2 + O(e log e))] ",

"v2(t, e) -el/’2 1/’t- 1/2. t[e-,2/tz)(_x// + O(e log e))

etZ/t2)(ei/2 -+- O(e log e))] ".

On p. 98, line 3 and 28, "- x/i + O(e log e)" should read "- x// + O(e log e)".
On line 12, "C(e) 21/2 e-’i/2..." should read "’C(e) 21/’ e-il2...". On line 20,
the entry on the lower right-hand corner of the 2 2 matrix should be "2x/i
+ O(e log e) e/O(e log e)".

On p. 98, line 32, the (2, 2)th entry of the matrix N(e) should be "-x/i
+ c22(e + O(e log e)".

On p. 101, line 8, "x/" should read "-x//i’’.

* This Journal, 4 (1973), pp. 89-103. Received by the editors March 22, 1974.

" Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221.
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A NONLINEAR BOUNDARY VALUE PROBLEM ON AN
UNBOUNDED INTERVAL*

DONALD R. SMITHS

Abstract. A constructive existence and uniqueness result is. obtained for small values of the positive
parameter for the problem (1.1), (1.2). The multivariable method is used to provide a candidate Uo
about which the problem is perturbed, and the method of successive approximation is then used to
obtain existence and uniqueness in a functional ball centered at u0. It is shown that u0 provides a
uniformly valid approximation to the resulting solution on the full interval < <_ oo for small e.
The problem (1.1), (1.2) has been interpreted as a scalar model of the stationary incompressible flow
of a viscous Navier-Stokes fluid past a sphere, with prescribed constant velocity at infinity and zero
velocity on the surface of the sphere. For this scalar model the results obtained here provide a first
step towards a verification of the analogue of the long standing conjecture concerning the nature of a
stationary viscous flow at large Reynolds number.

1. Introduction. We consider the boundary value problem consisting of the
differential equation

du) du[dZu n
(1.1) er2 - / u 0, r >

and the boundary conditions

(1.2) u(1, e) ,. u(., e)

for the function u u(r, ), where n denotes a given, fixed positive integer (the
case n is trivial, and hence uninteresting), e is a small positive parameter,
and is a fixed given constant which satisfies the condition

(1.3) +1>0.

We could replace the second boundary condition of (1.2) with the more general
condition

(1.4) u(, e) fl
for a given fixed constant ft. However, the method of calculation used below in
2 to obtain equation (2.4) can be used to show in this case that the condition

fl > 0 is a necessary condition for the existence of solutions to the present problem,
and then a fixed similarity transformation (cf. Von Mises and Friedrichs (1971))
can be used to reduce the more general condition (1.4) back to the case fl 1.
Hence there is no loss in taking fl 1, and this we shall do as in (1.2). (On the
other hand if we were to retain (1.4), then the condition (1.3) would be replaced with
the condition + fl > 0.)

* Received by the editors April 26, 1974, and in revised form July 27, 1974.
]" Department of Mathematics, University of California at San Diego, La Jolla, California 92037.

A substantial portion of this paper was written late in 1972 while the author was a Visiting Fellow at
the Battelle Seattle Research Center.
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Such two-point boundary value problems on bounded intervals for equations
of the form

d2u( du
e-dr2 + F r,u, d--;,e 0

have been studied by several authors including Coddington and Levinson (1952),
Wasow (1956), Willett (1966), Erd61yi (1968), O’Malley (1968), and others. We
indicate in this paper by illustration how certain of these earlier results on bounded
intervals can be extended to handle similar problems of interest on unbounded
intervals. The problem (1.1), (1.2) is of independent interest in its own right, and
for this reason and for the sake of simplicity we only consider this special problem
here.

The expression d2u/drZ+ [(n- 1)/r]du/dr which appears in (1.1) is the
spherically symmetric part of the n-dimension Laplacian of u. Hence (1.1) may
be interpreted as a mathematical model for the equilibrium temperature distribu-
tion in a homogeneous medium which fills out the region r -[x[ > 1, with non-
linear heat loss represented by the term u du/dr. The boundary conditions (1.2)
specify the values of the temperature on the surface of the unit sphere in n-space
and at infinity. This interpretation of (1.1), (1.2) is due to Lagerstrom and Casten
(1972) who used matching techniques to study this problem for large values of the
parameter e in the case a 0.

The problem (1.1), (1.2) with a 0 has also been interpreted by Lagerstrom
(1961) as a scalar model of the stationary incompressible flow of a viscous Navier-
Stokes fluid past a sphere, with prescribed constant velocity at infinity and zero
velocity on the surface of the sphere. In this case the parameter e corresponds to
the kinematic viscosity of the fluid, and Lagerstrom used matching techniques to
study the problem for large e (i.e., small Reynolds number). This problem has
been considered further by Bush (1971), again for large e.

In the case of the stationary incompressible flow of a viscous Navier-Stokes
fluid past an obstacle, it is widely expected that uniqueness fails for certain values
of e due to turbulence. Uniqueness is known to hold for large e in this case as a
consequence of the work of Finn (1959; 1965) and Finn and Smith (1967), but the
case of small e as studied in the present paper for (1.1) remains open for the sta-
tionary incompressible Navier-Stokes equations. (See Chapter 4 of Meyer (1971)
for a discussion of this problem.) Hence we consider the uniqueness question to
be of some importance for (1.1), (1.2). We also consider that it is important when-
ever possible to use constructive methods which lead to quantitative results. For
example, if existence and uniqueness hold for all small values of,e, then we wish to
obtain quantitative information regarding the admissible size of e, and we also
wish to obtain both qualitative and quantitative information about the resulting
solutions.

The existence of solutions of (1.1), (1.2) can be proved nonconstructively
with the Schauder fixed point theorem directly or with the subfunction/super-
function theory of Jackson (1968) which in this case is again based on the Schauder
fixed point theorem. However, from our standpoint such an existence result is not
satisfactory since it is in principle nonconstructive, and the difficult question of
uniqueness would still remain to be studied (using, perhaps, the topological
degree theory of Leray). Moreover there would also remain the important question
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of the qualitative and quantitative behavior of the solutions with respect to their
dependence on r and e.

In our study of (1.1), (1.2) we shall use a direct, elementary approach based on
the multivariable expansion method (cf. Smith (1975)). It would seem that the
multivariable expansion method provides an ideal, natural approach in the
present case since it provides an elementary, direct, unified approach which gives
at once a constructive existence and uniqueness result along with the additional
quantitative and qualitative information of interest.

Specifically, we shall obtain a constructive existence and uniqueness result
for (1.1), (1.2) for (small) values of e which satisfy

(1.5) e <

(1 + X)6

8(n 1)[(1 + )4 + 16(1 o2)/n + 32(1 oO2]

2(n- 1) + (n- 1)(a- 1)[(1 + a)2/n + 2(a:- 1)]

if_< 1,

and at the same time we shall also obtain an approximation to the solution function
u which is easy to interpret for small . We prove that the resulting approximation
is uniformly valid (for small e) on the full interval _< r =< oc, and we obtain
detailed qualitative and quantitative information about the structure of the
solution.

We shall be able to conclude directly from our analysis that the flow function
u obtained undergoes a rapid variation in the Prandtl boundary layer region near
r 1, whereas outside this boundary layer region the flow function is well-
approximated by the smooth solution (Uo 1) of the reduced "Euler flow pro-
blem"

duo
Uo-fir O, Uo( 1.

Hence for the scalar model (1.1), (1.2) we provide a first step towards a verification
of the analogue of the long standing conjecture concerning the nature of a sta-
tionary flow of a viscous incompressible fluid at large Reynolds number. In the
case of the Navier-Stokes equations the conjecture remains open: not even the
first step has been taken.

As a direct by-product of our analysis we obtain a constructive existence
result for the nonlinear Dirichlet problem

u
eAu +u-a-=0 inr=lx] > 1,

for small e, where A denotes the Laplace operator in n-space. Moreover we obtain
an .easily interpretable, uniformly valid approximation to the resulting solution u,
from which we conclude that the solution exhibits the same boundary layer
behavior described above. The boundary layer region which adjoins the surface
Ixl 1 in n-space has a thickness of order e, for any n 2, 3, 4 ....
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We mention finally that our existence and uniqueness condition (1.5) requires
e to be relatively small in those cases in which the given boundary value e (at
r 1) departs significantly (within the range specified by (1.3)) from the given
boundary value fl at infinity. Indeed, e must be small [of order (1 + e)6] if e
is close to the extreme value 1, and e must also be small [of order e- 3] if e is large.
On the other hand, when the boundary value e is close to the value at infinity,
/3 1, then our existence, uniqueness, and approximation results remain valid
for relatively large values of e approaching the value e 1/[2(n 1)]. (Ife =/3 1,
then (2.4) shows that the trivial solution u 1 is the unique Ll-solution of (1.1),
(1.2) for any > 0.)

2. Qualitative properties ofthe solutions. It is convenient in this section to work
with functions in Lx(1,) (which vanish at infinity), and for this purpose we
rewrite (1.1), (1.2) in terms of the function w given as

(2.1) w= 1-u.

The function w is then found to satisfy the conditions

d2w n 1 dwl
(2.2)

r

dw dw
+Tr wyr-r,

and

(2.3) w(1, e) 1 , w(, e) O.

r>l

The equation (2.2) can be integrated twice with the boundary conditions (2.3)
to yield the nonlinear integral equation

w

(2.4) w(r,e,)--

fl[trexpe elf W)/ tr"- 11 dtr
for r >= 1.

Conversely, any solution of the latter nonlinear integral equation will be a smooth
solution of (2.2), (2.3).

We conclude directly from (2.4) that any solution w of (2.2), (2.3) must satisfy
the following bounds (which can also be obtained from the maximum principle):

O< w(r,e) <= 1- , dw
(r,e)<0 if< 1,

(2.5) w(r, e) 0 if 1,

cr < w(r,e) <= O,
dw
--(r,e)>0 if>
dr

for all r >= 1. The following estimates, which are useful for large r, follow now from
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(2.4) and (2.5):

e(1-) exp (- )
0 <= w(r,e) <= if < 1,

(2.6)

and

(2.7)

e(e 1) exp

W o.n-

-) exp -f w)
dG

O< -w(r,6)< if e>r a 1,,, n
r"- joj/j.exp

6 6
w a"-’ da

0 r(r’6)=< if0< 1,
r f [exp W fin- dG

3. A formal two-variable approximation. The nonlinear term w dw/dr which
appears in (2.2) will be negligible at infinity compared to the linear term dw/dr
appearing in (2.2) (see (2.6) and (2.7)), and so we are led to consider the following
related linear problem:

d2W n 1 dW dW
6 dr, +

r -d] +=0, r> 1,

W(1, 6) 1- , W(oe 6) O,

which is obtained from (2.2) and (2.3) by omitting the nonlinear term in (2.2).
The unique solution W of this linear problem can be given explicitly up to quad-
ratures, and then repeated integrations by parts can be used to obtain the result

(3.1) W(r, 13) e -tr- TM Ak(r)6k + 0(131+ 1)
k=0

for suitable functions Ak Ak(r which we need not (and shall not) give here. The
functions Ak depend only on r (and n), and not on 6. (For example, Ao(r) (1

e)/r"-’, while A,(r) (1 e)(n 1)(r 1)/r".)
The corresponding linear problem associated with (1.1), (1.2) is obtained by

setting U 1 W. It satisfies the differential equation

d2U n- dU dU
(3.2) 6 nt

r dr
+ -r =0, r> 1,

0 <= "W(r,6) <= if > 1.
dr r"-a exp

6 6
w a"- da

In particular, every La(1, oe)-solution must vanish exponentially at infinity (for
any fixed 6 > 0).



606 DONALD R. SMITH

whose solution satisfies

(3.3) U(r,e)- e -(’-)/ A(r)e +O(eu+x)
k=O

In particular we see that the solution U of (3.2) depends in an essential way (for
small e) on the two variables r and (r 1)/e.

We now turn to the solution u of the original nonlinear problem (1.1), (1.2).
By analogy with (3.3) we seek to represent the solution u with an appropriate
asymptotic expansion of the form

(3.4) u(r, e) Uk(r, p)ek, p
k=O

r-1

for suitable functions uk uk(r, p) of two independent variables r and p. We shall
be mainly interested in obtaining the leading term Uo in the expansion (3.4), but
for the moment it will be convenient to work with the full expansion.

If we insert (3.4) into the differential equation (1.1), we obtain formally the
result

UO,pp -t-UoUo,p -- Ul,pp @ (UOill),p -[-2UOrp +
n-

, r UO’p @ UoUo’r

+
k=1 Ilk+ 1,pp -- (ilOilk + 1),p -- n-1

2ilk,to -Jr- ilk p -1
t- Uo blk

"Jr- llk ,rr
-jr- Ilk ,r -Jr- Ilk l(ill,r -Jl- Ill + ,p Fk O,

/" /=0

and this equation will hold automatically if we impose the following conditions"

(3.5) Uo,oo + UoUo, O,

(3.6) u,oo + (UoUx),o + (2Uo,,o + ((n 1)/r)uo, + uouo,,) O,
and

Ilk+ 1,pp + (iloUk+ 1)’p "t- (2uk,,o + ((n 1)/r)uk,o + UoUk,,)

(3.7) + (uk- 1,,, + ((n 1)/r)uk_ ,,) + . uk_t(u;, + u+ ,o) 0
/=0

fork= 1,2,....

Similarly, from (3.4) and (1.2) we find formally the boundary relations (note that
p=0whenr= 1, andp= oewhenr=

uk(1, O)e
k=O

and

uk(o, oo)ek 1,
k=O
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and these relations will hold automatically if we impose the requirements

e fork=O,
(3.8) u(1,O)=

0 fork= 1,2,...,
and

,[1 fork=0,
(3.9) Uk(

0 fork= 12....
The gneral solution of (3.5) an be given (for ach fixed r) as

Bo(r e-
(3.10) uo(r, p) Ao(r) + Bo(r) e- pao(r),

where the "constants" of integration Ao and Bo may still depend on the variable r.
To completely specify Uo, we impose the Lindstedt-Poincar6 condition [cf. Smith
(1975)] that Ao and Bo be chosen to eliminate the dominant terms contributed by
Uo to the next function u of the expansion (3.4).

The function u is obtained by inserting (3.10) back into (3.6) and then integrat-
ing the resulting equation (3.6) with respect to p (for each fixed r). In this way we
find the result

+ Bo(r e- PA(r)]21,1 (r, p) A’o(r)p

+ 2Ao(r){[B(r) + ((n 1)/r)Bo(r)] A’o(r)Bo(r)p}p e -pA(r)

(3.11) + Bo(r)2[A’o(r)p 2(n 1)/r] e-pA()

+ A (r) e- pAo() + B(r) 1 + 2Ao(r)Bo(r)p e- pao(O

Bo(r)2 e-

where A (r) and B x(r) are again constants of integration.
In view of (2.1), (2.6), (3.4), and (3.10), we anticipate that Ao(r) will be positive

(at least for large r) so that for large p the dominant term contributed by Uo to
the right-hand side of (3.11) is expected to be the leading term -pA’o(r). Since this
will otherwise be large with p, we impose the condition A’o(r) 0, and obtain

Ao(r)=a fort>- 1,

for some suitable positive constant a. Substituting into (3.11), we now find for
large p that the dominant term contributed by Uo to the right-hand side will be
the term involving pe-’ unless there holds

B’o(r) + ((n- 1)/r)Bo(r O.

Hence we also impose this last condition and find the result

Bo(r) b/r"-

for some suitable constant of integration b. Thus, Uo is determined up to the con-
stants a and b. These remaining constants can be determined by imposing the
appropriate boundary conditions for Uo given by (3.8) and (3.9). In this way we
find the results a 1 and b (1 )/(1 + ), so that Uo is completely determined
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as
(1 + )r (1 ) e-p

(3.12) uo(r,p)
(1 + 00r"-X + (1 )e-’

while U is now given by the relation

[(1 + )r"- + (1 ) e- P]ul(r, p)
r

(3.13) + Ax(r)(1 + )2r2"-2 e -p + Bl(r)[(1 + )2r1"-2
+ 2(1 )(1 + oOr"-p e- (1 )2 e-2O].

The functions A(r) and B(r) in (3.13) can be chosen so as to eliminate the
dominant terms contributed by ul to the next function u2 in (3.4). The procedure
can be continued recursively so as to generate the successive terms appearing in
(3.4). However, in practice, the actual calculations become successively (and
rapidly) more complicated and we shall be content here with only the leading term
Uo given by (3.12).

Note that the condition + 1 > 0 (see (1.3)) is necessary if the function Uo
given by (3.12) is to provide an acceptable approximation to a solution u of (1.1),
(1.2). Indeed, if + 1 0, then Uo and duo 0, whereas (2.1) and (2.5)
imply that du/dr > 0. Similarly, if + 1 < 0, then Uo has a singularity at a certain
point r > 1, and duo/dr < 0 whereas again du/dr > O.

4. Existence, uniqueness, and behavior of solutions. In this section we shall
obtain a constructive existence and uniqueness result for the original boundary
value problem (1.1), (1.2) by perturbing that problem about the leading term Uo of
the two-variable expansion (3.4). (We assume throughout that (1.3) holds.) To this
end we introduce a function v v(r, 5) by the relation

(4.1) u(r, 5) uo(r, p) + v(r, ), p (r 1)/5,

where u is to satisfy (1.1) and (1.2), and where Uo is given by (3.12). The boundary
conditions (1.2) along with (3.12) imply that

(4.2) v(1,5) v(oo, 5) 0,

while the differential equation (1.1) along with (3.12) imply

d2v n-ldv) d( 1 2(4.3) e r2 -t
r --dTr + -r UoV +-v + f(r, 5)= O,

where Uo is evaluated at p (r 1)/5 and where the forcing term f is given as

f(r, e) 2Uo,r, + n l n l lr U’ + UoUo’r + " UO’rr + --UO’rr

(4.4)
4(1 +)(1- )2(n- 1)r"-2 exp [-2(r- 1)/5]

{(1 +)r"- +(1- )exp[-(r-1)/5]} 3

25(1 02)(n 1)r"- 3 exp - (r 1)/5]

+ {-(1 + )rn-1 + (2n 3)(1 )exp [-(r 1)/5]}
{(1 +)r"- +(1- )exp[-(r-1)/5]} 3
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For small e this forcing term f is small as compared with the forcing terms which
would result from using other Uo than that given by (3.12). (See Lemma 2 and
Lemma 3 below.)

It is useful to observe that any possible LI(1, )-solution of (4.2), (4.3) must
vanish exponentially at infinity along with its first derivative. Indeed any such
solution function v can be represented with (2.1), (3.12) and (4.1) in the form

v(r, e.)
2(1 oO e -p

(1 +)rn-1 +(l_)e-p (1 )w(r, e)

for a suitable function w which satisfies the estimates (2.6) and (2.7). Hence we
can integrate (4.3) twice and impose the given boundary conditions to find the
nonlinear integral equation

(4.5) v Lv + Nv + F forr_>_ 1,

where the function F is defined for r __> by the formula

(4.6) F(r, e)
1

exp
1 e(n

Uo + dz f(v, e) dv da,

and where the expressions Lv and Nv are defined by

(4.7) Lv(r) (n 1) exp

and

(4.8) Nv(r)
2e

exp

Uo+ dz

__lf [Uo + 1)] t)(O.)2 do"

dG

for any Ll-function v. The nonlinear integral equation (4.5) is equivalent (in a
suitable class of functions) to the given boundary value problem (4.2), (4.3).

We shall consider (4.5) in the normed vector space consisting of all con-
tinuous functions v with finite norm Ilvll, where we take the norm to be defined
by the formula

(4.9) vll sup Iv(r)l e(r- TM
r>_l

for any suitable function v. The operators L and N defined by (4.7) and (4.8) will
map the space U into itself, and for small e we shall prove that the operator L + N
+ F is a contraction operator of a certain ball into itself. Hence (4.5) can be solved
by successive approximation to yield a unique solution in this ball centered at the
zero vector in . We shall also prove that the resulting solution is actually
unique in a certain larger ball. The solution function v will decay exponentially
at infinity, with Iv(r)[ =< Ilvl[ exp [-(r- 1)/el. These results will follow directly
from the following lemmas, Lemma 1 through Lemma 7.
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LEMMA 1. The function Uo given by (3.12) satisfies the inequality

exp --e u r-’ +
r-

)eI dr- =< a e -(r-)/

for <= a <= r, e > O, where u 4/(1 + 0{)2 if O and a if >__ 1.
Proof. From (3.12) and (1.3) we find

Uo _+_1)] dz <= Uo dr.

from which the stated result follows upon exponentiation since the last term on the
right-hand side here is nonpositive if a >__ 1, while if lal -5 there holds

2(1 ) fi’ e- (- 1)/ dr-
e (1 + ),-:i 7-(-1- Z 7x)e-(,-)/ --< 2(1 0) 1"-’ e- (- 1)/ dr

J ++(1 -)e-(- )/

< log
/ /(1-0)e-(’-x)/j (1 +)2

LEMMA 2. The function f given by (4.4) satisfies the estimate

g2(n 1) e -(- a)/ll l

+e’(n-1)(1-x)2e-2(r-1)/eI(1+ )r2"-
+ e-(2n 3)}2

for r >= 1, e > O,n >__ 2, and + > O, where

2/(1 + .) /f 0 1,
a2

(1 +)2/4 /f>= 1.

Proof For a=> there holds (1 +a)a"- +(1-0)exp[-(a- 1)/el
>= aoa"- 1, with ao + a if a =< and ao 2 if a > 1. Hence we find from (4.4)
the result

4(1 + a)(1 a)2(n 1) o exp [-2(a 1)/e-]- o.2n-
da

aO

2e(1 + 0002(t’/3 1)
I1 zl f,.o exp -o-"+1(o 1)/el do

2e(1 + 00(1 00!nao 1)(2n- 3)oo exp E-2(a;, 1)/el
do
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4(1 + )(1r2nS-i-
o)2(n 1) -,;- e-2-1)/ da__<

2e(1 + z)(n 1)+ Fn+

I1 -el(l+ e) +(1 -)(2n- 3) e--/drn-
and the desired result then follows easily upon evaluating the integrals.

LNNa 3. The function F given by (4.6) satisfies the inequality

IF(r, )1 ;a3 exp [-(r 1)/el

for r and e > O, where 3 is given as 3 (n 1)11 [az{(1/n) + 11
1(1 + )-ill + (2n 3)/2]} with and 2 as in Lemmas and 2.
Proof. This result follows directly from (4.6) and Lemma and Lemma 2.

We omit the details.
LZMMA 4. The mapping L defined by (4.7) satisfies the inequality liLy mx(n

1) (n 1)llv for any function v in the space with (here and below)
the norm of (4.9), and

g v2

Pro@ From (4.7), Lemma 1, and (4.9) we find that

Lv(r)le(- / < (n 1) e(- / v(v) e(’’- /exp [- (v 1)/el
dv d

V2

1)/e

(n 1) Ilvllm,

where

lflexp[(a- 1)/e]f -<-)/O < m <- e dvda

LEMMA 5. The mapping IV defined by (4.8) satisfies the inequality N]
/2l vii for any function v in

Proof From (4.8), Lemma 1, and (4.9) we find the result

INv(r)l e(- )/ < 1 fl"2 e(- a)/v(a)2 da

2e
e da - ’2LEMMA 6. For any positive number let M M be the mapping defined on

by

(4.10) My Lv + Nv + F
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(cf. (4.5)). Let k be any fixed number with

(4.11) 0 < k < 2/u,

and let eo eo(k) min (6, 2/(2n 3)), where

(4.12)
k(2 1 k)

2(n 1)rel{k + l1 l2[(1/n) + 211 l(1 / )-

Then M M maps the ball Ilvll k} into itself uniformly for all in the interval
O<eeo.

Proof. We first note that 6, and hence also o, is positive for any k satisfying
(4.11). It follows now directly from (4.10), Lemma 3, Lemma 4, and Lemma 5
that there holds

}
for vll N k and 0 < e N eo. Since eo(2n 3)/2 N and eo N , we find from
this last inequality and (4.12) the desired result

..Mv =<lk2+(n-1){k+.l-.2[+[1-[(l+)-12
+ eo(2n

LEMMA 7. The mapping M given by (4.10) satisfies the inequality My Mv2l[
<-_ l[k + m(n- 1)e]llvl v2[[ for any two functions Vl and v2 in the ball {llvll.
=< k}, where the quantity m is defined in Lemma 4.

Proof Lemma 4 and (4.7) yield the inequality [ILv- Lv2[[ _-< mel(n
1) v v2 while (4.8) implies the result

exp
e(n

Uo + drNVl(r) Nvz(r
2e e r

v() v()v() + v() d
from which we find with Lemma and (4.9) the result tNv Nv2 1( Vl
+ v2 v v21)/2. Hence we find

My My
2 - Lv Lvzl[ %- Nv Nv2

l[m;(n 1) + (llVl + v211/2)311vx Vzl ,
and the stated result follows immediately from this inequality since

< 2kV %- V2 It
As a consequence of the previous lemmas it can now be shown that the integral

equation (4.5) can be solved for small e by successive approximation. For definite-
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ness we shall restrict e to the interval

0 < s __< e, {2(n 1) + 4(n 1)u211 zi2[(1/n) + 211 z](1 + cz)-l]}-l.
(4.13)

For example if cz 0, there will hold 1 0.003 if n 2, while :1 0.0017 if n 3.
One can show directly that el satisfies the inequality 1 =< o(1/(2ul)), where

ao(k) is defined in Lemma 6. Since k 1/(2ul)satisfies (4.11), it follows by Lemma 6
that the operator M maps the ball vll _-< 1/(2ul)} into itself, uniformly for all e
with 0 < e =< 1. Moreover, Lemma 7 implies that there holds

(4.14) My- mwl <= 71Iv- wl , 7 1/2 + m(n- 1),

for any two functions v and w in the stated ball. From (4.13) it follows that mu l(n
1)1 <= m/2 < 1/2 since 0 < m < 1. Hence 7 is less than one, uniformly for all e

(0 < e __< e), and the mapping M is a contraction mapping.
We conclude directly now from the fixed-point theorem for contraction opera-

tors [cf. Apostol (1962, pp. 483-486)] that the equation v Lv + Nv + F has
precisely one solution v v* in the ball {llvll 1/(21)} for anyfixed e satisfying
0 < e <- el. Moreover this solution v* can be obtained as the uniform limit of the
sequence {vj :j O, 1, 2,...} defined recursively as

DO --=0,
(4.15)

vj+l Mvj Lvj + Nvj + F forj 0, 1,2,

where vj satisfies the inequalities
j-1 j-1

{[vj[l=< Ilvv+l-v,,l[< Fli 7
v=O v=O

for j= 1,2,3,...

If we let j tend toward infinity, the limit function v* satisfies the inequality Ilv* lit
=< ]IF]I/(1 7), which implies in turn with Lemma 3, (4.9) and (4.14) the result

2e(n 1)11 1,12{(1/n) + 11 1(1 + z)-111 + (2n 3)/2]}
21(n- 1)

(4.16)

where the denominator is positive for 0 < e =< el. This last estimate (4.16) shows
that the solution v* is actually uniformly small, of order e, as e tends toward zero.

We remark also that the solution v*, which is already known to be unique in
the ball {]lv[ =< 1/(21)}, is actually unique in a larger ball {[[v]] < R} with
radius R which approaches the value 2/ul as e tends toward zero. The precise
expression for R follows by a direct calculation from (4.16)and the proof of Lemma
7.

Moreover the results of our previous calculations can be shown to remain
valid even if we replace the previous norm 1. [[ with the usual supremum norm

Ilvll sup Iv(r)l,
r>l
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so that the solution v* is actually unique in the larger class offunctions v in the ball
of radius 1/(2Ul) centered at the origin in the vector space L(1, oe). We leave the
verification of this last result to the reader. (Again, the radius 1/(2ul) can be
replaced with a larger value R which approaches 2/al as e tends toward zero.)

Finally we can use (4.1) to translate these results for v back into analogous
results for the original boundary value problem (1.1), (1.2). In this way we find
that we have proved the following result.

THEOREM. For any e in the interval given by (4.13) the boundary value problem
(1.1), (1.2), (1.3) has a solution u* u*(r, e) which satisfies the uniform estimate (for
1 <=r< )
(4.17)

with

lu*(r, e) uo(r, e)[ Ilv*ll e -(’- TM

Uo(r, e)
(1 + g)r"- (1 e) e- (’-

(1 + e)r"- + (1 ) e-r- TM

and where Ilv* II satisfies the bound (4.16) (and in particular Ilv* I1 vanishes of order
e as e tends toward zero). Moreover this solution u* can be obtained as the limit of
the uniformly converging sequence of functions {uj:j 0, 1,2, ...} defined as

uff, e) uo(r, e) + vff, e), where the functions vj are defined recursively by (4.15),
(4.6), (4.7), and (4.8). The solution u* is unique in the class of bounded integrable
functions u u(r, e) which satisfy the inequality

1 _{(1 +o0z/8 /fo 1,sup,.>= lu(r, e) uo(r, e)[ <
(21) 1/2 /f >: 1.

(The constant 1/(2u 1) on the right-hand side here can be replaced with the related,
larger quantity R mentioned above, where R approaches the value 2/ul as e
vanishes.)

The inequalities (4.17) and (4.16) verify that the leading term Uo of the two-
variable expansion of 3 actually provides a uniformly valid approximation to the
solution u* for small e. In particular (4.17) and (4.16) imply that the solution u*

u*(r, e) satisfies the result

(4.18) lira u*(r, e) 1
e--*O

for any fixed r > 1, so that the boundary condition at infinity is retained while the
boundary condition at r 1 is lost in the limit as e vanishes. The limiting function
given by (4.18) for r > 1 is the unique smooth solution of the reduced equation

du
Urr=0 forr> 1

which also satisfies the given boundary condition at r oe,

lim u(r) 1.

Finally we mention that it is possible to improve upon the approximation
given by (4.17) by going to higher terms in the two-variable expansion (3.4).
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However, the leading term u0 has sufficed in providing the existence, uniqueness,
and behavior (both qualitative and quantitative) of solutions of the original
problem, and indeed the leading term Uo has been entirely adequate for our
purposes.
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PERTURBATIONS IN A CLASS OF NONLINEAR
ABSTRACT EQUATIONS*

JOHN LAGNESE-

Abstract. Let Vbe a real reflexive Banach space and denote the dual of Vby V’. Let {B "0 < =< e0}
be a family of(possibly)nonlinear operators from Vinto V’ and IA:0 < __< e0} (V, V’), and let A
be an unbounded linear operator in V’. Consider the equation AAu + Bu f V’. It is shown that
{u} converges in a certain sense to a solution of Au + Bu f provided A 1, B B and .f. f
in some appropriate sense, and provided certain other conditions on the operators involved are satis-
fied. This result is shown to apply to certain nonlinear evolution equations. Two examples are discussed"
the first concerns a nonlinear, pseudoparabolic partial differential equation with a small parameter"
the second concerns a nonlinear, degenerate parabolic equation with a small parameter.

1. Introduction. Let H be a Hilbert space over R and V a reflexive Banach
space with V H algebraically and topologically such that V is dense in H.
If V’ denotes the dual of V we have the usual inclusions

VHcV’.

Let B,: (0 < e =< for example) be a nonlinear operator from V into V’ and
A e A(V, V’). Let A be a linear operator in H such that -A generates a con-
tinuous semigroup of contractions on H. We consider the equation

(1.1) AAu + Bu f.
The purpose of this paper is to study the limiting behavior of u (e 0+) and to
show that u converges to a solution of the equation

(1.2) Au + Bu f
provided f - f, B B and A in some appropriate sense.

The hypotheses we impose to insure the solvability of (1.1) and (1.2) are those
of Bardos-Brezis [2] and many of the ideas from that paper play an important
role here, although the question of convergence of u was not considered there.
If B is linear and A d/dt, the question of convergence of u to u and also its
rate of convergence has been more or less settled in [10], [11]. As for the case of
nonlinear B, some special cases of equation (1.3) below have been considered by
Davis 6] vis-5.-vis limiting behavior of solutions.

There are three additional sections. In 2 we prove a general convergence
theorem for solutions of (1.1). In 3 we apply the results of 2 to the case where

V L’(0, T; ), H L2(0, T; 34g), p >= 2,

A d/dt and where A arises from a positive, self-adjoint operator s’ e (U, U’);
W is a reflexive Banach space and 34g a Hilbert space with properties analogous to
those of V and H. In 4 we apply the results of 3 to two examples. The first is an

Received by the editors April 17, 1974.
"[" Department of Mathematics, Georgetown University, Washington, D.C. 20007.
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equation of "pseudoparabolic" type with a small parameter"

(1.3)
c31il

Particular cases of equations of this type (p - 2) have been studied in [6]. The
second example concerns a degenerate parabolic equation with a small parameter"

u,+ e

c3t p lil,lJl-<m
(- 1)liDi(aijDXlul’-zu) + lull-p- 2ue-’-f"

Equations of this type have been studied by Dubinsky [7], Raviart [13] and others.
For each of these equations we shall show that ue converges (in a sense to be made
precise) to a solution of the corresponding unperturbed equation.

2. The convergence theorem. Let V and H be as in 1. We denote by (., )
a ndl. 1, respectively, the scalar product and norm in H. The norm in V is denoted
by 1. Iv. If x e V and f e V’, we also use (f, x) to denote their scalar product in the
duality between V and V’; (f, x) coincides with their scalar product in H whenever
fen.

We denote by N(H) the class of operators A such that A generates a strongly
continuous semigroup of contractions in H. If A e N(H) and G(h) is the contraction
semigroup generated by -A, it is known that A*, the adjoint of A, belongs to
N(H) and that -A* is the generator of the semigroup G*(h). We assume

(2.1) A e N(H),

(2.2) G(h) and G*(h) induce strongly continuous
semigroups of operators on V.

Then A is V-regular in the sense of Bardos-Brezis [2]. Since V is reflexive,
the dual semigroups (which act in V’) of G(h) and G*(h) are G*(h) and G(h) respec-
tively (without abuse of notation; these duals coincide with the adjoints of G(h)
and G*(h) on H) and their generators are A* and A, the duals of A and A*.
The domain of the generator -A of the semigroup G(h) in the spaces V, H and V’
is denoted by D(A; V), D(A; H) and D(A; V’) respectively.

Let B be an operator from V into V’. We assume

(2.3) B is of type M, bounded and coercive,

that is,
(i) Type M" for every filter {ui} V such that u converges weakly to u in

V, Bu converges weakly to f in V’ and lim sup (Bui, ui) <_ (f, u), we have Bu f.
(ii) Bounded’B maps bounded sets in V into bounded sets in V’.

(B(v + Vo), v)
(iii) Coercive" lira c, Vv0 e V.
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It is known that every bounded, monotone, hemicontinuous operator from
V into V’ is of type M [12, Prop. 2.2.5].

Assuming (2.1)-(2.3) the problem

(2.4) Au + Bu f, u V I"l D(A, V’),

has, for each f V’, at least one solution and uniqueness holds if, in addition, B
is strictly monotone [2]. The same is true for the problem

(2.5) AAu + Bu f, u e V, Au D(A, V’),

provided B is of type M, bounded and coercive, fs e V’ and

(2.6) A 6 a(V, V’) satisfies (G(h)Asu, u) <= (Asu, u), h > O, u V.

To treat the question of convergence of the family {us} we first of all suppose

(2.7) B is of type M and the family {Bs} is uniformly
bounded and uniformly coercive:

(i) Uniformly bounded: IfS is a bounded set in Vthen IJs> o BsS is a bounded
set in V’.

(ii) Uniformly coercive:

lira inf
(Bs(v + v) v) , V0 V.

We further assume that B B and A converges to the identity in the follow-
ing way.

(2.8) For every filter {ui} V (i 0) such that u - u weakly in V, Biu. f
weakly in V’ and

(2.9)

we have

lim sup (Bu, ui) _< (f u),

For every filter {vi} V (i 0) such that v v weakly in V we have
Av v weakly in V’.

(2.10) For every filter {vi} V(i 0) such that Avi D(A, V’), vi v e D(A, V’)
weakly in V and AAiv Av weakly in V’ we have

(Av, v) __< lim inf (AAivi, vi).

THEOREM 2.1. Assume
(i) A satisfies (2.1) and (2.2).
(ii) B satisfies (2.3) and is strictly monotone.

(iii) A satisfies (2.6), (2.9) and (2.10).
(iv) B satisfies (2.7) and (2.8).
(v) f f strongly in V’.
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Let u be the unique solution of (2.4) and, for each e, let u be a solution of (2.5).
Then u --, u weakly in V, AAu - Au weakly in V’ and

(2.11) lim sup (Bu Bu, u u) <= O.

Before proving this theorem, we give two results dealing with hypotheses
(2.7) and (2.8).

PROPOSITION 2.1. Suppose B is of type M and A is a bounded mapping from V
into V’. Then B B + eA satisfies (2.8). If in addition B is monotone and A is
monotone and hemicontinuous, then B is of type M.

Proof. If u, -, u weakly in Vand Bu, + rlAu, f weakly in V’, then tlAu, 0
strongly in V’ and so Bu, --, f weakly in V’. If also

lim sup (Bu, + rlAu,, u,) _<_ (f, u),

then lim sup (Bu,, u,) __< (f, u), hence Bu f since B is of type M.
Suppose also that B is monotone and A is monotone and hemicontinuous.

Then B + A is of type M. In fact, suppose u - u weakly in V, Bu + Aui-, f
weakly in V’ and lim sup (Bui + Aui, ui) <= (f u). We may suppose Aui g
weakly in V’. We have (Bui, ui) <= (Bu + Aui, ui) (Au, u u) (Aui, u) and so

lim sup (Bui, ui) <__ (f g, u).

Hence Bu f g and Bui Bu weakly in V’.
Let v V. We have

(Bu + Au Av,ui v) >= (Bu, ui v)

hence,

>_ (Bu Bu,u- v) + (Bu,ui- v),

lim inf (Bu + Aui Av, ui v) >= (Bu, u v).

Therefore,

(Av, u v) <_ lim inf (Bui + Aui, ui) (f v) (Bu, u v)

(f Bu, u v), Vve V.

It follows that Au f- Bu since A is monotone and hemicontinuous. Thus
B + A is of type M.

PROPOSITION 2.2. Let {B} be a family of monotone mappings of V into V’.
Let B be a monotone, hemicontinuous mapping of V into V’ and suppose B B in
the following sense: for every v V there is afilter {v} Vsuch that v v strongly
in V and Bv By strongly in V’.

Then (2.8) is satisfied.
Proof. Let ui u weakly in V, Biu f weakly in V’ and lim sup (Biui, ui)
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--, By strongly in V’. We have

Hence

so that

(Biu By, u v) (Biu Bit)i, u

-t-(Biu Bivi, v v)

+ (Biv By, u v).

lim inf (Biu By. u v) >= 0

(By, u v) <__ lim inf (Bui, u) (f v)

=fLu-v), Vve V.

Therefore Bu f since B is monotone and hemicontinuous.
Proof of Theorem 2.1. Since (AAus, us) >__ O,

(Bsu. us) < (f. us) Iflv,lulv.
Since {Bs} is uniformly coercive and uniformly bounded, it follows that {us} is
bounded in V. {Bsu} is bounded in V’ and thus for some ultrafilter {u,} we have

Url--- W

A,u,t -- wMultiply (2.5) by v e D(A*, V) to obtain

weakly in V,

weakly in V’,

weakly in V’.

(2.12) (A,u,, A’v) + (B,u,, v) (f,, v).

(2.12) yields, upon passage to the limit,

(w, A’v) + (, v) (f, v), Vv e D(A*, V).

It follows that w e D(A, V’) and

Aw=f- =weaklim
(v’)

(z13)
weak lim

(v’)

We wish to show that Bw. It will then follow from (2.13), by virtue of the
uniqueness of solution of (2.4), that w u, u u weakly in Vand that AAu Au
weakly in V’.

We have from (2.5),

(Bu,, u) (Bu, w) + (f., u, w) + (AA.u,, w) (AA.u., u,).
Therefore,

lim sup (B.u., u.) _< (, w) + (Aw, w) lim inf (AA,u,, u.) <__ (, w)

because of (2.10), and hence Bw in view of (2.8).
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To prove (2.11) we note the identity

(Bu Bu, u u) (f f,u u) + (Au,us- u)

+ (AAu, u) (AAu, u).

Therefore,

lira sup (B,;u.- Bu, u,;- u) <= (Au, u)- lira inf (AA.u,, u,;) <_ O.

and B are as in Propositions 2.1 or 2.2, it follows from TheoremRemark. If B
2.1 that

(2.14) (Bu Bu, u u) O.

In particular, if B B is the duality map from Vinto V’, then (2.14) implies u
strongly in V [4, p. 333.

3. Application to a class of nonlinear evolution equations. Let H be a real
Hilbert space, U a reflexive Banach space with U = algebraically and topolog-
ically and f dense in . Let 0 < T < , p >= 2 and set

V L(0, T; U), H L2(0, T; ).

Then V c H algebraically and topologically and V is dense in H. Identifying H
with its dual, we have the usual inclusions

V LP(0, T; //’) H L2(0, T; vf) V’= LP’(0, T;

-+--=1.
p p’

We shall use (.,.) to designate both the scalar product in and in H as
well as the scalar product in the duality between and ’ and in the duality
between V and V’. The particular meaning intended will be clear from context.

Set

with

(3.1)

(3.2)

d
A=

dt

D(A,H)= ueH -eH u(0)=0

Then A satisfies (2.1) and (2.2) and

0, O<t<h,
[G(h)u](t)=

u(t- h), h < < T.

Let e 2’(, ’) be positive and self-adjoint

(v, v) _>_ 0, Vv e ,
(du, v) dv, u), Vu, v .
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and

An unbounded operator s in 3f may be defined as follows"

D(;) {u e U sCu e 3f}

We suppose

(3.3) D f’l
e>0

It follows from (3.3) that s is closable. Let s denote its closure and assume

(3.4)

We may identify ’s and without abuse of notation" it is clear that and
coincide on D(; ).
By virtue of (3.4) the square root /2 may be defined [8] with domain

O(/2 ) and [2, Prop. V.1]

We now define A 6 (E V’) by

(Au)(t) (u(t)), Vu 6 V.

It is clear that A satisfies properties analogous to those of s. In addition, hypo-
thesis (2.6) is satisfied [2, p. 386]. Therefore the problems

(3.5)

and

(3.6)

du + Bu f, u(O) O,
dt

U LP(0, T; U),
du
-d Lp’(O’ T; U’)

d
dAsu + Bsu f, (Asu)(O) O,

u LP(O, T; ),
d-Asu e L"(O, T; ’)

each have solutions provided f, fs LP’(0, T; U’) and B, B are of type M, bounded
and coercive from LP(O, T; ) into L’(0, T; U’).

Remark. It follows from (3.5) that u C(0, T; 3f). From (3.6) we conclude that
Asus C(O, T, ’), hence (Aus)(O) has a sense. The stronger continuity result
A/Zue C(O, T; 3If), A2/Zue(O) 0 was proved in [2, Thm. V.2].

THEORFM 3.1. Assume s’ satisfies (3.1)-(3.4) and in addition

(3.7) se’v v strongly in ,, Vv D,

(3.8) sup I1.(,,,-,) < /o.
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Suppose B is an operator from LP(O, T; U) into LP’(O, T; U’), strictly monotone, of
type M, bounded and coercive, and that B satisfies (2.7) and (2.8). lff f strongly
in LP’(0, T; / ’), then

(3.9) weakly in LP(0, T; ),

d du
(3.1 O) dAsus dt

(3.11)

(3.12)

weakly in LP’(O, T; U’),

l/2us(t u(t) weakly in , O<__t<=T,

lim sup (Bsu Bu, u u) <= O.

The proof utilizes Theorem 2.1 and the following lemma.
LEMMA 3.1. Assume ’ satisfies (3.1)-(3.4), (3.6) and (3.7). Then

(i) sv v strongly in U’, Vv
(ii) ’sl/21o( ovg) and sup [’l/21.,(,g)

(iii) d/Zv v strongly in ., Vv
Proof.
(i) If v U there is a sequence {v,}

Therefore,

=< const. (Iv v,l + [’sv,
lim sup [’sv vlv, __< const. [v v,lv, n 1,2,

(ii) If v e U we have

(iii) Suppose v D. Then (see [9])

J/v - X-/( + X)-v X,

X/(X + I-’( + X- (v v.
Since [( + 2)-l[Z(g,g 1/, we have

Id/v- vl Id? vl, v e D.

Thus (iii) is proved for v D. The general case is now easily proved with the aid of
(ii) and (3.3).

Proof of Theorem 3.1. We first verify hypothesis (2.9). Thus let {v} L(0,
T; ), v v weakly in LP(0, T; ). Since

(Av, w) (Aw, v), Vw V,

it suffices to show that Aw w strongly in V’, Vw V. We have
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By (3.8) and Lemma 3.1,

Iw(t)- w(t)l, < const. Iw(t)l’
Iw(t)- w(t)], 0, 0 < < T.

Thus by the dominated convergence theorem the limit in (3.13) may be taken
inside the integral and so Aw w strongly in V’.

We next verify hypothesis (2.10). Suppose therefore that {v} V,.Av D(A,
V), u U D(A, V’) weakly in V and AAiv Av weakly V’. Let w e and X,
be the characteristic function of [0, t]. Then

(/,(t), /w)
d
Vi(S), Xt(S)W ds

(3.14) (AAivi, Xw) (Av, Xw)

(v(t), w), o r.
In addition,

Iz]/ev(t)l 2 v(s), X,(s)v(s) ds

(3.15)
<- 21AAvlv,lvlv <

Since sl/Zw w strongly in Vw e it follows from (3.14) and (3.15) that

(]/2v(t), w) (v(t), w), Vw e 0 T.

But is dense in and therefore we may conclude that

]/2vi(t) v(t) weakly in 0 N N T.

Therefore,

(Av, v) 1/21v(r)l: _< 1/2 lim infl/:v,(T)l
lim inf (AAvi, vi)

as was to be proved.
(3.9), (3.10) and (3.12) now follow immediately from Theorem 2.1, and (3.11)

follows from (3.9) and (3.10) by the same argument just given for the verification
of (2.10).

4. Examples.
Example 1. Nonlinear pseudoparabolic equations with a small parameter. Let

f be a bounded open set in Rr with smooth boundary, m a nonnegative integer
and p >__ 2. Set

W’P(2), dog LZ(n).
The norm in /" is written I. [,,,. /’ may be identified with the space W-"’P’().
Define a linear operator M Zt’(/, U’) by

(4.1) ’u (- 1)lilOi(aij(x)Du), aij aji,
lil,lJl<-m
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where aij e Clil(fi), and set
su/ I +e,

where I is the injection of into ’. For u, v e , we have

and we assume

(4.2)

(s/u, v) fn aijDJuDiv dx a(u, v)
lil,lJl<-m

where > 0 is a constant. It then follows that

D(/; cf) w2m’2(n) W’P(),

D(’,;Af) w2m,2() W’2(),
D(/:" W’2(n)

and that s if(W). Clearly v v strongly in W for each v D(; W) and

[(u, v)[ 5 [(u, V)L:(n)[ + e. const. [U[m,2[V[m,2, U, v V.

Therefore,

][(,,) 5 const. (1 + ).

Let B’L"(0, T; W"(fl)) L"(0, T; W-’P’(fl)) be defined by

i=

B is strictly monotone, hemicontinuous, bounded and coercive (Brezis-Sibony
[3]). We may therefore conclude, by virtue of Theorem 3.1, that for each f e L’(0,
T; W-’’(fl)) the unique solution u e L(O, T; W’()) of the problem

u + 2 (-
lil,lJlm

( me P-2me(4.3) +(-1)g: ] =f on x (0, T],

(1 + e)/u(x, 0) 0 on

satisfies the following: Iff f strongly in LP’(0, T; W-’P’()), then

u u weakly in LP(0, T; W’P()),

u

(1 + x/)l/2ue(t) u(t)

(mu

weakly in LP’(0, T; w-m’P’(’)),

weakly in L2(), O<__t<__T,

dx dt --, O,

where u is the unique solution of (4.3)0 with vanishing initial data.



626 JOHN LAGNESE

Remark. If m 1, the operator B is the duality map of LP(0, T; W"d’P(f)) onto
LP’(0, T; W-m’P’()) with respect to the function b(r) rp- 1. We may therefore
conclude from the last convergence statement that

u--, u strongly in LP(0, T; W’P())

provided m 1.
In the linear case equation (4.3),: is sometimes called "pseudoparabolic" (cf.

[5], [14]) since boundary value problems which are well-posed for parabolic
equations are generally well-posed for (4.3) and solutions of the two classes of
equations generally have the same qualitative (e.g., regularity) properties.

Example 2. Degenerate parabolic equations with a small parameter. Let f
be a bounded open set in RN with smooth boundary and 1 be the differential
operator (4.1) and satisfying (4.2). Then I + e is a bijection of WZ"q(f)VI
W"d’q(f) onto Lq() for each q (1, oc,) and

I(I + e)-UlLq(n) <- CqlUlLq(n), VU e Lq(),

where we may choose C2 (cf. Agmon [1]). In addition, (1 + es/)-u--, u

strongly in gq() for each u e Lq() (Hille-Phillips [8, Lemma 12.2.1]). Let p > 2
and set

and

LP(), W L2()

’u (I + Bu lulp- 2U, VU e LP().
p-1

’ is a linear, bounded, positive, self-adjoint operator on and B is the
duality map of LP(O, T;LP(f)) onto LP’(O, T;LP’(f)) relative to the function
dp(r) rP-1/(p- 1). Theorem 3.1 applies and we may conclude that for each
f LP’(O, T; LP’()) the unique solution u e LP(0, T; LP()) of the problem

8
--(I + e’)-lue "- lull- 2u (I + eze’)- ifc3t p

(1 + e’)-1/2Ue(X O) 0 on

on f x (0, T],

satisfies the following"

u--, u strongly in LP(0, T; LP()),

8 8u
-(I + es)- u --.

8t
weakly in LP’(O, T; L"’(f)),

(I + e)-1/2ue(t) "- u(t) weakly in L2(), O<=t<=T,

where u is the unique solution of (4.4)o with vanishing initial data. As in [2, p. 393]
we observe that (4.4) indicates that u is a weak solution of the degenerate parabolic
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equation

p Iil,lJl __<m
(- 1)lil Di(aijDJ(lulP-

lull- 2u f in x (0, T]

satisfying the Dirichlet boundary conditions

0 on c3 (0, T],cn j=0,1,...,m- 1,

and the initial condition

u(x,O) O on).
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A DISTRIBUTIONAL APPROACH TO DUAL INTEGRAL
EQUATIONS OF TITCHMARSH TYPE*

J. R. WALTON?

Abstract. The existence of solutions to dual integral equations of Titchmarsh type is rigorously
proved using the theory of generalized functions. Generalizations of the relevant classical operators to
certain spaces of generalized functions are effected, and a generalized dual relation problem is formu-
lated and solved. A regularity theorem which essentially solves the classical problem is then proved.
Finally, under rather severe restrictions, a uniqueness result is also obtained.

1. Introduction. The subject of this work is existence and uniqueness questions
for a class of dual relations on the positive real line which involve Hankel trans-
forms. These equations, sometimes referred to as equations of Titchmarsh type,
have kernels that are Bessel functions of the first kind whose orders are real num-
bers not less than -1/2. There have been numerous investigations of these relations
(for a detailed survey see Sneddon 6]) most of which have been purely formal
manipulations and dealt with special cases. Two exceptions are the doctoral
dissertation of I. W. Busbridge 1] and the work of Erd61yi and Sneddon (Erd61yi
and Sneddon [4], Sneddon [6]). Busbridge solves rigorously the special case in
which the orders ofthe Bessel functions are equal and the equation over the infinite
interval is homogeneous, whereas, Erd61yi and Sneddon present a formal solution
of the general problem using operators of fractional integration. It is the intent of
this paper to combine the approach of Erd61yi and Sneddon with the theory of
generalized functions to effect a rigorous treatment of the general problem.

In the next section the classical problem is stated and the relevant operators
are defined. Section 3 contains a formulation of the generalized problem and the
introduction of the appropriate topological spaces. A theorem guaranteeing the
existence of solutions to the general problem is proved in 4, and a regularity
theorem which essentially solves the classical problem is proved in 5. Section 6
contains an example, and the final section is concerned with a special case for which
a uniqueness result is obtained. The notation and terminology used for the classical
operators is consistent with Sneddon [6 and for the generalized functions with
Zernanian [8].

2. The classical problem. The relevant operators are introduced in the follow-
ing definitions. For any real number #, Ju will denote the/th ordered Bessel func-
tion of the first kind, and Ll(a, b) will denote the set of all equivalence classes of
functions Lebesgue integrable on the interval (a, b).

DEFINITION 2,1. The ordinary Hankel transform, .{f(t);x}, is defined by the
equation

(2.1) {f(t); x} (xt)l/Zju(xt)f(t)dt,

valid for any real number tt whenever the integral exists.

* Received by the editors March 4, 1974.
]" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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DEFINITION 2.2. For any real numbers r/and , the modified Hankel transform
S,,(f(t);x} is defined by the equation

(2.2) S,,{f(t) x} 2x tl-f(t)Jz,+(xt) at,

whenever the integral converges.
From (2.1) and (2.2) it is clear that

(2.3) S,.{f(t) x} 2x 1/2,.2tl+{tl/2-af(t) x}
DEFINITION 2.3. If r/ and e are real numbers and e > 0, then the fractional

integrals I,, and K,, are defined by the equations

(2.4) f(t)" x}
F(a) Jo (x2 t2)- ’t2"+ f(t) dt,

(2.5) K,,{f(t)" x)
2x2"

(t2 x2) t- 2,- 2 + if(t) dt,
r’()

where F(a) denotes the gamma function.
If a 0, I,, and K,, are defined to be the identity operators, that is, I,,o(f)

.,o(f) f.
DEFINITION 2.4. When a < 0 the fractional derivatives I,,(f) and K,,(f)

are defined to be functions F(x) and G(x), respectively, satisfying the Abel integral
equations

f(t) I,+,_{F(x) t},
f(t) Kn+,_{G(x); t}.

These operators of fractional integration are slight variations, due to Sneddon
[6], of those introduced by Erd61yi and Kober (Erd61yi and Kober [3], Erd61yi [2],
Kober [5]). However, it is a simple matter to extend their results to these operators.
The pertinent properties are summarized below.

(a) If a > 0, q >- and f(t)6L(O, ), then both I,,.{ f(t) x} and
K,,{f(t); x} are also in the space LI(0, ).

(b) If a < 0, q + a > - and f(t) Lx(O, ), then the fractional derivatives
I,,(f) and K,,(f) are uniquely determined in the space L(0, ) whenever they
exist. We shall also have need of the trivial identities

x26I f(t)" x} I,_6,{t26f(t) x}
x26K 6,{t26f(t) x}.,,.tf(t) x} K,+

The classical problem involving dual relations is that of finding a function
(t) such that

(2.6) t-zo(t)Ju(tx dt F(x), 0 < x < 1,

(2.7) t-eao(t)Jv(tx dt G(x), < x < ,
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where F and G are prescribed functions and e, fl, # and v are real numbers.
By making the substitutions O(t)= A(t)t, fl(x)= 22x-ZF(x) and gz(X)

22/X-2/G(x), it is seen easily that (2.6) and (2.7) are equivalent to the operator
equations

(2.8) S1/2u_,2a{A(t); x} fl(x), 0 < x < 1,

(2.9) S1/2v_lt,z#{A(t)
A formal solution to (2.8) and (2.9) has been known for several years (see

Sneddon [6]). The technique involves using the Erdglyi-Kober operators to factor
the modified Hankel transform. More precisely, let

(2.10) 2= 1/2(#+v)-(-fl),

and let H(x) by the Heaviside step function equal to for x > 0, and vanishing for
x < 0. Then using the relations

(2.11) I,+,,S,,, S,,+,
(2.12) K,,S,+,, S,, +,
first discussed by Erdglyi and Kober [3], we may deduce from (2.8), (2.9), (2.11)
and (2.12) that

(2.13)

where

(2.14)

S1/2/_,)t_/a+ 2{A(t); x} h(x),

h(x) H(1 x)I,/2u+,a-u{fa(t);x} + H(x- 1)K1/2u-,-a{g2(t);x}.

Therefore, providing the Fredholm equation (2.13) is invertible, we obtain the
solution

(2.15) A(.t) Sx/2u-,a-u+ z{h(x), t}.
Using the obvious fact that

(2.15) is seen to be equivalent to

(2.16) A(t) S,/2u+,z--2{h(x); t}.
These operations are purely formal. A rigorous proof that (2.16) satisfies

(2.8) and (2.9) is given in 4 and 5 within the framework of the generalized
function spaces discussed in the next section.

3. The generalized problem. The spaces presented here were developed by
Zemanian [83 to treat the ordinary Hankel transform, and for a detailed discussion,
the reader is referred to that reference.

DEFINITION 3.1. For each real number #, let Hu be the set of all functions b(x)
which are defined on 0 < x < , complex-valued, infinitely differentiable and



EQUATIONS OF TITCHMARSH TYPE 631

such that for each pair of nonnegative integers m and k the quantity

’Pm,k((/)) sup [xm(x 1D)k[x-U-
O<x<

is finite.
The following facts due to Zemanian [8] are stated without proof.
(a) Each , is a seminorm on H., is a multinorm on H,.(b) The collection {m.}m.-0
(C) With the topology generated by the multinorm, H, is a Fr6chet space.
(d) Each q(x) e H, is of rapid descent at infinity, that is, for any N > 0

lim xnck(x) O.

We are now permitted to make the following definition.
DEFINITION 3.2. Let Hu denote the dual space of Hu with the weak topology.
Remark. It is easy to see that if f(x) is locally integrable on 0 < x < , of

slow growth at infinity (that is, f(x) O(x") as x - oe for some real number n)
and if x+ 1/2f(x)e LI(O, 1), then f(x) generates a regular generalized function in

Hu by (f, q) 0 f(x)dp(x)dx for each 4(x)e H.. From this, we easily obtain
that La(0, oe) c H,, when # _>_ -1/2. Use will also be made ofthe trivial observation
that the map (x) x"ck(x) defines an isomorphism from Hu onto H,+. for any
real n. The next theorem, due to Zemanian [8], is the fundamental result.

THEOREM 3.3. For la >-_ -1/2, the ordinary Hankel transform, 3/g., is an automor-
phism on Hu, with 21 .

The generalized Hankel transform is defined as the adjoint of 3., that is, for
each 4)e Hu and f e Hu,

Then clearly 3g, is an automorphism on H. with
The modified Hankel transform is related to the space H, by the following.
THEOREM 3.4. If 2rl + > ---, then S,, is an isomorphism from

onto H2, 1/2 with S-1 S,+
Proof. The proof is straightforward from (2.3) and Theorem 3.3.
DEFINITION 3.5. Let 2r/ + -> -1/2. Then S,,. is defined to be the adjoint

of S,,., that is, S,,. is that mapping from Hz,- 1/2 onto Hzn + 2- 1/2 defined for each
b ff Hzn+ 2a- 1/2 and f e H,_ a/z by the equation

4)) (f.

Clearly S,., is an isomorphism with S’,-, S,+,._,. Within this framework
we may now formulate the generalization of (2.8) and (2.9). In the general problem,
fl and g are measurable, and we seek a regular generalized function A(t) such
that Si/2,_.{A(t);x} and Si/2-a.2a{A(t); x} are also regular generalized func-
tions and such that

(3.1) S’/2,_.2{A(t); x} fl(x), 0 < x < 1,

(3.2) S’/z_a,zt{A(t); x} gz(x), < x < o,
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where in (3.1) and (3.2) we have equality almost everywhere. The requirement that
A(t) be a regular generalized function is necessary since the domains of S’/2,-,2
and S’/2-t,2t are H,_ 2-1/2 and H_ 2a-1/2, respectively. In general they are not
the same, and it is not at all clear how a singular generalized function can be in
H,-2-1/2 f) H_2a-1/2. In the next section this problem is shown to possess a
solution.

4. Existence theorem.
THEOREM 4.1. If 1. fl(x) and g2(x) are measurable functions on 0 < x < and

< x < , respectively,

2. x+ 2ah(x) LI(0, o), where h(x) is given by
h(x) H(1 x)I1/2u+-l/2,z-,{fl(t); x} + H(x 1)K1/2,-+ 1/2,-{g2(t); x},

3. ),>= -1/2, 4. l -1/2, 5. v >= 1/2, and either

6. 2=#or
7. # 2 > 0 and x+ea-eOh(x)Ll(O, c) for arbitrarily small > 0 or

8. (a) -<0,
(b) 2/- 2 > -3/2 and
(c) the Abel equation

h(t)tu+ 2- I1/2-1/2,z-u{H(x); t}

possesses a solution H(x) L1(9, ), where 5 > 0 is arbitrarily small
and either

9. fl-v=Oor
10. 2-v>Oor
11. (a) fl-v<0and

(b) the Abel equation

h(t)V +2 K+ 1/2,v_),{G(x); t)
has a solution G(x) LI(O, o),

then
(i)

h(x). t}(4.1) A(t)-- tS1/2v+#,z_v_2# x

is a regular generalized function in Hu_ 2- 1/2 and H_2- 1/2,

(ii) S’l/2u_,z(A) is a regular generalized function in Hu+2a_ 1/2 which equals
fl(x) for almost all x (0, 1),

(iii) Sl/2v_#,2#(A) is a regular generalized function in H’+ 2t-1/2 which equals
gz(x) for almost all x (1, ).

Proof. Since the Erd61yi-Kober operators 1,, and K,, are defined differently
for a < 0, a 0 and a > 0, it is necessary to distinguish special cases in Theorem
4.1, and therefore, the proof is presented in a series of lemmas. The first lemma
verifies (i).
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LEMMA 4.2. If assumptions 1, 2 and 3 in Theorem 4.1 hold, then (i) is valid.
Proof. Expanding A(t) we obtain

(4.2) 2a-v- 2/tv + 2/- + 1/2 j2(xt)x + 2- a- 1/2h(x) dx

2;t-v-2t+2/+ fO J(xt)
x + 2h(x) ax.

On using assumptions 2, 3 and the fact that Ja(x)/x is bounded for 0 < x < m,
whenever 2 g , it is clear that (4.2) defines a continuous function of slow growth
at infinity.

The lemma is completed by demonstrating that
/

(4.3) [ It-ea(t)l dt <
0

and
,,1

(4.4) | It"-2A(t)l dt < o0,
0

and appealing to the remark immediately following Definition 3.2.
Expanding (4.3) we obtain

tv-2tS1/2v+,a_v_211 dt

f 2--2t2+l fo J(Xt)xv+2h(x)dx dt
(xt)

and this last integral is clearly finite. The proof of (4.4) is similar.
To prove (ii), it will be shown that as continuous linear functionals on

H,+2-/2,S/2,-,2(A) agrees with I/2,+_/2,,_z{h(t);x}, and hence, that as
functions

Si/._,(A) f,(x),
a.e. for 0 < x < 1. If (x) H,+2_ /2 it then suces to justify the string of
equalities:

(4.5)
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(4.6)

(4.7)

J. R. WALTON

h(x)Kx/2+,u_x{c/)(y); x} dx

qb(y)Ix/2+l_ x/2,u_a{h(x); y} dy.

From (4.7) we see that in H.+ 2-1/2

SI/2._,2(A) I1/+ 1/z,u_x{h(t); x},
but as functions on 0 < x < 1,

11/2 +,- 1/2,.- x{h(t); x}

I1/2+fl-1/2,,-aI1/2u+_l/2,a_u{f(t); x}
A(x),

a.e. by definition.
Line (4.5) is Parseval’s relation for Hankel transforms valid for xv+Zflh(x)

e LI(0, oe) and tzx-"ou{xl/Z-Z’c])(x); t} LI(O, o). The latter condition is true
since

(4.8) (a) t2x-uou{x1/2-2a(x t} 2x-u+ 2+ 1/28 2{(x)" t}1/2#-,

(b) (4.8) e H2x,

(C) H2 c L(0, ), whenever 22 > -3/2.

To prove (4.6) three cases are distinguished, 2 , 2 -/ < 0, 2 -/ > 0.
When 2 #, (4.6) is obvious from the definitions of the operators. The case
2 < 0 is treated in the next lemma.

LEMMA 4.3. If # 2 > 0, 2 >= 1/2, V >__ 1/2, then line (4.6) is valid.

Proof. It suffices to demonstrate that

2"-x+ 2t- 4-1/2x{t-uou{yl/2- 2,4(y) t} x}

(4.9)

This is the content of Lemma 3.2 in Walton [7] for which we need
1. #-2>0,
2. 2>__ -1/2,
3. yU- 2, +1 tp(y) e L1(0, o0),
4. y--2-lp(y)eLl(x, o0) for all xe(0, oo) and either
5. # 2 > and yl/2-2th(y e LI(0, oo) or
6. (a) 0<#-2=< 1,

(b) yl/2-’-2%k(y)e LI(O, ),
(c) y/2-1/20-2,(y)s LI(O, ),
(d) ya/2-2b(y)(x y)U--a Lx(O, x),
(e) yl/2-2(y)(y x)U--x s Ll(x, ), where 6(0, 1)is such that # 2

+6>1.
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To verify requirement 3 recall that

Similarly, yl/2-2t(y) H, c LI(0, oo). The proofs of the other conditions on
q(x) are just as trivial and are omitted.

When 2 p > 0, we have the following.
LEMMA 4.4. If # 2 < O, 2 >= 1/2, # >- 1/2 and 2p 2 > 3/2, then line

(4.6) is valid.
Proof. As in Lemma 4.3, it suffices to verify (4.9). This is the substance of

Lemma 3.3 in Walton [7] the hypotheses of which are
1.#-2<0,
2. 2 >= 1/2, #>_ 1/2,
3. 2#-2> -3/2,
5. yl/Z- 2,b(y e LI(O, o),
6. t/2+v+2a-2S/2,_,,z{ck(y); t} is integrable on (0, o),
7. b(y) is of bounded variation almost everywhere.
Hypothesis 5 was demonstrated in Lemma 4.3 and hypothesis 7 is obvious

since b(y) is a testing function. For hypothesis 6 we note that

t’/z+v+zt-2Sa/zu_,,z,{dp(y); t} H2 LI(O,

It is also necessary to distinguish three cases for equality (4.7). As before, the
case 2 # is trivial. When/ 2 > 0, we have the following.

LEMMA 4.5. If # 2 > 0 and x+ 2t-2ah(x)e L(0, o) for arbitrary 6 > O,
then (4.7) is valid.

Proof. Expanding (4.6) we obtain

r(/./ )
(y2 X2)#-4-1y-#-2x+l(D(y)dy dx

(4.10)
2Y-"-2+Xq(Y)

dy (y2 x2),-2-xxv+Zlh(x)dx
r(- )

(4.11) y.-/-xd(y)I_/,,_{x/-h(x); y} dy

The inversion of line (4.10) is justified by the absolute convergence of the iterated
integrals (4.11).

The case/ 2 < 0 is treated in the following lemma.
LEMMA 4.6. If # 2 < O, and the Abel equation

(4.12) h(t)t.+ 2- I_ t/z,2_u{H(x); t}

possess a solution H(x)e LI(O, ), where 6 > 0 is arbitrary, then equality (4.7) is

valid.
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Proof. Let g(x)/x I1/2v+,u_z{h(t)/t; x}, that is, g(x)/x is the solution of the
Abel equation,

I/2u+,_ u

and let @(t)= K/2v+,u_{ck(y);t} which by Lemma 4.4 is known to be in

Hv+2B- 1/2.

From (4.6) we obtain

I/2u+,_ ; t(t) dt

(4.13) g(x)K/,+,x_,{O(t); x} dx

I/+
_

/,, {h(t) x}4(x) dx.

If the Abel equation (4.12) possesses an integrable solution, then it is easy to see
that (4.13) is absolutely convergent thereby justifying the inversion.

The proof that A(t) satisfies (3.2) relies upon Lemma 3.1 and Lemma 3.4 of
Walton [7], but the analysis is similar to that given above and is therefore omitted.. Regularity. In the preceding section, it was shown that A(t) given by (4.1)
satisfies the generalized dual relations (3.1) and (3.2). It will now be proved that
A(t) also solves the corresponding conventional problem in which the generalized
operators are replaced by the classical integral operators.

The method of proof is to demonstrate that as regular generalized functions

Then by using the fact that for any , H, contains the space of all complex-
valued, infinitely differentiable functions with compact support, we may conclude
that (5.1) and (5.2) are valid when equality is in the sense of measurable functions.
This together with Theorem 4.1 yields that A(t) satisfies the dual integral equations

By a trivial substitution, it is seen that these las two equations are equivalent to
(2.8) and (2.9). As with Theorem 4.2, Theorem 5.1 involves several cases, and the
proof is presented in a series of lemmas.
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THEOREM 5.1. If 1.2 >__ 1/2, # > 1/2, v > 1/2,
2. x + 2//h(x) 6 L1(0, oo) and either
3. (a) 2-/ 0,

(b) h(x)x+ z//-x-1/2 6 LI(O, ) and
(c) h(x) is of bounded variation almost everywhere, or

4. (a) h(x)x+ 2//- 6 LI(O, )for some > O, and either
(b) (i) /-2> land

(ii) x-1/z-x++Zth(x)6 Ll(O, ), or
(c) (i) 0</-2__< 1,

(ii) x+ Z//-z-- l/Zh(x)6 LI(O, oo),
(iii) xv+2//-2-1/26-1/2h(x)6 LI(0, oo), where 66(0, 1)is such that

+ 6 > 1, and
(iv) x+2//-- 1/2(t x)u-- lh(x)6 LI(O, t)and

xV+2//-z-1/Z(x t)u--lh(x)6 Ll(t, oo)for almost all t, or
5. (a) /-2<0and

(b) lim z-" (xt)l/Zd(xt)xv+Z#--I/2h(x)dx =Ofor some76(O, 1),
t--

and either
6. (a) 2-v=0,

(b) xZ//-/Zh(x)6 LI(O, oo) and
(c) h(x) is of bounded variation almost everywhere, or

7. (a) xeta- h(x) 6 L(t, oo), and either
(b) (i) 2- v> land

(ii) x+ z//-z- I/Zh(x)6 L(O, ), or

(c) (i) 0<2-v_-< 1,
(ii) x+E-Z--/Eh(x)6 LI(0,
(iii) xv+ 2//-x- /2a- l/Eh(x)6 L(O, oo), where 66(0,1)is such that

+ > 1, and
(iv) x+2-z-1/2(x t)z-V-lh(x)6 Ll(t, )and

x/E-Z-1/2(t x)--lh(x)6 LI(O, t) for almost all t, or
8. (a) - v < O and

(b) lim v-a (xt)l/2Ja(xt)xv+2//-*-l/2h(x)d O,

then (5.1) and (5.2) are valid in H’u+20-1/2 and H’+ 2//-1/2, respectively, where A(t)
is given by (4.1).

Proof. The validity of line (5.1) is demonstrated in the following string of
equalities. Let b(y) 6 Hu+ 2t- 1/2" Then

tS1/2v+#,a_v_2# S1/2t_,2{f/)(y); t} dt
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2"-ztz-’z{x+2a-z-1/2h(x);t}{y/2-2ck(y);t} dt

(5.3)

2u-x2/gu{tx-%,/g{xV+2-x-X/2h(x);t};y}yl/2-2dp(y)dy

yS/2,-,2 y 4(y) dy

yS1/2.-,2a{ Y}’, (Y"
To verify the inversion ofline (5.3) we distinguish three cases" 2 , 2 < 0

and 2 > 0. When 2 p, hypothesis 3 implies that

{{x+ze--/h(x); t};y} y+--/h(y).

The inversion of line (5.3) may now be routinely verified.
The case 2 g < 0 is treated Lemma 5.2.
LZM 5.2. If hypotheses 1, 2 and 4 of Theorem 5.1 hold, then the inversion of

line (5.3) is valid.
Proof. The proof is established in the following string of equalities"

lim t-u{x+2a-x-/2h(x);t}{y/2-2"4(y);t} dt

;:lim x-" (xt)/zJ(xt)x’+a-a-/h(x)dx

(yt)l/2ju(yt)y1/2-24(y)dy dt

(5.4) lim ya/2-2,4(y dy

0

(5.5) y/2- 24(y dy

tx-"(ty)/J,(ty) (tx)/Jx(tx)x’--x-/h(x)dx dt

fo Y’/-a4(Y){d-"{x+-a-’Zh(x); t};y} dy.

The absolute convergence of (5.4) is easily established, thereby justifying the
inversion. In operator notation, (5.5) is the integral

@(y)yS:/2,-,2S/2+a,x--2a’
x

y dy.
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Hypotheses 1, 2 and 4 insure the applicability of Lemma 3.1 in Walton [7], from
which we obtain

S1/2u-a’2S1/2v+’2-v-2 x Y I1/2v+#’u ’ x Y

Therefore, for any e > 0, the expression in line (5.5) is equal to

y(y)I/2+,,-,
x Y dy

y--+d(y)I/._/,._x{h(x)x+-; y} dy,

and this last integral is easily seen to converge absolutely. The existence of the
integral in line (5.5) is now evident.

The interchange of the limiting process and the y-integration may now be
justified by considering the asymptotic expansions ofthe Bessel functions. However,
the analysis is routine and tedious, and is therefore omitted.

To prove (5.3) for # 2 < 0, we appeal to hypothesis 5. This proof is omitted
since it also involves merely considering the asymptotic expansion of (ty)/2j,(ty).

Equation (5.2) is established in a manner entirely analogous to that used for
(5.1), and therefore, the details are omitted. It should be noted, though, that here
the relevant hypotheses are 6, 7 and 8, and as usual, three distinct cases must be
considered. This completes the regularity result.

At this time two remarks are in order.
Remark 1. In the existence and regularity theorems, restrictions were placed

upon the transformed data h(x), which can be considered as being of two types.
growth conditions and smoothness conditions. In general, it is a simple matter to
relate the growth conditions to the original data fx and g2. For the smoothness
conditions, (e.g., requiring h(x) to be of bounded variation) the situation is not
quite as clear. However, we omit a thorough treatment of these considerations
since it would be lengthy and routine.

Remark 2. The solvability of the dual relation problem was contingent in
some cases upon the existence of integrable solutions to certain Abel integral
equations. No attempt will be made here to give a thorough discussion of what
restrictions on fl and g2 will insure solutions to these equations, since the theory of
such problems is extensive. We do, however, remark that imposing smoothness
conditions on f and g2 does guarantee solutions. In the next section an example is
considered from which it is clear that for polynomial data the problem is solvable.

6. An example. In Theorem 5.1, one of the alternative hypotheses supposed
that for #- 2 < 0,

(6.1) lim -u (tx)l/2jz(tx)xV+2#-2-1/2h(x) dx O,

where 7 > 0. An example is given here which illustrates that for an important class
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of data fl and g2, this assumption is easily verified. For simplicity, assume 0 =< 2
# < 1, and define

jl(X) c lx", 0 < x < 1,

gZ(X)-- C2Xm, < x <

where n, m are real and c and c2 are constants.
To compute h(x), we must consider

(6.2) I1/2u+-1/2,z-u{fl(Y) x}
and
(6.3) K1/2,-+ 1/2,v-a{gz(Y); x}.

It is easy to see that (6.2) C’lX", where, to insure the convergence of (6.2)
when 2 # > 0, we require n > 1 # 2. The constant C’ has the value C1
when 2 # 0 and the value

#C1 (1 y2)a-U-lyU+2+n dy for 2 -/ > 0.

Moreover,

Xv+ 2B-a- 1/211/2u +- 1/2,a-u{fl(Y); x} C’x" +2 a- 1/2,

and hence this last expression is in LI(0, 1) when n > 1/2 + 2 v -2ft.
Similarly it is easy to see that (6.3)= C’2xm. In this case, C C2 when

v 2; when v 2 > 0,

2
Cz C2F(v 2)

(t2 1)v-a-itm-v+2# dr,

where, for convergence, rn < + # 2; and when v 2 < 0,

CF(2 v)
Cz 2[ (x2 1)a-v-ix u + 2 dx]’

where, for convergence, m < + v 2ft. Further, it is clear that

x+Za-a-1/ZK1/zu-=+ 1/2,-a{g2(Y); x} LI(1, m),

whenever rn < -1/2 + 2- v 2.
The Hankel transform of x+ 2a- 4-1/2h(x) is calculated by considering the two

integrals

(6.4) (xt)l/2ja(xt)Cix/ + 2-a- 1/2 dx,
o

(6.5) (xt)l/2Ja(xt)C,2xm+
v+ 2t- a- 1/2 dx.

For (6.4), we introduce

(6.6) (tx)l/2 X-k- 1/2C,1xn+v+ 2/-a- 1/2) xa+ 1/2ja + l(tX dx.
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Integrating (6.6) by parts and rearranging terms, it is easily seen that

(xt)l/2jx(tx)x.+ v+ 2/-2-1/2C1 dx

(6.7) C’ltl/2jz+l(t C’l(n + v + 2/3- 22- 1)

(tx)l/2J (tx)xn+v+2B-2-3/2 dx/1

Similarly, we obtain the result

(xt)l/2j2(xt)C,zxm+ v+ 2fl-2-1/2 dx

(6.8) -C’2tl/ZJ+ l(t)- C’2(m + v + 2[- 22- 1)

(tx)l/2j,+l(tx)xm++2-’-3/2 dx.

(6.9)

(6.10)

(6.11)

Combining (6.8) and (6.7) yields the following.

fot-. (xt)l/2j2(xt)xV+2tl-z-1/2h(x)dx

(C’I C’2)tl/2J+l(t)tz--

-C’(n + v + 2- 22- 1)t-"-1 (tx)l/2Jx+ l(Xt)X"++2--3/2 dx

;1-C’2(m + v + 2 22 1)t-"-1 (tx)l/;Jx+l(tx)xm++2-X-3/2 dx.

Clearly (6.9) and (6.11) are O(t-u- 1), and since 2 # < 1, they display the desired
growth property as o. For (6.10), the additional assumption n > 1/2 2
must be made.

For polynomial data fl and g2, verifying the other assumptions of the exis-
tence and regularity theorems is trivial. Therefore, the solvability of the classical
dual relation problem in this case is contingent upon demonstrating a relation
between the parameters ,/3, # and v and the degrees of the polynomial data. The
above example illustrates that this relation is quite simple to obtain.

7. A uniqueness result. For a special case of generalized dual relations (3.1)
and (3.2), it is possible to prove the existence of a unique solution. The motivation
for the additional restrictions lies with the fact that there is a natural generaliza-
tion of I,, to an isomorphism between certain of the spaces H’, whereas, no such
extension seems possible for K,,,. By merely imposing the restriction #- 2

v 2//upon the parameters/, v, and/3, we may avoid using K,, in the reduc-
tion of the dual relations to a single invertible Fredholm integral equation via the
formal method outlined in 2. Therefore, in the generalized case, only isomor-
phisms are employed, and the solution is then seen to be unique in one of the
spaces H,.
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In this case, it is not necessary to require the solution to the generalized
problem to be a regular generalized function. Consequently, in this section the
generalized problem (later referred to as I) is that of finding a generalized function,
A(t), in Hu_ 2- 1/2 such that

1. SI/2u_,2(A) is a regular generalized function in Hu+ 2-1/2 which equals
the measurable function fl(x) almost everywhere on (0, 1) and

2. SI/2v_#,2#(A) is a regular generalized function in H’,,+ 2a-1/2 which equals
the measurable function gz(X) almost everywhere on (1,

If the classical dual relation problem (later referred to as II) is then to find a
measurable function A(t) of slow growth at infinity, locally integrable on (0, o),
and such that

1. y IA(t)lt
2. It- 2A(t)J(xt)[ dt <
3. y It- 2#A(t)Ja(xt)l dt <
4. lim 2Zx-2yt-2A(t)Ju(xt)dt fl(x)/x,O < x < 1,
No

5. lim 22tx- 0N-

it is easily seen that a solution of the classical problem is necessarily a solution of
the generalized problem. Hence, the solution of the classical problem, which
exists when the additional hypotheses of the regularity theorem are imposed, is
uniquely determined almost everywhere. This follows from the fact that

1. it is unique in the space Hu_ 2-1/2,

2. Hu_ 2,- 1/2 = , the dual space of ,
3. any two measurable functions generating the same distribution in ’must be equal almost everywhere.
No proofs will be supplied in this section since most of the arguments required

are similar to those employed in 4 and 5. However, all of the pertinent defini-
tions and theorems will be stated.

DEFINITION 7.1. For 2r/ + >__-1/2 and 2r/+ 2 +/3 >=-1/2, I,,,a is the
mapping from Hz,- 1/2 to Hz,+ 2,+ 2a- 1/2 defined for f Hz,- 1/2 by the equation

I,.,.t(f

LEMMA 7.2./f 1. + /3 >= 0,
2. 2r/ + >__ -1/2,
3. f(x)X2n-y LI(0, 1) for some 7 > O,
4. f(x) is of slow growth at infinity, then as generalized .functions in

H2r/+ 2a+ 2fl- 1/2

I,,,t(f I,_1/2, + t(f)"

LEMMA 7.3. If 1. + /3 < 0,
2. 2r/ + 3e + 2/3 > -,
3. 2r/+2e+/ >=-1/2,
4. f(x)X2n+ 2+ 2/-6 E LI(0, 1), where > 0 is arbitrary,
5. f(x) is of slow growth at infinity,
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6. the Abel equation

f(x)x20+2+2-a Ia1/Z_l/2,__a{G(y); x}
possesses a solution G(y) L 1(0, 1) which is of slow growth at infinity,

then as generalized functions in H’2,+ 2+ 2t- 1/2,

I,,,t(f I,_ 1/2,+(f).
The above lemmas state that, under suitable restrictions, the generalized

operator I,,.,a agrees with the conventional integral transform In_1/2,+ on
regular generalized functions. The next theorem is the uniqueness result.

THEOREM 7.4. If 1. la, V >__ ---},
2. I- 2Z V- 2fl, and either
3. (a) z-,B>O,

3(b) 2v-/ > -3,

(c) x+ 2-f(x) El(0, 1),
(d) x+ 2-g2(x) e LI(1, ),
(e) the Abel equation

xv+ 2-fl(x) Io- 1/2,,-v{F(t); x}
possesses a solution F(t) e L1(0, 1) for arbitrary 6 > O, or

4. (a) -/<0,
3(b) 2/t- v 2,

(c) x" + 2- of, (x) e L’(O, 1),
(d) x"+ 2-g2(x)e L(1,
(e) the Abel equation

h(x)xu+2- I1/zo_l/e,u_{G(y); x}
possesses a solution G(y) e LI(0, ),

then the generalized dual relation problem possesses a solution

A (S’);/_,e(h(x))
unique in the space Hu+ 2-1/2"
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SINGULARLY PERTURBED NONLINEAR BOUNDARY
VALUE PROBLEMS WITH TURNING POINTS*

F. A. HOWES

Abstract. Differential inequalities for second order boundary value problems are used to study the
existence and asymptotic behavior as 0 of solutions of ey" f(t, y, y’, ), y(- 1), y(1) prescribed,
when fy, Of/Oy’ vanishes at 0. Depending on the behavior of fy, at the turning point (t 0),
solutions are shown to possess (i) a transition layer at the turning point, (ii) a boundary layer at
or 1, or (iii) boundary layers at both endpoints. The results extend several considerations of O’Malley
and Dorr for nonresonant linear and quasi-linear problems to more general nonlinear problems. In
addition, explicit transition layer and boundary layer estimates are given.

1. Introduction. We consider in this paper nonlinear boundary value problems
of the form

ay"= f(t,y,y’,), -1 < < 1,
(1.1)

y(--1)-- B1, y(1) B2,

in which f possesses a turning point at 0, i.e., Of/y’ vanishes at 0. The
parameter e is assumed to be small and positive. Our main objective is to give
sufficient conditions for the existence of solutions of (1.1) and to study the behavior
of these solutions, especially in neighborhoods of the turning point and the end-
points, as e 0+. The principal assumptions are that appropriate reduced prob-
lems

O=f(t,u,u’,O), -1 < <0, 0< < 1, -1 < < 1,

u(-1)- B or u(1) B2

have smooth solutions and that the function f is of class Ctl) and sufficiently well-
behaved (in a sense to be described below).

Depending on the behavior of the function fy, f/y’ at the turning point
0, the solution y(t, e) of (1.1) is shown to exhibit essentially two types of be-

havior. If fy, changes its algebraic sign in passing through zero, y(t, e) behaves
differently on opposite sides of 0, and the change takes place within a transition
layer. However, if the sign offy, remains the same, the solution possesses a boundary
layer at one of the endpoints. Such behavior has been observed by O’Malley [6]
for the case of the linear problem

ey" + 2t(t, e)y’ (t, e)fl(t, e)y O, < < 1,
(1.2)

y( ), y(1) prescribed,

* Received by the editors March 1, 1974, and in revised form July 11, 1974.

" Department of Mathematics, University of Southern California, Los Angeles, California. Now
at Courant Institute of Mathematical Sciences, New York, New York 10012. This work was supported
in part by an NDEA Fellowship and an NSF Traineeship.

Strictly speaking, a "turning point" is only defined for a linear problem; see, e.g., Wasow [9,
Chap. 8] or O’Malley [7, Chap. 8]. However, by linearization, i.e., by considering ey"= (Of/Oy)y
+ (Of/Oy’)y’, the definition in [9] or [7] may also be applied to nonlinear problems (1.1).
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and by Dorr [3] for quasi-linear equations of the form

ey" + tkF(t, y)y’ O, --l<t<l,

where k is a nonnegative integer. We also consider problems (1.1) in which turning
point behavior occurs at one of the endpoints.

Using an existence and comparison theorem for second order boundary
value problems, we are able to extend the results of O’Malley and Dorr in the
nonresonant case (cf. Ackerberg and O’Malley [1]) to nonlinear problems. In
addition, we consistently use differential inequalities to construct explicit boundary
layer and transition layer estimates for the solutions of (1.1). To our knowledge,
such estimates have not been constructed before, even in the case of linear prob-
lems.

Our inspiration for this method of attack is a paper of Brig [2] in which such
problems with fy, bounded away from zero are considered.

2. Preliminaries. In this section we collect the definitions and results from
the theory of second order boundary value problems which are used in the rest of
the paper. Our principal reference is Jackson [5].

Consider the problem

(2.1) x"= F(t, x, x’), a < < b,

(2.2) x(a) c, x(b) d,

for F a continuous function on [a, b] x [2.

DEFINITION 2.1. A function e(t) is called a lower solution of (2.1) on [a, b] if
C(2[a, b] and "(t) > V(t, (t), e’(t)) on (a, b).
DEFINITION 2.2. A function (t) is called an upper solution of (2.1) on [a, b] if

[J C2)[a, b] and fl"(t) =< V(t, q(t), q’(t)) on (a, b).
DEFINITION 2.3. A function F- F(t, x, x’) is said to satisfy a Nagumo con-

dition on [a, b] with respect to the pair , fl C[a, b] in case c(t) =< fl(t) on [a, b]
and there exists a positive continuous function o(s) on[0, oe) such that IF(t, x,
=< q(Ix’l) for all a _<_ =< b, e(t) <= x __< (t), [x’l < oc and

fxs d) > max fl(t)- min 0(t),
a<_t<_b a<_t<_b

where 2(b a) max {[0(a) fl(b)[, I(b) fl(a)l}. We come now to the main
existence and comparison theorem.

THEOREM 2.1 (Jackson [5, Thm. 7.3]). Assume that F(t, x, x’) satisfies a Nagumo
condition with respect to the pair o, fl which are, respectively, lower and upper solutions
of (2.1) on [a, b]. Then if o(a) <= c <= fl(a) and e(b) <= d <= fl(b), the boundary value
problem (2.1), (2.2) has a solution x x(t)e C(2)[a,b] with o(t) <= x(t) <= fl(t) on
[a,b].

We remark that this theorem is valid under the weaker assumption that a’, fl’
are absolutely continuous on [a, b]; see [5, 2]. This fact will be needed in the next
section where we will consider functions a’, fl’ which are differentiable on [- 1, 1]

{0}.
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For convenience of notation, we will simply say that a given function satisfies
a Nagumo condition in its domain of definition; it is understood that appropriate, fl will be specified.

Finally, it is clear that Theorem 2.1 remains valid when F depends continuously
on the parameter e.

3. Problems exhibiting a transition layer. Consider the boundary value pro-
blem

(3.1) ey" f(t, y, y’, e), 1 < < 1,

(3.2) y(-1)-- nl, y(1)-- B2,

where B1 and B2 are, for simplicity, constants independent of e. Associated with
(3.1), (3.2) are the reduced problems

(3.3)1 0 f(t,u,u’,O), --1 < < O,

(3.4)1 u(-- 1) B1,

(3.3)2 0 f(t, u, u’, 0),

(3.4)2 u(1)- B2.

0<t < 1,

In this section, we use the method of differential inequalities to deduce the existence
and asymptotic behavior of solutions of (3.1), (3.2) when f has a certain type of
turning point at 0. The principal result is the following.

THEOREM 3.1. Assume
(a) there are functions ul Ct2)[ 1, 0] and //2 t C(2)[0, 1] satisfying (3.3)1,

(3.4)1 and (3.3)2, (3.4)2, respectively;
(b) f is continuous in (t, y, y’, e) and of class Ctl) with respect to y, y’ in a domain

’-1 =< =< 1, ly u(t)l =< dl(-1 =< =< 0), ly u2(t)l =< d2(0 =< 1), lY’I
< oe, O<=e<=el,fordl,d2,el >0;

(c) f(t, ui(t), u’i(t), e) O(e), 1, 2;
(d) there are functions hi, h2 with the following properties" hi is continuous on

[-1, 0], differentiable on [-1, 0); h’(0-) exists; hi(0) 0; h’ <__ 0 and h > 0 on
[- 1, 0); h2 is continuous on [0, 1], differentiable on (0, 1]; hz(0 +) exists; h2(0) 0;
h’2 <= 0 and h2 < 0 on (0, 1]; further, fr’ >- hi(t) in for [- 1, 0] and fr’ <-- h2(t)
in for [0,

(e) fr >-- > 0 in , for some constant l;
(f) f satisfies a Nagumo condition in .
Then for each e, 0 < e <= el, there exists a solution y y(t, ) of (3.1), (3.2).

Moreover, we can distinguish three types of asymptotic behavior.
(i) If u’(O) u’2(O), then

ly(t,e)- u(t)[ =< I//2(0)- Ul(0)[ exp -/3
-1 hl(s)ds + ce, -1 <= <= O,

ly(t, )- u(t)l-<_ lug(0) uz(0)l exp e- ha(s)ds + ce, 0 <= <= 1.
0
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(ii) If u’(O) 4: u’2(O)and ul(0)= u2(0), then

ly(t, e)- u(t)l-< cx/-,
ly(t, e)- uz(t)[ <-_ cx/,

-l=<t__<0,

0<t<l.

(iii) If U’l(O) v u’(O) and ua(O) v u2(0), then

ly(t, e) ux(t)[ <-[u2(0) ux(0)l exp -e-1 hl(S ds + c -1 <= <= 0,

ly(t, e)- u2(t)l lug(0) u2(0)l exp e -x h2(s) ds + cx/, 0 <= <= 1.

The constant c is a generic constant, independent of , whose magnitude can be de-
termined in each of the three cases.

Proof. We shall only prove the existence of a solution satisfying the pre-
scribed estimate in the case u’(0) u(0). The proofs of the other two cases follow
analogously.

Since the function f is assumed to satisfy a Nagumo condition, the proof
reduces to the construction of appropriate lower and upper solutions , fl, re-
spectively. Assume first that ua(0) __< U2(0) then define, for

(t) f Ul(t) l-

I fo l
-<__t<o,

u2(t) (u2(0) Ul(0)) exp e- hz(s) ds eTl-, 0 <_ <= 1,

ua(t) (ua(O) u.(O))exp -e-a ha(s) ds + Tl-a, -1 < <= O,
fl(t)=

Uz(t)+ e/l-a, 0=< t__< 1.

Similarly, if ua(0) > u2(0), define, for e in (0,

ua(t)-(ua(O)-u2(O))exp _e-a ha(s)ds -eyl-a -1 < t<O

(t)
u2(t) eyl-a 0 < <

u2(t (U2(0) Ul(0)) exp e- h2(s ds + eyl- 1, 0 1.

In both cases, is a positive constant to be determined in the course of the proof.
Note that, by assumption (a) and the assumption that u](0) u(0), ’, fl’ exist on
[- 1, 1] and are differentiable on [- 1, 1] {0}.

It is now a straightforward exercise to verify that these functions satisfy the
hypotheses of Theorem 2.1. For example, if u(0) N u2(0), we demonstrate that
ee"(t) f(t, e(t), ’(t), e) for e (- 1, 1). Restricting attention to (- 1, 0), we substi-
tute into equation (3.1) and expand by the mean value theorem to obtain

ee" f(t, , ’, ) eu f(t, Ul, Ul, ) L[t][-eTl-a-]
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if we choose 7 >_- M1 + al, where [ul[ <= M1, If(t, ul, u’l, e)l -< eal and
(t, u Oevl- 1, u], e) for some 0 e (0, 1). Similarly, for e (0, 1),

" f(t, , ’, ) eu; (hi(t) + - h(t)). (u(0) u(0)) exp e- h(s) ds

--f(t,u2,u2,

f,[t] -(u2(O) ul(O)) exp [e- f] h2(s) ds
-,[t -e-ha(t)(ua(O)- u(0))-exp e- h(s)ds

-eM - h(t)(ua(O) u(0)), exp e- h(s) ds

+- lh(t)(u(O) u(0)) exp e- h2(s ds O,

provided 7 M + , where lull N M, f(, u, u, e) e and

It] t, ua-0 ua(0)-u(0))exp e- h(s) ds +eTl-

u 0- h(t)(u(O) u(0)) exp - ha(s) ds .
Thus by choosing 7 max {M + ,M + }, we insure that is a lower

solution of equation (3.1); similarly, B is an upper solution. The other case, u(0)
> u(0), follows in an analogous Nshion. We conclude by Theorem 2.1 that for
each e, 0 < e N e, the problem (3.1), (3.2) has a solution y y(t, e) satisfying
e(t) N y(t, e) N (t), i.e.,

y(t,e)- u(t) u(O)- u(0)lexp -- h(s)ds + eTl -,
-tN0,

y(t, ) u(t) u(O) u(O) exp - h(s) ds + eTl- ,
0NtN1.

Remark 1. The proof shows that the full force of assumptions (d) and (e) is
not required;rather, we need only require

,(t, u(t), ui(t), e) h(t), -1 N O,

,(t, u(t), ui(t), ) h(t), 0 1,

The proof shows that it is enough to assume that, instead of h N 0 on (0, 1], -h + 0 on
(0, 1]. Similarly, in the case of h’, -h’ + 0 on [- 1, 0) is sucient.
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and
fy(t, Ul(t), tt’(t), ) >__ > O, <= <= O,

(ii) fr(O, y, y’, ) >= > O, (0, y, y’, ) ?,

fr(t, u2(t), u’2(t), e) >= > O, 0 <= <= 1.

Remark 2. Some examples of the types of functions hi, h2 which satisfy hy-
pothesis (d) are"

t2n +hi(t) -kl -1 <= <- O,
(i)

h2(t) -k2t2n+ 0 < < 1, n O, 1,2

(ii)
h(t) kl tpq-l,

h2(t) -k2tr,

-1 =< =< 0, p >= q > 0 integers, p even, q odd,

0 __< __< 1, r real and positive;

hx(t) kl t2n, -1 <= <= O,
(iii)

hz(t -k2t2", 0 <= <= 1, n 1,2,....

Here k, k2 are positive constants.
Remark 3. Our final remark concerns the assumption fy be positively bounded

away from zero. This restriction is certainly necessary in order for the method of
proof to succeed; however, examples exist (see O’Malley [6] and Pearson [8)
which justify its inclusion. It is nevertheless possible to prove Theorem 3.1 under
the assumption that fy >_ 0 in 2. We must then restrict f in equation (3.1) to be
independent of e and assume that the solutions ui of (3.3)i, (3.4) (i 1, 2) satisfy
u’i’ =- O. The estimates in Theorem 3.1, part (i) are then free of the terms of order
o().

Theorem 3.1 includes several earlier results of O’Malley [6] for linear boundary
value problems ofthe form (3.1), (3.2). This is so because linear functionsf(t, y, y’, e)

a(t, e)y’ + b(t, e)y + c(t, ) trivially satisfy a Nagumo condition. In the case of
quasi-linear functions, i.e., functions f(t, y, y’, e) a(t, y, e)y’ + b(t, y, ), a Nagumo
condition is also satisfied. However, Theorem 3.1 is not always directly applicable
since assumption (e), the nonnegativity restriction, is too severe for certain quasi-
linear functions f. For example, Dorr [3] has considered problems of the form

(3.5)
ey" + 2n+ IF(t, y)y’ O,

y(-1) Ba, y(1) B2.

-l<t<l,

with n 0, 1, 2,.... and F(t, y) __> k > 0. Rewriting this equation as

ey" 2" + F(t, y)y’ f(t, y, y’, ),

we see that fy -t2"+Fr(t, y)y’ (assuming Fy exists); consequently, fy is not, in
general, nonnegative. Nevertheless, we may still apply Theorem 2.1, without
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assuming differentiability of F, by defining for each e > 0,

__JB1, -1 =< t__<0,

B: -(B:z B)exp[-{e(2n + 2)}-1kt2n+2], 0 __< __< 1,

U --(B B)exp[-{(2n + 2)}-ktn*3, -1 =< =< 0,
fl(t)=

B, 0=< t_<_ l,

ifB =< B, and

B (B1 Be)exp [-{e(2n + 2)}-ktn+], -1 =< _< 0,
()

B, 0=<t=< l,

B1, -lt0,
/()

Be (B B)exp [-{(2n + 2)}-ktn+e], 0 =< =< l,

if B > B. It is then trivial to see that

"(t) + /F(t, (t))’(t) >__ 0,
and

efl"(t) + en + IF(t, fl(t))ff(t) 0 for (- l, 1).

Consequently (3.5) has a unique solution y y(t, ) satisfying

[y(t, e)- BI[ =< IBz Bx[ exp [-{e(2n + 2)}-kten+e], -1 0,

ly(t, e)- Bel [B Bel exp [-{e(2n + 2)}-lkten+2, 0 ].

(Uniqueness follows from the maximum principle see, e.g., [4, ff 2]). These estimates
extend results of Dorr [3] who only showed that

B -l<t<0
lim y(t, e) ’
o. B, 0 < N 1.

For the most general quasi-linear problem

ey" + g(t,y,e)y’ + h(t,y,e) O, < < 1,

y(- 1), y(1) prescribed,

with g satisfying assumption (d) of Theorem 3.1, it is also possible to obtain results
like those above. Assumption (e) is here translated into the assumption that h
/>0inN.

4. Prles exig a lyer t e eit. We consider again
the boundary value problem

(4.1) ey" f(t, y, y’, ), < < 1,

(4. y(-I , y( ,
in which f has a turning point at 0. By assuming a different type of behavior
of, near zero, the solutions of (4.1), (4.2) are shown to possess genuine boundary
layers at or 1. Specifically, f, is assumed to behave like an even power
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of t, i.e., fy, does not change sign at 0. The nonoccurrence of a sign change
then precludes the appearance of a transition layer; instead, the nonuniformity
manifests itself at an endpoint. We examine, for the sake of definiteness, first the
case in which fy, is negative on [-1, 1] {0}. Classical boundary layer theory
would suggest that the appropriate reduced problem is

(4.3) 0 f(t,u,u’,O), -1 < < 1,

(4.4) u(1) B2.

The principal result of this section is the following.
THEOREM 4.1. Assume
(a) there is a function u Ct2)[ 1, 1] satisfying (4.3), (4.4);
(b) f is continuous in (t, y, y’, e) and of class C1) with respect to y, y’ in "-1 _<_ _<_ 1, lY u(t)l =< d, lY’I < o, 0 =< e _<_ e, d, ex > 0;
(c) f(t, u(t), u’(t), e)= O(e), 1 <= <= 1;
(d) there is an h Ct2)[ 1, 2] with the properties" h < 0 in [-1,2]- {0},

h(O) O, h is an even function, h’(1 + t) <_ 0 in [- 1, 2]; further suppose fr, <= h(t)
in ;

(e) fr >= > 0 in l, for some constant l;
(f) f satisfies a Nagumo condition in l.
Then there is an o > O, o <= e, such that for each e, 0 < e <= Co, there exists

a solution y y(t, ) of (4.1), (4.2). In addition,

ly(t, )- u(t)l =< IB u(-1)l exp e -a h(s) dsI + ce, -1 <_ 1.

Proof. To apply the existence theorem, Theorem 2.1, we must construct
suitable lower and upper solutions ,/3, respectively. Define, for [- 1, 1] and e
in (0,

(t)
u(t) (u(- 1) B1) exp e- h(s) ds 71- if u(- 1) >__ B1,

u(t) e?l- if u(- 1) _<_ B1,
and

fl(t)
u(t) (U(-- 1) B1) exp e- h(s) ds + 7l-

if u(- 1) > B1,

if u(- 1) =< Ba.

Clearly, a(- 1) __< B <_ fl(- 1) and a(1) =< B2 =< fl(1). In the case that u(- 1) >__ B1,
we verify explicitly that a is a lower solution and fl an upper solution of (4.1).
The case u(- 1) _<_ B1 is treated similarly.
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Now

o(t) u(t) (u(- 1) B1) exp e- h(s) ds ,1- 1,

o((t) u’(t)- e-lh(1 + t)(u(-1) B1)exp e -1 h(s)ds

eo(’(t) eu"(t) (h’(1 + t) + e- lh2(1 + t))(u(- 1) B1) exp - h(s) ds

Therefore, for e(- 1, 1),

ea" f(t, , ’, e)

-eM- e-h2(1 + t)(u(-1)- B)exp e- h(s)ds + O(e)

f[t] -(u(-1) B) exp e- h(s) ds eTl-1

-,[t] -e-h(1 + t)(u(-1)- B)exp -1 h(s)ds

-eM-e-h2(1 + t)(u(-1)- B:)exp e- h(s)ds

+ O(e) + l(u(- 1) B1) exp e- h(s) ds

+ e7 + e- lh(t)h(1 + t)(u(- 1) Ba) exp e- h(s) ds

For e (-1,-], h(t)h(1 + t)- h2(1 + t) 0, which follows from the fact that
h’(1 + t) N 0 and h is even in [- 1, 2]. For e [-, 1), the factor exp [e- +t h(s) ds]
is transcendentally small; particular, it is of order O(e2). Thus by choosing
? sufficiently large, we can insure that ea" f(t, , ’, e) 0 on [-, 1). Combining
these observations, we have the desired inequality. Of course, lu"l M and It] is
the appropriate intermediate point. (It is, of course, possible to give an explicit
estimate for the size of 7 however, for brevity, we choose not to do so.)

It is even simpler to show that f(t, fl, fl’, e) eft" 0 on (- 1, 1).

f(t, fl, fl’, e)- efl" O(e) + [t] leT/-] eM 0

for ? sufficiently large.
Remark 1. The proof shows that the assumption that h be an even function

may be weakened to"

h(t)h(1 + t) h2(1 + t) 0

for te(-1,6], + > 0, 0(1).

Remark 2. Some examples of functions h satisfying assumption (d) are"

(i) h(t)= -kt2", n 1,2,...
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(ii) h(t) -ktpq- 1, P q > 0 integers, p even, q odd, where k is a positive
constant.

Remark 3. Theorem 4.1 has been proved under the assumptions that (i) fr’ is
negative on [- 1, 1] {0} and vanishes at 0; and (ii) the solution u of the
reduced equation satisfies u(1)= B2 y(1). If now we assume that u satisfies
u(-1) B1 y(-1) and that fr, is positive on -1, 13 {0} and vanishes at

0, we might expect to have a boundary layer at 1. Indeed, this is so; we
simply make the change of variable r -t and apply Theorem 4.1 to the trans-
formed problem.

Dorr [3] has considered special quasi-linear problems of the form

ey" + tZ"F(t, y)y’ O, < < 1,
(4.5)

y(-1)- B1, y(1)- B2,

with n 1, 2,... and IF(t, Y)I >_- k > 0. Unfortunately, Theorem 4.1 is not directly
applicable to problems like (4.5) since assumption (e) is, in general, not satisfied.
However, we may proceed in a manner analogous to that outlined at the end of the
previous section. It is then not difficult to see that for each e > 0, the problem (4.5)
has a unique solution y y(t, e) satisfying, for [- 1, 1],

ly(t,e)- Bzl =< [B1 Bzl exp [-{e(2n + 1)}-Xk(1 + t)2n+]
ifF(t,y)>_ k> O,

ly(t, )- Bll [B2 Bll exp [-{e(2n + 1)}-1k(1 t)2n+ 1;
if F(t, y) <= -k < O.

Dorr showed only that

lim y(t,e)= B2’ -1 < <_ 1,

-o+ (B1, -l<t< 1,

if F(t, y) >= k > 0,

ifF(t,y)<= -k < O.

5. Problems exhibiting a boundary layer at each endpoint. In some instances
no solution of (4.3) may satisfy either of the boundary conditions (4.2). Depending
on the behavior of fr, at 0, the appearance of boundary layers at and

1, arising from the loss of both boundary conditions, can be expected. The
motivation for the theorems below arose out of a discussion in O’Malley [6] of the
linear problem

(5.1)
ey" + 2ety’ efly O,

y( ), y(1) prescribed,

-1 <t<l,

for e < 0 and / 4: 2m, m 0, 1, 2,.... O’Malley showed that whenever / is
less than zero, the solution y(t, e) of (5.1) converges to zero, the trivial solution of
the reduced problem, uniformly in [-1 + 61,1- c52],61,62 > 0. The non-
uniformity arises at the endpoints because the zero solution generally satisfies
neither boundary condition in (5.1). If/3 is equal to zero or a positive even integer,
y(t, ) may behave very strangely. This is the case of resonance in which y(t, )
may converge to a nontrivial function in (-1, 1), as e ---, 0 +. As a consequence,
y(t, ) generally exhibits nonalgebraic singular behavior in (-1, 1). In Theorems
5.1 and 5.2 below we avoid this unpleasant situation by again assuming that the
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function fy is positively bounded away from zero. Further we suppose that fy,
behaves essentially like the coefficient of y’ in (5.1). The precise statement is the
following.

THEOREM 5.1. Assume
(a) there is a function u CtZ)[ l, 1] satisfying (4.3)"
(b) f is continuous in (t, y, y’, e) and of class Ctl) with respect to y, y’ in "-1 <= <= 1, iy u(t)[ <_ d, ly’l < o, 0 <= e <= el, d, el > 0;
(c) f(t, u(t), u’(t), e) O(e), <= <= 1;
(d) there are positive constants k l, k2 such that in #l,

and
fy, kl t2"+1 tel-1 0

fy > k2t2n+l t[0 11 for n 0 1,2

(e) f >= > O in l
(f) fr, O(e -N) in for some N >= O.

Then there is an eo > O, eo <= el such that for each e, 0 < e <= eo, there exists a
solution y y(t, ) of (4.1), (4.2). In addition,

ly(t,e)- u(t)l <= IB1 u(- 1)1 exp [-{e(Zn + 2)}-1k1(1 + t)2’’+2]

-+-[B2 u(1)lexp[-{e(2n + 2)}-1k2(1 t)2n+2] -+-

and

Proof. Define, for e [- 1, 1] and e in (0, eli,

(t)

-l<t_<l.

u(t)- (u(-1)- B1)exp[-{e(2n + 2)}-1k1(1 + 02"+23 71-1,
if u(-1)_> Sl, u(1)_<_ S2,

u(t)- (u(-1)- Bl)exp[-{e(2n + 2)}-1k1(1 + 02"+2

-(u(1)- S2)exp[-{e(2n + 2)}-1k2(1 02"+2 ey1-1,

ifu(-1)>=B1, u(1)>__B2,

u(t)- eyl-1, if u(-1) __< B1, u(1) _<_ B2,

u(t) (u(1)- S2)exp[-{e(2n + 2)}-1k2(1 02"+2 ey1-1,
ifu(-1)_<_B1, u(1)>_ B2,

u(t)- (u(1)- B2) exp [-{2n + 2)}-1k2(1 t)2n+2] + g,1-1,

if u(-1) >= B1, U(1) =< B2,

u(t) + eyl-1, if u(--1) >__ B1, u(1) >_ B2,

u(t) -(u(- 1) B1)exp[-{e(2n + 2)}-1k1(1 + t)2+2]

-(u(1)- B2)exp[-{e(2n + 2)}-1k2(1 -02"+2 + e7l-,

ifu(-1)=<B1, u(1)__< B2,

u(t)- (u(-1)- B1)exp[-{e(2n + 2)}-1k1(1 + 02"+2 + eT/-1,

ifu(-1)=<B1, u(1)>__ B2.
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We verify explicitly that for the case u(- 1) >__ B1, u(1) =< B2, cz is a lower solution
and fl an upper solution of (4.1).

(t) u(t)- (u(-1)- B)exp[-{a(2n + 2)}-1k(1 + t)2"+2 aT1 -,
so cz( 1) =< B and (1) _< B2. Also

’(t) u’(t) + a-lkl(l + t)2n+l(u(-1) B1)exp[-{a(2n + 2)}-1k1(1 + t)2"+2],
a"(t) au"(t) + [(2n + 1)k(1 + 02’’- a-k(1 + t)4"+2](u( 1)- B)

exp [-{a(2n + 2)}-kl(1 + t)2n+2].

Substituting and expanding,

>_ -aM- a-lk(1 -+- f)4n+2(lg(--1)- B1)exp [-{a(2n + 2)}-’k,(1 + t)2’’+2]

+ O(a)-f,[t][-(u(-1)- B)expI-{a(Zn + 2)}- lk(1 + 02"+2] eTl-]

f,,[t]a-kl(1 + t)z"+(u(-1)- B1)exp -{a(Zn + 2)}-1k(1 + t)2"+2],

where [u"[ _<_ M and It] is the appropriate intermediate point. On (-1, 0] the
tZn+ holds" whence, for e(- 1, 0]estimate fy, =< k

a" f(t, , ’, a)

>= -aM- a-k2(1 + t)4"+Z(u(-1)- B)exp[-{a(2n + 2)}-k1(1 + t)2"+2]

+ O(a)+ /(u(-1)- B)exp [-{a(2n + 2)}-k(1 + t)2"+2]

a-kt2"+(1 + t)z"+a(u(- 1) B)exp[-{a(Zn + 2)}-ka(1 + t)2"+2].

Ift6(-1,-1/2],-t2"+(1 + t)2n+l -(1 + t)"+2 >= 0;ift [-1/2,0],the exponen-
tial factor is transcendentally small, in particular, it is of order 0(2). Therefore, in
(- 1, 0], a" f(t, , ’, a) >__ 0 for y sufficiently large. For [0, 1), fy, >= k2tzn+ 1,
so to produce the desired inequality we invoke the assumption that fy, O(a-u),
N => 0. On [0, 1), the term exp [-{e(2n + 2)}-k1(1 + t)Zn+2] is transcendentally
small, so it is at least of order O(aN + 2). Thus, on [0, 1),

ao" f(t, , ’, a)

>- aM a-’k(1 + t)"+2(u(-1)- B,)exp[-{a(2n + 2)}-’k1(1 + t)2"+2]
+ O(a)+ /(u(-1)- B)exp[-{a(2n + 2)}-’k(1 + 02"+2

+ ay (Ka-N)(a-’k,)(1 + t)2"+(u(-1) B)exp[-{a(2n + 2)} 2"+2] >= 0

for 7 sufficiently large, where lu"] _<- M and ]fy,I -< K. a-u. Thus a is a lower solu-
tion.
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The demonstration that/ is an upper solution proceeds similarly. From the
definition,/( 1) _>_ B and/3(1) >= B2 And differentiating,

fl’(t) U’(t)- a-1/2(1 --t)2"+(U(1)- B2)exp[-{a(2n + 2)}-1/2(1 -t)2"+2],

a"(t) au"(t) + [(2n + 1)k2(1 t)2’ a-k22(1 t)4"+2](u(1) B2)

exp [-{a(2n + 2)}-k2(1 -t)2"+2].
Thus, for e (- 1, 1),

f(t, , ’, a) a"

O()+ j,[t][-(u(1)- Bz)exp [-{a(2n + 2)}-k2(1 t)2n+2]

+ f,,[t][-a-k2(1 -t)z"+l(u(1)- B2)exp I-{a(2n + 2)}-1k2(1 02"+2]
aM + a-kz2(1 t)4"+Z(u(1)- B2)exp -{a(2n + 2)}-k2(1 t)2"+2].

As before, t2"+(1 t)2’’+ (1 t)4"+2 0 for tel1/2, 1), and the exponential
factor is of order O(a2) for e [0, 1/2]. Thus if e [0, 1), f(t, , ’, a) a" >= 0 if 7 is
sufficiently large, completing the demonstration that /3 is an upper solution.
Finally the assumption on f,, means that for each a, a Nagumo condition is
satisfied. This concludes the proof.

The next theorem shows that the conclusion of Theorem 5.1 remains valid
if fy, behaves like an even power of t.

THEOREM 5.2. Make the same assumptions as in Theorem 5.1 with assumption
(d) changed to" there are positive constants k l, k2 such that in ,
and

fy, <= -kl t2,’ t6[--1 0]

fy, >= k2 t2", t[0, 1] for n ,2,

Then the conclusion of Theorem 5.1 follows with the estimate

[y(t,a)- u(t)[ __< [B1 u(-1)[ exp [- {a(Zn + 1)}-k(1 + t)2"+1]

+ [B2 u(1)[exp[-{a(2n + 1)}-1k2(1 t)2"+1] + ca,

-1 t 1.

The proof of Theorem 5.2 closely resembles that of Theorem 5.1 and is omitted.
While more general results are possible, the two above clearly illustrate the

kind of behavior to be expected.

6. Problems in which the turning point coincides with an endpoint. For the
sake of definiteness we consider problems in which the turning point occurs at
the left-hand endpoint. Specifically, the boundary value problem is

(6.1) ay" f(t, y, y’, a),

(6.2) y(0) A, y(1) B,

0<t<l,
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together with the corresponding reduced problem

(6.3) 0 f(t, u, u’,O), 0 < < 1,

(6.4) u(1) B.

The function f is assumed to possess a turning point at 0. We first prove a
general result and then examine some of its consequences in the rest of the section.

THEOREM 6.1. Assume
(a) there is a u C(2)[0, 1] satisfying (6.3), (6.4);
(b) f is continuous in (t, y, y’, e) and of class C(1) with respect to y, y’ in 9"0
__< 1, [y u(t)l =< d, ly’l < or, 0 __< e __< el, d, el > 0;
(c) f(t, u(t), u’(t), e) O(e), 0 <= <= 1"
(d) there is a function h C(1)[0, 1] with the properties" h(O)= O, h < 0 on

(0, 1], h’ <= 0 on 0, 1], and satisfying fy, <_ h in 9

(e) fy >= > 0 in for some constant l;
(f) f satisfies a Nagumo condition in 9.
Then for each e, 0 < e <= el, there exists a solution y y(t, e) of (6.1), (6.2).

Moreover,

(i) [y(t,e) u(t)[ __< [A-u(0)lexp e-1 h(s)ds + cle, O <__ <__ 1,

(ii) ly’(t, e) u’(t)l _-< e- lc’ exp e- h(s) ds +

where c1, c2, C’ are constants independent of e, and 6 O(rl(e)) for some gauge

function rl(e) which depends on h.

Proof. The result is established provided we can construct suitable lower
solutions and upper solutions ft. Define, for [0, 1] and e in (0, eli,

and

I u(t) (u(0) A) exp e- h(s) ds

u(t) eTl- 1,

u(t) (u(0) A) exp e- h(s) ds

eT1-1 if u(0) >__ A,

if u(0)__< A,

if u(0) >__ A,

-+- eyl-1 if u(0)< A

We treat explicitly the case u(0) <= A. Trivially, fl(0) >__ A, fl(1) >_ B, and f(t, fl,
fl’, e) eft" >__ 0. With

z(t) u(t)- (u(0)- A)exp e- h(s) ds eyl-1

(0) __< A, z(1) __< B,
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and

So

oc’(t) u’(t) - h(t)(u(O) A) exp e- h(s) ds

ee"(t) eu"(t) (h’(t) + - h(t))(u(O) A)exp e- h(s)

e" f(t, , ’, )

>= eM e,- hZ(t)(u(O) A) exp/e-
L

ft] -(u(0) A)exp e-1 h(s)

-fy,[t][-e-lh(t)(u(O)-A)exple-

h(s) ds + O(e)

flh(s)dslJ
>__ eM e- hZ(t)(u(O) A) exp e- h(s) ds

+ O(e) + l(u(O) A) exp e- h(s) ds + 7

+ - h2(t)(u(O) A) exp e- h(s) ds >= 0

for 7 sufficiently large, where lu"l-<_ M.3 Of course, we assume f(t, u(t), u’(t), )
O(e). The case u(0) =< A is treated similarly.
To establish the estimate on y’- u’, we set z y u and substitute into

(6.1), (6.2) to obtain

ez" f,{t}, z’ L{t}.z O(e), 0 < < 1,

z(0) A u(0), z() 0,

where {t} (t,u + Oz, u + Oz’,e) for some 0e(0, 1). The estimate on z’ now
follows as in Dorr, Parter and Shampine [4, 2].

Remark 1. The proof shows that it is possible to weaken assumptions (d)
and (e) to"

(d’)
fy,(t, u(t), u’(t), e) <= h(t),

L,(o, y, y’, ) <= o,
f(t, u(t), u’(t), e) >= > O,

f(O,y,y’,e) > l> O,

0_<t__<l,

for (0, y, y’, e) e

0=<t__<l,

for (0, y, y’, e) e 9.
(e’)

The inequalities reveal that in assumption (d), it is enough to assume that -h’ + l__> 0 on

[0, 13.
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Remark 2. A simple example of a function h satisfying the hypotheses in
assumption (d) is h(t) -ktr, r >= O, r real, k a positive constant. The correspond-
ing gauge function r/(e) appearing in estimate (ii) of Theorem 6.1 is then easily
seen to be r/() d + )- ’.

Remark 3. The assumption that fr be bounded positively away from zero is
obviously necessary in showing the functions e,/3 are bounding solutions of (6.1).
Moreover, as in the case of the other problems considered, examples exist which
justify such a restriction. Indeed, Ackerberg and O’Malley [1] have noted the
presence of resonant behavior in problems of the form (1.1) whenever the coeffi-
cient of y is negative. The situation here is far from simple. In some cases the
solutions of the full problem may possess a transition layer at 0 and a boun-
dary layer at 1. The solution of the reduced equation (6.3) then satisfies neither
boundary condition and may have an exponentially large amplitude.

Remark 4. We can also treat the case in which the turning point occurs at
1. The solution u of (6.3) is chosen to satisfy the initial condition u(0)= A,

the algebraic sign of fr, is changed, and consequently, the solution of (6.1), (6.2)
exhibits a boundary layer at 1. To obtain the precise result, we can make the
change of variable r in (6.1), (6.2) and apply Theorem 6.1 to the trans-
formed problem.

7. Classification of turning points. In the sections above we have studied
various problems involving equations with turning points. The very fact that we
have observed substantially different types of behavior of solutions indicates that
the turning points themselves are of different types. Taking the results of 3
and 4 in particular, we can formulate two heuristic principles in the nonresonant
case.

I. If the function fr, changes its algebraic sign in passing through the turning
point, a transition layer appears at the turning point. The solution y(t, ) is approxi-
mated uniformly to order 0() on he interval to the left of the transition layer by
that reduced solution satisfying the left-hand boundary condition. To the right of
the layer y(t, ) behaves to order 0() like that reduced solution which satisfies the
right-hand boundary condition.

(The solutions of problems containing such turning points behave essentially
like the solutions of classical turning point problems, e.g., Airy’s equation.)

II. If the function fr, does not change its algebraic sign in passing through the
turning point, then a boundary layer, but no transition layer, appears at one end-
point. The position of the boundary layer is itself dependent on this sign: iff,, is

negative (except at the turning point), the layer occurs at the left-hand endpoint if
positive, at the right.

(The solutions of such problems display no radical behavior near the turning
point. Rather they are approximated uniformly to order O(e) by a single function
in the entire interval except in a narrow band near one endpoint.)

The observations I, II are meant to be employed only heuristically. The precise
classification of the behavior of the solution of any turning point problem must be
effected analytically, as we have done above. Their consistent use, however, may
assist in the selection of appropriate bounding solutions.



660 F.A. HOWES

Acknowledgment. The author takes this opportunity to thank Professors
W. A. Harris, Jr. and R. E. O’Malley, Jr. and the referees, all of whom read the
manuscript carefully and made many helpful suggestions.

REFERENCES

[1] R. C. ACKERBERG AND R. E. O’MALLEY, JR., Boundary layer problems exhibiting resonance, Studies
in Appl. Math., 49 (1970), pp. 277-295.

[2] N. I. BRI On boundary value problems for the equation ey" =f(x, y, y’) for small e, Dokl. Akad.
Nauk SSSR, 95 (1954), pp. 429-432; NASA translation NASA TT F-10, 839 (1967).

[3] F. W. DORR, Some examples of singular perturbation problems with turning points, this Journal,
(1970), pp. 141-146.

[4] F. W. DORR, S. V. PARTER AND L. F. SHAMPINE, Applications.. of the maximum principle to singular
perturbation problems, SIAM Rev., 15 (1973), pp. 43-88.

[5] L. K. JACKSON, Subfunctions and second order ordinary differential inequalities, Advances in Math.,
2 (1968), pp. 307-363.

[6] R. E. O’MALLEY, JR., On boundary value problems for a singularly perturbed differential equation
with a turning point, this Journal, (1970), pp. 479-490.

[7] --, Introduction to Singular Perturbations, Academic Press, New York, 1974.
[8] C. E. PEARSON, On a differential equation ofboundary layer type, Studies in Appl. Math., 47 (1968),

pp. 134--154.
[9] W. WASOW, Asymptotic Expansions for Ordinary Differential Equations, Interscience, New York,

1965.



SIAM J. MATH. ANAL.
Vol. 6, No. 4, August 1975

NEWTON’S METHOD TECHNIQUES FOR SINGULAR
PERTURBATIONS*

JOSHUA YARMISH"

Abstract. In this paper, existence and uniqueness of solutions to several classes of singularly
perturbed initial value and boundary value problems are proven by use of Newton’s method. Asymp-
totic expansions of solutions to some of these problems are developed and analyzed, and proof of their
asymptotic correctness is shown based on Newton’s method. As a by-product some numerical
algorithms for these solutions are obtained.

1. Introduction. Suppose that we are given an operator P, which maps some
open set S of a Banach space Ex into another Banach space Ey. We assume there
is a linear operator P’ from Ex into Ey such that

[IP(y / h)- P(y)- P’(y)hll/llhll 0 as [Ihll-* 0.

Henceforth, P’ will denote the derivative of the operator P in S. Furthermore,
assume P’ is continuous in S and consider the equation

(1.1) P(y) O

Choose an "initial guess" Yo S, and generate the sequence {y,} by

(1.2) Y,+I Y, [P’(Y,)]- 1p(y,), n 0, 1,2,

This method of defining the sequence {y,} is called the basic Newton’s method.
An infinite Newton’s sequence will not necessarily be generated for every "ilitial
guess" Yo because the operator P’(Yk) may not have an inverse for some integer k.
To avoid this possible difficulty, we can generate a sequence {,} by the modified
Newton method

(1.3) Y, +1 Y, [P’(yo)]-IP(Y,).

The following theorem was formulated by Kantorovic [8]. It gives, not only
conditions for the existence of a solution y* to P(y)= 0, but also information
concerning the regions of existence and uniqueness of y* and error bounds for
and y, as approximations to y*.

THEOREM 1.1. Suppose that the operator P in (1.1) is defined in some open set

S(]]y Yo]] < R) and has a continuous second derivative in So(t[y Yo[] <-_ r < R).
Moreover, suppose that:

(a) The operator To [P’(Yo)]-1 exists and is linear,
(b) To[[ <= B’ in some Banach space norm
(c) IIP(yo)ll =< V’,
(d) IIP"(y)[I <-_ K’, for all y So.

Received by the editors August 21, 1973, and in final revised form August 8, 1974. This research
was supported by the Scholarly Research Committee of Pace University.- Pace University, New York, New York 10038.
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Then, if h K’(B’)2 V’ <__ 1/2 and

r>-ro= h

the equation P(y) 0 has a solution y* in So to which both the basic and modified
Newton’s methods converge, such that

]IY* yoll to.

Furthermore, if. h < 1/2, then the solution y* is unique in S (equals lY Yo]] < rl
((1 + w/i 2h)/h)B’V’), and if h 1/2, the solution y* is unique in the closed ball

Ily- yol -< 2B’V’.
The aim of this paper is to use the above theorem to prove existence and

uniqueness for several types ofsingular perturbation problems. Also, the asymptotic
correctness of some expansion schemes are proven by the use of Newton’s method.

2. The initial value problem y’ g(t, y), y(0)= A. Consider the scalar
initial value problem

d
(2.1) y’ g(t, y), y(t O) A,

dt’

where 0 +, and let yo(t*, z) satisfy the initial value problem

(2.2)
dy
dz

g(t*, y), y(-c =0)= A,

where t* is a fixed parameter and z t/.
Instead of yo(t*, :), consider yo(t, ), where is now a variable. Suppose that

gy(t, yo(t, z)) __< -L

for some L > 0 and for 0 <= <= T(T finite). Then we have the following.
LEMMA 2.1. ey’o(t, ) g(t, Yo(t, )) O(e) uniformly in 0 <= < T.
Proof.

8yo 8yo OYo+ + g(t, yo),

and since c3yo/c3t O(1) the result follows.
Note also that yo(t, z)[t:o A. We shall use Yo below as the first iterate in a

Newton’s method scheme for obtaining the asymptotic solution.
Example.

(2.3) y’ 10y(y 1)(2t + 1) g(t, y), y(0) 2.

Here,

yo(t,z)-- {1 1/2exp(--lO(2t + 1))} -1, gy(t, Yo(t,)) < O;

the actual solution to (2.3) is

y(t, z) {1 1/2 exp (- O’r(t + 1))}- 1,
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and
ey’o g(t, Yo) (-40t e-lr(2t+l))(e -lr(2t+ 1) 2)-2

o()

for bounded e.
Note. yo(t, z) --* as o that is, away from the boundary layer at O,

Yo converges to the root 4)(0 of g(t, y) 0 with gy(t, 4)(t)) < O.
LEMMA 2.2. Let z(t, e.) satisfy the linear initial value problem

ez’ + f(t)z h(t), z(O) O,

where f(t) and h(t) are continuous functions on bounded intervals >= 0 and f(t)
> k > O. Then

]z] __< (l/k) max

on bounded intervals > 0.
Proof. Integrating, we have

hence

z(t) (l/e) exp (f(r)/e) dr h(s) ds,

max Ih(t)l exp (f(r)/e) dr ds

<= (l/e)mtax [h(t)[ e(- /)(’- s) ds <_ (l/k) max,
Without loss of generality, we can take A 0 in the initial value problem (2.1),
since the function w(t, ) y(t, ) A satisfies ew’ F(t, w), w(0, e) 0, where
F(t, w) g(t, w + A). Note that Fw(t, w) gy(t, y).

We select the initial guess Yo yo(t, ) of Lemma 2.1 and use the operator

dy
P(y) -/- g(t, y), where gy(t, Yo) <= -L < O.

The operator P acts from the space C’[0, To] ofcontinuously differentiable functions
on [0, ToJ satisfying the initial condition y(t 0)= 0 into the space C[0, To]
of continuous functions on [0, To]. On C’, the norm is given by

(2.,4) yll max
te[0,To]

dy
+ max [y[,

te[0,To]

while on C[0, To] we use

(2.5)

Setting y Yo + Ay we have

day
P’(Yo) Ay e----(2.6)

Ilfl[-- max Ifl.
te[O,To]

gy(t, Yo)Ay f(t)e C[O, To],

Xy(0) 0.
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By Lemma 2.2, P’(Yo) Ay f(t) has a unique solution Ay such that

max If]
(2.7) max IAyl < ElL L

Thus [P’(Yo)]-1 exists. Moreover,

dy
e- If(t)+ gy(t, Y0)AYl <- 1+

max Igx[

so (2.4) implies

(2.8) Ayll =< C f I, where C + +

That is,

(2.9)

Now from Lemma 2.1,

P’(Yo)]-1 C.

(2.10) P(Yo) __-- Cle where C1 >= for all

and finally, for Ay and Az in C’[0, To],

P"(y) Ay Az -gys(t, y) Ay Az

so that

(2.11) P"(y) <= C2, where C2 max Igy(t, Y)I,

whereyeSo(ly-yo =<r <R).
(2Thus by Theorem since h C2C e < 1/2 for e sufficiently small, (2.1)

has a solution y* in Y Yoll _-< r, r >__ ro such that

2CICeY* Yo --< ro + (1 2C2C1C2g,) 1/2 O(g,).

It is unique in the open ball y Yoll < rl, where

+ (1 2C2C1C2g,) 1/2

C2C
Remarks. (a) Newton’s method is not only an existence and uniqueness proof

for the Cauchy problem (2.1), but also an effective method for obtaining an ap-
proximation to this solution.

(b) Unlike the usual expansion procedure our method gives both explicit
bounds for the difference between the exact solution and the initial guess and
rates of convergence of the basic and modified processes; that is, IlY* Yll _-< ro,
where ro can be obtained explicitly, and the rate of convergence of the basic
process is given by the inequality

(2h)2"
Y* y, =< 2--/,
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where y,, is the nth iterate, and of the modified process by

lY* Y, <= (1 v/1 2h)"+1 O(e,,+l).
K’

(c) Since ]y*(t, e) Yol O(e), (2.4)implies that y* is within O(e) of Yo and
e(dy*)/(dt) is within O(e) of e(dyo)/(dt) pointwise in [0, To].

(d) It should be noted that the above method can be applied to equations
to which the asymptotic expansion procedures like that of Vasileva [12] do not
apply, for example, ey’= -(2 + e-1/’)y with y(0)= 1. Since e -1/’ cannot be
represented by a Taylor series about 0, we cannot use the expansion procedure.
However,

yo(t, ) e -(2 +e-,/t), e- 1/, 0 for 0.

(e) One can obtain an approximate solution to within O(e) for the system

dx
f(t, x, y), x(O) x,

dt

dy yoe- g(t, x, y), y(0)

Let yo(t*, x*, ) solve dy/dz g(t*, x*, y), y(0) yO, z t/e. We then solve

dx
f(t, x, yo(t, x, z)), x(O) x.

dt

Since the exact solution y satisfies y(t, x, ) yo(t, x, ) + O(e), we have

dx
dt f(t, x, y) f(t, x, Yo) + O(e), x(O) x,

and x can be determined to within O(e).
(f) The above method is closely related to the technique of developing an

inner expansion near the boundary layer in the stretched variable tie. Alter-
nately, to a lesser extent, it combines ideas of two variable expansions (cf. Cole
ES).

3. Boundary value problems.
3.1. Preliminary results. Consider the two-point quasi-linear boundary

value problem

e,y" + f(x, y)y’ + (x, y) 0,
(3.1)

y(0, e) A, y(1, e) B

for x 6 [0, 1], e small and positive and prescribed constants A and B.
Assume the following conditions hold"
(a) The terminal value problem

(3.2) f(x, u)u’ + ,(x, u) O, u(1) S

has a solution Uo(X) for 0 =< x such that for some K > 0, f(x, Uo(X)) >= K
onO<x < 1.
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(b) f(0, c) >= K, where K > 0 for all c between A and Uo(0).
(c) The functions f(x, y) and ,(x, y) are each infinitely differentiable in both

the domains

and

{(x,.y)’x 0, y between A and Uo(X)},

{(x, y)’0 x <- 1, y Uo(X)}.
Under the above hypotheses O’Malley [10] obtains an asymptotic solution

to the boundary value problem (3.1). First, an asymptotic solution u(x, e) of the
terminal value problem

(3.3) eu" + f(x, u)u’ + ,(x, u)= 0, u(1) B

of the form

(3.4) u(x, ) u,(x)e’
k=O

is obtained by formally substituting (3.4) into (3.3) and equating coefficients of
like powers of e to obtain a system of linear differential equations which are solved
successively for the uk. The solution y(x, ) of (3.1) and its derivatives differ from
u(x,O and its derivatives, respectively, by convergent power series that are
asymptotically zero uniformly on any subinterval 0 < d __< x _<_ (Wasow [14]).

To obtain an asymptotic solution of (3.1) which is uniformly valid in 0 _< x
=< 1, O’Malley introduces the boundary layer correction

w(x, ) y(x, ) u(x, ),

which satisfies a boundary value problem of the form

(3.6)
ew" + f(x, w)w’ + g(x, w)w O,

w(0, e)= dke=d(O,
k=O

w(,e) 0,

where
f(x, w) f(x, w + u),

(3.7) g(x, w)w If(x, w + u) f(x, u)]u’ + ,(x, w + u) ,(x, u),

w(O, ) A u(O, e).

Let z be the stretched variable r x/e. Then the boundary value problem (3.6)
becomes

(3.8)

dw

dr
f(er, w)v g0;’c, w)w,dr
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with w(0) d(e), w() v() 0, r e [0, ). We set

w(l Y w(l,
(3.9)

k-O

v(l Y (I,
k=-I

so that

f(e, w) ekfk(Wo, W1,’’’, Wk ),

(3.10)
k=O

g(, w) g(Wo, w,..., w;).
K=O

Thus by formally equating coefficients in (3.8), we have

dwo
U_I

(3.11)
dr-1
dr

f(0, Wo)V- 1,

and fork>= 1,

(3.12)

dwk

k k-1

Z fml)k -m-1 nt- 2 gmWk-m-1
m--O m--O

Equations (3.11) imply that

v_(r) v_(0) exp f(O, wo(s ds,

(3.13)

Wo(Z) -v- 1(0) exp f(O, Wo(S)) ds dz.

The Wk, l)k_ 1’S for k >= 1, satisfy linear differential equations.
THEOREM 3.1. Let y(x, e) satisfy the boundary value problem

ey" + f(x, y)y’ + ,(x, y) O,

y(O, e) A, y(1, e) B.

Let wj(x/e) and uj(x) be the functions defined above, and for each integer N >= O,
set

N

y’ y dux) + 4x)wx/)),
j=O
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where (x) is an infinitely differentiable function of x such that

4)(x)=
0, 22=<x__< 1,

where 2 is a small positive number. Then for sufficiently small e, there is a unique
solution y(x, e) such that ly(x, e)- yN <__ Cev +1 throughout 0 <= x <__ for some
constant C independent of e.

3.2. Existence, uniqueness, and asymptotic correctness. In this section, we
prove Theorem 3.1 by Newton’s method. Without loss of generality we can take
A B 0 in the boundary value problem (3.1), since the function y(x, e) y(x, )

h(x), where h(x) A + (A B)x satisfies y" + F(x, )’ + G(x, y) 0, y(0, )
y(1, e) 0, where F(x, ) f(x, y) and G(x, ) (A B)f(x, y) + ,(x, y).
We thus consider the boundary value problem

(3.14)
ey" + f(x, y)y’ + ,(x, y) O,

y(O, e) y(, e) O.

O=<x=<l,

We consider the differential equation (3.14) as a functional equation in the space
C2[0, 1] with norm

(3.15) Yll- max IY"I + max lY’l + max lYl.
x[0,1 x[0,1 xe[0,1

Consider the operator P defined by

(3.16) z P(y) ey" + y(x, y)y’ + g,(x, y),

where z C[0, 1] and

(3.17) Ilzll max Iz(x)l.
x[0,1]

The operator P acts from the space C2[0, 1] of twice continuously differentiable
functions on [0, 1] satisfying the homogeneous boundary conditions y(0)= y(1)

0, into the space C[0, 1] of continuous functions on [0, 1].
As our initial guess, we choose

(3.18) ylV u + ck(x)wl,
where

N N= y u(x), w= Z wx/),
j=0 =0

and q(x) is the function defined in Theorem 3.1.
LEMMA 3.1. e(WU) + f(x, WN)(WU) + g(x, Wu)W O(e) or by (3.7),

(w) + f(x, w + u)(w) + (f(x, w + u) f(x, u))u’ + ,(x, w + u)

,(x, u)= o()

for bounded .
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Proof. Let

From (3.12), we have

(3.19)

and

(3.20)
N2wN(T,)
dx2

On letting

N

l)N 2 Jl)J I(X/)"
j=O

dx

g,2
g’k fmUk-m -It- gmWk-m

k=0 0 m=0
k>0

N

fN(,) 2 F’JfJ(WO’ W I’’’’’ Wj; T),
j=0

N

gN(,) 2 g’JgJ(WO W I’ Wj; T,),
j=0

equation (3.20) becomes

d2wN("C)
dx2

where

2 (fu(z’)vU() + egU()wS(z) + O(es+ 1)),

g(e,, wu) gu(,)= O(eU+ ),

f(ez, ws) fs(z) O(es+ 1)

for >_ 0. Thus substituting ws into the differential equation (3.6), we have

(3.21)

e(wS) + f(x, wS)(wS) + g(x, wS)ws

_(fSvS + egSwS + O@S+ 1))+ (fs + O(eS+ 1))__

+ (gs + O(F,N+I))wN

O(e)
for bounded z.

Remark. Outside the boundary layer, Lemma 3.1 is also valid since the wj
and vj 0 exponentially as

LEMMA 3.2.

(3.22) p(yS) o(eS).

Proof. By construction of the uj(x) and the wj(x/e), we have u us + O(es + 1),
U’ (uN) q- O(e,N+ 1), U" (uN) + O(e,N+ 1) and (wS) O(1/e). Substituting these
relationships into the result of Lemma 3.1, recalling (3.3), (3.4) and the definition
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ofthe function qb(x) and using the fact thatf(x, y) and g,(x, y) are sufficiently smooth,
we obtain our result.

We now consider P’(yU). We first note that since A B 0, we have uj(1) 0
and wj(0)+ uj(0)= 0 for j > 0 by (3.3) and (3.7). Furthermore, 4(0)= and
(1) 0. Thus, y(0, e) u(0, e) + tk(0)w(0, e) 0 and y(1, e) u(1, e) + b(1)
w(1/e, e) 0. Setting y y + Ay, we have

p’(y) Ay (Ay)" + f(x, y)(Ay)’ + (fr(x, y)(yV), + ,r(x, yV))Ay (x),

(3.23) Ay(0) Ay(1) 0.

Let k(x) (e(u) + dpv(r) + eqb’w)fr(x, y) + e,r(x, y). Then by (3.19), the
boundary value problem (3.23) becomes

e(Ay)" + f(x, y)(Ay)’ -(1/e)(k(x)(Ay) e(x)),
(3.24)

Ay(0) Ay(1) 0.

LtMM, 3.3. If 2(X) is bounded, for all sufficiently small values of e the linear
boundary value problem (3.24) has a unique bounded solution Ay such that (Ay)’

o(/).
Proof. (O’Malley 10], Cochran [3]).

Since

(3.25). Ay EP’(yN)] I(X),
we have from (3.15), (3.24) and Lemma 3.3,

(3.26) [[p,(yU)-l[[ O(1/e).

We next consider P"(y). From (3.16), we have

P"(y) AyAy (y’fr(x, y) + ,,r(x, y)) Ay Ay + f(x, y)(Ay Ay’ + Ay’ Ay)

O(1/e)(max IAYl + max IAy’l)(max IAYl + max lay’ ),
SO

(3.27) IIP"(y)II O(1/e).

Using the notation of Theorem 1.1 and (3.22), (3.26) and (3.27), we have

h O(gN-3) < 1/2
for N > 3 and e sufficiently small,

r0 O(e- ),

/’1 0(/32)
We note that (3.27) is valid in the open ball IIY YVll < r. Thus by Theorem 1.1,
the boundary value problem (3.14) has a solution y(x, e) which is unique in the
region

(3.28) g {y: IIY- yNll O(e2)},
and

(3.29) Ily(x, e)- YNI O(N- x) for N > 3.
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We now wish to show that [y- yN[ O(eN+ 1). Instead of y we can take
yU+ as our initial guess. We then obtain, as above,

Ily(x, e) ym m + ly/+ O(F’N),
but

so that

(3.30) Ily(x,e)- yll-- O(eN)
Repeating the argument, we obtain

Ily(x, ) yll O(+ 1),
and by (3.15) we have

max Icy" (Y)"I + max [y’ (y)’[ + max [y y[ O(N+I)

so that

leY" e(Y)"l-- O(ere+ 1),

lY’ (Y)’I O(e+ ),

lY- YNI O(N+I)

for N > 0. Thus we have not only shown that y(x, e) converges to yU for all N => 0,
but also that y’ and ey" converge to (yN)’ and e(yU)’’, respectively, for all N >_- 0.

Remarks. (a) In the above discussion we have not only proven Theorem 3.1,
but also established a uniqueness result.

(b) For a similar result with slightly different hypotheses, see Coddington and
Levinson [4].

4. The Dirichlet problem for EZy" = f(x, y).
4.1. Introduction. Brig [2] shows that when f(x, y) and.,(x, y) are continuous

in a certain region D, 0 =< x =< 1, lYl < M (where M is a constant depending on
the form off(x, y)) and fr > 0 in D, then there exists a solution y(x, e) to the boun-
dary value problem
(4.1) eZy,, f(x, y), y(0) y(1) 0

for e sufficiently small, and that

(4.2) lim y(x, e)= ok(x), 0 < x < 1,
e--0

where b(x) lies in the region D and

(4.3) f(x, 49(x)) O.

Vasil’eva and Tupciev [13] obtained a uniformly valid asymptotic solution
to (4.1). We note that as ---, 0, nonuniform convergence occurs, in general, at
both endpoints (both boundary conditions are lost in the limit).
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The aim of this section is to prove existence and to obtain an asymptotic
solution to

(4.4) e2y’’ f(x, y), y(0) A, y(1) B

under the hypotheses"
(i) The reduced problem f(x, y)= 0 has a solution b(x) for 0 =< x =<

such that f,(x, ok(x)) >= L2 throughout 0 =< x =< for some L > 0,

(ii)
fy(0, y) >= L2 > 0 for all y

f(1,p)>=L2 >0 for all
(iii) f(x, y) is infinitely differentiable in the following three domains"

{(x, y)’0 _<_ x _<_ 1, y- 4(x)},
{(x, y)’x 0, for all y},

{(x,y)’x 1, for all y}.

Note that hypothesis (i) implies that the reduced problem f(x, y) 0 has no other
solution near y 4(x), that is, the root b(x) is "isolated". If there is another
function O(x) satisfying the above hypotheses then there exists a corresponding
solution y(x, e,) such that y(x,) O(x), 0 < x < 1 as e --+ 0. Moreover, y(x, ) is
unique in the sense that no other solution exists near b(x). Our approach is slightly
different from that of Vasil’eva and Tupciev, and our expansion procedure is
considerably simpler. As a by-product, we will also obtain an algorithm for the
numerical solution of (4.4).

To gain some insight into the problem, let us examine a simple illustrative
example which can be explicitly integrated, namely

(4.5) g2y,, y, y(0) 1, y(1) 2.

The exact solution

y(x, e) (2 e- /) exp ((x 1)/e) + (1 2 e- /) exp (- x/e)/(1 e- 2/)

satisfies

y(x, e) 2 exp ((x 1)/e) + exp (-x/e) + O(exp (- l/e,)) 0

as e 0 for 0 < k < x < k2 < 1. Thus convergence is nonuniform at both end-
points, and y(x, e) --+ qS(x) 0 in the interior.

4.2. The linear problem. Consider the linear problem

(4.6) e2y,, h2(x)y, y(0) A, y(1)= B,

with h(x) > 0 and infinitely differentiable.
We study the linear problem (4.6) in order to obtain the Green’s function

needed for the nonlinear problem. The method is similar to the WKB approxima-
tion (see, for example, Erd61yi [7], or Bellman [1]). Note that 4(x) 0 for this
problem.
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Generalizing from the constant coefficient case, we assume the solution
y(x, ) to be of the form

(4.7) y(x e) A(x e) exp
1

h(s) ds + B(x e) exp
1

h(s) ds
"

where

A(x, e) a(x)e,,
(4.8)

=o

B(x, e) b(x)e.
’=0

Substituting (4.7) into (4.6), we get

exp h(s)ds (eA" 2ehA’ Aeh’)

+ exp - h(s) ds (eB" + 2ehB’ + eBh’)= 0.

Setting the brackets separately to zero and equating coecients of like powers
of e, we obtain

2ha; + h’a a_, r O, a_(x) O,
(4.9)

2hb; + h’b -b;’_ r O, b_ (x) O.

Since y(0) A(0, e) and y(1) B(1, e),

ao(0) y(0) A, bo(1) y(1) B,
(4.10)

a.(0) b.(1)= 0 for r 1.

Thus the a’s and b’s are uniquely determined by (4.9) and (4.10), and the complete
expansion (4.7)can be found.

To establish the asymptotic validity of (4.7), we need the following.
THEOREM 4.1. Let y(x, e) satisfy the boundary value problem

(4.11) e2y’’- h2(x)y O, y(O)= A, y(1)= B, with h(x) > O,

and let a(x) and b(x) be the functions defined above. For each integer N 0, let

y(x, ) a(x) exp h(s) ds
r=0

(4.12) + b(x)e exp h(s)ds
r=0

+ + R(x, ).

Then R(x, ) 0(1) for all x e [0, 1].
Proof. Substituting (4.12) into (4.11) and recalling (4.9), we get

(4.)
e h e(aC + bI,
(0 J 0, ( 0,
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where C exp (-(l/e) [. h(s) ds) and D exp(- (l/e) . h(s) ds). Boundedness of
RN now follows from the maximum principle (Dorr, Patter, and Shampine [6]).
Existence follows by solving the corresponding integral equation by iterative
methods (cf. O’Malley [10]).

4.3. Construction of an asymptotic solution. We now seek a solution to the
nonlinear problem (4.4) of the form

(4.14) y(x, e) u(x, e) + O(x)v(r, e) + q)(x)w(a, e), O, q e C

where

q(x) { 0, 0_<x=<7,

1, 27=<x_<1,_

1, 0__<x=< 1-26,

O, 1-6<=x<l,
O(x) {

for small positive numbers 7 and , r x/E, a (1 x)/e and v (and w) ---, 0 as
as r (and a)--, oe. Thus in the open interval (0, 1), y(x, e) will be asymptotically
equal to the outer solution u(x, e) which must satisfy

(4.15) e2u f(x, u).

4.3.1. The outer solution. We seek a formal solution to (4.15) in the form

(4.16) u(x,e)-- Z Ui(X)ei"
i=0

Substituting (4.16) in (4.15) and expanding f(x, u) about (x, Uo) we have

U2 "At- f(x, UO) + f.(x, Uo)(U,e + u2e2 -+- ")

+ 1/2Lu(X, Uo)(Ul e + U2e2 + )2 +
Thus, Uo solves the reduced problem f(x, Uo) 0, and u satisfies u lf,(x, Uo) O.
Since f, > 0, we have u 0. Likewise, uzf,,(x, Uo) u’6, which implies that u2

u’6/f,(x, Uo). In general, Uzk+ (x)= 0, k 0, 1, that is, u(x, e) is a power
series in e2 (as could be expected). The Uzk’S can be successively determined in a
straightforward manner.

We can thus determine the outer expansion (4.16) to any order.

4.3.2. The boundary layer correction at x ---- 0. Since near x 0 w is negligible
and 1, we can locally consider the solution to (4.4) to be of the form

(4.17) y(x, ) u(x, ) + v(r, ).

Substituting (4.17) into (4.4), we obtain

(4.18)

f(x, u + v) f(x, u) + -(f(x, u + v) f(x, u))v,

v(0, e) A u(0, V(Xo, e) 0 for any fixed Xo > 0.
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Thus

(4.19)
v G(ez, v)v,

v(0, ) A u(0, e), v(o, e) 0,

where G(x, v) (1/v)(f(x, u + v) f(x, u)). We seek a solution of the form

(4.20) v(r, ) vj(r)d,
j=0

which is negligible at z oe. Using Taylor series, we have

(4.21) G(ez, v) Gk(Vo, Vl, vk; r)e,
k=0

where, for example,

Go(vo, r) G(O, Vo)= Vo)(f(O, uo(O) + Vo(r)) f(O, uo(O))) >_- L > O.

Substituting (4.20), (4.21) into (4.19) and equating coefficients of like powers of e,
we obtain

(4.22)
Vo** Govo, Vo(0)=do, Vo(O)=0,

vr Govr+ G,,v_,,, vr(O dr, vr() O

for j >= 1, where do A Uo(0) and d -ur(0).
LEMMA 4.1. Let (x, e) solve the boundary value problem

g2 ,, g(x, ),

g(x, ) >= L2 > 0 throughout [0, 1],

(o) K > o,
(Xo) O, Xo is any fixed positive value. Then (x, e)= O(e-/), that is, (x, e)
decays exponentially to zero as e --. 0 away from x O.

Proof. Without loss of generality, we take Xo and consider the linear
boundary value problem

F,2Zt’-- L2z, z(O) K, z(1) 0.

Then,

(4.23) z(x,.e) K e-LX/(1 eL(- 1)/)/(1 e -2L/) O(e-//),

and w - z satisfies

t;2W g(x, )W (g(x, ) LZ)z, w(0) w()= 0.

Since K > 0, (4.23) implies that z __> 0. Then by the maximum principle, w =< 0
for x e [0, 1]. Moreover, >= 0 for x e [0, 1]. Thus z(x, )>= (x, ) >= 0 on [0, 1]
and the lemma follows.
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COROLLARY 4.1. Let (x, ) solve the boundary value problem

g(X, ) L2 > 0 throughout [0, 1],

(o) o,
ff;(Xo) K > 0 for any fixed positive Xo. Then ff;(x, )= O(e-L/(-x)), that is,
(x, e) decays exponentially to zero as e - 0 for x < xo

Proof. Make the change of variable Xo x and apply Lemma 4.1.
Remark. The above results are also valid if K < 0.
Returning to the boundary value problems (4.22), we see that Lemma 4.1

implies that Vo(Z) decays exponentially away from x 0 as . Moreover,
the vj for all j decay exponentially. For suppose the v; decay exponentially for
j < n. Then by (4.22), v2 Gov, + h(z), where h(z) O(e-) as z - for some
c > 0. We now consider z"(z)= L2z(z) + h(z), Go -> L2 > 0, and use a com-
parison analysis as in Lemma 4.1. We can then show that v,(z) O(e-), since
z(r) O(e-) as .

Thus to determine v(z, e) o vJ(z)e;, we must solve a nonlinear problem
(in general) on the infinite interval >= 0 to obtain Vo(Z). The vj(z) for j > 0 are
then determined successively from the linear problems given by (4.22) for j > 0.

4.3.3. The boundary layer correction at x 1. Since v(z, ) decays exponen-
tially away from x 0 and q9 near x 1, we see that y(x, e) u(x,
near x 1. Proceeding as we did to obtain v(z, e), we require that w(r, e) satisfies

w H(x, w)w, where H(x, w) > L2 > 0 throughout [0,
(4.24)

w(O, e) B u(1, e) Ci ei, W(O0, e) O.
i=0

Expanding H(1 at, w) in a Taylor series about (1, Wo), we have

Wo-Howo, Wo(0)=Co, Wo()=0,

wj Howo + Hmwj_,,, wj(O) cj, wj() 0
m=l

in the obvious notation. Here, the wj() all decay exponentially as - .It should be noted that, without loss of generality, we can take A B 0
in the boundary value problem (4.4). This is so because the function y(x, e) y(x,
e)- h(x), where h(x)= A + (A- B)x, satisfies the boundary value problem
eEl;" F(x, y), with y(O, e) (1, e) O, where F(x, y) f(x, y) and Fy,(x,
--f,(x, y). We thus consider the boundary value problem with homogeneous
boundary conditions

e2y f(x, y), y(O) y(1) O.

4.4. Existence, uniqueness, and asymptotic validity. To prove the asymptotic
correctness of our formal expansion, we need only show the following.
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THEOREM 4.2. Consider the nonlinear two-point boundary value problem
,2y,,

(4.25) f(x, y), 0 < x < 1,

y(O, :) O, y(1, e) O,
with fy > 0 along (x, Uo(X)) for all x [0, 1] and along (0, y) and (1, ) for all y and ,
and where f(x, Uo(X)) O. Furthermore, assume f(x, y) is infinitely differentiable in
the regions indicated. Let vj(r), wj(a), uj(x), q)(x) and k(x) be the functions defined
above ( x/e, a (1 x)/e). For each integer N >= O, set

N

(4.26) yN eJ(uj(x) + q)(x)wj(r) + (x)vj(r)).
j=O

Then for any N >= O, there is a solution y(x, ) to the boundary value problem (4.25)
and constant C independent of e such that for e sufficiently small

ly(x, e) yNl <- CeU +1 for O <= x <= 1.

Proof. Consider the operator P(y) defined by

P(y) e2 dZY f(x y)
dx2

P(y) acts from the space C2[0, 1 of twice continuously differentiable functions on
[0, 1] satisfying the homogeneous boundary conditions into the space C0, 1] of
continuous functions on [0, 1].

On C2[0, 1] we take

(4.27) ]lyll max I2 dZy
0,]1

+ t0,]max lY[.

On C[0, 1] we use

(4.28) Ig(x)l max Ig(x)l.
x[0,1]

We will use Newton’s method to prove the theorem. To this end, consider the
linearized boundary value problem

dZAy
(4.29) p,(yN) Ay 2 f(x yU) Ay h(x),

dx2

where Ay(0) 0, Ay(1) 0, h(x) C[0, 1]. We assume that P is defined in some
open set S([ y- YUll < R) and a continuous second derivative in S0(lly- yNll
=< r < R), and seek an approximation to [I(P’(yN))-11. By Theorem 4.1, we know
that the homogeneous boundary value problem corresponding to (4.29) has only
the asymptotically zero solution. By the same theorem, recalling (4.9), the approxi-
mate general solution to the homogeneous equation has the form

(4.30)

Ay(x) C
exp x//fy(s, yl) ds

+ o()

exp ,V/fr(s, yS) ds

+ o()
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The Green’s function for the operator

(4.31) eZ(d2 Ay)/(dx2) fy(x, yU) Ay,

under the conditions Ay(0) Ay(1) 0, then has the form

e))F(t)H(x) + O(e) for __< x =< 1,
(4.32) G(x, t)

(liD(x, e))F(x)H(t) + O(e) for 0 <_ x _<_ t,

where

D(x, e) 2e exp (2/e) g(s) ds (f(x, y(x))/(f(t, y(t))/4),

F(r) exp (l/e) g(s) ds exp (- 1/) g(s) ds)

H(r)=exp (-l/e) g(s) ds 1-exp (-2/e) g(s) ds

(sI (L(s, y(sI/.

Thus a solution to the nonhomogeneous problem (4.29) is

(4.33) y(x) G(x, Oh(t) dr,

where G(x, t) is approximately zero for x away from and G(x, t) O(1/e) for x
sufficiently close to t.

It should be noted that maxxto,l ]Ay(x)l < C maxxtO, l ]h(x)l, where C is a
finite constant, even though max [G(x,t)l O(1/e). This is because when the
integration of G(x, t) is performed, the factor e in the denominator cancels with
the e coming from the exponent. From the differential equation, then, we have
max,to,ll 12(d2 Ay/dx2)] <= K maxxto,11 [h(x)l for some finite constant K. Thus
[IAy[I =< Klllhll, and

(4.34) (p,(yrV))- K1 O(1).

We next obtain estimates for p(yN)= e,Z(d2yN/dx2)_ f(x, yV). Since away
from x 1, the wj decay exponentially, we have

N N

y= u(x) + . O(x)v()= u +
j=O j=O

By construction of the u and vj, we see that P(yU) O(eu+ 1) for x away from 1.
Similarly, this holds away from x 0. We thus have

(4.35) [p(yN)I <= K2eN+ for all x e [0, 1],

where K2 is a constant independent of e. Furthermore,

P"(y) Ay Ay fr,(x, y) Ay Ay,
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which implies that

IP"(y) < K3, where K3 max Ifrr(x, Y)I,
(4.36)

R

R- {(x,y)10_<_x__< 1, y-yN I_<r}.
Referring to Theorem 1.1 on Newton’s method, we see that (4.34), (4.35), and
(4.36) imply that h KiK3K2eN+ < 1/2 for all integers N >= 0 and e sufficiently
small. Hence, the boundary value problem (4.25) has a solution y(x, ), to which the
basic and modified Newton methods converge, such that

y(x, e)- y <__ ro C + ,
where C is a constant independent of e, and by (4.27), the theorem follows.

Remarks. (a) If we assume that (4.36) holds in the open ball

lY yU < r 1, where rl (1 + x//1 2h)/(K1K3),

then the solution y(x, e) is unique in {(x, y)’0 =< x _<_ 1, IIY YU < r1}, that is,
it is the unique solution near qS(x) (= Uo(X)). If f(x, y)= 0 has more than one
solution, then in a sufficiently small neighborhood of each one, a unique solution
to (4.25) exists.

(b) By taking yO Uo + O(X)Vo + qg(X)Wo as our initial approximation, the
proof shows that Newton’s method will converge to the solution, thus giving an
algorithm for numerical solution.

(c) If f(x, y) is less differentiable (we had assumed f(x, y) to be infinitely
differentiable in the relevant domains), the expression (4.36) may be obtained
through only a finite number of terms. In any case, as long as f(x, y), fy(x, y),
and fyy(x, y) are continuous, we have that y(x, e) -, Uo(X) as ---, 0 for x (0, 1),
where f(x, Uo) O.

(d) Lyubcenko [9] obtained a Green’s function G(x, t) for the operator (4.31),
and claimed that

max IG(x, t)l O(e).
O<_x,t<_

That this is incorrect can be seen by considering the linear boundary value problem

eZz,,_z= 1, z(0)=z(1)-0,

where z j’o G(x, t)dr. But z-,- as -, 0, for x e (0, 1) implies that G(x, t)
cannot be O(e) everywhere.

(e) No additional difficulties arise if the f, A, and B of (4.4) are represented
by asymptotic power series expansions valid as e - 0.
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COMPLETELY CONVEX AND POSITIVE HARMONIC FUNCTIONS*

DALE H. MUGLER"

Abstract. A completely convex function is a positive real-valued function on a real interval whose
even derivatives alternate in sign. The author shows that ever.y completely convex function is the re-
striction to the real line of a positive harmonic function in a vertical strip which is completely convex in
x for each y. An integral representation for certain of these extensions is presented, and its relation to the
integral representation of a completely convex function found by R. P. Boas is discussed. Finally, con-
formal transformations are used to derive analogous differentiability conditions providing similar
extensions for functions defined on other curves in the plane.

1. Introduction. A completely convex function is an infinitely differentiable
function f(x) on a real interval (a, b) which satisfies (- 1)kft2k)(x) >= 0 for k > 0 in
that interval. Any completely convex function on the interval (0, 1) is the restric-
tion of an entire function of exponential type n [4, pp. 177-179]. A minimal com-
pletely convex function on (0, 1) is a completely convex function such that there is
no positive constant c such that f(x)- c sin nx is completely convex. Every
completely convex function on (0, 1) is of the form f(x) + c sin nx, where f(x)
is a minimal completely convex function and c _> 0.

The study of infinitely differentiable functions with derivatives having certain
fixed signs in an interval began around 1914. At that time, S. Bernstein proved that
if f(k)(x) 0 for k _>_ 0 and for all x on [a, b], then f is the restriction of a function
which is analytic in a disk centered at a and of radius b a, [2, p. 1086]. Iff(x) was
defined on (a, b) and had all its derivatives nonnegative, Bernstein called it an
"absolutely monotonic" function. Similarly, a positive function f(x) on an
interval whose successive derivatives alternate in sign was called "completely
monotonic". By analogy, the name "completely convex function" came to be
applied to functions as defined above. A summary of work concerning these
relations and their generalizations is given in [2].

R. P. Boas [1] used Lidstone series to show that every minimal completely
convex function on [0, 1] has the integral representation

f(x) 1/2 sin nx If(1 + it) + f(1 it)] [cosh nt + cos nx]- dt

(1

+ [f(iO + f(-it)] [cosh t cos x]- dt

Further, he showed that a function is completely convex on [0, 1] if and only if it
has the integral representation

f(x) c sin x + sin nx O(t) [cosh t + cos x]- dt

+ O(t)[cosh nt cos nx]- dt

* Received by the editors May 3, 1974, and in revised form August 8, 1974.

" Department of Mathematics, Northwestern University, Evanston, Illinois. Now at Department
of Mathematics, Syracuse University, New York 13210.
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where c >= 0, and q and are even entire functions of exponential type n with
nonnegative Maclaurin coefficients.

In this paper, we show that a completely convex function on (a, b) is the
restriction of a positive harmonic function in the strip a < Re z < b to the interval
(a, b). We obtain conditions on the positive harmonic function for its restriction
to the real line to be completely convex. We relate the integral representations
of positive harmonic functions in the strip to those of completely convex functions.
Finally, we obtain analogous differentiability conditions which make functions
defined on other curves in the plane have similar extensions.

Since there is no loss in generality, we consider functions which are completely
convex on the interval (0, 1). I shall refer to the region in the z-plane defined by
0 < Re z < as the strip, and its closure in the plane as the closed strip. The
letter D will be used for the standard differentiation operator, and (Cx) and (cy) for
the partial differential operators O/Ox and O/cy, respectively.

2. The extension theory.
LEMMA 1. Let f(z) u(z) + iv(z) be entire. Then

and

(a) (cy)Z"u(x, y) (- 1)"(c,,)2"u(x, y)

(b) (Cqy)2n- It@C, y) (-- 1)n(Cqx)2n- iv(x, y) for n >= 1.

This is easily deduced from the Cauchy-Riemann equations by induction on n.
THEOREM 1. Let f(x) be an infinitely differentiable real-valued function on

(0, 1). Then f(x) is completely convex on (0, 1)<=> f(x) u(x, O) where u(x, y) is a

positive harmonic function in the strip, and

(- 1)(c,,)2u(x, y) >__ 0

there, k>__ O.
Proof. Suppose first that f(x) is completely convex on (0, 1). Then, f(x) is

the restriction of the entire function f(z) to 0 < x < 1. Thus f(z) u(z) + iv(z),
and u(x, O) f(x) where u(x, y) is harmonic in the plane. All the partial derivatives
of u(x, y) are continuous in the closed strip, and u(x, y) is the real part of an entire
function whose Taylor series converges everywhere, so we may apply Taylor’s
theorem"

U(Xo + h, Yo + k)= ,o-.(hcx + kcq)"U(Xo, Yo).

Let0<xo < 1, yo=0, h=0andk= t. Then

U(Xo, t) tC3y)"U(Xo, 0).

By Lemma 1,

U(Xo, t) Yo= (- 1)t" (x),U(Xo O)
(2n + 1) (cx)+. V(Xo, O)



HARMONIC FUNCTIONS 683

Since f(z) is real on the real axis, V(Xo, 0) 0 for 0 < Xo < 1. Moreover, (x)2n+ lV
(x0,0) 0 there for n _> 0. Thus

U(Xo, t) o (-- 1)nt2n

(2n)
(c3,)2"U(Xo, O)

(- 1)"t"--,,o (2n)D2nf(x)"
Let (- 1)"D"f(xo) an. Then azn _>_ 0 for every n, since f(x) is completely convex.
Thus

U(Xo, t)
(2n) aznt2"

where a2n >_- 0 for every n. Therefore, U(Xo, t) >= 0 for all t, and 0 < Xo < i.e.,
u(x, y) is a positive harmonic function in the strip.

Now, the second partial derivative u,, (Ox)Zu is the real part of the entire
function D2f(z). We may again, then, apply Taylor’s theorem in two variables"

Uxx(Xo, t) , ,)"Ux(Xo, 0).

Since the partials of u are continuous, (Or)2"-u (x)Z(y)Zn-lu for n 1,
and by Lemma 1, (Or)z"-U(Xo, 0)= (-1)n(Ox)Z%(Xo, 0)= 0 for n 1, since the
harmonic conjugate of u vanishes on the real axis. Thus

t2n
u(Xo, t)

,=o
(Or)Z"u(x’ 0)(2n)..

But

(C3y)2nUx (63x)2(fy)2nu (63x)2((-- 1)n(C3x)2nu) (-- 1)n(Ox)2n + 2U,

so that
2n

Uxx(XO, t) (-- 1)n(Ox)2n+2u(XO, 0)(2n)IO

t2n
(- 1)nD2"+ 2f(xo)(2n)---5?1"-0

Since f(x) is completely convex, (- 1)"+ 1DZn+ 2f(xo) 0 for every n, so

(-- 1)nD2n+zf(xo) --azn+2 --<-- 0 for every n.

Thus

a2n + 2 t2nux(Xo, t) "(2n)! __< 0

for all t, 0 < Xo < that is, -ux(x, y)>= 0 in the strip.
One may complete the proof by iteration of this procedure for the even partial

derivatives of u with respect to x. Since the converse is clear, the theorem is proved.
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3. The integral representation.
DEFINITION. A harmonic function u(x, y) in the strip which satisfies (- 1)k(tx)2k

U(X, y) >= 0 there for k >__ 0, will be called a completely convex harmonic function.
D. V. Widder [3] showed that any positive harmonic function in the strip

has the representation

u(x, y) (A ey + B e-) sin nx + P(x, y) d(t)

3
+ P(1 x, t- y) dfl(t),

where A, B >= 0, 0(t) and fl(t) are nondecreasing, the integrals converge in the open
strip and P(x, y) sin (nx)[2(cosh.ny cos nx)]- 1.

Since the completely convex harmonic functions in the strip are positive
there, they must have this form. Note also that a positive harmonic function which
vanishes on the boundary of the strip is a completely convex harmonic function,
since such a function has the representation (3) with (t) and fl(t) constant [3.

A particular completely convex function may have many completely convex
harmonic extensions. For example, sin (nx) has the extensions u(x, y)= (A e=y

+ B e -=y) sin nx, where A + B l, and A and B are nonnegative. However, one
can show that a completely convex function f(x) on (0, 1) has a unique com-
pletely convex harmonic extension u(x, y) such that (O)u(x, y)= 0 if y 0.
We will exhibit the precise integral representation for this function.

Sufficient conditions [3] have been established for a harmonic function in
the strip to be represented by its Poisson integral. Further, an application of
Green’s formula to a suitably chosen contour in the strip, and careful evaluation of
the appropriate integrals as that contour approaches the boundary of the strip
shows that the partial derivative of the function with respect to x also has this
representation, i.e., the following lemma holds.

LEMMA 2. Let u(x, y) be a harmonic function in the closed strip which is repre-
sented by its Poisson integral there, and such that u(0, t) and u(1, t) are in Ll(e -’ltl dt).
Then

(x)U(X, y) P(x, y)(cx)u(O, t) dt

(4)
+ P(1 x, y)(cx)u(1, t) dr.

Further, if u(O, t) (t) and u(1, t) q(t) are such that D"(t) and D"q(t) are in
Ll(e -ltl dr) for every n, then every partial derivative of u(x, y) with respect to x is
then represented by its Poisson integral.

PROPOSITION 3.1. Let f(x) be a minimal completely convex function on 0, 1.
If u(z) is the real part of the entire extension f(z) to f(x), then u(z) is represented by
its Poisson integral for the strip.

Proof. We first show that u(O, t) e Ll(e-l’l dt). We have

u(O, t) e -ltl dt (- 1)*(O,)2ku(0 0 e-ltl dt
k)!
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as in the proof of Theorem 1. This is bounded by

ko (2kj! I(ct)2ku(0’ 0)1 2 e -"1’1 dt.

By integration by parts,

SO

2k e -ltl dt 2z -(2/+ 1)(2k)!,

lu(0, t)l e -’l’l dt < 27r- 7t- 2tl(63r)2tu(0, 0)[

2zr-’ zc-2lDaf(O, 0)1,
k=O

and the last sum converges by [1, (5)]. A similar argument shows that u(1, t)e L
(e -’1’1 dt).

Theorem of [3] now shows that

F(x, y) P(x, y)u(0, t) dt + P(1 x, y)u(1, t) dt

is a harmonic function in the strip which equals u(x, y) on the boundary of the strip.
Corollaries 2.1 and 2.2 of [3] can then be used to show that F(x, y) is u(x, y), which
proves the proposition.

Finally, we have the following theorem.
THEOREM 2. Let u(x, y) be a harmonic function in the closed strip such that

(t?r)u(x, O) O, 0 < x < 1. Then u(x, y) is a completely convex harmonic function iff

(5)

u(x, y) C(e + e-) sin rex + P(x, y)O(t) dt

+ j P(1 x, y)q)(t) dt,

where C >= O, and O(t), q)(t) have thefollowing properties"
(i) They are even entire functions of exponential type
(ii) are real on the real line,

(iii) have nonnegative Maclaurin coefficients and
(iv) are in L l(e -1’1 dr).
Proof. If u(x, 0) is a minimal completely convex function, the condition

(c3y)u(x, 0)= 0 and Proposition 3.1 show that u(x, y) has form (5) with C 0.
If u(x, 0) is not a minimal completely convex function, then U(x, O)= u(x, O)
C sin rex is, for some C1 >= 0. Let C 1/2C1, and define

U(x, y) u(x, y) C(e’’ + e -’) sin nx.
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This function is harmonic in the closed strip, equals u(x, y) on the boundary and
satisfies (cy)U(x, 0) 0. It follows that u(x, y) has form (5) with C > 0.

Conversely, a function of the form (5) is harmonic and positive in the closed
strip. Lemma 2 implies that it is a completely convex harmonic function. Since
(cy)P(x, t- y) and (cy)P(1- x, t-y) are odd functions for y 0, the result
follows.

Note. The integral representation (5) is clearly the extension to the representa-
tion (2) of a completely convex function on [0, 1] found by R. P. Boas.

Finally, the kernel P(x, y) itself shows that the completely convex harmonic
functions are a strict subclass of the positive harmonic functions in the strip,
since (C3x)ZP(x, y) > 0 for y 0, 0 < x < 1.

4. Analogous differentiability conditions on other regions in the plane.
4.1. Analytic functions. Suppose q(z) is a conformal map from the strip

0 < Re z < onto some other domain. If f(z) is a function on the strip, define

or conversely,

Then,

h(w) h(cp(z)) f(z),

f(q)- l(w)) h(w).

df dh dw dh
d-- dw dz dw

qt(w)’

where ,(w) 1/(dz/dw) is a function of w. Further,

But

d2f__ d
dz2 dw

dw _,_2, d2h dh
z v twyWw + O(w)O’(W) dw.

[ d-l 2 [w{ dh}l w d2h
O(w) h(w) O(w) O(w)-w O(w)O’(w) + 02(W)dw2

so that

dz 2d2f [ d 2

O(w) h(w).

To show that this formula holds for higher order even derivatives, let

h,(w) O(w) h(w), g(z) h(w).

Differentiating g(z) twice with respect to z gives

dz
O(w) h,(w) O(w) h(w),

and repetition of this process shows that this formula holds for any even derivative.
If f(x) is completely convex with the entire extension f(z), the condition

(-1)f*)(x) 0 for 0 < x < has the analogue (-1)[O(w)(d/dw)]2h(w) 0
for w on the w-image of (0, 1) under O(z).
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The function h(w) satisfying this condition thus extends to a function which is
analytic except for those points which qg- l(w) maps to infinity.

For the special cases of the unit disc and the upper half-plane, computation
yields the following results.

PROPOSITION 4.1. If (-1)k[(1 + x2)(d/dx)]2kh(x) 0 for k >= 0 and -1 < x
< + 1, then h(x) has an extension to the plane which is analytic except for the points
+i.

PROPOSITION 4.2. If [w(d/dw)]2kh(w) >__ 0 for k >= 0 and w on the upper half of
the unit circle, then h(w) has an extension to the plane which is analytic except for
the origin.

Example. h(w)= in -lln(-iw), since h(ei)= 1- 0n-1 for 0< 0< n is
positive, and [w(d/dw)]Ekh(w) 0 for k >__ 1.

4.2. Harmonic functions. Suppose that u(w) is a real-valued function defined
on some curve in the w-plane, which is contained in the domain in the w-plane.
Also suppose that qg(z) w maps the strip conformally onto f in such a way that
the parameterization of the w-plane in either polar or Cartesian coordinates (v 1, v2)
makes these coordinates into functions of x and y, where z x + iN. If qg(z) maps
[0, 1] to the curve, then on the curve of definition u(vl, v2) f(x), 0 < x < 1.

Thus

df cgu Ov cgu c9v2
dx 63v X l)2 X

If cv 1/cx 0 for y O, then

If it is also the case that

(U /)2
OV2 X

tX2 =0 for y O,

then

or in general,

dx2k 63v22k C3Xl
for k >_ 1.

For the special cases of the unit disc, the upper half-plane, and a horizontal strip,
computation yields the following results.

PROPOSITION 4.3. Let u(x) be real-valued for < x < + 1, and suppose that

u(x) >= O,

-1 <x < +l, k>_0.
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Then there is a positive harmonic function u(x, y) in the unit disc such that u(x, O)
u(x).
PROPOSITION 4.4. Let u(w) be a real-aluedfunction defined on w ei, 0 < 0 < .

Further suppose that

c2ku(1, O)
(--1) --. >-0, k>=0, 0<0<.

Then there exists a positive harmonic function u(rei) in the upper half-plane which
is equal to the originalfunction on the upper half of the unit circle and which has the
property

(_ 1)k
O2ku(r, O)

(02k 0, k >= O, 0<0<n, r>0.

Example. Let u(1, 0) sin 0, 0 < 0 < n. Then u(r, 0) [(r2 + 1)/2r] sin 0
Re sin (-iln w) for w r ei is the required extension. Finally, we have the

following proposition.
PROPOSITION 4.5. Let u(w) be a real-valued function on w iy, < y < + 1,

and suppose that

(- 1)k
c2ku(0, y)

-yZr, >-- 0 for k >= 0 there.

Then u(w) extends to an entire function. Further, there is a harmonic function
U(x, y) in the horizontal strip 1 < y < + 1, < x < + , such that U(O, y)

u(O, y), and U(x, y) has the above differentiability property at every point in this
strip.
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UNIFORM BOUNDEDNESS IN A CLASS OF VOLTERRA
EQUATIONS*

KENNETH B. HANNSGENf

Abstract. Conditions are found under which solutions of the Volterra integral equation x’(t)
+ o aa(t s)x(s)ds k are bounded on {0 =< < }, uniformly in 2, when each a is nonnegative,
nonincreasing and convex in t.

The results generalize earlier work of the author which did not admit certain piecewise linear
kernels. The main proof uses a method of Shea and Wainger involving transforms of H functions.
Applications to equations in Hilbert space are indicated.

1. Introduction. Let ’ {a12 s A} be a set of functions, each satisfying

(1.1) a C(0, oe) ["1LI(0, 1),

a is nonnegative, nonincreasing, and convex on (0, o), and a(t) a(o).
Let xz(t; Xo, k) denote the solution of

(1.2) x’(O + a(t- s)x(s)ds k, x(O) xo,

>_ O, d/dt, and set u(t) x(t; 1, 0), w(t) x(t; 0, 1). Then x(t; Xo, k)
XoUz(t) + kwh(t) and uz w. In this paper we find conditions under which

(1.3) [w(t)[ =< K < , 0__< < , 2sA.

The proof of Theorem 2 of [7] shows that if (1.1) holds (a st’), then

(1.4) lux(01 =< ,,, 0 _<_ < o, 2 e A.

We show in 2 that (1.3) and (1.4) yield a representation theorem and results
on asymptotic behavior for the equation

(1.5) x(t) + A(t- s)x(s)ds tn +

in a separable Hilbert space f. Here,

A(t) Ax(t) dEx,

where A(t) o az(s)ds and {E} is the spectral family [14] co.rresponding to a
fixed self-adjoint linear operator L defined on a dense subspace @ of ovf. and q
are prescribed elements of 9.

THEOREI 1. Let a satisfy (1.1). Suppose there is a number T > 0 such that

(1.6) A(T) >= M-x > O.

* Received by the editors April 8, 1974, and in revised form July 24, 1974.
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Then there is a C < oo, depending only on T, such that

(1.7) Iwz(t)l-<_ C(M + 1), 0 =< <

Thus (1.3) holds ifM and T can be chosen the same for all ;t in A.
We shall prove Theorem in 3.
We shall write

t()
ia(c)

e t+ [a(t) a(oo)] dt

for the Fourier transform of a function a(t) satisfying (1.1).
Let Ao be the subset of A for which

(1.8) a(r) - it, r real, r : 0,

with a aa, and let A* A\Ao.
Then [5] 2 A* if and only if aa(0+) < oo and aa is piecewise linear with

changes of slope only at integer multiples of

(1.9) to(2) 2rt[aa(0 + )] -a/2.

Theorem generalizes Theorem 3 of [8], where we established (1.3) under
hypotheses implying that A Ao. When az(t) 2a(t), 2 >= 20 > 0, (1.3) is a con-
sequence of [9, Theorem 1]. For the more general case considered here, we use
methods and certain important estimates introduced by Shea and Wainger [15],
who showed (as part of a much broader result) that ua L(0, oo), if 2 Ao.

We can generate examples for Theorem 1, not covered by the results in [8],
by perturbing a kernel of the type considered in [9]. Thus let b(t) be a piecewise
linear kernel satisfying (1.1) with b(oo)= 0 and with changes of slope at and
only at the integer multiples of to 2z/V/ (0). Let

a(t) 2b(t) + [1 cos (2rtx)](t + 1) -, 5[ A [1, oo).

Then the hypotheses of Theorem hold, and A* {k2; k-- 1,2, 3,--.}. This
kernel also satisfies the hypotheses of Theorem 2 below (L >= I). [8] will suggest
further examples.

Levin and Nohel [11] used the properties of transforms of kernels which
satisfy conditions implying (1.1) to study asymptotic behavior of solutions of
equations like (1.2). Subsequently, many authors ([4], [10], [12], [13], [15], for
example) have studied linear and nonlinear integrodifferential equations with
kernels satisfying (1.1).

2. Equations in Hilbert space. In this section, let A be the spectrum of the
operator L of 1, and assume that

(2.1) lim aa(s) au(s) ds O, > O.

The following technical result will be proved at the end of this section.
LEMMA 2.1. Uz(t) and wa(t) are continuous in 2for each fixed t, and A* is closed.
If (1) and (1.4) hold, it follows that the operators U(t) fg_ ua(t)dEz and

W(t) ._ wa(t)dEa are bounded in norm on H by and/ respectively. As
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shown in the proof of Theorem 1 of [8], U(t) and W(t) are strongly continuous and
map into ; moreover, if

(2.2) A(t) <= (1 + 121)(t), 2 A,

where (t) is bounded on compact subsets of [0, ), then the unique solution of
(1.5) is given by

x(t) u(t) + w(t)n, , .
(We think of this as a weak solution of (1.5) if

For 2 A*, we know from [5] that

uz(t) u’(t) O, wz(t) w(t) O, c,
where

u(t) 27- cos

w(t) 217zooz]- sin ogzt + A- 1(00).
Here o94 [a(0+)]1/2 is the unique positive z where (z) iz, and

7 3-
a(0+)3"

(We interpret A() as zero when A()= .) If 2Ao, u(t) 0 and
wA(t A; 1() as .

Now fix , , and let
p

F(p) [d(Ez, ) + d(Ezq, q)].

Let e > 0 and choose N > 0 so that F(-N) + F() F(N) < 2. Let F be
a relatively open subset of [-N, N] such that [-N, N] VI A* c F and

Set

dF(2) < g2.
F \A*

a(t) f,x [u’(t)dE + w(t)dEzq] + f,x A-I(X))

Then straightforward estimates show that

Ilx(t) l’(t)ll <= Q + f [uz(t) dEz + (wz(t)- A-1())dEzq]
-N,N] \r

-]- ;rcA* ([uz(t)-u,(t)]dEz +[w(t)-w(t)]dEaq)ll,
norms in og Q 3x/ + 5K. Here both integrands tend to zero (t ) for
each 2. If we assume further that
(2.4) uz(t), wz(t) are continuous in 2 on Ao, uniformly in t, 0 <= < ,
and

(2.5) uz(t) u(t), wz(t w(t) are continuous in 2 on A*, uniformly in t,
0=<t<,
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then the integrands in (2.3) converge to zero (t ), uniformly on the compact
sets I-N, N]\F and F fq A*. Then x(t)- f(t)l -<_ 2Qe for large t. Thus we
have the following conditional result.

THEOREM 2. Assume (1.1), a e ’, (2.1), and (2.2). If(1.3), (1.4), (2.4), and (2.5)
hold, then x(t) (t)ll --’ 0 as .

If, for example, A* covsists of a sequence of points 2, (as when a(t)
2a(t), 2 >= # > 0, A(t) A(t)L with L >_ #), then (2.5) certainly holds. In [8],

we showed that (2.1) implies (2.4), provided A- 1() is continuous on Ao, a() 0,
and az e C 1, 2 Ao. (The last restriction can be dropped; in the proof one need
only change the last conclusion of Lemma 4.1 of [8] to a*(’, 2) + i( 4: 0, " e Z.)
We hope to study (2.4) and (2.5) further in future work.

In [8], we give examples of kernels A(t) to which our method applies, and
we discuss briefly the methods ofC. M. Dafermos 1 ], A. Friedman and M. Shinbrot
[3], and R. C. MacCamy and J. S. W. Wong [13] for related equations. The main
features of our approach are

(i) the restriction to kernels represented in terms of L,
(ii) the inclusion of piecewise linear a,
(iii) the inclusion of cases where a() 0, but Az() .
Proof of Lemma 2.1. Integrating (1.2), we obtain

x(t) + Aa’ s)x(s) ds kt + Xo.

Equation (2.1) implies that Az(t) is continuous in 2, uniformly on compact subsets of
{0 =< < }. Our first assertion then follows by standard arguments for Volterra
integral equations.

For the second assertion, suppose 2,--. 2, 2, A* as n . Then 2 A.
We let a, au, with # 2,. Choose t > 0 such that az(2ta) > 0. Then by (2.1),
tol a,(t)dt is bounded and for large n,

a,(t) dt >= 1/2t a,(O + ).

Then a,(0+) _<_/ < , n 1, 2,..., and from (1.9) we see that to(2,) >= T > 0,
n 1, 2, 3, It follows easily that a,(0 +) az(0 +) =</, so

(2.6) to(2,) 2rt[a(0+)]-1/2 _= to(2), n .
Now suppose az(t) is not linear at r; that is, for every 6 > 0,

2a(r) < a(r + 6) + az(r 6).

Then, (2.1) implies that there are sequences rk r and n(k) such that
changes slope at r. Since r is an integer multiple of to(2,)), (2.6) shows that r is
an integer multiple of to(2). Thus 2 A*, and our proof is complete.

3. Proof of Theorem 1. Let a(t) be any function satisfying (1.1) and (1.8)
with a (0+) a’(0+) < ; a(t) e -t will do. Let w(t) be the solution x(t;0, 1)
of (1.2) with kernel a(t), and set v w w. With a(t) fixed, C denotes, generically,
a positive constant depending only on T.
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We shall assume that

ax(0 + a(0 + < oe.

If not, approximate ax with a sequence of kernels b, for which (1.1) holds and
b,(0+) b’,(0+) < oe, but Ax(T) b,(s)ds, b,(t) ax(t), >_ T/n, and j’ lb,(t)
-ax(t)[ dt --, O, n --, oe. Then the corresponding w,(t) tend to wx(t) pointwise as
n o and Iw,(t)l <= C(M + 1), n 1,2, Thus we can assume (3.1) without
loss of generality.

Let f(z)= f e-Zta(t)dt, Re z > 0, denote the Laplace transform of a(t);
similarly we have fix(z), (z).

Using (1.2), we see that

(z)
(z) + z

a(z)] a(z)
--] z[fx(z) 4- z]’

We shall show below that there exists a function ox(t) such that

(3.2) Iqox(t)l dt <= C(M 4- 1)

and

Rez > 0.

f(z)
(3.3) qSx(z Re z > 0.

(z) z + (z)’
Set

y(t) fl u(s) qx(s)-][1 ux(t- s)] ds.

Then 37(z) (z), so y(t) =_ v(t); but by (1.4) and (3.2),

Jy(t)l (1 4- + 1) 4- lu(t)ldt

so Iv(t)l N C(M + 1). Since Iw(t)l <-C, our result follows for wx--v + w. To
complete the proof, we need only find o satisfying (3.2) and (3.3).

Our method here follows the procedure of Shea and Wainger [15, (1.23)],
as outlined in the proof of the following lemma.

LEMMA 3.1. Supposef() is continuous and bounded in {Im _>_ 0} and analytic
in {Im > 0}. Assume that f(z) O(z-1), "C -- O0 and that f(z) is absolutely
continuous in {- < z < o} wilh

dz<_m.

Then there exists r(t) such that Ir(t)l dt <= m/2 and (-i) f(), Im > 0.
Proof. Using the Poisson integral representation for f in {Im > 0} and

integrating by parts [15], one obtains the estimate

lf’( + i)I d If’()l d, a O,
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so that f’e H (= Hardy space on {Im z > 0}) and f’(z) lim,_o+f’(z + ia)
a.e. Now let

r(t) e ’() a
(3.4)

lim
r| -ife () dr

Nm J-N

Then r(t) 0, < 0 [2, p. 197], and by the half-plane version of a theorem of
Hardy and Littlewood [2, p. 198],

lr(t)l dt <: m/2.

By (3.4), f(z) and (- iz) are equal in L2( ct3, oo); since both are continuous, they
are identical. Then F(() f(() (-i)is analytic in {Im ( > 0} and continuous
in {Im >= 0} with F(z) 0 for real z, so F(’) =- 0, and Lemma 3.1 is proved.

We set
a()

(3.5) f()
a,() a() i’

Im { >= 0, { - 0.

Then

(3.6) f(() =- + a(()- i
and f(iz) is the right-hand side of (3.3). Also note that f( ) f(’). We show that
f() satisfies the hypotheses of Lemma 3.1.

As shown in [5], and are analytic in {Im { > 0} and can be extended as
continuous functions to S {Im >= 0, " - 0} moreover

(3.7) a({), az()-- o(1), " c, Im " >= 0,

(3.8) Re a(() > 0, Re az(() > 0, Im ( > 0,

(3.9) a() ---, A(m), a({) Az(c), 0, { e S.

(Here A(t) o a(s) ds.)
The following estimates are essentially those of [15, Lemma 1]. (Compare

[5], [6].)
LEMMA 3.2. Let (1.1) hold with a c. Then if a >= O, > 0 we have

f
/

(3.10) I(r + ia)l <= 4 e-"c(t) dt,

(3.11) 2x/l(z / ia)[ >= e-tc(t) dt.
,0

If, moreover, c(O + c’(O + < , then

l/r

(3.12) Ic’(r)l < 40 tc(t) dt, r >= O,
v0

Proof. We may assume that a 0, since e-’c(t) satisfies (1.1) if c(t) does.
Estimates (3.10) and (3.12) then follow directly from [15, Lemma 1] (with a little
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computation since c(oo) 0 is assumed in [15]). For (3.11) we modify the proof in
15] as follows.

v/ I()1 _>- Re O(z) + Im O(z)

+ [cos rt + sin rt] [c(t) c()] dt

=+ cost[c(t)-- c( )] dt + sint c(t) c + dt

f] c(O .
This proves Lemma 3.2.

In view of (1.8), (3.8), (3.9), and (3.11) for c a, (3.6) shows that f() is
analytic in {Im > 0}, continuous in {Im 0}.

Consider /x. If r T- , Lemma 3.2 implies that

a( + i) < I/a(t)e-’dt
aa(a+iz) cFa(t)e=-aidt=

(3.13)

Here we have used (1.6) and the fact that Az(t)>= tAz(T)/T, 0 < <_ T (a
consequence of (1.1)).

Thus from (3.5), (3.7) and the symmetry of f(a + it) in :, we conclude that
f(’) is bounded in {Im >__ 0, [Re 1 >_- T-l)

For 0 < v __< T- we have, similarly,

a(a + it) < C la(O+)e-"tdt
< CM a> 1.

af (t/T)Az(T)e-’ dt

Since a() 0 as oo and f(z + ia) is conjugate-symmetric in , (3.5) now
shows that f(0 is bounded in {Im " _>_ 0} and O(-1), c.

To apply Lemma 3.1 we need only estimate .foo ]f’(z)l dz.
When 0 < It] =< T- we differentiate (3.6) to show that

(3.14)

f’O:) a2(:) +

+a -i-
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Using Lemma 3.2 we see that

1/, ax(t) dt] 2 (27- 1), 27 > 0.

As is shown in [15], the integral of 0 can be estimated as follows. We note that

0’(y) 2ax(y) aa(t) dt (y t)ax(t) dt.

Since a(t) is nonnegative and decreasing, we conclude that O’(Y) O, y > O.
Thus for0 < 6 < T -,

l

/T fT1/6
OT

f]16 fO’
2

O(T)/T + a,(y) a(t)at

2A(T) CM.

Similarly, /rla’(r)a-z(r)l& C. Then since (3.9) holds and If’(-)l
Ij"()], (3.14) shows that

l/T

(3.16) I/’(z)l dz C(M + 1).
-/r

When r > T- , we differentiate (3.5) to show that

ai(r) a(r)
f’(r)

a’(r) a(z) a’()
(3.17)

(27) + I2(27) -[- 1 3(27)"

By Lemma 3.2,

C/ tax(t)dt<= / ax(t) dt

Using this together with (3.7) and (3.13), we get

111(27)1 C(M + 1)/272,

Writing a’/ax (a’/a)(a/a), we use similar estimates to see that

112()l C(M + 1)/2,

27>_T -1"
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Finally, we use (3.7), (3.13), and (3.12) to show that

lI3(z)l =< CM’r:- 2 "c > T

Then by (3.16) and (3.17) and symmetry,

If’()l =< C(M / 1).dr

Thus the hypotheses of Lemma 3.1 hold with m C(M + 1), and r q
satisfies (3.2) and (3.3). This completes our proofl
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SOME EXTENSIONS OF HARDY’S INEQUALITY*

HANS P. HEINIG"

Abstract. A number of integral inequalities involving the Hardy maximal function in certain

LP-spaces, 0 < p < o, are obtained and their discrete analogues are given. Some of the results are

applied to give an estimate of the Laplace transform of exponentially integrable functions.

1. Introduction. There is an extensive literature on the properties of the
well-known maximal operators of Hardy and Littlewood and their applications
in various branches of mathematics. (See, e.g., [1], [2], [3], [4], [5], [8].) In this
note we give variants and extensions of maximal functions and show them con-
tinuous between weighted Lebesgue spaces. The results are applied to give new
estimates for the Laplace transform, while the discrete analogue establishes
extensions of Hardy’s inequality [4, Thm. 346], Carleman’s inequality [23 and
a variant of an inequality of Konyugkov [7].

We distinguish between two sets of integral inequalities. The first gives
conditions under which variants of integral means are continuous between certain
Lebesgue spaces, while the second set is based on a result of C. Fefferman and
E. M. Stein [3, Lemma 1] involving the Hardy-Littlewood maximal function.
We use their argument to establish some weak type weighted estimates for the
maximal functions which are used to prove continuity of these operators in
weighted LP-spaces.

In order to apply the results to the Laplace transform, as well as establishing
their discrete analogues, we confine ourselves to scalar-valued functions defined
on the real line instead of [".

In the next section we prove a number of integral inequalities and apply
them to obtain some new estimates involving the Laplace transform. In 3 we
give the discrete analogue of these results and various estimates involving means.

Throughout, A or Ap (with possibly other subscripts) denote constants
depending only on the parameters under consideration and may be different at
different appearances. The conjugate index of p is p’ p/(p 1), p > 1, and the
characteristic function of a set E is denoted by X.

then

(1)

2. Integral inequalities.
THEOREM 1. Let p, s, ). be real numbers satisfying p + s > 2, p > 0. If- If(t)l dt <

x exp pX-p p- log Ix-sf(t)l dt dx

<__ e/ A ?-lf(OI clt,

Received by the editors March 18, 1974, and in revised form September 3, 1974.
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where A p/(p + s 2).
Proof. Since

e 1/p exp -p yP- log y dy
0

a change of variable shows that (1) has the form

xa exp p yP- log Ix-Sf(xy)l d dx

[ ]o=< A exp -p yV- log y dy t-lf(t)l dr,

which is equivalent to

(2) x exp p yp- log Ix-Syf(xy)l dy dx <= A t-slf(t)l dr.

But by Jensen’s inequality [5, p. 202] the left side of (2) is dominated by

fo If: I ; If; 1p x ypx-lf(xy)l dy dx p y" x-lf(xy)] dx dy

p yP+-a- ta-lf(t)l dt dy.
0

The last term is obtained by an interchange of order of integration which is
justified by Fubini’s theorem.

A result similar to Theorem is the following.
THEOREM 2. Let 2p > 2 sp, p > O, and

t-plf(t)l p dt < o(3.

Then

(3)

x exp p2x-P p-1 log Ix-f(t)[ dt dx

<_ eA t)-splf(t)lp dt,

where A p/(2p + sp 2 1).
Proof. On writing

e exp _p2 yP- log y dy

a change of variable shows that (3) is equivalent to

;o [;2 I oxx exp p2 yP- log Ix-Syf(xy)l dy dx N A tx-plf(t)lp dt.
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By Jensen’s inequality, the left side is dominated by

where the interchange of integration is justified by Fubini’s theorem. Hence the
result.

We shall now obtain some extensions of inequalities of G. H. Hardy and
J. E. Littlewood involving the maximal function. The results follow along the
lines of the proofs given in [5] and [3, Lemma 1].

Let f be a nonnegative locally integrable function defined on R (-c, c).
We define fl, f2 and f*, the maximal functions of f, by

and

fx(x) sup f/< x
f(t) dt,

f2(x) sup
< x f(t) dt

f*(x) max {f(x), fz(x)}.

If y > 0, Ey, Er, 1, 2, and E* denote the sets

{x’f(x) > y}, {x’f(x) > y} and {x’f*(x) > y},
respectively. If is a nonnegative locally integrable function on R, then the
distribution function of a function f with respect to g, is defined by

O(y) I_ O(x) ax, y > o.

One defines similarly D(y), 1, 2, and D,(y).
Our first lemma is essentially contained in the proof of Lemma of [3].

It yields a result of Kaneko [6, Thm. 1] when 0(x) (1 + Ixl) , 0 < __< 1.
We need this result to prove Theorem 3 and the weak type estimate given in
Lemma 2.

LFMMA 1. Iffand k are nonnegative functions d@ned on [, then for y > O,

(4) Or,(y) <= f(x)Oi(x dx, 1,2,

and

(5) Df,(y) <- 2re f(x)d/*(x) dx
Y
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where ’, 1, 2, and g2* are the maximal functions of.
2Proof Since E* E U Er, it follows that Dy,(y) <= Dy,(y)+ Dy2(y), so that

(5) is a consequence of (4).
To prove (4) let 2. The result for 1 is similar and, therefore, omitted.
By the Riesz-Calderon-Zygmund lemma ([9, pp. 17-18]), E2 U Ik, where

Ik (ak, ilk) are pairwise disjoint intervals satisfying

y < f(x) dx.
k k

Now for any such interval Ik we have

f(x)(x) dx > (x) f(t)dt
k k

>__ y O(t) at.

dx

Therefore.

yD (y) y d/(t) at y O(t) dt y O(t) dt
Ik

<= f(X)Oz(X) dx f(x)/2(X) dx
k

which is the result.
THEOREM 3. Iff and are nonnegative real-valued functions and p > l, then

(6) f*(x)O(x) x f(xO*(x) x,

provided the right side exists.
Proof Since the map ,: L(N, O*) L(N,-O) is bounded and by (5) is of

weak type (1, 1), the Marcinkiewicz interpolation theorem ([10, p. 183 if.I) produces
the result.

Corollary 1. If f and O are nonnegative real-valued functions d@ned on
(0, ) and O is nonincreasing, then for p > 1,

f(t) dt O(x) dx N Ap f(x) O(t) dt dx,

provided the right side is finite.
Proo By (6) with./and O restricted to the right halgline,

y; ;o Pf(t) dt O(x) dx < f*(x)PO(x) dx < Ap f(x) O (x) dx.
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But since q/is nonincreasing,

x
t) at

and the result follows.
The next result reduces to Hardy’s inequality for integrals when (x) 1.
COROLLARY 2. Iff and satisfy the conditions of Corollary 1, then for r > O,

p>=l,

ff f(t)dt) p

dx 5 Ap,r t-v-l[tf(t)]p dt

whenever the right side exists.

Proof For p r + this is Corollary 1.
If p < r + 1, H61der’s inequality and an interchange of the order of integra-

tion yields

;: fox lqt(x) f(t) dt dx <= x-- +p(x f(t)p dt dx

f(t)p X-r- 2 + PIll(x) dx dt

<_ t-*- a[tf(t)]P$(t) dt,
-r+l-p

and since is nonincreasing, the result follows.
If < r + < p, let f(t) (r/p)- lg(t). Then again by H61der’s inequality,

and again the result follows since q/is nonincreasing.
To investigate the situation when p or 0 < p < 1, we need the following.
LEMMA 2 [5. If 0 < k < 1, then for f > O,

2 f f(x)g/*(x)dx.Df,(y)
(1 k)y ,
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Proof Define g(x) f(x) iff(x) > yk and zero otherwise. Then

f:(x)=sup[ f f;<x x f(t)Zy(t) dt +
x

f(t)(1 Zy(t))dt

sup g(t) dt + f(t) dt

<__ g(x) + yk

Let N {x’g2(x) > s}, s > 0. Then

e {.f)> } {.g()+ k > } N,,_.
Applying (4) with freplaced by g, we obtain

yDS.(y) y f (x) dx y f (x) dx
OE

< (xO(xx
k
_

k

Similarly,

Therefore,

f(x)2(x)dx

< f(x)O2(x)dx.
l-k

yDy,(y) < f f(x) a(X) dx.
-k

;o ;1f*(x)O(x) dx Dr,(y dy + D.,(y) dy

Proof By Lemma 2,

yD,(y) y | ip(x) dx y | ifi(x) dx.E
< Y fE d/(x) dx + y O(x) dx <

2 fe1 k
f(x)*(x) dx,

yk

which proves the lemma.
THEOREM 4 [5, 21.80]. If E (-, ) and 0 < k < 1, then with

f*(x)x) ax (x) ax + [f(x) og+f(x)]*x)

where log + x log x if x > and zero otheise.
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But since

Zwyk(x) dy
s()l< dy <-_ log + f(x),

/k Y 1/k Y
the result follows.

As a special case of this theorem we have the following.
COROLLARY 3. If < S < o0, f(x) > 0 and f(x) log + f(x) is integrable, then

e-SXf*(x) dx < -t- A f(x) log + f(x) dx.

Proof Let (x) e -xl(1-), 0 < k < 1, in Theorem 4 with E (0, oo) E+
Then for s 1/(1 k) we obtain

e-SXf*(x) dx < + 2 (x) log f(x) .1
-s-1 x

Since the bracketed term on the right is bounded, the result holds.
Next we give an estimate for the maximal function when 0 < p < 1.
THEOREM 5 [5]. Iff and Ip are nonnegative functions and E , then for

0<p< 1,

fE fE 1-P(flt )Pf*(x)"(x) dx <= Ap (x) dx f(x)C/*(x) dx

provided the right side is finite.
Proof Let > 0 and 0 < k < 1. Then by definition of D,(y) and Lemma 2,

f*(x)PO(x) dx p yV- 1Df,(y dy

But

so that

f*(x)"C/(x) dx <= (x) dx +



SOME EXTENSIONS OF HARDY’S INEQUALITY 705

Minimizing the right side with respect to , we obtain the theorem.
We single out the special case with if(x) e as the following.
COROLLARY 4. lff is nonnegative and integrable, then for 0 < p < 1,

e- Xf*(x)p dx <= Ap (x) dx

We conclude this section with some applications.
Let f be a locally integrable function on (0, oo). We say that F is the Laplace

transform off if

f(x) e-X’f(t) dt, x > O,

and the integral converges.
THEOREM 6. Let be a nonnegative, decreasing function and * its maximal

function. Iffor p > 1,

o
lf(t)lP*(t) dt<

then the Laplace transform F off exists and

(x)lx-IF(x- 1)IP dx

Proof Since

<= Ap{f If(t)lP*(t)dt} lip

[x F(x -1)l < lfo f,, -,Ix[e-’/Xlf(t)[ dt+ e f(t)l dt
X X

Minkowski’s inequality yields

/(X)[ X -1F(X 1)[p MX

=11 +12

By Corollary 1,

11 Ap If(t)lt*(t) dt



706 nays P. HEINIG

To estimate 12 we use H61der’s inequality and the fact that x-1 e-t/,, <=
Thus

-1 -1e

Note that for ,(x) this is a result of Titchmarsh 11, p. 397; prob. 161.
For p we obtain the following.
COROLLARY 5. Let be nonnegative decreasing and 9" its maximal function,

such that

If

f; *(x) dx 1.

log + If(t)l*(t) dt c

then F, the Laplace transform off exists and

Proof By Theorem 4,

(x)lx-F(x-)[ dx <= (x) If(t)l dt + e f(t)[ dt dx
X

< O(x) dx + If(t)l log + If(t)lO*(t)dt= i-k

fo+ f(t)
x

< O*(x) dx + f(t)l log + I/(t)lO*(t)dt=
+ e- If(t)lO*(t) dr.

Let (x) x log + x, x > 0. Then (x) is convex, and by Jensen’s inequality,

* If(t)lO*(t)dt If(t)l log + ]f(t)lO*(t)dt,
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so that

o
lf(t)[*(t) dt

exists. Therefore F exists and hence the corollary holds.
We now show that the result of Titchmarsh may be extended in the sense

that the exponent p is replaced by the exponential function. In fact we show that
if F is the Laplace transform off, then

;o foexp Is- F(s- )] ds A exp If(x)] dx,

provided the right side exists. In order to prove this inequality we need the follow-
ing theorem.

THEOREM 7. Iff L 1(0, oe and

of(s) e log If(x)l dx,

then F exists and

where

s>0,

S-2 exp [sF(s)] ds <= A If(x)l dx,

A =exp e-logtdt

The above inequality is now obtained by replacing log If(x)l by f(x) in
Theorem 7.

Proof A change of variable yields

s- 2 exp [sf(x)] ds exp Is- 1F(s- 1)] ds

;o exp e- x/s log If(x)l dx ds

exp e-’ log If(ts)l dt ds (x st).

This last term is less or equal to All fill if and only if

exp e -tlog[tlf(ts)[] dt ds <= Ilf 1.

But by Jensen’s inequality the left side is dominated by

f o foe-’tl f(ts)] dt ds e-’t If(ts)l ds dt

e -t dt If(x)l dx If(x)l dx,

which we set out to show.
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3. Discrete analogues. For the discrete analogue ofTheorem it is convenient
to introduce the following notation. ,Let {a.}.= be a sequence of nonnegative real
numbers and p > 0. Then we write

2P- nP- llp/nPre(a,,, p) [ala2 a, n= 1,2,....

Note that in the following analogue the parameters are somewhat more
restricted than in Theorem 1.

THEOREM 8. Suppose {a,},= is a nonnegative sequence and s > O, p >= 1,
O<=2<s+p. If

nz- =M<,Sa
n=l

then

(7) Z nX-SPTt(a,, P)=< e’/PA Z n-sa.,
n=l n=l

where A p[1 + 1/(p + s- 2)].

Proof Observe that we may assume without loss of generality that n-Sag
<_ 1, k 1, 2,..., n. If 0 < M =< this is obvious. If M > this is obvious. If
M > 1, divide both sides of (7) by M to obtain

a. M 1/pA nZ_ sa.
M

nz sp p < e 2 Mn=l n=l

where v = kp- 1)/nP and where the sum on the right is now equal to 1.
From the easily established inequalities

(8) L k-, p
np

it follows that
a X/pn’-sPTz p <= A e

M,= ,=1 M

Replacing a,/M by a,, we obtain n-s a, =< 1 and hence

n-Sa,<=n-<__l,
which implies n ak <= 1, k 1, 2,..., n.

To prove (7) observe that by (8),

n-SPTt(a,,P) <= Z nUrc(a,, P)

nz exp log [(n-Saa)(n-Sa2)2p-’ (n ’"-’]

nZexp k=l
P kp- log (n-f(t)) dtnx exp

=1 k=l
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kp-1)/np and wherewhere/ 2 (sp
k- <t<_k,

f(t)=
0, otherwise.

k 1,2,... n,

But since n-Sf(t) <_ 1, the last sum is dominated by

nx exp p- log (n-fl,t)) dt
n=l k=l -1

P p- log (n-sf(t)) dtnz exp
n=l

n exp p y- log (n-f(ny)) dy y
=1 0

Clearly this is less than or equal to

A /P X-Sa

if and only if

(9) nxexp p yP-log[n-yf(ny)]dy NA nx-’a.
=1 0 n=l

By Jensen’s inequality the left side of (9) is dominated by

p n yPn-f(ny) dy

p n t f(0 (ny 0
n=l

p nx--p- a p dt
n=l k=l -1

N P nx-- p- kPa
n=l

=p 2 2 2 Sa ,
k=l n=k k=l

which proves the theorem.
As a special case, we obtain the following generalization of Carleman’s

inequality.
Co.oAY 6. Under the hypotheses of Theorem 8 with p 1,

nx-[aa a?/ =< A e nx-ray.
n=l

For s 2 this is of course Carleman’s inequality [2, VI, 11, prob. 37,
although with A 2, this constant is not best possible.

Next we prove the discrete version of Corollary 1.
To 9. Let {a}2= and {b}L be o nonnegative sequences. If {b,} is



710 HANS P. HEINIG

nonincreasing and < p < c, then

(10) y b ak
=1 k=l

whenever the right side is finite.
Proof. Let

ak, k-- <__t
f(t)=

O, otherwise,

<A Ea’p
n=l

k= 1,2,... ,n, n= 1,2,

and

b,, n- __<x <n,
O(x)=

0, otherwise.

n= 1,2,

Then

(11)

E bnn- p
ak -t- an

Lk=

<=yb, x-p
=1 -1

a -+- a,(x- n +
Lk=

dx

b, x- p f(t) dt + f(t) dt dx
n=l -1 Lk=l -1 -1

O(x) f(t) dt dx
n=l -1

(12) O(x) f(t) dt dx <= A f(t)p 7 dt.

The inequality (12) follows from Corollary 1, and we obtain the inequality (11)
as follows. Let

n-1

An-1 E ak"
k=l

Then by H61der’s inequality,

(13)

bn x -p
=1 -1

a + a,(x- n +
Lk-

dx

X- P(a x)p dx + 2 b,
--1

(n -x )a,]
>_ b aPl + y b,,

A,,_
=2 X ]p(n 1)a,,

dx
X

p



SOME EXTENSIONS OF HARDY’S INEQUALITY 711

But since for > 0, __< log(I/t),

A._
_[._ a.

-1 X X
dx A._ log

n-1
+ a. a.(n 1)log

[An_

-[An-1 + an]

a.(n 1)] + a.

a,(n 1)] + a,

n-1

Therefore (13) dominates

blaP11 + b. ak b,, ak
k=l n=l k=l

showing that (11) holds.
To complete the proof, we note that the right side of (12) has the form

A f(tF d/(x) dx dt

<=A a -[ b, dx dr+ Z af-k b.
k=2

=A aqb +2 2 af - b,
k=2 n=l

_< 2A af b,.
k=l n=l

COROllARY 7. If C > 1, p >= 1, then under the hypotheses of Theorem 9,

b,n a <=A, k-(kak)p b
=1 k=l k=l n=l

Proof. For c p, this is Theorem 9. The cases N p < c and < c < p
are proved as in .Corollary 2 and are therefore omitted here.

This corollary generalizes [4, Thm. 346] and reduces to Hardy’s theorem
when b, for all n.

For 0 < p < we have an inequality which follows from Theorem 5.
TnoN 10. Let {a,}, {b,} be nonnegative, nonincreasing sequences such that

b,=M<.
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If O < p < 1, then

,lb, i ak

provided that the right side exists.

P 2 ak bn< ApM1-

k=l n=l

Proof. Let f and be defined as in the proof of Theorem 9. Then

f0 )( f0: )P fi’ I(n-1 I p

/(x f(t) at dx= b, ak + a,(x-- n+ 1) ax
n=l -1 k=l

(14)

> b- ak
n=l F/ k=l

since the integrand on the right side of (14) is decreasing as a function of x. Now
by Theorem 5 the left side of(14) is dominated by

ApM1- p
ak 7 O(x) dx

k=l -1

=2 n=l

N ApMI-p albl + ak b
k=2 n=l

N 2ApM-p ak b
k=l n=l

which proves the result.
Observe that with b n -*p, c > p + 1, 0 < p < 1, this theorem yields

n ak =< Ap k -c+pa
n=l k=l k=l

Comparing this inequality with Theorem 346(fl) in [4], we obtain

n-+Pa < A n-+Pa
n=l n=l

If we assume further that ak N for all k, then we obtain

n ak NAp k-(kak)p
n=l k=l k=l

which under somewhat more relaxed conditions is an inequality of the type
discussed by Konyugkov [7].
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AN EXTENSION OF PARSEVAL’S EQUATION*

CHULL PARK"
Abstract. Let {k(X)} be any real complete orthonormal system on [a, b]. Then Parseval’s equation

asserts that

f(x)g(y)Ok(X)Ok(y dy dx f(x)g(x) dx
k--1

holds for any square integrable functionsfand g on [a, b]. This paper gives conditions on K(x, y) under
which

k K(x, y)Ok(X)k(y dy dx K(x, x) dx
=1

holds. Also shown is that for a large class of complete orthogonal systems Uk(X)} c on [a, b], the identity

k K(x, y)Vk(X l)k(X’ dx’ dx dy - K(x, y) dx dy
=1

holds.

1. Introduction. Let L2[a, b] denote the class of all real-valued square inte-
grable functions on [a,b]. If [k(X)} is a real complete orthonormal system
(C.O.N.S.) on [a, hi, then Parseval’s equation gives

f(X)k(X dx g(X)k(X) dx f(x)g(x) dx
k=l

for any f and g in L2[a, b].
On rewriting the left-hand side of the above equation in the form= lf]baf(x)g(y)ak(X)ak(y)dy dx, it is possible to interpret Parseval’s equation as

follows If K(x, y) is a square integrable function on [a, b] [a, b] and if its
variables are separable, then

k K(X, y)Ok(X)k(y dy dx K(x, x) dx.
=1

A natural question that arises is: when the variables of the function K(x, y) are
not separable, will such an equation still hold under certain assumptions on
K(x, y)?

The main purpose of this paper is to answer this question in the affirmative.
In fact the equation holds for a large and important class of functions. The result
and others are used to introduce a certain type of stochastic integral as an
application.

2. Main results and their proofs. A real-valued function S(x, y) defined on
[a, b] [a, b] is called symmetric if S(y, x) S(x, y), and is semipositive definite if
bab, S(x, y)f(y)f(x) dy dx >_ 0 for every f in L2[a, b]. By Mercer’s theorem (see [7])
a continuous symmetric semipositive definite function S(x, y) has a uniformly

* Received by the editors April 12, 1973, and in revised form September 30, 1974.
f Department of Mathematics, Miami University, Oxford, Ohio 45056.
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convergent series expansion

Sx, y) y
j=l

where 2j and qSj are the characteristic values and characteristic elements, res-
pectively, and 2j >__ 0.

LEMMA. If {k(X)} is a real C.O.N.S. on [a, b] and if K(x, y) f(x)f(y)S(x, y),
where f LZ[a, b] and S(x, y) is a continuous symmetric semipositive definite function
on [a, b] [a, b], then

K(x, y)Xk(X)k(y) dx dy K(x, x) dx.
=1

Proof. By the uniform convergence of Mercer’s expansion
_

2d&(x)dp(y), it follows that

f 2 f(x)f(y)i(x)i(y)a(x)(y dy dx
=l j=

k=lj

S(x, y)

Since 2 >= 0, the series is positive, and hence the order of the summation can be
reversed to obtain

that is,

f(x)dj(X)Ok(X) dx

2 If(x)dps(x)[ 2 dx.

Again by the uniform convergence of the series =12jlqSg(x)l2-- S(x,x), this
becomes

f2(x)S(x, x) dx K(x, x) dx,

thus completing the proof.
Remarks 1. The function S(x, y) in the lemma does not have to be semipositive

definite. It is sufficient that the eigenvalues 2j have identical sign except for finitely
many of them.

2. If {0{k(X)} is a complex C.O.N.S. on [a, b], then the lemma should be

replaced by" If K(x, y) f(x)f(y)H(x, y), where b, [f(x)]2 dx < oo and H(x, y) is

continuous and Hermitian symmetric, that is, H(y,x) H(x, y), and is semipositive
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definite then

K(x, y)a(x)(y) dy dx K(x, x) dx.
=1

THEOREM 1. If {Xk(X)}= is a real C.O.N.S. on [a,b] and if K(x, y)= f(x)
g(y)S(x, y) with f, g e L2[a,b and S(x, y) is a continuous symmetric semipositive

definite function on [a, b] x [a, b], then

(1) K(x, y)k(X)k(y) dy dx K(x, x) dx.
k=l

and

Proof. Since

f(x)g(y)S(x, y)%,(x),(y) dy dx f(y)g(x)S(x, y),(x),(y) dy dx

If(x) + g(x)][f(y) + g(y)] f(x)f(y) + g(x)g(y) + f(x)g(y) + f(y)g(x),

it follows that

2 f(x)g(y)S(x, y)Zk(X)Zk(y dy dx
k=l

Y=I If(x) + g(x)] [f(y)+ g(y)]S(x, y)k(X)k(y)dy dx

f(x)f(y)S(x, y)Zk(X)Zk(y dy dx
k=l

7=1 g(x)g(y)S(x, y)Zk(X)k(y dy dx.

Hence by the use of the lemma, the right-hand side becomes

f [f(x) + g(x)] 2s(x, x) dx

f2(x)S(x x) dx g2(x)S(x x) dx

2 f(x)g(x)S(x, x) dx

2 K(x, x) dx.

Thus the theorem follows.

A complex function H(x, y) is semipositive definite on [a, b] if and only if

foffH(x,y)f(x)f(y)dxdy>O
for every fwith
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For the case when S(x, y) is a complex function, the theorem still holds if the
real part and the imaginary part satisfy the conditions on S(x, y) stated in the
theorem.

COROLLARY 1.1. If {0k(X)}= is a real C.O.N.S. on Ia, b] and if K(x,y)= 1Kj(x, y), where each Kj(x, y) satisfies the assumptions on K(x, y) in the
theorem, then (1) holds for this K(x, y).

COROLLARY 1.2. Let {e(x)} be a real C.O.N.S. on [a,b] and let K(x, y)
LZ([a, b] 2) have an LZ-expansion

j=l

with the aj 0 and {(flj(x)} a real C.O.N.S. on [a, b].
If b,j ,0 K(x, y)e,(x)j(y) dx dy, then

Z bii Z ai"
i=1 i=1

Proof.

2 bu 2 K(x, y)oi(x)xi(y dx dy

aj flj(x)flj(y)ai(x)ai(y dx dy.
lj=

Since the series is positive, the order of the summation may be reversed to yield

i= j=

aj x) dx= a.
j= j=

In cases when the kernel K(x, y) has either a jump discontinuity on the
diagonal y x or is nonsymmetric, we have the following.

THeOReM 2. If S(x, y)= K(x, y) + K(y, x) is a continuous symmetric semi-

positive definite function on [a,b] x [a,b] and if K(x,y)= f(x)f(y)K(x,y),
f e L[a, b], then (1) holds for this K(x, y).

This theorem follows immediately by observing that

f(x)f(y)S(x y)x,(x),(y) dx dy 2 f(x)f(y)K l(x, y)o,(x)o,(y) dx dy

COROLLARY 2.1. If {0(x)} is a real C.O.N.S. on [a, b], then

x,(x) x,(y) dy dx
k=

bga

The corollary follows from Theorem 2 by setting f(x)= and K I(X, y)
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(x, y), where

(2)

1, x> y,

(x,y)= 1/2, =,
O, x<y.

COROLLARY 2.2. If {ek(X)}] is a real C.O.N.S. on [a, b], then

l.i.m. k(X) k(U) du ((y, x)
k=l

on [a, b] 2 in the LE-sense, where (x, y) is defined by (2).
The following result is rather interesting and useful.
THEOREM 3. Let {Vk(X)} be the complete orthonormal characteristic functions

of the Sturm-Liouville system

dx
+ [2g(x) /(x)] 0, 2 > 0,

v’(a) c iv(a) O, v’(b) + c2v(b) O,

where on [a, b] the functions k(x), g(x), and l(x) are continuous, k(x) and g(x) do not

vanish, k(x) is continuously differentiable, and g(x). k(x) has a continuous second
derivative. Also let each Vk(X) correspond to the characteristic number 2 arranged
in increasing order. Then

(4) 1,;iLm. v(x) v(y) dy 1/2
k=l

on [a, b] in the L2-sense.
Proof A direct computation yields that if {ek(X)} is the set of C.O.N. cosine

functions on [a, b], given by el(x) (b a)- 1/2, ek(X) [2/(b a)] 1/2 cos[(k 1)
(x a)/(b a)], k >= 2, then

Ok(X Ok(y dy dx 0 as n .
k=l

The same result can be established for the C.O.N. sine functions, the C.O.N.
trigonometric functions, and the C.O.N. Legendre polynomials. To prove the
general case, we use the asymptotic expressions for the C.O.N.S. It is known that
the Sturm-Liouville system (3) in the theorem can be normalized by appropriate
transformations (see [3, pp. 270-271]) into the following system on [0, ]:

(5)

d2u
dx2 + [p2 q(x)]u O,

u’(0) cu(0) 0, u’() + c2u() 0,

where p2 K22 for some constant K. Let {Uk(X)} be the C.O.N. characteristic
functions of this system. For each fixed x e (0, re) define lx(s) by

1, O< s<_x,
Ix(s)

O, x<s<rc.
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Then the orthogonal development of Ix(s) in s, given by

uk(s) Ix(y)u,(y dy uk(s) uk(y) dy,
-’! k--

converges to the average value of Ix(s at the jump (see [2, p. 772]), and hence

uk(x) u,(y) dy for every x e (0, ).
=1

Owing to the fact that if limit and 1.i.m. both exist, then they must be the same, it
remains only to show the existence of

1.i.m. u(x) u(y) dy.
nm k=

To verify this we use the asymptotic expression given in [3, p. 272]; namely, the
characteristic functions of (5) corresponding to the characteristic numbers p are
given by

(x) + O(k- 2)} cos kx + {K- w(x) + O(k- 2)} sin kx,(6)
where

w(x) c + 1/2 q(y) dy cx,

c is a constant, and O(k- 2) denotes a function whose absolute value is bounded by
a constant times K-2 on [0, ], the constant being independent of k and x. To
normalize 0k(x), we rewrite (6) in the form

(7) lk(X cos kx + k- lw(x) sin kx + O(k- 2).
Then with IIk 12 f. v(x)dx, we have

u&) (x)/lldx)l -(2/rc)X/2ak(x)[1 + O(k-2)] -1/2.

Thus there exists a number K such that

(8) uk(x) (2/rC)’/ZOk(X)[1 + O(k-2)], k >= K.

From (7) and (8) it follows that

lk(X (2/rC)/2(COS kX + k- XW(X) sin kx) + O(k-2), k >_ K.

Therefore

uk(x uk(y) dy
sin 2kx 2)

krc
+ O(k- k >= K.

Thus forn>m>_ K > 1, wehave

dx.
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Now (kTt)-1 sin 2kx (2/7z) 1/2 COS kX )(2/7t) 1/2 COS ky dy, and from the comment
made for the C.O.N. cosine functions in the beginning of the proof, we see that

lim (2/re) 1/2 cos kx (2/7t) 1/2 cos ky dy
rn,n

and hence

lim uk(x uk(y) dy
dl

which completes the proof.

dy =0,

COROLLARY 3.1./f {v(x)}__ is a C.O.N.S. on [a, b] satisfying the condition

1.i.m. v(x) v(y) dy 1/2 on [a, b,
no k=

then the C.O.N.S. {k(x, Y)}=I {Vi(X)vj(Y)}i,=l on [a,b2 satisfies

1.i.m. k(X, y) k(U, v)du dv ,
n k=

1.i.m. e(x, w) e(u v) du dv
n- k

and

1.i.m. t(x’, y’) e(u, v) du dv {(x, x’){(y, y’),
no k=l

where (x, y) is defined by (2).
This corollary follows immediately from Corollary 2.2.

3. Some applications to stochastic integrals. Let {X([)’[ e/I denote the+
N-parameter Wiener process on Ru+ [0, )N satisfying the conditions"

(i) this process is a separable real Gaussian stochastic process,
(ii) X() 0.almost surely for every Ru+ (0,

(iii) the expected value E(x(:)) 0 for every
(iv) the covariance E(X(g)X(f)) [I1 <_i<_N min (si, ti) for every pair of points
(sl,..., SN) and (tl,..., tN) in
In particular, the one-parameter Wiener process is the well-known Brownian

motion process (see 1]). In [5] the author has introduced a stochastic integral on
the N-parameter Wiener process which is entirely different from Ito’s stochastic
integral in [4] even for N 1. Zimmerman [8 extendsthe Ito-type stochastic
integral of a one-parameter process into that of a two-parameter process. Accord-
ing to Zimmerman (see 8, pp. 1239-43), the Ito-type stochastic integral

ff ff F(s, t; 09) dX(s, t)

for the two-parameter Wiener process {X(s, t): (s, t) [0, )2} exists if F(s, co)
is square integrable on [0, S] [0, T] x f2 and F(s, t; co) is measurable with respect
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to s,, -= a{X(u, v; o)’(u, v) <= (s, t)} for all (s, t) e 0, S] x 0, T], where a{.
denotes the smallest a-field generated by {. }, and (u, v)=< (s, t) means u < s
and v < t.

Consider the stochastic integral

(9) h(s, t) X(s, u) du dX(s, t),

where h(s,t)[ X(s,u;oo)du] with h(s,t)6L2([O, 1] 2) stands for F(s,t;o9). How-
ever this F(s, t;09) is not measurable with respect to ffs. unless 1, and hence
the Ito-type stochastic integral does not apply for it.

Let {v(x)}ff= be a C.O.N.S. on [0, 1 with each v(x) of bounded variation,
which satisfies the condition (4). Also let {ak(X,y)}=, {vi(X)vj(Y)}i,=,. For
F(s, t;) L2(I2 x ), I [0, 1], let F,(s, t) denote the nth partial sum of the
Fourier expansion of F(s,t;) with respect to {ak(X,y)}. Define the Paley-
Wiener-Zygmund-type (PWZ-type) stochastic integral by

(10) f,F(s,t;o)dX(s,t)=l.i.m.f,F,(s,t)dX(s,t),2,
if the limit in the mean exists in the L2-sense over the Wiener process X(s, t)’(s, t)
e [0, oe)2}. We shall show that the stochastic integral (9) exists in the PWZ-sense
with the expected value

1/2 f, h(s, t)(1 t) ds dr,

and the variance

1/2 f hZ(s, t)s ds dt.

To see this, we observe that for n > m,

Ira, = E F.(s, t) dX(s, t) Fro(s, t) dX(s,

(11)

E h(s, t) X(s, u) du k(S, t) ds dt k(S, t) dX(s,
k=m+l

j,k=m+

X(s,u)X(s’,u’) fi2idX fi2OkdX I dll6,

where //6 denotes the Lebesgue measure on 16. Now recall the well-known
formula2

(12) EI12 hl dX;12 h2 dX ;i2h3 dX ;ta h4 dX1
f, hlh2.f, h3h4+ f, hlh3"fi2 h2h4q- f,_ hlh4"fi h2h3’

The formula (12) can be easily established by looking at the approximating Riemann-Stieltjes
sums for the ,2 h dX, 1, 2, 3, 4.
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where h(s,t), i= 1,2,3,4, are functions of bounded variation on 12. Since
X(s, u) x2 (s, s’)(u, u’) dX(s’, u’), we may use (12) and Fubini’s theorem to
obtain from (11)

fx h(s, t)h(s’, t’)oj(s, t)Ok(S’ t’)
j,k=m+

/min (s, s’). min (u, u’) 6k

fo’fo- fo’f ’+ j(x, y) dx dy. k(X, y) dx dy

+ zk(x, y) dx dy. j(x, y) dx dy d#6

a--m+ f h(s, t)h(s’, t)min (s, s’)min (u, u’)o(s, t)o(s’, t’)d6

h(s, t)h(s’, t’)uj(s, t) j(s, y) dx dy
j,k=m+

(s’, t’) k(x, y) dx dy dt6

j,k=/l’l+
h(s, t)h(s’, t’)j(s, t) (x, y) dx dy

(s’, t’) (x, y) dx dy dkl6.

Upon using Theorem for the first sum, and Corollary 3.1 for the second and
third sums with m 0, as n oe we get

Io,oo f h2(s, t)s ds dt f min (u, u’) du du’

+ 1/4 fI6 h(s, t)h(s’, t’)(u, t)(u’, t’) d]2 6

+ I6 h(s, t)h(s’, t)(u’, t)(s’, s)(s, s’)(u, t’) d#6

121/2 f_ h2(s, t)s ds dt + 1/4 h(s, t)(1 t) ds dt

This shows that limm,,_ I,,,, 0, and hence that the stochastic integral exists in
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the PWZ-sense. Furthermore, the expectation

E{f, h(s, t)[f, x(s, u) duI dX(s, t)}
E h(s, t) X(s, u) du Ok(S, t) ds dr. Ok(S, t) dX(s, t)

k=l

h(s, t)Ok(S t) Ok(S’ t’) ds’ dt’ dl3
=1

and the variance is 3-] hZ(s, t)s ds dt. It is interesting to note that

var h(s, t) X(s, tl) du dX(s, t) h2(s, t)E X(s, u) du ds dt,

which is always the case for the Ito-type stochastic integrals. The existence of
various PWZ-type stochastic integrals plays a central role in [6] to generalize
Cameron-Martin’s linear transformation theorem into higher dimensions.
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CONVERGENCE OF NONCOMMUTATIVE CONTINUED FRACTIONS*

S. T. PENG AND A. HESSEL’

Abstract. A sufficient condition is given for the convergence of continued fractions whose elements

are noncommutative linear operators on a Banach space. The theorem generalizes a corresponding

result for conventional continued fractions.

1. Introduction. A formal theory of noncommutative continued fractions,
whose elements obey a noncommutative law of multiplication, has been presented
by Wynn [1]. Subsequently, a number of convergence theorems have been estab-
lished by Wynn [2] and Fair [3], [4]. Here we present a simple sufficient condition
for convergence of noncommutative continued fractions, which is a generalization
of a well-known theorem [5] for corresponding conventional (scalar) commutative
continued fractions.

Continued fractions are commonly employed in the solution of three-term
recurrence relations arising in the treatment of higher transcendental functions,
such as Mathieu functions. In mathematical physics, recurrence relations with
five or more terms are generally treated as an infinite system of linear equations.
Such recurrence relations can be cast into three-term vector recurrence relations,
the solutions of which may be expressed in terms of continued fractions of, in
general, noncommutative matrix elements.

In this paper, we present a proof of a simple sufficiency condition for conver-
gence of a class of such noncommutative continued fractions. This theorem facili-
tates the applicability of continued fractions to solutions of recurrence relations
with a greater than three (but finite) number of terms and thus significantly
enhances the scope of the conventional procedure.

2. Statement of the problem; definitions and notations. We consider the
convergence of continued fractions of the form

(1) K (B, + (B + (...)-’)-

where B,, n 1, 2,..., are bounded, linear, noncommutative operators on a

Banach space IX] over the complex field. We formally define a set of continued
fractions

(2) Kn (Bn + (Bn+ 4- (...)-’)-’ n 2

which satisfy the recurrence relation
(3) K. (B. + K.+ 1) -1
This recurrence relation will be the starting point for the proof of the theorem to be
presented here.

The nth convergent of (1) is defined [1], [4] as

S. (B + (B2 + (Bn_ + B-’)-’ ...)-’)-’
(4)

Q21Pn,
Received by the editors January 16, 1973, and in revised form September 12, 1974.
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where P, and Q, are determined from the recurrence relations

Pn-- BnPn-1 -- Pn-2 for tl

_
2,

(5)
Q. B,Q. + + Q.- 2 for n >= 2,

with the initial conditions

Po 0, P1 1, Qo 1, Q1 B1.
The continued fraction K converges if the limit of S,, as n --. c, exists.

3. Convergence theory.
LEMMA. If B and C are operators in IX] such that the norms liB-1 1/2p,

p < 1, and IICII < 1, then the norm of the operator

(6) K=(B+ C)-1

is less than unity, specifically K < p.
Proof. The assumption that B _< p, p < 1, implies that B exists.

Therefore, (6) may be rewritten as

(7) K (1 + B-1C)-lB-1.

Recognizing that lib-xCll =< IB-111 ]]C < 1/2p, one deduces by means of power
series expansions of (1 + B- 1C)- 1, along with the triangular inequality, that

II(1 -F B-1C)-XII < 2.

Invoking the Schwarz inequality, one then obtains from (7)
g -<_ II(1 / B- C)- 111 B- 111 __< < a.

We now prove the following.

THEOREM. Iflln < 1/2P, P < 1,for every n > 1, then the continuedfraction (1)
converges.

Proof. We introduce in the space IX] the operators K,m) via the recurrence
relation

(m-- 1))-(8) Ktnm)= (B, + Kn+ n 1, m 1,2,...,

with

K,) 0, n> 1.

It is easily shown from (8) that

(9) Knm) (Bn + (Bn+ + + (Bn+m-2 -[- B;+lm 1) -1 -t- ")-1)-1,

which is the mth convergent of the continued fraction Kn in (2). By the repeated
use of the lemma in each iteration in (8) for every m >= and every n >= l, it follows
that liKUta)l] <- p. Therefore {K,m)lm l, 2,...} is a bounded sequence of operators
in IX], for every n >= 1.

The choice of K is made for convenience, in order that the K,m) be the mth approximant to

K,. The result holds for any IIK,)ll < 1.
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To prove that {Km)lm 1, 2,...} is a convergent sequence for n >= 1, we first
construct, from (8), the differences

(m- 1)]K+)K(nre+l) K(nm) K(n + )EKT+) Kn + 1,

from which we then obtain

(10) KCnm+l) Kenm) < 10
2 K Kn+l m >= 1, n >= integers.

Iterating on (10), one has

(11) gn + ) Knm) < 102m re(1.) /((0) < 1/2p2 +1IknWm aXn+

Here use has been made of the property

(12) r/’(1.) v(0) /((1) B+lm < 1/210ln+ ln+ Xn+

Consider now

lIKe. / ) K.) for rn > 1, n > 1, p >= 1,

Kn + ) K)I -< K{. + Kn + p-l)

._]_ IlK(nm+p-1) K(nm+p-2) ._[_ KCnm+ 1) Kenm)
Repeated application of (1 l) yields

11102m+ 2p- 102 + 2 3 102m+
pzm+ 1(1 102p)

K(nre+p) K(,,m)]

_
+ p- + + 2 102

(13) <-1 102m+
=21 _p2"

Consequently, by choosing the value of m to be sufficiently large, K, +p K")

can be made arbitrarily small for all p > 1. This establishes the convergence in the
norm of the sequence {Km)lm 1, 2,...} for every n >__ and, consequently, the
convergence of all continued fractions K, in (2) for n > 1, under the stated condi-
tions.

4. Example" A comparison with the commutative case. To see how the con-
vergence condition established above relates to the well-known result for scalar
continued fractions, let us consider the simple case of an N N matrix continued
fraction, given by

(14) K (B + (B + (...)-1)-1)-1,

the elements of which are obviously commutative. In this case, the matrix K can
be diagonalized and expressed in terms of scalar continued fractions of eigen-
values of B, as follows. Let 2i, l, ..., N, be the set of eigenvalues of B. Then the
eigenvalues of K are given by

to,- (,,1., + (, + (...)-x)-x)-’, i-- 1,..., N.

To ensure that these scalar continued fractions converge for all i, it is sufficient to

require

(15) ]2mini min 121 > 2.
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Now, applying the convergence condition for noncommutative continued frac-
tions, which is obviously valid also in the case of (14), one finds that the continued
fraction (14) converges if

B-’ <1/2p, p< 1.

Definin the norm of a matrix by its maximum eienvalue we have

IB- max--

which is identical with (15).
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NONLINEAR VOLTERRA EQUATIONS IN A HILBERT SPACE*

VIOREL BARBU-

Abstract. The existence and asymptotic behavior of the solutions of the equation

u(t) + a(t s)g(u(s))ds f(t), 0 < <

in a Hilbert space H is investigated. Here a(t) is a prescribed real function on [0, oe[ and g belongs
to a certain class of nonlinear maximal monotone operators in H x H.

1. Introduction. This paper deals with the integral equation

(1.1) u(t) + a(t s)g(u(s))ds f(t), 0 <= < oc,

in a Hilbert space H, where a(t) is a real function on [0, [ and g is a nonlinear
(multivalued) operator from H into itself.

Equation (1.1) occurs in the study of mechanical systems with memory and
in several problems of physical interest. The special case, H R 1, of this equation
has been extensively studied and we refer the reader to [5] for significant results
and references on this subject. More recently, (1.1) was studied in I61, I8 under
general monotonicity hypotheses on a(t). These results were partially generalized
to Hilbert spaces by MacCamy [11] and Londen [9] by the use of Laplace trans-
forms. In these papers the operator g is assumed to satisfy certain boundedness
conditions which considerably restrict the application field where usually g is a
nonlinear elliptic partial differential operator. At the expense of assuming the
positivity of the kernel a(t), we are able in Theorems and 2 to obtain results on
the existence and asymptotic behavior of the solutions under weaker hypotheses
on g. Specifically, g is the subdifferential of some convex lower semicontinuous
function from H to oe, + ]. The method we have used here is closely related
to that used by Br6zis (see, for example, [2], [3]) in the study of evolution equations
associated with subgradient mappings. In Theorems 3 and 4, g is monotone, demi-
continuous and coercive and satisfies some growth condition from a Hilbert space
V H into its dual V’. Assuming that a(t) is a positive kernel, that is, Re fi(ico) _> 0
on R 1, we prove the existence in L2(0, zt; V) for the solutions of (1.1). In 6,
some examples are presented. Comparing these results with the results of [9] and
11], we observe that the assumptions we imposed on a(t) are quite different from
those used in [9] and [11]. In fact in essence our main condition on a is that the
operator u o a(t- s)u(s)ds is positive on L2(0, o ;H), while in [9] and [11]
this condition (actually much stronger) is imposed on u (d/dt)Lu.

2. The main result. Throughout this paper H will denote a real Hilbert space
with the norm denoted I" land the inner product (.,.).

Received by the editors February 5, 1974, and in revised form May 28, 1974.
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We begin by recalling some definitions and elementary results concerning
maximal monotone operators in Hilbert spaces. For other results on this subject
we refer the reader to [2].

Let g be a nonlinear (multivalued) operator from H to itself. We shall use the
following notations:

D(g) {u H g(u) =/: } R(g) U{g(u) u D(g)},
g- ’(u) {v e H; u e g(v)}.

The operator g is said to be monotone in H x H if

(Yl-yz,xl-x2)_->0 for allxieD(g),yieg(xi) i= 1,2.

A monotone operator g which admits no proper monotone extension is called
maximal monotone. According to a well-known result due to Minty, a monotone
operatorg is maximal monotone ifand only ifR(I + 2g) H for all (or equivalently
for some) 2 > 0. In this case, (I + 2g)-’ is a contraction defined on all of H.

Let g be maximal monotone;for every 2 > 0 the operator gx (Yosida approxi-
mation of g) defined by

(2.1) gz /- 1(1 (I -1-- 2g)-1)

is monotone and Lipschitzian on H. Moreover, for all 2 > 0 and u H, g(u)
g((I + 2g)- u) and

(2.2) lim gz(u) g(u), u D(g),
2-0

where g(u) is the element of minimal norm in g(u).
An important class of maximal monotone operators in H H is the sub-

differentials of lower semicontinuous convex functions defined on H. More
precisely, let be a convex, lower semicontinuous function from H to oe, + ],
nonidentically + or. Let

(2.3).

and

(2.4)

D(q)) {u e H o(u) < +}

q(u) {y e/-/; q(u) o(v) <__ (y, u v), vv e t-/}.
The multivalued operator u c3q(u) is called the subdifferential of qg. If q

is Gfiteaux differentiable at u, then c3qg(u) is reduced to a single point and coincides
with the Gfiteaux differential at u.

We shall denote by L2oc(0, oe;H) the space of all H-valued measurable
functions u" ]0, ov[ --, H such that f [u(t)[ z dt < + o for all T > 0. Denote also

(2.5) Hoo(0 o) {u e L12oc(0, o H), u’ e L2oc(0, ;H)},

where d/dt is taken in the sense of H-valued distributions on ]0, + ce[. We
recall that every u e Hlo(0, oc)coincides a.e. on ]0, oe[ with a locally absolutely
continuous function, a.e. differentiable on ]0, o[ and with its first derivative
(which coincides with u’) in Ll2oc(0, o ;H) (see Appendix in [2] for detailed infor-
mation on this subject).
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We now state the basic assumptions:
(i) a(t) is continuous on [0, oel and locally absolutely continuous on ]0,

Moreover,

(2.6)

and

(2.7)

where

(--1)ka(k)(t)>=O fork=0,1, a.e.t>0

Re 5(2)>0 in Re2>0,

5(2) exp (- 2t)a(t) dt.

(ii) g cq where q:H - ]-, + o] is convex, lower semicontinuous and
nonidentically + oc.

A function u’]0, o[ --, H is called a solution of (1.1) if u e Ll2oc(0, c H) and
there exists a function w:]0, oe[ -, H such that

(2.8) w e Loc(O, H), w(t) g(u(t)) a.e. > 0,

(2.9) u(t) + a(t s)w(s) ds f(t) a.e. > 0.

For simplicity we shall write g(u) instead of w.
THFORFM 1. Suppose that (i) and (ii) hold. Let f Hoc(O, oe be such that

(2.10) f(0) e D(q)).

Then (1.1) has a solution u Hlloc(0, o) satisfying

(2.11) q)(u(t)) is absolutely continuous on every [0, T].

In addition, if g is strictly monotone in H x H, then the solution u is unique.
THEORFM 2. Let the assumptions of Theorem be satisfied. In addition, suppose

that a(oe > O, f’ Lz(0, oo H) and

(2.12) q)(u) + oe as lul --, / oe.

Then any solution u(t) of(1.1) satisfies
(2.13) lu(t)l bounded on [0, [,

(2.14)

and

(2.15)

u’, g(u) e L2(0, H)

lim q(u(t)) q min {q(v); v e H}.

If in addition we suppose that x//a LI(0, o), q(f)eLl(0, c)and x//f
2(0, o ;H), then

(2.16) x// u’, g(u) e L2(0, o H)
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and

(2.17) tq(u(t)) is bounded on [0, [.

Let V be a real Hilbert space, densely and continuously imbedded in H.
We identify H with its own dual and denote V’ the dual of V. Then the following
relation holds:

Vc:_HcV’.

Let (v’, v) be the pairing between an element v’ V’ and v V; if v, v’ H, this is
the ordinary inner product in H. We denote by 11.11 and ]l" 11, the norms of V and
V’ respectively.

A nonlinear operator g from V to V’ is said to be monotone if

(V U2, U U2) 0 for all vi g(ui), 1,2,

and maximal monotone if it is monotone and admits no proper monotone exten-
sions in V V’.

The operator (single-valued) g: V -, V’ is said to be demicontinuous ifD(g) V
and it is continuous from the strong topology of V into the weak topology of V’. We
recall that a demicontinuous monotone operator from V to V’ is maximal mono-
tone. Moreover, if g is coercive, then R(g) V’ (see, for example, [4]).

Now we list the hypotheses which will be used in the next theorems:
(i) a L 1(0, oo) and the following inequality holds:

(2.18) Re a(ioo) >__ 0 for all cot R

Here a(io3) .f exp (-io3t)a(t)dr.
(ii) The operator g is monotone, single-valued and demicontinuous from V

to V’. There exists some positive constant C such that

(2.19) ]lg(u)ll, =< C1 ]]u for all u e V.

(iii) There exists C2 > 0 such that

(2.20) (g(u), u) >_ C211ull 2 for all u e V.

(iv) a e L1(0, oo) CI LZ(0, m) and there exists q > 0 such that

(2.21) ]a(ico)] 2 >= q Re a(io9) for all m e R

(v) There exist real and C2 > 0 such that

(2.22) (g(u), u) + lu[ 2 __> CzllUl] 2 for all u e V.

THEOREM 3. Suppose that (i), (ii)and (iii) hold. Then for every f L2(0, oo V),
the equation (1.1) has a solution u L2(0, ct3; V).

The next result is a variant of Theorem 3 where instead of (iii) the weaker
condition (v) is assumed.

THEOREM 4. Assume that (ii), (iv) and (v) hold with q < 1. Then, for every

f L2(0, ct:3 V) the equation (1.1) has a solution u(t) satisfying

(2.23) u e L2(0, V).
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3. Proof of Theorem 1. Let (p’H ]-oo, +oo] be the convex function
defined by

(3.1) q(u)= inf{ [u- v[2 }22
+q)(v);veH 2>0, ueH.

It is well known (see, for example, [2]) that qz is Fr6chet differentiable on H and
cqx gx forall2 > 0.Asgz is Lipschitzian on H, forevery 2 > 0 the approximating
equation

(3.2) uz(t) + a(t s)g(ux(s)) ds f(t), 0 < oo,

has a unique solution ux e Hoc(0, oo ;H). The equation (3.2) can be written as

(3.3) u;() + a(0)g(u(0) + a’( s)x(ux(s))ds f’(0, a.e. > 0.

Noting that

d

dt
q(u(t)) (g(u(t)), u’(t)), a.e. > O,

by (3.3) it follows that

d
dtq(uz(t)) + a(O)[g(u(t))[2’ <= [f’(t)[[gz(uz(t))[,

+ [gz(u(t))[ [a’(t- s)[lg(uz(s))l ds.

By integrating this inequality on ]0, T[ and using (3.2), we get

q)(uz(t)) + a(O) [g,(U,(S))[ 2 ds <= qz(f(0)) + [f’(s)[ [g(ux(s))[ ds

+ Igx(uz(s))l ds [a’(s z)[ Igx(ua(r))[ d.

By Schwartz’s inequality we obtain

(u(sl s a’(s l(u(rl r

ga(ua(s))l ds la’() d

because the LZ-norm on ]0, t[ of fola’(s- z)llgx(ux(z))ldz is majorized by
j’ la’(z)[ dz (j’to [g(uz(z))[ 2 dr) /2. Since a’ =< 0 we finally obtain

oa(ua(t)) / a(t) Iga(ux(s))l z ds <= qx(f(0))+ [f’(s)[lg(ua(s))l ds.
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Let 0 < T < be such that a(T) > 0. Then the last estimate yields

q(u(t)) + 1/2a(t) g(u(s))l 2 ds <_ q(f(0))

(.4)

+ 2 [f’(s)l 2 ds, 0 <__ <= T,

because (px(u) =< (p(u) for all u e H.
Let Uo be arbitrary in D(g). Then the inequality

(pa(ua) >= q)(Uo)- (g(uo), Uo u)

gives, with some constants and fl,

(3.5) (p(u(t)) >_ a]u(t)l + fl for all 2 > 0

because Iga(uo) <= [g(uo) and cp(Uo)is bounded.
Applying Schwartz’s inequality in (3.2), we find that

lug(t) <= If(t)[ + [g(u(s)) 2 ds -]- C,

where r. is positive and can be chosen arbitrary small. Combining this inequality
with (3.4)and (3.5), we find that {g(u)} is bounded in L2(0, T; H) and {u} is
bounded in L(0, T; H).

Therefore, we may assume that as 2 0,

u u weakly in L2(0, T; H),
(3.6)

g(u) - g weakly in L2(0, T; H).

Let L denote the integral operator

(3.7) (Lv)(t)- a(t- s)v(s) ds, 0 < < r.

We recall that assumption (2.7) implies that L is positive on L(0, T; H) (see
[10, [12 for details). Then by (3.2) we get

(3.8) (gx(u(t))- g,(u,(t)), ux(t)- u,(t)) d <= 0 for all 2,/ > 0.
o

Since g is maximal monotone, (3.6) and (3.8) imply (see, for example, [2]) that
u(t) e D(g) a.e. e ]0, T[ and

g(t) e g(u(t)) a.e. e 0, T,

which shows that u(t) is a solution of(1.1) on the interval [0, T]. Obviously, u’ and
g(u) belong to L2(0, T; H), so that the function - q)(u(t)) is absolutely continuous
on 0, T] (see 2, Lemma 3.3]) and

d
(3.9) td-q(u(t))
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To conclude the existence it remains to show that u(t) can be continued on
IT,

We consider the equation

(3.10)

v(t) + a(t s)g(v(s)) ds f(t + T) a(T + s)g(u(s)) ds,

O<_t<_T.

Let ji(t) denote the right side of (3.10). Clearly f’l 6 L2(0, T" H) and fl(0) u(T)
6 D(q). Thus, according to the first part of the proof, there exists a solution v of(3.10)
such that v’ 6 L2(0, T;H). It now follows readily that fi:[0, 2T -, H defined by

u(t) if0=< t__< T,
fi(t)

v(t- T) if T< =< 2T,

satisfies the equation (1.1) on [0, 2T].
Thus, by repeatedly using this argument, one obtains a solution u(t) of (1.1)

defined on the whole half-axis and satisfying the claimed conditions.
Ifg is strictly monotone, that is, (g(u) g(v), u v) 0 iff u v, the unique-

ness of the solution u is an immediate consequence of the positivity of L. Thus the
proof of Theorem is complete.

and

(4.2)

(4.3)

4. Proof of Theorem 2. Let u be any solution of (1.1). Clearly, u Ho(0, 3v)

(4.1) u’(t) + a(O)g(u(t)) + a’(t s)g(u(s))ds f’(t), a.e. > 0.

As we have noted before, this implies that
d
dq(u(t)) (g(u(t)), u’(t)), a.e. > 0.

Multiplying (4.1) by g(u(t)) and integrating gives

a(t)
q(u(t)) + - ]g(u(s))[ 2 ds <= q(f(O))

+ f’(s)[ 2 ds, >= O.

By hypothesis (2.12) we have

(4.4) lu(t)l bounded on [0, [.

As (p is bounded from below by an affine function, by (4.3) we obtain

(4.5) g(u) Lz(0, oo ;H)

because a(t) >= a(oo) > O.
Next, by (4.1) and (4.2) we have

d
(4.6) u’
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Thus (p limt_ + q)(u(t)) exists. But by the definition of 8(p, we have

q)(u(t)) <_ (p(v) + (g(u(t)), u(t)- v) for all v e H.

Hence by (4.4) and (4.5),

(p lim (p(u(t))<__ q(v)

as claimed.
Suppose now that q0(f)e L1(0, oo) and

(4.7) x/a’ e L

(4.8)

for all v e H,

x/f’ Lz(0, oo ;H).

Multiplying (4.1) by tg(u(t)), and integrating over 0, t[ yields

tq)(u(t)) + a(O) slg(u(s))] 2 ds

<= s ds (g(u(r)), a’(s r)g(u(s))) dr + q(u(s)) ds

+ slf’(s)l ds fO
1/2

slg(u(s))l 2 ds >= O.

Now we multiply (1.!) by g(u(t)) and integrate over ]0, t[. Since L is positive, we
obtain

In other words,

fi (g(u(s)), u(s) f(s)) ds <= 0 for all >_ 0.

(4.9) q(u(s)) ds <_ q(f(s)) ds for all __> 0.

We now put

and

I(t) s ds (g(u(r)), a’(s "c)g(u(s))) dr

I2g(t) slg(u(s))l 2 ds.

Interchange of the order of integration, which is easily justified by the
hypotheses and Fubini’s theorem, yields

II(t)] _-< a’(r) d’c slg(u(s z))l 2 ds Ig(t), __> 0.

After some calculation, we get

II(t)l <- (a(0)- a(t))I2g(t)
(4.10)

/ Ig(u(s))l 2 ds Ig(t) a’(s)[ ds, >= O.



736 VIOREL BARBU

Combining (4.5), (4.7), (4.8), (4.9) and (4.10), we obtain

(4.11) tq)(u(t)) + stg(u(s))l 2 ds <= C, .>= O,

which completes the proof.
Remark 1. Theorem remains valid if instead of (2.6) we assume that

(4.12) a(0) > 0, a’(t) >_2_ 0 a.e. > 0.

This follows by observing that in the proof of Theorem the inequality (3.4)
holds in this case with 2a(0)- a(t) instead of a(t). Similarly, assuming that
a(v) < 2a(0), we see that Theorem 2 follows with (4.12) instead of (2.6).

5. Proofs of Theorem 3 and 4. We introduce the following notations:

L2(O, oo V), ._X L2(O, oo ;H), ’ L2(O, oo V’).

We shall also denote by ., ) the natural pairing between U and U’, that is,

(u, v) (u(t), v(t)) dt, u ,, v ’.

Proof of Theorem 3. Let us denote by ’U --, U’ the operator defined by

((u))(t) g(u(t)), u a.e. > 0.

By (ii) the operator is monotone and demicontinuous from U to U’. As we have
already noted, this implies that is maximal monotone in U x ’. Moreover, by
(iii) we have

(5.1) ((u), u) >__ c2 u , u e .
Since a e LI(0, oo), the operator (Lu)(t) [.o a(t s)u(s) ds is continuous on
and ". Moreover, as Re (ico) > 0 for all co e R 1, it follows that L is positive on
these spaces (see, for example, [5]). In particular, this implies that (2/ + L)-1 is
continuous on U and for all 2 > 0.

We consider the equation
(5.2) ua + 2(ua)+ L,(ua)= f.
Equivalently,

(5.3) (ua) + (21 + L)-lux (21 + L)-f.
The operator (21 + L)- is obviously positive and continuous from W to W’.
Hence it is maximal monotone. Since g is maximal monotone and by (5.1) coercive
from U to W’, it follows that (5.3) has at least a solution u e ,, (see, for example
[4]). From (4.2) it now follows readily that this solution is unique.

Multiplying (5.2) with (u,) and using (5.1), we derive

Next by (2.20),

(5.4)

for some positive constant C.
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and

As L is positive from to itself, we have

11(2I + L)- lUll.V- 2- llUl[ f for all 2 > 0, u e .
Then by (5.3) we get

All’(uz)ll _-< [luxll / Ilfll for all 2 > 0.

We now set

v u + 2 (u).

By (5.4) and (5.5) it follows that

(uz- v)0 incur as 2--,0

{vx} bounded in #2.

Therefore a subsequence (denoted again {ux})can be extracted from {ux} such
that as 2 0,

uz u weakly in

(5.6) v u weakly in

,(uz) ---, w weakly in ’.

To conclude the proof it suffices to show that w (u). Again using the
positivity of L in W,, by (5.2) it follows that

(5.7) (fz(vz)- ,(v,), vx v,) =< 0 for all 2, # > 0,

where , be(I + 2ae)- and e’D() c 3/f ---, 3/f is defined by

(5.8) ’e(u) ,(u) for u

Extracting a further subsequence if necessary, we may assume that

(5.9) lim (x(vx), vx) I.
2--,0

Then the inequality (5.7) yields

(5.1o) _<_ (w, u).

Let v be arbitrary in D(). We have

((v)- (v), v v) __> 0

because x is monotone in (see 2). As x(v) (v) strongly in g and v u
weakly in ,, by (5.9) and (5.10) we deduce that

(5.11) (w (v), u v} > 0 for all v e D().

We observe that under our assumptions, D() is a dense subset of . Indeed,
for any v e the solution v e D() of the equation

v + (v)= v
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satisfies

C vl + e Ig(v) < Cz v lv .
Hence {v} is bounded in . As for e 0, v (I + e’ae)- 1U converges to v in
(see 2) we conclude that v v weakly in .

Now, let v be an arbitrary element of and let {v,} c D(g) be such that
v, v strongly in . As is demicontinuous from V to f", this implies that
(v,) (v) weakly in ’. Thus the inequality (5.1/) extends to all v e . As is
maximal monotone in U x ’, we deduce that w (u).

Since 2(ux) 0 in as 2 0, by (5.2) and (5.6) we deduce that

u + L,(u) f,
which concludes the proof.

Remark 2. For applications, it would be desirable to extend Theorem 3 in the
case when V is a reflexive Banach space. It is clear that the preceding proof is
applicable to this general case if in addition we assume that

(5.12) 11(21 + L)- 111L(,) is bounded as 2 --. O,

where L(, ) is the space of all linear continuous operators from U into itself.
In particular, this holds if L is accretive on . We do not know whether or not
(5.12) is implied by (i).

Proof of Theorem 4. This proof reproduces, with minor changes, that of

Theorem 3. We observe that condition (2.20) was used only for proving the estimate
(5.4).

But if (iv) holds, then we have [1]

;o ;o(5.13) ILu(t)l dt <_ q (Lu(t), u(t)) dt for all u e .
Since aq < 1, by (2.22), (5.2)and (5.12) we obtain

(5.14)

with some positive C. In particular, (5.14) implies (5.4). Thus arguing as in the proof
of Theorem 3, we deduce that a sequence denoted again {ux} can be extracted from
uz} such that

ux u weakly in ,
where u is a solution of (1.1).

6. Examples. Throughout this section, f will denote a bounded open subset
ofR" with sufficiently smooth boundary F. Hk(f) and H(f), k 1, 2, are the usual
Sobolev spaces on f.

Example 1. Let fl be a maximal monotone graph in R R 1. Then there exists
a lower semicontinuous convex function j :R ]-, + c] such that fl c3j.
We recall that j is uniquely determined up to an additive constant.

We take H L2(f) and q9 :H ]- c, + ], defined by

(6.1) qg(u)
Igraduldx + j(u)dx ifueH(n),j(u)eL(f),

/ + otherwise.
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We recall (see [3]) that 8qg(u)(x) Au(x) + fl(u(x)) a.e. x e f and

{6.2) IAul I(Oqg)(u)l for all u 6 D(c3qg).

Taking g c?qg, (1.1) becomes

u(t, x) a{t s)Au(s, x) ds + a(t s)fl{u(s, x)) ds f(t, x),

(6.3}
u(t,x)=O, xF, >= 0.

Suppose that a(t) satisfies the assumptions of Theorem 2. Let f e L2oc(0, oc
L2()) be such that

of
--t- e L2{0, L2{f)), /{0, )e H{f)

xf, =>0,

and

(6.4)

j{f{0, )) 6 Ll{f).
Then (6.3) has a solution u(t, x) satisfying

u L2(0, m U{f) f’l H2(’)), - L2(0, (x) L2(’}),

(6.5) [lu(t, -)11{.} bounded on [0, [.

In particular, (6.5) implies that {u(t); >= 0} is a compact subset of L2(f). Let
u be an arbitrary limit point of u(t) as
u L2(f)}, that is, u (cqg)-1(0). This shows that uo H(f)f-] HZ(f) is the
solution (clearly unique) of the nonlinear boundary problem

Au fl(u) O onlY,
(6.6)

u=0 onF.

Hence

(6.7) lim u(t, x)= uoo(x) in L2().

Example 2. Let fl be as in the preceding example and let (p’L2()
+ o] be defined by

Igrad ul 2 dx + j(u) da
q(u)

+

if u H1{), j(u) L I(F),

otherwise.

We note [3] that

{c3q A on D(c3qg) u e H2(); nn e fi(u)

Here O/On denotes the outward normal derivative.
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(6.8)

Taking H L2() and g cq, equation (1.1) can be written as

u(t, x) a(t s)Au(s, x)ds f(t, x) on]0, v[ ,
0-- e fl(u) on ]0, co[ x F,

and we can apply Theorems and 2.
In particular, if j’R -- ]-(x, + (x3 is defined by j(r)--0 if r 0 and j(r)

+ m if r < 0, then (5.8) becomes

u(t, x) a(t s)Au(s, x) ds f(t, x) on ]0, m[ ,
au

u>=0, -;->=0 on]0,[ F,

u
uT--= 0 on ]0, [ F.

We note that problems of this type occur in the theory of heat conduction in
materials with memory.

Example 3. Let V be a closed subspace of H"() such that

H() V Hm()

and let g:V V’ be defined by

(6.9) (g(u), v) m,

where A(x, ) are continuous in and measurable in x on ft. We impose on A the
growth conditions

(6.10) IA(x,)l C , a.e.x; R,
and the monotonicity condition

(6.11)

Finally we assume

(6.12) A(x,) C2 [[2, C2 > 0.
[lm Ilm

Then the operator g satisfies conditions (ii) and (iii) (see, for example, 4], [7]).
Now, assuming that the kernel a(t) satisfies (i), by Theorem 3 it follows that for any
f L(0, V) the equation

(6.13) u(t,x) + (-ly a(t s)DA(x,D’u(s,x))ds f(t,x)

has a solution u e L(0, V). In particular, if V H(), then u(t, x) satisfies the
Dirichlet boundary conditions
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(6.14) Du=O on]0,[ F, [a[ <=m- 1.

Now, if the condition (iv) holds instead of (i), by Theorem 4, it follows that the
above existence result remains valid only assuming that

A(x,) >_ C2 I12 a.e. x e f e R"
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SEPARATION THEOREMS FOR SELF-ADJOINT LINEAR
DIFFERENTIAL EQUATIONS OF THE FOURTH ORDER*

WILLIAM BRUNNER MILLER

Abstract. This paper is devoted principally to the development of separation theorems for two

solutions of a self-adjoint linear differential equation of the fourth order whose coefficients are continu-
ous.

The main portion of this paper is concerned with the behavior of two solutions in the neighborhood
of zeros of a certain determinant which identifies the focal points of an end-plane. We first look at two

conjugate solutions and prove a separation theorem for them.
The problem is studied further since not all pairs of solutions ofa differential equation are conjugate.

Given two nonconjugate solutions, there is a solution linearly independent of and conjugate to both
given solutions. Using theorems which relate the number of focal points to conjugate families in an
interval and of problems with different end-conditions, we obtain a separation theorem for non-

conjugate solutions.

1. Introductory remarks. There has been a revival in the study of separation,
comparison, and oscillation theorems of self-adjoint linear differential equations
of the fourth order of the fbrm

L(y) (r(x)y")’ + q(x)y’]’ + p(x)y O,

where r(x) is positive and all three coefficients are continuous on an interval I.
Leighton and Nehari [103 were among the first to rekindle the study, but they

required that r(x), q(x), p(x) be functions of C2, C 1, CO respectively and for the
most part q(x) =_ O. Barrett Ill, [2] required that the coefficients just be continuous
and did include the middle term q(x), but most of his results require that q >__ 0
and p => 0. Sherman [14] establishes the existence offirst conjugate and focal points
for solutions of the general nth order linear differential equation. Hinton 7]
proves several oscillation theorems with regard to functions which satisfy clamped
end boundary conditions. Ladas [9] proves some comparison and oscillation
theorems for ordinary self-adjoint differential equations of order 2n. In particular,
he studies the oscillatory behavior of fourth order differential equations contain-
ing a middle term which is wider than that studied by Leighton and Nehari.

More recently papers by Bradley [4] and Keener [8] have studied properties
of solutions of fourth order differential equations with restrictions on r and p and
q--0o

Most of the abovementioned articles are concerned with disconjugacy on

I (that is, no nontrivial solution of L(y) 0 has four zeros on I). Rarely do the
above papers examine the difference between the number of zeros of two linearly
independent nontrivial solutions of L(y) 0. Leighton and Nehari and Keener
do prove some separation theorems for the case q 0 and p of one sign.

The purpose of this paper is to investigate the differential equation L(y) 0
with no restrictions on r(x), q(x), p(x) other than continuity and to derive several

* Received by the editors February 8, 1973, and in revised form June 7, 1974.

? Department of Mathematics, Worcester Polytechnic Institute, Worcester, Massachusetts
01609.
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separation theorems which state the difference between the number of zeros of
two solutions in an interval.

This paper consists of three parts. First there is a brief outline of work leading
to an index theorem. This theorem makes it possible to count the number of nega-
tive characteristic roots rather than the number of focal points when the former is
more convenient to compute. Second, the major separation theorem is derived
which states the difference between the number of zeros of two conjugate solutions
in terms of the number of focal points. Finally, by comparing two nonconjugate
solutions u and v to a solution w which is conjugate to both u and v, an upper bound
of the difference between the number of zeros of two nonconjugate solutions in an
interval is obtained.

Part I. We are going to study the fourth order self-adjoint linear differential
equation

(1.1) [(r(x)y")’ + q(x)y’]’ + p(x)y O,

where r(x), q(x), p(x) are functions of CO and r(x) > 0 on the interval [a, b]. Corre-
sponding to a function y, set Doy y, Dly Y’, D2y ry", D3y (ry")’ + qy’.

A solution of(1.1) is a function y of class C2 such that D2y and Day are of C
and the differential equation is satisfied. This result is easily obtained by writing
(1.1) in phase-vector form and applying standard uniqueness and existence
theorems.

Let Y and Z be the matrices

Y [y(a), y(b), y’(a), y’(b)] r,
Z [- D3y(a), D3y(b), Dzy(a), Dzy(b)] r,

where T indicates transpose.
We now state the following
THEOREM 1.1. Any set of self-adjoint boundary conditions can be given in the

form
Y-Cu=O,

Y=0 or
CrZ Bu O,

where u is a column of parameters with 0 < <__ 4, C is a matrix of 4 rows and
columns having rank t, and B is a symmetric matrix of rows and columns. Con-
versely, any set of conditions of this form is self-adjoint.

2. Classification of boundary conditions. The self-adjoint boundary conditions
will be represented in the form

(2.1)
ch uh’ y,S dhSUh

(s- 1, 2 not summed, h= 1,...,t),

(2.2) [-DSyc + DS2ydS]2 + bhu O,

where yl y(a), y2 y(b), Dy r(a)y"(a), etc. and C [c,, d,]w is of rank t, and
B [bh] is symmetric, and ]2 is used to indicate the difference between the values
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at x aand x b. One terms (2.1) the end-plane Trt in the space ofthe four variables
yS, y,S (s 1, 2) regarding the variables (u) as parameters. The symmetric quad-
ratic form bhkuhuk will be called the end-form. Conditions (2.2) are called trans-
versality conditions. The too-plane corresponding to 0 is included as a special
case called the null end-plane. This case has no transversality condition.

This paper is concerned with boundary value problems of the following type.
In all cases the differential equation will be

(2.3) [(ry")’ + qy’]’ + py- 2y O.

Problem A. Boundary conditions y(a) y’(a) O, y(b) y’(b) O.
Problem B. Boundary conditions

y(a) cuh, y(b) O,

y’(a) duh, y’(b) O,

D3Ch D2d -+- bhkU --O.

(h 1,t;t <= 2)

Problems A’ and B’. Same as Problems A and B respectively with condition
y(b) y’(b) 0 omitted.

Problems A’ and B’ will be called focal boundary problems and the end
conditions at x a will be termed the end-plane re’, in the space of two variables
yl, y,1. If 0, the end conditions y(a) y’(a) 0 apply.

3. Conjugate and focal points. The index theorem. In order to prove the index
theorem, one uses the "broken" extremal technique. The steps used in deducing
this theorem are a modification by Miller [11, pp. 11-35] of work done by Gottlieb
5]. More recently, some of these results can be shown to be special cases of self-
adjoint differential systems as developed by Reid [13, Chap. 7]. Essentially it
consists of minimizing the functional

I(y, 2)= bhkuau + ;a 2co(y, y’, y", 2) dx,

where 2co(y, y’, y", 2)= r(x)y’’2 q(x)y’2 + p(x)y2 2y2.
Following Reid [13], let y(x) [y,y’,-D3y, D2yT and J denote the 4 x 4

symplectic matrix

Suppose y and z are two solutions of a self-adjoint linear differential equation of
the fourth order;it is well known that

zTJy= zD3Y- z’D2y + y’D2z- yD3z const.

If the constant is zero, then the solutions are said to be conjugate; otherwise they
are nonconjugate.

The following two theorems are useful.
THEOREM 3.1. Any two solutions of a focal boundary problem are mutually

con.jugate.
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THEOREM 3.2. Given two mutually conjugate solutions of(2.3) there exists a set

of end and transversality conditions satisfying Problem A’ or Problem B’ which is

satisfied by the two solutions.
DEFINITION 3.1. If, for a given value of 2, there exists a nonnull extremal which

has a zero of order at least two at x x and x x2 (a =< xl < x2 =< b), then the
two points x and x2 are said to be conjugate with respect to I(y, 2).

DEFINITION 3.2. If, for a given value of 2, an extremal which satisfies the condi-
tions of Problem B’ has a zero of order at least two at x x in (a, b] without
vanishing identically, then the point x x is said to be a focal point of the end-
plane r’t at x a with respect to B’.

LEMMA 3.1. Suppose u and w are two linearly independent solutions of Prob-
lem B’. Then the focal points of the end-plane rc’t are the zeros of the determinant

U W

01
U W

Proof If x x is a focal point of r(t, then there exists a solution y satisfying
the endpoint and transversality conditions of Problem B’ at x a and having a
double zero at x x. Now every solution y satisfying these endpoint and trans-
versality conditions is a linear combination of solutions u and w. Then at x x l,

y au + bw =0, y’ au’ + bw’ O,
where a, b are constants not both zero. It follows that

u(x) w(x)
o(X) O.

u’(x) w’(x)

The lemma is proved.
A similar lemma holds for Problem A’ with focal point replaced by conjugate

point. An effect of Lemma 3.1 and Theorem 3.2 is that focal points can be associ-
ated directly with any pair u, w of conjugate solutions.

DEFINITION 3.3. The index of a conjugate point or focal point at x c is
defined as the nullity of the matrix

U
A

u’ w’

at x c, where u and w are two linearly independent conjugate solutions. Conju-
gate and focal points will be counted a number of times equal to their index.

Combining these ideas with the index of a functional and a count of the
number of characteristic roots less than 2*, we are led to the index theorem.

THEOREM 3.3. The number ofcharacteristic roots less than 2* in the Problem A
is equal to the number ofconjugate points ofx a on (a, b). The number ofcharac-
teristic roots less than 2" in the problem B is equal to the number offocal points of
the end-plane re; on (a, b).

Part II.
4. Orders of zeros of two functions. In this section the behavior of the zeros

of two solutions of a self-adjoint linear differential equation of the fourth order
will be examined in relation to the associated focal points. Part of this investigation
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pertains to two functions in more generality, and the problem will be attacked in
this broader form.

Consider the class of functions C.3 having the following properties on an
interval (a, b):

(i) each function u is of C2,
(ii) D2u is of C,
(iii) Dau is of C.

Now let two functions u and w belonging to C.3 have the following properties:
(a) zeros on (a, b) of the following type:

Dou(c) 0,

but not

DoU(C Dau(c) 0,

DoU(C) Dau(c)= D2u(c O,

Dilt(C O,

(b) no zeros of u and w in common such that

Diu Diw O,
(c) no linear combination u and w having a zero such that

D(c u + cw) O,

Generalizing on the notation used by Barrett [3], let

A
u’ w

The following determinants are related to A"

=0,1,2,3"

=0,1,2’

i=0,1,2,3.

Diu Diw
ij-- ivj,i <j, i=0,1,2, j= 1,2,3

Dju Djw
More specifically, they are Col, o2, e2, Co3, e3, e23.

In Theorems 4.1, 5.2, 6.1 the order of the zeros ofu is taken to be greater than
or equal to the order of zeros of w. Obviously, the roles can be reversed.

THEOREM 4.1. The only possible combinations of zeros of u and w at zeros of
o are shown in Table 1.

Proof It is known that if Col is not zero in an open interval, the zeros of the
functions u and w separate each other on such an interval. Therefore, consider the
point x c, where eo(C) 0. In what follows, k const.

Case 1. If u(c) 0, w(c) 4= O, then at x c either w ku, w’= ku’ or w ku,
w’= ku’, rw"= kru". These conclusions are shown in Table 1, Case B, column
2(a) and Case D, column 2(a) respectively.

Case 2. If u(c) 0, w(c) 4: O, then at x c either u u’ 0 or u u’ ru"
0. See Table 1, Case B column 2(b) and Case D, column 2(b).
Case 3. If u(c) w(c) O, u’(c) v 0, w’(c) 4: O, then at x c either w’ ku’,

rw" kru" or w’ ku’, rw" kru". See Table 1, Case C, column 2(a) and Case E,
column 2(a).
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TABLE

Zro at

Case Nullity aOl o2 a12 a03 a13

2(a) 2(b)

No. of

atx

3(a) 3(b)

Relation

Under between

uandw

A 0
B
C
D
E
F 2

* *
* ,
* *

0 0
0 0

0 0

2 2

0
2 0
2
3 0
3
3 2

u W

U u
u U

// w
U w
U w

U W

U w

C/NC
c/c
NC
NC
C
C

Column 4: C conjugate, NC nonconjugate.

Case 4. If u(c) u’(c) w(c) 0, w’(c) :/: 0, then at x c either u u’ 0 or
u u’= ru"= O. See Table 1, Case C, column 2(b) and Case E, column 2(b).

Case 5. If u(c)= u’(c)= w(c)= w’(c)= 0, then at x c either rw":/: O,
ru" :/: 0 or u u’ ru" 0. See Table 1, Case F, column 2(a) and Case F, column
2(b). These are the only possible combinations of u and w at zeros of Sol.

If the nullity of A at x c is zero, then A is nonsingular at x c and Sol(C)- 0. The converse is also true.
If the nullity ofA(c) is one, then A(c) is singular and So(C) 0. Since A(c) :/: O,

Cases 1, 2, 3, 4 apply. Conversely, if Cases 1, 2, 3, 4 apply, the nullity of A(c) will be
one.

If the nullity of A(c) is two, then A(c) 0, and Case 5 applies. Conversely, if
Case 5 applies, then A(c) has a nullity of two.

5. Foreknowledge of zeros of two functions. In the count of the numbers of
zeros of two solutions, it is necessary to predict which of the two solutions will
vanish next if either vanishes or which has the higher order zero if both vanish.
The theory developed in this section will apply to two functions u and w with
properties (a), (b), (c) of 4.

DEFINITION 5.1. Let u and w be two functions and suppose u, w, and So do
not vanish at x a. Then u is under w if and only if So(a) and u(a)w(a) have the
same sign.

This somewhat artificial definition is made clearer by the following theorem.
THEOREM 5.1. Suppose u is under w at x a and the first zero of w following

x a is at x b. Then if So :/: 0 in (a, b], u vanishes in (a, b].
Proof Without loss of generality it can be assumed u(a) > O, w(a) > 0 and

therefore So l(a > 0. Suppose u does not vanish in (a, b]. Then at x b,

So,(b) u(b)w’(b) < 0

since w(b) 0, u(b) > 0, and w’(b) < 0. The fact contradicts the hypothesis that
Sol does not change sign in (a, b].

THEOREM 5.2. The various cases ofonefunction being under another just before
and just after a zero of Sol are shown in columns 3(a) and 3(b) in Table 1.



748 WILLIAM BRUNNER MILLER

Proof It can be assumed that the zero of Col occurs at x c and for x < c
but sufficiently close to c, u(x), w(x), Zo(X are all positive, that is, u is under w
just before c in all cases.

The proof consists of considering the five cases (CZo(C) 0) indicated in
Table individually, and then repeatedly applying the law of the mean and the

3/rfollowing identities" Zol Xoz/r (Xo2’ x 12 + 03 qol, 12 13,12 2
+ Po, and 12 03 if U and w are conjugate.

For example, consider Case C: ff 0 (c) 02(c) 03(c) 0 and (c) > 0,
then (x) (x) + 03(x) q(X)o(X) > 0 ff x is near enough to c. If x < X
< c, then using the law of the mean, o2(X) 2(X)(x c), which implies o2(X)
< 0, x near c. Since (x) o2(x)/r(x) < 0 for x near c, it follows from the law
of the mean that o(X) (X)(x c) implies o(X) > 0 for x near c. For c < x
but near c, one can show similarly that oa(X) > 0. In the general case, u and w
both have simple zeros at x c, hence for c < x, u and w are both negative and
uw and o have the same sign for c < x, that is, u is under w. In the special case, u
has a double zero and w a single zero at x c, hence for c < x, u is positive and
w is negative, and uw and o have opposite signs, that is, w is under u.

6. Conjugate and nonconjugate solutions and zeros of tol. In this section the
functions u and w used in 4 and 5 are restricted to solutions of a self-.adjoint
linear differential equation of the fourth order. The purpose is to show the rela-
tion between the property of two solutions being conjugate or not at points
where CZol is zero.

Using the identity (3.1) it is possible in many instances to tell at a zero of

o whether two solutions are conjugate or not.
THEOREM 6.1. The property oftwo solutions being conjugate or not at zeros of

czo is shown on Table 1, column 4.
Proof As in Theorem 5.2, one considers the five cases separately. In each

particular case there is a relationship between the two solutions u and w at a zero
of CZo. From these relations one can usually determine whether u and w are
conjugate or not. For example (assuming x c is a zero of o), consider Cases B
andE:

Case B. In both the general case and special case there is not enough informa-
tion to tell whether the constant in (3.1) is zero or not.

Case E. In the general case, since eo(c)= eo2(C)= e2(c)= eo3(C)= 0,
u(c) w(c)= 0, there exists a number k such that Du(a)= kDw(a), D2u(a)

kD2w(a). Substituting these conditions in (3.1) makes the constant zero. The
solutions are conjugate.

In the special case, since u has a triple zero and w has a simple zero at x c,
it follows easily from (3.1) that the solutions are conjugate.

7. A separation theorem for points on a line. A major theorem is concerned
with the difference between the number of zeros of two conjugate solutions.
Although the theorem is to apply to conjugate solutions of a differential equation,
it can be proved more easily if one considers points and intervals on the x-axis
having properties similar to the zeros and one solution being under another of
conjugate solutions.
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DEFINITION 7.1. Consider a set of points on the x-axis. A point is called a
single or simple point if there is only one point in the set having a given value of x.
A point is called a double point if there are exactly two points in the set having a
given value of x. The definition is similar for a triple point.

Consider three sets of points on the interval (a, b) of the x-axis with the
following properties:

u is a finite set of points (possibly double or triple),
w is a finite set of points (possibly double or triple),
A is a finite set of points (possibly double).
The points in set u or w correspond to the zeros of the conjugate solution u

or w respectively in (a, b). A simple point corresponds to a simple zero, a double
point to a double zero, etc.

The point in set A correspond to the nullity of matrix A. A simple point
corresponds to a matrix with a nullity of one while a double point corresponds
to a matrix with a nullity of two.

At any point c in the interval (a, b), only certain coincidences of points from
sets u, w, A will be allowed. This information is gleaned from Table l, and the
coincidences are listed in columns 2, 3, and 4 of Table 2 (e.g., in Case E, Table l,
column 2(a), one sees at x c that there is a simple zero of u and a simple zero of w
and the nullity of A is one. This situation is listed in line 4, Table 2, where it can
be seen that if there is a point of u and a point ofw at , there is also a point of A.)

Let S u U w t3 A. The intervals between consecutive points are labeled (u)
or (w) in the following way. Let x c be a point in S. If the solution u is under the
solution w just to the left of x c, the interval to the left of c in set S will be
marked (u). Similarly, if the solution w is under solution u just to the left of x c,
the interval to the left of c in set S will be marked (w). The interval to the right of c
in set S is treated in a similar fashion. No interval can be labeled (u) and (w)
simultaneously, as seen from Definition 5.1. The permissible labels are listed in
columns 5 and 6 of Table 2. These entries are easily found from Table 1 (e.g., in
Case E, Table 1, using the zeros of u and w found in column 2(a), one sees in
column 3(a) for x < c, that u is under w while for x > c, w is under u). Thus one
labels the interval to the left of c (u) and the interval to the right of c (w). These
labels are found in line 4b.

Let N(u) represent the number of points in set u, each point counted accord-
ing to its multiplicity. A similar definition applies to sets w and A.

LEMMA 7.1. There can be no consecutive points ors which are simple pointsofu.
Proof Suppose there are two consecutive points of S both ofwhich are simple

points of u, namely, xl and x2, x < x2. This case appears in line 2 of Table 2.
The label appearing in the interval to the right of x x is (u) whereas the label
appearing in the interval to the left of x x2 is (w). This is a contradiction, for the
interval (x l, x2) cannot be labeled both (u) and (w).

LEMMA 7.2. Suppose N(A) n. Then IN(w) N(u)l is bounded above.
Proof Mark the points of u and A. Then there are at most N(u) + n +

intervals. Since there cannot be two consecutive points of S which are simple
points of w, there are at most N(u) / n / points of w inside the intervals. It fol-
lows from Table 2 that all other possible points of w occur at points of A. At such
points, the number of points of w can exceed the number of points of u by at most
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TABLE 2

Line

Number of points

at Left Right

A label label

0 0 W U

2 0 0 U W

3a 0 0 w u

3b 0 0 u w

4a w u

4b u w
5 0 2 w u

6 2 0 u w

7 3 w u
8 3 u w

9a 2 2 2 u u

9b 2 2 2 w w
10 2 3 2 w u

11 3 2 2 u w

Left label Label appearing in interval just to left of
Right label Label appearing in interval just to right of

2. Since there are n such points, the number of points of w can exceed the number
of points of u at points of A in (a, b) by at most 2n. Combining these two results,
one can write the following inequality"

which yields

N(w) <= N(u) + n + + 2n,

N(w)- N(u) <= 3n + 1.

If u and w are interchanged, then

N(u)- N(w) <= 3n / 1.

Combining the two inequalities, one has

IN(w)- N(u)l =< 3n / 1,

and the lemma is proved.
Let Q(n) max IN(w) S(u)l. Then for all u, w,

(7.1) IN(w)- N(u)l -< Q(n).

Furthermore, there exists a u, w, A with N(A) n such that either

(7.2) U(u) U(w)- Q(n) or U(w) N(u)- Q(n).

It will be assumed in what follows that N(w) _> N(u). Let u*, w*, A* be sets of
points with N(A*) n which achieve equality (7.2).
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LEMMA 7.3. If C is a point of A*, there exist sets u*, w*, A* with N(A*) n
and , if;, ft. with N(I) n and a neighborhood B ofc such that outside ofB the sets

u, w, fi, are identical to the sets u*, w*, A* respectively and inside B, the number oj’
points of sets u, w, equals the number of points of u*, w*, A* respectively, but in B
there are no coincident points or multiple points of, , . Furthermore, the labeling
in the intervals between consecutive points ofS* and cS is consistent with the rules
set down in Table 2.

Proof. The lemma is proved by considering all cases. The cases correspond
to the conditions found in similarly numbered lines in Table 2. Use is made of
the following code"

(.) label on interval,

u points from set u.

Case and Case 2 do not fall under this lemma.
Case 3. The lemma is obviously true.
Case 4(a). u*

W*
(u*) A* (w*)is replaced by (fi)()(fi)A().

Case 4(b) is the same, interchanging u and w.
Case 5. u*

U*
(u*) A* (w*) is replaced by (fi)"()3(fi)"().

Case 6. Similar to Case 5, u and w interchanged.

Case 7.

(u*) (w*) is replaced by (fi)"()(fi)()()(N).

Case 8. Similar to Case 7, u and w interchanged.
Case 9(a).

U

U*
W*
W*
A*

A A(u*) A* (u*) is replaced by (fi)-()-()-()-(fi)-()
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Case 9(b). Similar to Case 9(a), u and w.interchanged.
Case 10. u*

U*
U*
W*
W*
A*

(u*) A* (w*)is replaced by (fi)()(fi)()(fi)()(fi)’().

Case 11. Similar to Case 10 with u and w interchanged.
The proof of the lemma is complete.
THEOREM 7.1. /f in an open interval (a, b), u, w, A are sets ofpoints having the

properties described in Table 2, then the difference in the number of points of u and
w is at most N(A) + 1.

Proof Let N(A) n. It follows from Lemma 7.3 that u*, w*, A* with N(A*)
n can be replaced by fi, , , with N(,) n in which none of the points , , ,

are coincident or multiple, and

(7.3) N() N()- Q(n).

Mark the points of . It follows from Lemma 7. that there is a point of
or a point of in each interval between points of . It follows, therefore, that

(7.4) N(fi)+ n>= N()- or N()- N(fi)=< n + 1.

Using 7.3, it follows from (7.4) that

(7.5) Q(n) _< n + 1.

Applying the inequality (7.5) to the result (7.1), one has

(7.6) iN(w)- N(u)l <= Q(n) <= n + N(A) + 1.

Theorem 7.1 can be improved if one happens to know a number of points of
A which are double points.

THEOREM 7.2. If in an open interval (a, b) u, w, A are sets having the properties
described in Table 2, and r is the cardinal number of double points of A, then the

difference in the number ofpoints u and w in (a, b) is at most N(A) + 2r.

Proof
Case 1. Suppose c is a double point of each of the sets u, w, A. Let u’, w’, A’

be the sets u, w, A with point c excluded. Furthermore, this can be done without
changing the labels on the intervals to the left and right of c. From (7.6) it follows
that

IN(w’)- N(u’)l < N(A’) + 1,

]N(w’)+ 2 N(u’)- 2] <= N(A’) + 1.

But since N(w’) + 2 N(w) and N(u’) + 2 N(u),

(7.7) [N(w)- N(u)] =< N(A’)+ 1.
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Now N(A’) N(A) 2, hence (7.7) becomes

IN(w)- N(u)l __< N(A)- 1.

Case 2. Suppose c is a double point of each of the sets w, A and a triple point
of set u. Let u’, w’, A’ be the sets u, w, A with two points of c of each set excluded.
There is, of course, a simple point c left in set u’. Again this can be done without
changing the labels on the intervals to the left and right of c. Applying the same
reasoning as in the previous case, it follows that

IN(w)- N(u)l <= N(A)- 1.

Case 3. A similar argument obtains for w having a triple point at c while u
has only a double point.

It can be observed in each case that for each double point of A, the number
N(A) + appearing on the right-hand side of the inequality (7.6) can be reduced
by 2.

8. The separation theorem for conjugate solutions. Suppose one has two
conjugate solutions of a differential equation. It was shown in 7 that the proper-
ties of the zeros and focal points of two conjugate solutions correspond to the
properties of sets u, w, A in Table 2. In addition, the property of being "under" as
applied to solutions agrees with the notion of labeled intervals. Thus the theorem
which was proved for point sets is also true for two conjugate solutions. Re-
writing Theorem 7.2 in terms of conjugate solutions and focal points, one has the
following.

THEOREM 8.1. If in an open interval (a, b), F is the sum of the indices ofthefocal
points of two conjugate solutions, and if r is the cardinal number offocal points of
index two, then the difference between the number ofzeros in (a, b) ofthe two solutions
is at most F + 2r.

This is the best theorem one can get, even for two conjugate solutions of a
fourth order differential equation as shown by the following example.

Consider the self-adjoint differential equation_

yiV + y,, 0.

A fundamental set of solutions for this equation is

Yl 1, Y2 X, Y3 sin x, Y4 cos x.

The solutions yl and Y3 are conjugate as seen by substituting in (3.1). The focal
points of y and Y3 are the zeros of the determinant

sin x
001(X) COS X 0,

0 cos x

hence the focal points occur at x _+ (2n 1)7t/2 and are of index 1. Suppose there
are n focal points. In the interval [0, nzc], y3 has n + zeros while y has none. Thus

IN(y3)- N(yl) n +
and equality is actually achieved in Theorem 8.1.
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Part III.
9. Relations between nonconjugate solutions. In studying the separation

properties of two nonconjugate solutions, it is convenient to compare the two
nonconjugate solutions to a common conjugate solution.

Suppose u and u2 are two conjugate solutions of the self-adjoint differential
equation of the fourth order

(9.1) L(y) (ry")’ + qY’l’ + PY O.

According to Hadamard [-6, p. 347] one can always find two other solutions
vl and v2 conjugate to each other such that the solutions ul, u2, vl, v2 form a
fundamental set.

LFMMa 9.1. Given two nonconjugate solutions Y and Y2 ofthe self-adjoint linear
differential equation of the fourth order, there exist two other solutions Y3 and Y4
both ofwhich are conjugate to and linearly independent ofy and Y2.

Proof Let Yl and Y2 be two solutions of (9.1) which are not conjugate. If w
is a 4 x vector and Xo is any selected value, the pair of vector equations

yr(Xo)Jw 0 (a 1,2)

has a two-parameter family of solutions with basis (w3, w4). Now if Yk is the solu-
tion of L(y) 0 satisfying y(Xo) wk (k 3, 4) then each of the triples (yl, Y2, Y)
is a linearly independent set of solutions of L(y) 0 and the solutions of each of
the pairs (Y l, Y) and (Y2, Yk) are mutually conjugate.

10. Most general conjugate family. It is convenient to make use of the follow-
ing family of solutions in deriving comparison theorems for focal points. These
results are a particular case of a conjoined family of solutions of dimension 2 as
found in Reid [13, p. 306].

The number of linearly independent solutions of a self-adjoint linear dif-
ferential equation of the fourth order which are mutually conjugate is at most 2
(see Reid [13, Thm. 2.1, p. 306). A system of two linearly independent mutually
conjugate solutions will be called a conjugate base. The set of all solutions linearly
dependent on the solutions of a conjugate base will be called a conjugate family.
The matrix

Iu ]A
u’ w’

will be called the matrix of that base. The nullity of two different bases of the same
conjugate family is the same.

11. Comparison theorems for focal points. The following two theorems are
used in finding a separation theorem for two nonconjugate solutions. They were
originally adapted from Morse [12] but can now be considered as special cases of
Reid [13, Thm. 7.9, particularly problem 2, p. 367, and Thin. 12.31.

THEOREM 11.1. IftWO conjugatefamilies F and G have a linear independent solu-
tions in common, then the number offocal points of F on any interval (open or
closed) differs from the corresponding numberfor G by at most 2 a.
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Consider two boundary value problems B and B2 with the same differential
form 2re(y, y’, y", 2) in common. The end-plane in B1 and B2 will be denoted ,1
and ,2 respectively, where tl and 2 are the dimensions of these end-planes. Let
z,l and t2 be respectively represented by means of parameters (u) and (v). Let the
corresponding end-form be

bhkblhblkbpqUpUq (h,k 1,...,tl) (p,q 1,.-.,t2).
If zt2 is a section of tl, and if

bp*VpVq bhkUhUk
when (v) and (u) determine the same point ofn,, then B2 will be called a subproblem
ofB 1. In particular, if the end-plane in B2 is the null end-plane, B2 is a subproblem
of B1.

THEOREM 11.2. Let there be given a problem B1 and a subproblem B2 with
end-planes 7, and 7t respectively. If 21 and 22 are respectively the number of
characteristic roots of B and B2 less than a given constant 2, then

Theorem 11.2 and Theorem 3.3 can be applied to Problem B, 2 and to a
subproblem as follows.

COROLLARY 11.1. Suppose nt is an end-plane at x a alone and nt is a section

of n’l and suppose that to each is adjoined the conditions y(b) y’(b) 0 to yield
a Problem B and a subproblem. Then the number of focal points of n’t on (a, b)
exceeds the number offocal points of n’t on (a, b) by at most t2.

12. The separation theorem for nonconjugate solutions. We now have the
necessary theorems to find the difference between the number of zeros of two
nonconjugate solutions u and v. Our approach will be to find a solution w conjugate
to the two given nonconjugate solutions. One then compares the number of focal
points in the family (u, w) with the number of focal points in (v, w). With this
information one can derive the difference in the number of zeros between u and v.

THEOREM 12.1. Let u and v be two nonconjugate solutions of the self-adjoint
linear differential equation of the fourth order. Then there exists a solution w
linearly independent of and conjugate to both u and v such that if F is the sum of the
indices of the conjugate points of x a in the open interval (a, b) and r is the cardinal
number of focal points of index two on (a, b) in both families together, then the
difference between the number of zeros of the two solutions in the interval (a, b)
or [a, b] is at most 2F + 5 2r.

THEOREM 12.2. If U, V, W, F, and r are as described in Theorem 12.1, and if u
and v are nonconjugatesolutions listed under one of the cases in Table 3, then the
maximum difference between the number of zeros of u and v on [a, b] is listed under
the corresponding case in Table 4. Table 5 lists similar properties on the interval (a, b).

Proof. Consider the solutions u and v. Let x a be the first zero of either
solution, and let u be the name given to the solution having the higher order zero
at x a. Seven situations can arise as shown in the first two columns of Table 3.
To show that w can be picked as in column 3, Table 3, the following lemma is
inserted.
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TABLE 3
Number of Zeros at x a

Case

(a) 0 u under w
(b) 0 w under u

(c) 3 w under u

(d) 2 0 2 u under w
(e) 2 0 2 w under u

(f) 2 3 w under u
(g) 3 0 2 u under w

LEMMA 12.1. A nontrivial solution w can be found such that the pair (u,w)
and (v, w) are conjugate pairs and w has the order zero at x a indicated in the third
column of Table 3.

Proof. The seven cases are considered separately, e.g., Case (a). Using the
condition that two solutions be conjugate, it follows that at x a,

uOTJw0 --(D2u)w’ -+- u’D2w O,

vrjw= -(D. v)w’ + v’D2w- vD3w O.

Since there are two equations in three unknowns, this system always has
nontrivial solutions for w’(a), Dzw(a), Daw(a). The lemma is proved.

In order to prove the main theorem, we shall consider each case separately.
Furthermore, it will be more convenient as in 7 to consider points and intervals
on the x-axis having properties similar to the zeros and one solution being under
another of the solutions.

According to Lemma 7.3 we can "pull apart" multiple zeros of u, v, w at
x a leaving the u-point or w-point at x a, and pulling the rest of the points
to the right of x a. Clearly w is under v in all cases, but the property of being
under for u and w varies from case to case. See column 4, Table 3.

Now let x b be a point such that b > a and b is not in the sets u, v, w, A
and b is not a conjugate point of a. (A consists of focal points in either family.)

We shall justify the theorem for Case (a). Let F be the number of conjugate
points of a on the open interval (a, b). Then according to Corollary 11.1, the
conjugate pair of solutions (u, w) has (F or F + 1) focal points on (a, b) or (F +
or F + 2)on [a,b).

By Theorem 11.1 the number of focal points of the conjugate family (u, w)
differs from the number offocal points ofthe conjugate family (v, w) by at most one.
But since at x a the family (u, w) has at least one focal point more than the family
(v, w) except in Case (c), it follows that the number of focal points in family (v, w)
is less than or equal to the number of focal points in family (u, w). This is also true
for Case (c) by calling the solution u, that solution of the nonconjugate pair which
makes the number of focal points of the family (u, w) _>_ the number of focal points
ofthe family (v, w). Thus the number offocal points of(v, w) on [a, b) is [(F or F + 1)
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or (F + or F + 2)]. Mark the points of w. Then on [a, b),

(12.1) N(w)- N(u)- + 2ru,
F+2

where r, is the cardinal number of focal points of the (u, w) family on (a, b).
The term in the right-hand side of (12.1) is due to the fact that there is

one point u to the left of the first w point. Now mark the points of u. Then on [a, b),

F+ 1)(12.2) N(u)- < N(w) + 2- 2r,.
F+2

The term -2 on the right-hand side of (12.2) is due to the fact that there are
three w- or A-points together with no u-point. Thus the number of w- or A-points
between u-points can be reduced by 2. Combining results (12.1) and (12.2), we have
on [a, b),

(12.3) + 2r < N(u)- N(w) < 2ru.
F+ F+

Now consider the (v, w)-family. First mark the w-points. Then on [a, b),

(12.4) N(w)- <=N(v)+
F+ or F+

Next mark the v-points, and we have on [a, b),

(12.5) N(v)- <_ (N(w)- 1) +
F or F + 12) 2r"F+I or F+

The term on the right-hand side is due to the fact there is one w-point to the
left of the first v-point. Combining results (12.4) and (12.5), we have on [a, b),

F or F+;) F+I or F+)+ 2r < N(w) N(v) < 2rv.
F+ or F+ F+2 or F+

(12.6)
From adding (12.3) and (12.6) it follows that

2F+l or 2F+2 (2F+l or 2F+])+ 2r <_ N(u)- N(v) < 2r.
2F+ 3 or 2F+4 2F+ 3 or 2F+

Since x b is neither a point of u, v, w, A nor a conjugate point of x a, the
difference between solutions (conjugate or nonconjugate) on [a, b] is the same
as on [a, b).

To calculate the difference between the number of zeros on the open interval
(a, b), note that at the point x a, there is a u-point but no v-point. Hence in the
open interval (a, b), the number of u-points is one less. Letting N*(u), N*(v) be
the number of u-points and v-points respectively in (a, b), it follows that

(2F+2 or 2F+3 2F or 2F+13)+ 2r <_ N*(u)- N*(v) < 2r.
2F+4 or 2F+ 5 2F+2 or 2F+
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The count of zeros in the other six cases is made similarly.
Suppose one has two nonconjugate solutions of a self-adjoint linear differen-

tial equation of the fourth order. It can be observed that the properties of the zeros
and focal points of the conjugate families (U,w) and (v,w) correspond to the
properties of the sets u, v, w, A. In addition, the property of being "under" as
applied to solutions agree with the notion of labeled intervals. Thus the results
which were proved for point sets are also true for two nonconjugate solutions.
Thus Theorem 12.2 is proved.

The tabulation of these results is listed in Table 4.
Analyzing these results one sees that the maximum difference between two

nonconjugate solutions on (a,b) or [a,b] is 2F + 5- 2r, the conclusion of
Theorem 12.1. This is the best theorem one can get for two nonconjugate solutions
of a fourth order differential equation by considering the equation

yiv nt 10y" + 9y 0.

The question as to the necessity of the factor 2 in the term 2F is also answered
by the above example. If the factor 2 is dropped, it can easily be shown that the
theorem would be false. Therefore, the factor 2 of 2F is necessary.

TABLE 4
Maximum difference between number of zeros of two conjugate solutions on [a, b]

Case

(a) -(2F + 4)

(b) -(2F + 3)

(c) -(2F + 3)

(d) -2F

(e) -(2F + 1)

(f) -(2F + 1)

(g) -2F

2F+4

2F+5

2F+3

’+ 2r <= N(u) N(v.) < 2F + 4

2F+3

2F+3

2F+4

2r

TABLE 5
Maximum difference between number of zeros of two nonconjugate solutions on (a, b)

Case

(a) -(2F + 5)

(b) -(2r + 4)

(c) -(2F + 3)

(d) -(2r + 2)

(e) -(2F + 3)

(f) -(2F + 2)

(g) -(2F + 3)

2F+3

2F+4

2F+3

>+ 2r < N*(u) N*(v) _< 2F + 2

2F+l

2F+2

2F+l

>- 2r
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CONCERNING e-a’J.(bt)Jv(ct)t"-v dt*

T. C. BENTON

Abstract. A method is presented to reduce the integral in the title, for the case where # > -1/2,
> -1/2, 2# and 2v integers and the ?(a ++_ ib + ic) > 0, to an integral of Jacobian elliptic functions.

By this means results can be expressed in terms of the complete elliptic integrals K and E with modulus

k 2x//c/x//a + (b + c)2. The summary at the end of the paper contains a table for the cases which

have been worked out.

1. Introduction. The integral in the title will be referred to as Iu, This integral
and a more general form, in which the power of is unrestricted, occur in several
places in the literature [1], [2], [3], 4]. It is the purpose of this paper to show that
I,,v can be reduced to an integral of Jacobian elliptic functions and to obtain some
results by this method.

2. Reduction of l,,v. Since the Bessel function of the first kind is given by

(vt/2)r
e + ivtcoso sin2r 0 dO,j(t)

/_&(( + 1/2)
let the integral with + sign be substituted in I, for J(at) and that with a sign for
J(bt). If/t > -1/2, then the order of integration can be changed, and we obtain

(a/2)"(b/2) sin. q)I.,, nF(/ + 1/2)F(v + 1/2)

{ffsin ’o(ffexp(-(p + ibcosqo- iacosO)t)t2Udt)dO}d(p
provided that the real part R(p +_ ia + ib) > 0, a restriction needed to make the
inner integral converge.

Let A p + ib cos q); then

e- (A- iacosO)tt2u dt
(A ia cos 0)2 +

SO

(a/2)"(b/a)F(2l + 1)
sin2 qI.,-

nF(/ + 1/2)F(v + 1/2)
sin2u 0 dO

(A -- ao 0-2’‘ +1 d(/9.

Denote the inner integral by J and let 0 2. Then

n/2 22u + sin2u g, COS2u p
J

(A ia)2" + (1 k sin2 I//) 2t* + 1’
vO

Received by the editors June 6, 1973, and in final revised form October 10, 1974.
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where k -2ia/(A ia). If sin2 t x, then

(A ia)2u +
x"- 1/2(1 x)"- 1/2(1 kx)- 2.- dx

22t
(A ia)2"+12F1(2Ia + 1, la + 1/2; 2,u + k)

[r( + 1/2)]
r(2" + )

on using [7, p. 243] with a 21 + 1, b =/ + 1/2, c 2/ + 1. Hence

22,[F0t + 1/2)]2 /2J= (l-k) u-
(A ia)2" + r’(2 + 1)

But k (A + ia)/(A ia)so

2.[r’( + 1/2)]
F(2p + 1) (A 2 + a2)u+ 1/2"

Now

22"F( + 1/2)=

so that

/-F(2p + 1)
r(p + 1)

(a/2)"(b/2)F(2# + 1) f,’ sin2v q do(2.1) I,,v -- 1/2)- + 1) (p2 +’ 2ipb cosq9 b2 cos2 + a2)"+ 1,2"

Both Gegenbauer (Wiener Sitzungsberichte LXXXVIII (2), pp. 975-1003,
formula on p. 995) and Watson [6, p. 390] omit the factor F( + 1) in the denomina-
tor which appears in the above work.

If G denotes the integral in (2.1) and x cos , then

(1 x2) dx
G

2 a2 b2x2)u"+ + 2ipbx- (1 xE)(p2 a2 + 2ipbx bEx2)

This integral can be reduced to an elliptic integral of standard type (see [7, 22.7-
22.735]. Let f ((p2 + a2)/b 2) + 2i(p/b)x x2 and f2 x2. Also let

2pbp=p2 + (a+b)2, Q =p2 +(a_ b)z, = b2 p2_ a2 + pQ,

2pb P- Q
fl b2 pE a2_ pQ, k p + Q

pQ)-1/2
x

and

U (p2 + a2 b2 + pQ)l/2(p2 + a2 b2

This is the transformation which reduces the integral to the type form. The
coefficient of the fraction will be denoted by L. Now

+ =L=_
+ a2 b2 PQ
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but

4p2b2

(p2 + a2 b2)2 p2Q2
4p2b2

(p2 d- a2 b2)2 (p2 + a2 d- b2)2 d- 4a2b2 1,

hence L ----N//-t2 e+-in/20. If z x + iy, then the integral is along the real
axis in the z-plane. The transformation

(2.2) w e-it/2.
z + i/
z io

changes the line y=0 from x- -1 to x= into an arc C of the circle
u2 + (v + a)2 ( + 1/a)(v + ) 0 fromw -1 tow lying above the real
axis (w i/a is on the arc). So L e-i/2. From (2.2) it follows that

(Z eir/2OO(W e-in 4- O2 L2 PQL ein/2 PQL
ipb pb

or (z i002 (einp2Q2L2/p2b2(w L)2), which is needed to obtain

A(z)

A(z)

dz

ei.pQ(p + Q)2(p2 + a2 b2 + pQ) k2w2

8p2b2 (w L)2’

einpQ(p2 + a2 b2 + PQ) W2

2pEb2 (w- L)2’

2b dw

P + Q x/(1 w2)(1 k2w2)

f2 dx ( f 2b dw

bEu+lf (p /Q) v/(1 w2)(l_ kEw2)b2U+ lf fxlf2
G= fc(p 23u-v + l(p2b2)U-v e-in(u-v)

+ Q)2u+ l[pQ(p2 + a2 b2 + pQ)]U-v

(1 w2)V(w- L)2u- 2v dw

(1 k2w2)Ux/(1 w2)(1 k2w2)"

Since v > -1/2, an integral f A(w) dw/(1 w2)-v+ 1/2, in which A(w) is analytic
at w +_ and the path is a circular arc of decreasing radius about w +__ 1,
must vanish. Moreover, the only possible singularities of the integrand of G are at
+_- 1, +_ 1/k, L, hence there are no singularities between the u-axis and C. Therefore
by Cauchy’s theorem,

23u-v+ l(p2b2)U-v
(p + Q)2u+ l[pQ(p2 + a2 b2 + pQ)]U-v

(1 U2)v(U L)2u 2v du

(1 k2u2)Ux//(1 u2)(1 k2u2)"
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Finally let u sn(s, k), so that

23u-v+ l(p2bZ)u-v e -in(u-v) _f cn2Vs(sns L)2u-zv ds
G

(p + Q)2u+i-/- ff g pQ)]U-v ._K dn2Us

Thus the result obtained is given by

22u 2v + 1F(2/ + 1)p2U- 2VaUbZu e- i(u v)

Iu’v x/ F(v + 1/2)F(/ + 1)(P + Q)zu+ l[pQ(p2 + a2 b2 + pQ)]U-v
(2.3)

I,: cn2VS(sns L)Zu- 2v ds

-K dn2Us

where k (P Q)/(P + Q) is the modulus of the elliptic functions and K is the
real quarter period. Also

2ipb
L -ia

p2 d- a2 b 2 PQ"
The more simple cases of Io,o, I i,o, and I1,1, which occur in the first four

references, were worked out by this method and found to agree with our results.

3. Special cases of (2.3). If/t and v are integers, then the integral in (2.3) can
be reduced to a sum of integrals of powers of a Jacobian elliptic function and these
can be evaluated by the reduction formula given in Neville [5, 14.203].

Since k (P Q)/(P / Q) involves p in a complicated.,way, it is convenient
to make a Landen transformation changing k to / x//P2- QE/p 2(ab)l/2
[p2 d- (a + b)2] 1/2. If K, E are the complete integrals with modulus/, then

K P+Q E= PE+QK1
2P P+Q

After some tedious algebraic reduction the answers in the tabld were obtained. If
/ m + 1/2 or v n + 1/2 or both, where m, n are integers, then the integrand of

(1 u2)V(u L)2u-2v du

-1 (1 k2u2)u w/l u2)(1 k2u2)
will contain only x//1 -u2 or x//1- k2u2 or be a rational function, and the
elliptic functions are no longer needed.

The results for I0,1/2, 11/2,0, 11/2,1, 11,1/2 which are in Table were obtained
by this method.

4. Acknowledgment. The author wishes to express his sincere thanks to the
referee, who furnished valuable references and who corrected several errors in
the original work.

These do not agree with Neville [5, 17.626] but the 4 in the first fraction there should be a 2.
The difficulty seems to arise from the identification of

f dn2(K,+ u,+ 1) du,+ with Dn(K,+ u,+ 1).
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TABLE

Values of I.., e-PtJ.(at)Jv(bt)t dt

765

=o =o

v=1/2

v=l

/=1 v=O

v=1/2

v--=l

/=2 v=O

v=l

v--2

/=3 v=3

P= x//p +(a + b)2,

2K
Io,o-

Q =x//p +(a-b)2, A p2 + a + b2.,

K, E are the complete elliptic integrals with
x//p + (a + b)2’ modulus

10,1/2 x (gb)- 1/2 arc sin [2b/(P + Q)]

I1/2,o x/ [PQ(P + Q)]-lx//(P + Q)2 4b

I1/2,1 x/2a/z b-l(P + Q)-X[p + Q x/ + Q)2 4b2]

i,o (apQZ]-l[Q2 (p2 a + bZ)E]

I1,1/2 { PQ(P + Q)2}-. 2a@[(P + Q)2 4b2]

11,1 [nabP] -- "{A2

I2,o (2/)(ap2Qz)-Z{(p2a2 + pzQZ)pQ2_ [p2QZ(A2_ 3a2)+ 2p2aZ(p2 + Q2)]pE}

I2, (a2bp) (2A a2) (a2bpQ2) l[2A4 aZ(A + 6b2)]

I2,2 2(3aZbZp)-l[(A4 -aZb2) AZp2

I3,3 (15a3b3p)-{A2(8A4 17a2b2) 8A4 9aZb2)P2}
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ASYMPTOTIC EVALUATION OF FRACTIONAL INTEGRAL
OPERATORS WITH APPLICATIONS*

NEIL BERGER AND RICHARD HANDELSMANf

Abstract. A technique is developed which yields an asymptotic expansion in the two limits 2, 0
and 2, for the fractional integral operator of order p with respect to the function 2,P given by

lfol"f(2,) F- (2,p p)u-,pp-lf() d,

under general conditions that f be algebraically dominated near 0 and m. Representing Ipf(2,) as a
convolution of Mellin transforms, the domain of the transform is extended by analytic continuation.
By moving the contour of integration to the right or the left an asymptotic expansion for lpf(2,) can
be systematically generated for 2,--. ov or 2,--, 0 +. The technique is illustrated by the asymptotic
expansion of fractional integral operators derived from the Euler-Poisson-Darboux equation and
generalized axially symmetric potential theory.

1. Asymptotic expansions of fractional integrals. In a series of recent papers
Ill, [2] and [3], Handelsman and Lew have developed a theory which yields
asymptotic expansions of integrals of the form

(1.1) 1(2) g(t)f(2t) dt

in the limits 2 and 2 0 +. In the present paper we apply that theory to
investigate the asymptotic behavior, as 2 , of the fractional integrals

(1.2) I,f(2) F (2p p)u- ,pp- ,f() d.

Here, f() is a given locally integrable function, Re (t) > 0 and p > 0.
If, in (1.2) we set 2t, then we obtain

(1.3) I,f(2) = (1 tP)u- xtv- xf(2t)dt.

This integral is of the form (1.1) with

r-(1 t")"- t’- ,
g

0,

0=<tl,

Hence, we can apply the method of [3].
We first note that under suitable conditions on f, (see Titchmarsh [4]),

the Parseval relation for Mellin transforms,

_f
c+i

2-M[f; z]M[g ;1 z] dz,I./(2)
c-i
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yields from (1.3),
p c+ioo 2-ZM[f; z](1.4) IU,f(2) -,Here

r’(
F(p + -(z/p))

dz.

(1.5) M[g z] 2pu
F(1 + (z 1)/p)

F(p-+- + ((z- 1)/p))

represents the Mellin transform ofg(t)evaluated at z, and the contour ofintegration
is a Bromwich contour in the common domain of analyticity of M[f; z] (the
Mellin transform of f(t))and m[g;1 z].

We now suppose that, as or,

(1.6) f e-" dmt-rm
m=O

with >__ 0 and Re (rm) ct as m oe. If in (1.6) we have > 0, then M[f; z]
is analytic in Re (z) > Xo for some Xo. We also have from (1.5) that the analytic
continuation of M[g; z] into the right half-plane Re (z) >= p(n + 1) has simple
poles at the points z p(n + 1), n 0, 1,2,.... Moreover, M[g; 1- z] has
Laurent expansions about these points with singular parts

(1.7)
n!F(p- n)(z- p(n + 1))"

Upon displacing the contour in (1.4) arbitrarily far to the right and computing
the appropriate residues, we formally obtain the asymptotic expansion

(1.8) I,,f(2) ,o M[f; p(n + 1)] + 1)

n!F(/,t-n)
(-1)"A pc, u

If in (1.6), e 0, then, as is shown in Handelsman and Lew [3], M[f; z] can
be analytically continued into the right half-plane Re (z) >__ ro as a meromorphic
function with simple poles at the points z rm and Laurent expansions about
these points having singular parts

dm/(Z gin).

We first suppose that rm v p(n + 1) for any nonnegative integers m, n. Then
the poles of M[g; z] and M[f; z] are disjoint and the residue calculation yields

(1.9)

, M[f;p(n + 1)]
Ipf(2) .-=o n!F(p- n)

dm
F(1 -(rm/P))2’" "-,

=o F( + -(rm/p)

Finally, if 0 in (1.7) and rm p(n + 1) for at least one pair of nonnegative
integers n, m, then poles ofM[g; z] and M[f; z] coincide producing logarithmic

For simplicity, we shall assume that M[f; z] exists in the ordinary sense.
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terms in the expansion. Indeed, suppose for definiteness we assume that
ro p(l + 1) for some nonnegative integer 1. The residue calculation then yields

l, (_ 1)"M[f; p(n + 1)]
I/(2) /_, 2

(1.10)
,=0 n!F(#- n)

(-- 1)idol,ptu-t- ) In 2+ + 0(2p("- - )).
t!r(,- t)

The case 2 0 + is much simpler to treat. This is because the desired expansion
is obtained by displacing the contour in (1.4) to the left and the Mellin transform

r(1 -(z/p))
r( + -(z/p))

is analytic in the left half-plane Re (z) < p. Thus to calculate the residue series,
we need only analytically continue M[f; z] into the left half-plane Re (z) < p as
a meromorphic function.

We again apply the theory of Handelsman and Lew [3] and find that if, as
t0+,

(1.11) f brat"’, Re (am) T
m=O

then M[f; z] has simple poles at the points z -a with corresponding Laurent
expansions about these poles having singular parts

(1.12) bm/(Z -+- am).
It then follows from (1.4) and (1.12) and the assumption that we are justified

in displacing the Bromwich contour in (1.4) arbitrarily far to the left, that hence

(1.13) I".(f) 2""+P"b,. F(1 + (am/P)) , -- O+
m=O F(1 + # + (am/P))’

To rigorously establish the validity of the above asymptotic expansions, we need
only justify the displacement of the contour of integration in (1.4) arbitrarily
far to the right to generate expansions such as (1.8), (1.9), (1.10) or arbitrarily far
to the left to generate expressions such as (1.13).

From (1.5) we find that

M[g;1 x iy] O(lyl-"),.

Thus, to justify the displacement, f must be such that

M[f, x + iy] O(lylU-

for some e > 0 and for either x > c or x < c depending on whether expansions
for 2 - oe or 2 0 + are to be generated. To insure this behavior we suppose
that (1.6) and (1.11) hold. One finds that if for x > -Re(ao), (t d/dt)"(txf) is in
L(0, oe) and vanishes at 0 and oe for n 1, 2, ..., p, then

M[f x + iy] O(lYI-’), lyl
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for x > -Re(ao). If in addition the asymptotic expansion of (dm/dtm)f(t) for
m 0, ..., p, as 0 + is obtained by successively differentiating (1.11) term by
term, then

(1.14) mff; z] O(lyl- P), lyl --’

for all x. Here by MIf; z] we understand the analytic continuation of the Mellin
transform into the entire z-plane (see Bleistein and Handelsman [5]).

2. Application to the Euler-Poisson-Darboux equation. We consider the
linear differential operator

ca 2v + c
(2.1) L[f(r)] --r2f(r) f(r).

It is shown in Erd6lyi [6] that if > 0, f e Ca[0, o), r+ f(r) is integrable at 0
and r+ f’(r) 0 as r 0, then

, ,(2.2) I (L[f(r)]) LV+[I2

where

I’c,j= r- 2(+ )i(r2f(r)).
The Euler-Poisson-Darboux equation for complex k,

V Vu u, + u, L(_ )/2[u], > 0,

(2.3)
u(, 0)- L()e c, u,( ,0)= 0

was recently studied by Bresters [7] where a brief review of the literature can be
found. We shall use the techniques of fractional integration to derive a solution
for real values of k > m 1, extend this representation to all values of k (excepting
the negative odd integers) and use the result to give an asymptotic representation
of the solution.

It is well known that the solution to problem (2.3) for k m is given by

(x, ) (, ; f_,) f f ,( + g)w
Wm l=

where M is the spherical mean of f() and w is the unit sphere surface area in
m-dimensional space. Using (2.2) we see that for real k, k > m 1,

is a solution of (2.3) with initial data

IIr- 2)/2"k-m+ 1)/2[fm_ 1(.)]

Consequently, letting

(2.5) fro_ ()

F(m/2)
(if)

r(( + )/2)f-’
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we have constructed a solution given by (2.4) and (2.5), which is known to be
unique and is given by an absolutely convergent integral of the form (1.2) whenever
k > m 1. We note that the problem (2.3) is analytic in k and that our solution
written as a convolution integral of the form (1.4),

(2.6) u(2, t)
F((k + 1)/2) fc+ioo F((m z)/2)M[/l(, t; f); z]t dz

F(m/2) c-i F((1 z - k)/2)

is convergent, twice differentiable and analytic in k for Re k > m and 0 < c < 1.
In order to extend the representation (2.6) to other values of k we must

impose growth conditions on M[r(2, t; fk); x iy] for lYl , which will
permit us to calculate two derivatives with respect to x and of (2.6) and still
maintain the convergence of the integral and thus the analytic dependence on k.

We assume that as ---, 0 /, hr has an asymptotic expansion. From Courant-
Hilbert [8, p. 289] for f(2) C2r,

(2.7) M(2, t; f) F
n=O n!r(n + m/2) n=r+l

We assume that the series can be differentiated termwise to yield an asymptotic
representation for the derivatives of M with respect to t. Since

F((m- x -iy)/2)
O(lYlm-Re(k + 1)/2),

F((1 + k- x- iy)/2)

we find from an argument paralleling that leading to (1.14) that if f() Cr+ 3(2)
and has compact support, the representation of u and its second order derivatives
given by (2.6) can be continued as analytic functions of k for Re k > m-

(2r + 2) and all x. Consequently (2.6) furnishes a solution for Re k : -(2n + 1),
n 0, 1, 2,..., provided f(2) is sufficiently well-behaved.

For t---, 0 / we have an immediate asymptotic representation for u(x, t)
using (2.2) and (1.13) which after some algebra reduces to

u(2 t)= F/k/ +
2

b,(.)F(n + m/2)
,=o F(((k + 1)/2)+ n)

If f(2)e Cr+ 3, we have by (2.7) with q -r + 3/2,

t2n + O(t2q+ 2).

u(, t) I"
2 22"n’ F(((k + 1)/2)+ n)n=O

tZn + O(t2,+ 2).

It is well known that for k < 0 the solution of (2.3) is not unique (see Bresters
[7]), and that for k -1,- 3,... the solution (2.6) is singular, although it is
still possible to recover an asymptotic expansion in this case by following a
technique of Diaz and Weinberger [9]. These solutions were completely character-
ized by Blum [10].

We consider now expansions for . We assume that f(2) has sufficient
derivatives for the integral to converge for k of interest, and is of compact support.
Consequently we have r(2, t; fk) 0, and by (1.8),

u(ff t)
F((k + 1)/2) M[M(Yc, t;f); 2n + m] -(2,+m)

F(m/2) n IF(((k- m + 1)/2)- n)n--O
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It is notable that the asymptotic expansion which is valid only for +
may have odd powers of t, even though the solution is known to be even in t.
Symmetry properties and solutions for negative have been dealt with by Diaz
and Ludford [11]. For k _> 0 the solution is known to be unique and we find for
k=m- 1, m-3, m- 5,... that u(2, t),0, indicating the operation of a
Huygen’s principle (see Diaz and Weinberger [9]). For the particular case m 1
and k > 0, if we assume that

then

where

(x, t; fO 1/2[f(x t)+ f(x + t)] ao + dmt-2-2

2m+ 12m +
i=0

is a polynomial of degree 2m + in x.
Consequently, by (1.9) we have

ulx, t)

a2m + 2 -i(- X)

3. Applications to axially symmetric generalized potentials.
(a) We consider for Lv defined by (2.1) the equation

c2u(r, y)
(3 1) Lvu(r y) + --0

Oy2

satisfied by a 2v + 3-dimensional axially symmetric potential. This equation has
many applications (see, for example, Weinstein [12]). In particular for v -1/2
this elliptic equation is related to the Tricomi equations. For v > it is known
that solutions are analytic functions for r 4:0 and are specified uniquely by the
conditions u(0 +, y) g(y) and (1/r)(Ou/&) bounded as r 0 +. For v -1/2 the
additional condition (Ou/&)(O, y) 0 is necessary.

Erd61yi [6], [13] has shown that if h(r, y) is an even harmonic function of r,
then for v > -1/2,

u(r, y) I 1/2,+ i/2h(r, y)

is a solution to (3.1) with boundary data F(1/2)h(0, y)/F(v + 1). The solution of
boundary value problem (3.1) with the boundary condition u(0, y)= g(y), an
analytic function of y, is thus given by

(3.2) u(r y)= I7=/2’+/2{ F(v + 1) }r(1/2 Re (g(y + ir))
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which permits us to generate an asymptotic expansion.
It is known (Erd61yi [14]) that the singularities of the generalized axially

symmetric potential u are dependent upon those of the harmonic potential h.
The regions of regularity of u and h coincide, and will be determined by the
analytic continuation of g. The nature of the singularity, however, depends on v.
We will assume that as r

Re (g(y + it)) dm(Y)r- Zm
m=O

consequently by (3.2), (1.8) and (2.2) we have

MIRe (g(y + ir))" 2n + 13(- 1)" d.(y)F(1/2 n)

Our results are not uniformly valid in y, but that is to be expected.
(b) Using Poisson’s integral formula for symmetric harmonic potentials and

fractional integral operators we can express axial values of u(0, y) in terms of
radial values u(r,O). Following Erd61yi [6], we have for bounded symmetric
potentials continuous in the half-space 0 y, 0 r, for v > 1,

r(v + )
(1 + t2) 3/2tzv+ lu(ty, O) dt.(3.3) u(O,y)

r()r(v +
Although (3.3) is not of the form (1.2) the techniques of our method still apply.
We assume that as r

u(r, O) 7r-a, Re(a)T, Reao> -1,
m=0

and as r 0+,

u(r, O) O(r- 2- 2).
Following the techniques which lead to (1.9) we have

u(0, y)
(- 1)mF(m + v + )M[u(y, 0); 2(m + v + 1)]

m=0 my2++I)2F()F(v + 1)

+ 7mF(v + am/Z)F( + a/2)
=o y"2r(k)r( + )

whenever v + a2 is never zero or a negative integer.
The case v 0 for three-dimensional axially symmetric potentials is of

particular interest. If in addition we assume that a m, we have by the techniques
leading to (1.10),

u(0, y)
(- 1)mF(m + )2m+2

[ln + ff( + m)]
=o m Y2+ 2F() Y

+ =o 2r()yTM 2’

where if(z) F’(z)/F(z).
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VARIATION DIMINISHING FOURIER-JACOBI TRANSFORMS*

R. L. VAN DE WETERING"

Abstract. Recently a convolution structure was developed for the Fourier-Jacobi transform by
M. Flensted-Jensen and T. Koornwinder [3]. Here we use these results to prove theorems analogous
to those of I. J. Schoenberg [13], [14], [15], [16] and I. I. Hirschman Jr. [6], [8] on variation diminishing
convolution kernels. We show that a convolution kernel G is variation diminishing if and only if its
Fourier-Jacobi transform

G^(2) Ke-Ik (1 +
P2 I-/t.2/-1--- b > O, E b2 < > 0

bk

1. Introduction. Let 4(x) be a continuous function on an interval and let
V[] denote the number of sign changes of b in that interval. A function
G 1(_ , ) is said to be a variation diminishing *-kernel if V[G*b] __< VIb]
for every bounded continuous function on (-, ) where,

(G*dp)(x) G(x t)qS(t) at.

In 1950 I. J. Schoenberg [14] proved that G is a variation diminishing *-kernel if
and only if

G () G(x) e-iax dx ec2 +ib2 eia/"k

ak’S real, ’, a-2 < m and b, c >_ 0.
In 1960-61 I. I. Hirschman Jr. wrote two papers [6], [8] from a series of four

which established analogous results for convolution transforms associated with
Hankel transforms and certain Sturm-Liouville differential equations. Generally,
it was shown that, except for multiplicative constants, a function O(t) is a variation
diminishing convolution kernel if and only if its transform bA(2)= [eca Hk (1
+ 2/bk)]- , bk > 0, b- < , c > 0. In the case of the Hankel transform we have

^ (2) ecz2 +
bk- bk>0, Eb-2 < ct3, c>0.

In this paper we prove analogous results for the convolution associated with the
Fourier-Jacobi transform as defined by Flensted-Jensen and Koornwinder [3.
It will be shown that up to multiplicative constants a function q6(t) is a variation
diminishing convolution kernel if and only if

bk
bk>0, Eb-2 < ,

* Received by the editors April 8, 1974.

" Department of Mathematics, San Diego State University, San Diego, California 92115. This
research was done at the University of Groningen while on sabbatical leave from San Diego State
University during the academic year 1973-74.
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The basic methods used to establish this result are adaptations of techniques
developed by Hirschman in [6] and [8].

(2.1)

2. Fourier-Jacobi transforms and convolution. The Jacobi functions satisfy

d A(t)du.(t)l Au(t)= _(p2+ 22)u(t),
A(t) dt dt

where

A(t) (et- e-t)2+ l(et + e-t)2+ 1, p o + fl + > O.

Let b’a(t) b(t) be a solution of (2.1) such that

(o) , (o) o.
Thus

(2.2) x(t) F({(p + iZ), {(p iZ);1 + ;
One can write (t) #(’P) (ch2t) where R’P(x) P.(’)(x)/P.(’P)(1 and for n a"’(1/2)(i--p)

nonnegative integer P"a)(x) is a Jacobi polynomial. Let (t) be a Jacobi function
of the second kind which is a solution of (2.1) and such that
+ o(1)] as . Thus

(et e_t)_OF(fl + i2 p i2
(2.3) (t)

2 ,;-i2; (sht)
One can show that

(2.4)

where

(t) c(,t)a,(t) + c(- ,t)o_ ).(t),

2-XF(i2)F( + 1)
(2.5) c(;) c() O(ltl

F P+2 i2) F - fl-t-1-t-2
Also in [2] it has been proved that for

(2.6i) 14z(t)l <= tk,(t) for all 2 e C,

(2.6ii) 14a(t)l =< for all [r/[ =< p,

(2.6iii) Iqa(t)l <= K(1 + t) e(Inl-)’ for all 2 e C.

It was proved in [2] that the mapping f --+ f ^given by

(2.7) f (2) x f(t)dp(t)A(t) dt f(t)dp(t) d#(t)

is a bijection between the space consisting of even C-functions of compact
support and the space oo of even, entire, rapidly decreasing functions ofexponen-
tial type. The inverse mapping is given by

;o(2.8) gV (t) g(2)z(t)lc(2)l- 2 d2 g(2)(t) dr(2).
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Let us denote by LP(#) the space of those functions f on (0, ) such that j’ [flP
< , where p is defined in (2.7) and LP(v) the corresponding space with v defined
by (2.8). L(a, b) will denote the usual space with respect to Lebesgue measure
on (a,b) where - < a < b N . Here we use (a,b) to denote those C
functions on (a, b) with compact support in (a, b).

If one considers the integrals in (2.7) and (2.8) to converge in L2(v) and L2(p)
respectively, then Flensted-Jensen has shown [2, Thm. 3] that the mapping (2.7) is
an isometry of L2(p) onto L2(v) with the inverse given by (2.8).

Here we define the convolution as in [3],

(2.9) (f * g)(x) f(t)f(s)K(x, s, t) d#(t) d#(s),

where

with

K(tl,t2,t3)
21/2)-2F(o + 1)(Chtlcht2cht3)--

r( + 1/2)(Shtlsht2sht3)2

F(e+,-fl’+’l-B),2

(chtl)2 + (cht2)2 + (cht3)2-

2Chtlcht2cht3
It1 t2[ < 3 < + 2,

and zero otherwise. The function K(tl, t2, t3) has the properties that
(i) K(t, t2, t3)is symmetric in all three variables,

(ii) K(tl, t2, t3) >- 0,
(iii) j-o K(t, 2, 3) d#(t3) 1.

Also it has been shown that [3], [12

;o(2.10) (])2(t 1)2(t2) 2(t3)K(tl, 2 3) d#(t3).

Let =< p < 2 and (l/p) + (l/q) 1. Define the strip

(2.11) Dp {2 + it/ CI lr/l < ((2/p)- 1)p}.

From [3] we have the following.
LEMMA 2.1. Let =< p < 2, (l/p)+ (l/q)-- and feLP(#). Then f^(2) is

holomorphic in Dp, and for all 2e.Dp,
If’(2)l =< f lip 4a q.

Iff L(), f^ () is continuous in and for all 1,

If’(X)l < IIf 1"

Proof. See [3, p. 249].
THEOREM 2.2. Let p, q, r satisfy (l/p) + (l/q)= + (l/r), __< p, q, r __< o.

For f e LP(t) and g e Lq(lt), f * g e Lr(#) and

If *g flip gl.

Proof. See [3, p. 258].
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Remark 1. The two preceding results together with (2.6ii) imply that if
f, g e LI(#), then (f * g)^(2) f ^(2)g^(2).

LFMMA 2.3. Iff LI(#) and f" Ll(v), then (f^)v f a.e.

Proof. In [2] (Theorem 6 and Lemma 16) one finds a set of functions {v}>o
which act as an approximate identity in U(), 0 < r < . Now supp v [- e, e]
so that v] e H and (v2) v v by the remarks following (2.7). Thus

(f * v)(x) f(s)v()g(x, s, ) d(s) d(t)

]f(s) v/(2)(x) dv(2) K(x, s, t)dp(s) dp(t)

f(s) ;(2) z(t)K(x, s, t)d(t) dv(2) d(s)

v2(2) 4(x)f(s)4x(s) d(s)dr(2)

v2 (X)f(R)a(x) dr(R),

where the changes of order of integration follow from Fubini’s theorem. Now
f* v f in L() so there exists v such that f, v f a.e. By the Lebesgue
limit theorem the right-hand side tends to (f)v (x).
LA 2.4. Iffe(O, ), then (1 + 21)f(2)e L(v), n 0, 1, 2,....
Proof. This follows immediately from the remarks following formula (2.7),

since f can be extended to be in .
LNMA 2.5. Iff e and g e L(), then

f * ge((O, ), n O, 1, 2,

Proof. For f e 9, (1 + [2[’)f^(2)e L l(v) by Lemma 2.4, and g’(X) is bounded
by Lemma 2.1. Thus (f g)(x) f(2)g^(2)dx(x) dv(2). Now

f "(2)g" (2)-x, C(x) dv(2) =< K f^(2)(1 + [2[")(1 + x)e- dv(2).

Here we have used estimates from [2, Thm. 2]. Since the integral converges
uniformly in x, 0 < x < oc, it follows that f* g e cg(")(0, o), n 0, 1, 2,

LEMMA 2.6. If a is real, then ia(t) > O, 0 < < o.

Proof For > fl > -1/2, ([1], [11])

(2.12) b(t) (ch)2 + r2{ht)2 + rsh2t + cos ]/2(i-)dm(r, ),
=0 =0

where

din(r, )
2r( + )

/-r(-/)r(/ + 1/2)
(1 r2)-/- lr2//+ 1(sin I)2fl d dr.
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It is easily shown that

(2.13) dm(r, 9) 1.
=0 =0

Now (cht)2 4- r2(sht)2 4- rsh2t cos (cht + rsht eiq’)(cht + rsht e -iq’) >= O. Thus
e -2t (cht + rsht eiO)(cht + rsht e -i) _< e2t, 0 <_ zt, 0 r =< 1. Since a + p
is real, it follows from (2.12), the positivity of dm(rO), and (2.13) that e -"+)’

<= dpia(t) <= e("+.)’.
LEMMA 2.7. If h is in the domain of A and 7 x//P2 4- a2, then

(2.14) (A- aZ)h(t)=

Proof. We use direct calculation and the fact that bi(t and Oiy(t satisfy
Au a2u.

3. Elementary kernels. Suppose f is a real-valued function on an interval
(a,b), - __< a < b __< . We say that f changes sign at least n times on (a,b)
if there exist ti, i= 0,1,2, n; a < o < < 2 <... < t,< b such that
f(ti_ )f(ti) < 0 for l, 2, 3, n. The function has n sign changes if it has
at least n sign changes, but does not have at least n + sign changes. We denote
the number of changes of sign on (a, b) by vba[f]. It is possible of course for
Vb[f]

DEFINITION. A convolution kernel h is variation diminishing if h LI() and
V[h* u] <__ V[u] for every bounded continuous function u on 0 < x < .
(Here we shall use V V.)

LEMMA 3.1: If

g,(t)
?c(-iT)

iy(t)’ T 2 4- a2, a > 0,

then g,’(),) (1 4- (p2 4- 2)/a2)- 1. Also g,(t)6 L(/a).
Proof. Using AOir(t) a2Oir and Aba(t) _(p2 4-/2)qa(t it follows that

d
d---[{A(t)W(dpz, tl)iy)(t)} (a2 + p2 + 22)O,(t)dpz(t)A(t),

where W is the Wronskian. From (2.2), (2.3), (2.5) and

F(c)F(b-- a)
(3.1) F(a,b;c;z) (-z)-"F

F(c a)F(b) a,a+l-c;a+l-b;)
r(c)r(a b)
r(c b)F(a)

(- z)-bF 1)b+ 1-c,b;b+ l-a;-
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one obtains

or

(a2 +/92 + ,2) i(t)dp(t) A(t)dt 27c(-i7)

ga(t)c#z(t) d#(t) + ,0
2 + 22

a2

-1

By (3,1), g,(t)A(t)is bounded at 0 and by (2.3), g(t)A(t) exp ((p x//p z + a2)t)
[1 + O(1)] and ga(t) L (#).

The remainder of this section is deuoted to proving that g,(t) is a variation
diminishing convolution kernel.

LEMMA 3.2. If f L(la) and f’ Li(v) and if h(x)= (ga* f)(x), then
(1 A/aZ)h(x)= f(x).

Proof. (We follow the line of proof of Lemma 3d [6].) By the remark after
Theorem 2.2, ff (2) f’(2)(l + (p + )Z)/a) . Since h L(v) it follows from
Lemma 2.3 that h(x) j’f (2)(1 + (p2 + 2)/a)-ckx(x)dv(2). Since

/92 -]- 22

f^(2) + a2 - (x) dv(2) f’(2)qg(x) dv(2) f(x)

converges uniformly in x it follows that (1 A/a2)h(x) f(x).
THEOREM 3.3. For a > O, g,(t) is a variation diminishing convolution kernel.
Proof. Suppose fcg(0, o). Then by Lemma 2.4, f^Ll(v). If h(x)

(g, * f)(x), then by Lemma 3.2, (1 A/aZ)h(x) f(x). From Theorem 2.2 and
the fact that f is bounded and g,(t) LI(#), we see that h is bounded. Since f
and g,(t)Ll(ta), h cg")(0, ), n 0, 1, 2, Now it follows from (2.3) and
(2.4) that h(t)/cki(t) 0 as - and hence

h(t) I] > v’F h(n-I
$,,(t)] L4,,(t)J

V[h]

since b > 0. Also one sees that

and again

A(t)c/>,,(t) L4>,,(t)_l
0 ast0

v{ 14>,(t) -ft li(t)

-v t ck,,(t)l
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From (2.9), Lemma 2.7 and Lemma 3.2, it follows that V[f] >__ V[h]. Iffis con-
tinuous and bounded on (0, oc), then there exists a sequence of functions {f,(x)},
0 < x < o, such that

(i) f. f(O, o), (ii) L f ,

(iii) lim,_ f,(x) f(x), 0 < x < oe (iv) v[f.] <__ v[f].

Let h, go* f, and by the Lebesgue limit theorem h, h on (0, ). Thus
V[h,] __< V[f,] =< V[f] and by taking limits we get V[h] <= V[f].

LEMMA 3.4. For a > O, ga(t) >= O.
Proof. Hirschman [6] has proved that variation diminishing convolution

kernels are always nonnegative or nonpositive. The same result is easily proved
here with the appropriate modifications. Now since ga(t) > 0 for sufficiently large
t, by (2.3) it follows that ga(t) >__ O.

4. Composite kernels.
LEMMA 4.1. If G and H are variation diminishing convolution kernels, then so

isG*H.

Proof. See Hirschman [6].
THEOREM 4.2. Let c >= 0 and 0 < a < a2 <= a3 <= "’’, where a 2 < ,

E() eC H +
p +

2
ak

Then l/E(2) is the Jacobi-Fourier transform of a variation diminishing convolution
kernel G(x). That is,

(x)ck(x) d,(x)
E(,)

(There may be no ak’s, finitely many ak’s or infinitely many a’s. We do
exclude the case of E(2) 1, i.e., no a’s and c 0.)

Proof. If E(2) 1-I= (1 + (p2 + 22)/a2), set G(x) go, * go_ *’"* go. * (x)
and apply Lemma 4.1, Theorem 3.3 and Remark 1. Next suppose E(2)
ka (1 + (p2 + 22)/a). Let E, H= (1 + (p2 + 22)/a) and G,(x)

*... * g.(x). Thengo, * g

(4.1) G.(x)(x) d(2) E.(2)"
For n sufficiently large [E,(2)- Ll(v) and we have

If we set

,(x)
6.(x) / dv(2).

E.()Jo

(4.2) G(x) o 49(X)E(2) dv(2),

then

(x)- .(x)=
E(,) E)2) b(x)dv(2).
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Forn _> N,I(1/E(A))- (1/E,(A))I 2/E(2)whichforN > 2 + 2isin Ll().Thus

dv(2) -, 0IG(x)- G,(x)l
E(2) E,(2)

by the Lebesgue convergence theorem. Thus lim, G,(x) G(x) uniformly for
0<x<.

From (2.2) one sees that i(x) and from (4.1) it follows that G,(x) d(x)
1. Also since gab(t) 0 and K(t, t2, t3) 0 we have that G,(x) 0 and

G(x) O. Applying Fatou’s lemma we get G(x)dx and G L().
It is clear that [E(2)]-1 LZ(v) and hence G(x) L2(). Also we have that

lim G(x)z(x) d(x) [E(2)]- . Howeverlim G(x)z(x) d(x) G 2)
since G L(). Thus it follows that G’(2) [E(2)]- a.e. and by continuity, G’(2)

[E(2)] -=ff G(x)a(x)d(x) [5, Thm. 2K]. Now if we let 2 ip we get
G(x) d(x) 1. Sincelim,.G,(x)= G(x), G, G we have G,- G I1
0. Consequently iffis continuous and bounded,

(G * f)(x) lim (G, * f)(x)

and

V[G, f] <_ lim V[G,, f] <= V[f]

and G(x) is variation diminishing.
If E(2) ec(x2+pz), then we set E,(2) (1 + c(2 + p2)/n)".and proceed as

before.

5. Variation diminishing kernels.
THEOREM 5.1. /f G e L 1(]) is a variation diminishing transform, then

22 -t- p21G(2)=Ke-2 [ + ]bk>0 ES<oo, 7>0.
=o b b

Proof. Let G e L 1() be a variation diminishing transform, i.e.,
for all continuous and bounded functions on (0, ). Let G G * h, where
h(2) e .Nowh is variation diminishing so that G is also variation diminish-

_22ing and d(2) d(2) e and d (2) e L(v), since 5(2) is bounded.
Now for u e,
(G * u)(x) Gl(y)u(t)K(x, y,t)d#(x)d(y)

u(t)A(t) 51(2) c/)x(y)K(x, y, t)A(y) dy dv(2) dt
(2n)

u(t)A(t) 0 l(2)b(x)b(t) dv(2) dr.
2

Let H(x, t) (A(t)/2) d(X)4z(t)4(x)dr(X)so that

(G u)(x) H(x, t)u(t) dr.
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Now bz(t) c(2)%(t) + c(-2)(I)_z(t)and (I)(t) eiZ-P)’[1 + e-2’(R)(2, t)], where
1(R)(2, t)l <- m for t [c, ), c > 0 and 2 {2 CI2 + ir/,r/>= -c11, c > 0}.

Thus

H(x + r,t + r)=
A(t + r) 0(2)4x(x + r)4x( + r)lc()l - d.

A( + r)4(t + r)4(x + r)[c(2)c(-2)] -1

C(I) i2(x + + 2r) O(X- t)

LC(" 2)/e e [1 4- S(,L,x, t, r)]

+ 2 cos 2(x t) e-(-)[ + S(2, x, t, r)]

C(-- 2) i2(x +t + 2r) p(x-t)[1 + S(2 x, t, r)].+ e e
c(2)

One finds that S(2, x, t, r) e- 2O(1) and Ic(2)/c(- A)l M and Ic(- 2)/c(2)1 m2
for q 11, Thus

H(x + r,t + r)= e-Ot-t)[J + J2 + J3 + J4],

where

d -n d() eiz’ +’ + 2r) c(2)
c(-- 2) d2,

d2 cos 2(x t)01(2) d2,

f i2(x+t+Zr)C(--2)
3 ( e-

c()
d

HereR(2, x,,r) NMandlimR(X,x,t,r)=0. J andJ0asr by
the Riemann-Lebesgue lemma. J 0 as r by the Lebesgue convergence
theorem and J L(x- t)= (1/) cos2(x- t)(2)d2. Thus we see that
H(x + r,

Now since G is variation diminishing,

(5.1) V H(x,t)u(t)d V[u] for all u(-,).

Let v(t) y(-, ). Ten e- "-v(t r) (-,) an (4.1) becomes

v,[f H(x+r,t+ r)e-tv(t)dt] V,[v(t)e-O’] [v(t)],

where V[v] denotes the number of variations on (-r, ). Using the Lebesgue
limit theorem as r we get

(5.2) V[e-(L *
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Using an approximation argument, one shows that (5.2) holds for all bounded
continuous functions on (- , ). Thus L(x) is a variation diminishing transform

2 2 71and by Schoenberg, (1(2) K e 2 1-I=o (1 + 2 /ak) Since G1 L (#), ((2)
2 p2 2 2is continuous and bounded in lr/ =< pbyLemma2.1.Thusak > .Letak2 bk + P

bk :> O. Then

((2) K e ’Z kI-Io= + b + p
2 .k. p2

’2zfI 1+ 2bk

-1

K’ e-’z I-I
k=0

+ K-2 bk>O, k-y< , >0
bk
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ASYMPTOTIC NATURE OF NONOSCILLATORY SOLUTIONS OF
nTH ORDER RETARDED DIFFERENTIAL EQUATIONS*

BHAGAT SINGHf

Abstract. The equation

r(t)y(")(t) + r’(t)y"- ’)(t) + a(t)y(t) f(t)

is studied for its nonoscillation behavior. Under certain conditions, it is shown that if y(t) is a non-

oscillatory solution, then yt"-2)(t) 0 as . The theorem is then applied to the case of 2nd order
and 3rd order equations.

1. Introduction. Our main concern in this paper is to study the asymptotic
nature of nonoscillatory solutions of the retarded nth order differential equation

r(t)y(")(t) + r’(t)"- 1)y(t) + a(t)y(t)= f(t), n >_ 2,()

where
d

y(t) y(t z(t)); yti)(t) --y(t)
a(t), f(t), z(t) and r(t) are continuous on the whole real line R. r(t), z(t) and a(t)
are to be nonnegative with z(t) bounded above by a positive constant M. r(t) and
z(t) are further assumed to be continuously differentiable on R.

In what follows, we are only going to consider continuous solutions of (1)
which are extendable on some positive half-line T, o), T > 0. The term "solu-
tions" will apply only to such solutions of (1).

DEFINITION. We call a function on T, ) oscillatory if it has arbitrarily large
zeros. Otherwise we call it nonoscillatory.

Equations of type (1) with bounded r(t) are prototypes of the ones associated
with variable mass problems. What we have here is a set of preliminary results
both for bounded r(t) and unbounded r(t). Known results of Hammett 7] are
greatly generalized.

Our main result is Theorem which essentially states that for unbounded
r(t) any nonoscillatory solution y(t) of equation (1), y(n- 2)(0 tends to a finite limit
as . The conditions assumed for this derivation are mild and practical.
In Theorems 2 and 3, application of this result is shown. The paper contains
examples to show the applicability of Theorems 2 and 3. In 4 we consider the
case when r(t)is bounded.

Recently Hammett [7] proved such a result about the nonoscillatory solu-
tions of

(2) (r(t)y’(t))’ + p(t)g(y(t)) f(t),

where it was assumed that r(t) and p(t) are positively bounded away from zero.
Burton and Grimmer I5] modified Hammett’s results. Hammett’s method was

Received by the editors January 17, 1974, and in revised form August 14, 1974.- University of Wisconsin Center, Manitowoc County, Manitowoc, Wisconsin.
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nTH ORDER RETARDED DIFFERENTIAL EQUATIONS 785

based on a theorem of Bhatia [2] which does not apply to retarded equations.
In fact Travis [9] showed that the equation

sin
(3) y"(t) +

2- sin
y(t re)= 0

has the nonoscillatory solution 2 + sin even though

(sin t)/(2 t)= c.sin dt

But according to Bhatia’s theorem, all solutions of the equation

sin
(4) y"(t) + 2 sin

y(t) 0

are oscillatory.
In view of these observations, equation (1) deserves a special treatment to

contain the delay term and higher order derivative in order to prove our main
result.

2. Main results.
THEOREM 1. Suppose

(i) r(t) > 0, f (1/r(t)) dt < ,
(ii) jbr sequences {a,}, {b,}, a, o, b, , b, > a, for all n and

(b, a,) , let lim,_ j’bn, a(t) dt .
(iii) j-o [f(t)[ dt <

Let y(t) be a nonoscillatory solution of (1). Then y("-2)(t) tends to a finite limit as

Proof Let T be a large enough positive number so that for >= T, y(t) and
y(t) assume a constant sign. Suppose y(t) and y(t) become positive for _>_ T.
The case when y(t) and y(t) assume a negative sign can be handled in an identical
manner.

Rewriting (1) as

(5) (r(t)y"- ’)(t))’ + a(t)y(t) f(t)

and integrating both sides of (5) over IT, t] we have

(6) r(t)y"- 1)(t) r(r)y"- 1)(r) + a(s)y(s) ds <__ If(s)l ds.

Now as oe, the right-hand side of inequality (6) is bounded owing to (iii).
Two cases arise.

Case 1.

(7) a(s)y(s) ds .
(6) and (7) imply

r(t)y("-l)(t) -o asto.
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Since r(t) > 0, it means y("-1)(0 eventually assumes a negative sign. But then
y(n- 2)(t is monotonic and decreasing. This in turn implies that y("- 2)(t) eventually
assumes a constant sign. Since y(t) >__ 0 for >= T, y("-2)(t) must assume a positive
sign. In fact if yt"-2)(t) and yt"- 1)(0 are both negative, y(t) will eventually become
negative, which is a contradiction. Hence y("-2)(t) tends to a finite limit as .

Case 2.

(8) a(s)y(s) ds < .
Now

fT + 2N

(9) a(s) ds >= lim a(s) ds
N--* T+N

by condition (ii). From (8) and (9), we get

(10) lim inf y(t) lim inf y(t) O.

Now either y("-2)(t) is oscillatory or it assumes a constant sign. In either case
we will show that y("-2)(t) tends to a finite limit as . Suppose first that
y("-2)(0 assumes a constant sign. This implies

y(i)(t), O, 1,2,..., (n 3),

are monotonic eventually. Let

(11) lim inf ly(- 2)(01 .
t

Then 0. If > 0, then y(t) as , a contradiction to (10). Thus we

have here that y("-2)(0 0 and

(12) lim infy("-2)(t) lim infiy("-2)(t)l 0.
t t

If y("-2)(0 is oscillatory, then we already have

(13) lim inf ]y( 2)(t)l 0.

Suppose now

(14) lim sup ly("- 2)(t)] > d > 0.

(13) and (14) imply that there exists a sequence of points {tk}k% o in IT, ) such
thatt If(t)l dt < e for some arbitrarily small e > 0 and

(iv) k askv,tk+l > tk,
(V) ly("- 2)(tk) < d/4 for all k _> 0,
(vi) dk >= 3d/4 > 0, where dk is a true maxima of [y("-2)(t)[ in Irk-1, tk]"

Let Zk Itk_ 1, tk] such that dk [y("-2)(Zk)
(vii) Let (ak, bk) be the largest open interval containing zk such that lyt"- 2)(t)l

> dk/2 for all in this interval. Note that

(15) ly("-2)(ak)l --ly("-2)(bk) dk/2 for k _>_ 1.
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The choice of ak and bk implies that

ly("- 2)(01 > dk/2
Now

from which we have

in (ak, bk).

y(n- 2)(Zk) y(n- 2)(ak) 4- fff y(n- 1)(t dt

(16)

From (! 5) and (16),

(17)

Also

leads to

(18)

lY"-Z)(z)l ly"-2)(au)l + fal" lY"- (t)l dr.

dk/2 <= ly"- 1)(t)l dt.

y"- 2)(Zk) y"- 2)(bk) + y"- 1)(t) dt

lYt"-2)(Zk)l lYt"-2)(bk)l 4- lY"- x)(t)l dr.

Again by (15) and (18) we have

(9 dd2 __< I)/’- (t)l dr.

Adding equations (17) and (19) we have

(20) dk <= lyt"- ’(t)l dt.
k

Squaring both sides of (20) we get

dk2 --<_ lyt"-)(t)l dt

(r(t)) 1/2(r)/2lyt" )(t)[I/2" [yr.- )(t)11/2 dt

dt. {ry"- ’(t)}. y"- ’(t) dt
k

by Schwarz’s inequality. Thus

(21) d -dt {ryt"-’)}y"-’ dt.
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Integrating the right-hand side of (21) by parts we have

(22) dk2 7 1)(ak)

(r(t)y("- l)(t))’y("- 2)(t) dt.

If yt"-2)(t)> 0 in tk-, tk], then the choice of ak and bk in Irk-, tk] implies
Yt"-)(bk) 0 and if-)(ak) O. Similarly if yt"-2)(t) < 0 in [tk-, tk], then the
choice of ak and bk in tk-, tk] implies yt"-)(bk) 0 and yt"-)(ak) O. Thus
in any case we have the following inequality for the first term on the right of (22),
namely,
(23) y(’- 2)(bk)r(bk)ytn- )(bk) y("- 2)(ak)r(ak)ytn- 1)(ak) O.

From (22) and (23) we have
b _1 dt =< (r(t)y"- )(t))’y"- 2)(0 dt.(24) d

Making use of (5)in (24) we get

d (t) dt yt"- 2)(t)a(t)y(t) dt yt"- 2)(t)f(t) dt

(25)

Since ly("- 2)(t)l =< dk in [ak, bk], we have

(26)

Now

dk -(t) dt <= a(t)y(t) dt + If(t)[ dt.

a(t)y(t) dt >= a(t)y(t) dt
k=l

from which

(27) a(t)y(t) dt >= dk 3d

k:, (1/r(t)) dt >= --k :, Ib (1/r(t))dt

on using (26)and the fact that

> If(t)l dt If(t)l dt.
=1

Now limk j’bka 1/r(t)dt 0 by condition (i) since ak , bk
---} . But then the

right-hand side of (27) tends to as - since d > 0. This is a contradiction to
(8). Thus as long as lim sup, ly- 2)(t)l remains greater than any positive number
d, we will encounter the above contradiction. Hence

lim sup ly’- 2)(01 0

and the theorem is proved.
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3. Applications.
THEOREM 2. Under the conditions of Theorem 1, all nonoscillatory solutions of

(28) (r(t)y’(t))’ + a(t)y(t) f(t)

tend to zero as

Proof From Theorem 1, if y(t) is a nonoscillatory solution of (28), then taking
n 2, we find that y(t) tends to a finite limit as . Now integrating (28)
over T, t], where y(t) > 0 for >__ T (as before) we have

r(t)y’(t) r(T)y’(T) + a(t)y(t) dt <= If(t)l dr.

From Case of the proof of Theorem 1, if

fr a(t)y(t) dt

then y’(t) < 0 and y(t) 0 as o.
From Case 2 of the proof of Theorem 1, if

fr a(t)y(t) dt <

then

lim inf y(t) lim inf y(t) 0 ==> y(t) ---+ 0 as --+ c.
t--+

THEOREM 3. In addition to the conditions of Theorem 1, suppose r(t) is bounded
awayfrom zero, 0 <_ r’(t) <_ L < 1, and

(291 m)

Then all nonoscillatory solutions of
(30) (r(t)y"(t))’ + a(t)y(t) f(t)

tend to zero as .
Proof Let y(t) be a nonoscillatory solution of (30). As in the proof ofTheorem

1, let Tbe large enough so that for >= T, y(t) and y(t) are nonnegative (without
any loss). Integrating both sides of (30) over [T, t] we get

(31) r(t)y"(t)- r(T)y"(T) + a(s)y(s)ds <= [f(s)l ds.

Suppose first that

lim a(s)y(s) ds c
t--

Since the right-hand side of (31) is bounded as -, , we have

r(t)y"(t)
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as . Since r(t) > O, y"(t) <= 0 eventually. Let T1 > T be large enough so that
for >= TI, y"(t) <= O. Thus y(t) is monotonic. Also y’(t) >= 0 eventually, because
otherwise y(t) will become negative. Thus y(t) is increasing. Dividing (31) by
r(t), we have

(32) y"(t)
r(T)y"(T) y(T) a(s) ds If(s)[ ds

r(t) r(t) r(t)

Since r(t) is bounded away from zero, the right-hand side of (32) remains bounded,
while on the left,

lim t a(s) dsT

Thus y"(t) - as . But this forces y(t) to be negative, which is a contra-
diction. Hence we must have

(33) t-lim fr
As in the proof of Theorem 1,

hence we have from (33),

(34)

Suppose to the contrary that

(35)

a(s)y(s) ds <

lim inf y(t) O.

lim sup y(t) > p > O.

In a manner of Hammett [7], there exists a sequence of numbers {S,}, n >= 0,
with the following properties"

(A) lim,_ S, , S, >= T for all n.

(B) For each n, y(S,) > p.
(C) For each n >= 1, there exists a number S’, such that S,_ < S’, < S, and

y(S,) < p/2.

Let (e,, ft,) be the largest open interval containing S,. Note that

y(z,) y(fl,)= p/2

for n >= 1. Now in [,, S,], there exists a number S’e (e,, S,) such that

(36) {1 z’(S)}y;(S,)=
y(S,)- y(,)

>
p- p/2_ p

s. . /3. . 2(/3. .)

But by Case 2 of the proof of Theorem applied to (30), we have y’(t) 0 as- m. Since z’(t) < L, it follows from (36) that

lim (ft. .)=
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since p > 0.
Also because of the way in which , and ft, were chosen, we have

on [,, fl,]. Now from (33),

y(t) >_ p/2 > 0

> a(s)y(s) ds

>_ a(s)y(s) ds
on

-} a(s) ds o.
n=l

This is the required contradiction and the proof is complete. Hence y(t) 0 as--- X3.

To satisfy Theorem 3, consider the equation

(e’/4y"(t)) + et’/2)-y(t r) 3/4 e- 3,/4 +_e-,/2.(37)

Here

r(t) =_ e’/4, a(t) e(’/2)- , f(t) 3/4 e- 3t/4 _1_ e-’/2,

yt a(t) 2(ett/2)-- etr/2)-)T --" (3C) asg.
r(t) e

All conditions of Theorem 3 are satisfied. Hence all nonoscillatory solutions of
(37) tend to zero as . In fact y(t) e-’ is a nonoscillatory solution of (37).

As an example of Theorem 2, we consider the equation

(38) (ety’(t)) + ett/z)-ny(t- re)--c -t/2.

All conditions of Theorem 2 are satisfied. Thus all nonoscillatory solutions of
(38) approach zero as - . The function e-’ is again a solution of (38).

COROLLARY 1. Under the conditions of Theorem 3, if y(t) is a nonoscillatory
solution of(5), then yt"- 2)(t) 0 as --, .

Proof We find that Case of the proof of Theorem does not materialize.
The rest of the proof is the same as that of Theorem in Case 2.

Remark. In the beginning it was assumed for convenience that a(t), f(t) and
r(t) were to be continuous on the whole real line R. In fact these functions need
be continuous only on some positive half-line [To, o]. Since z(t) is bounded, all
the results remain valid.

The following example shows that it may not be possible to weaken condition
(29) of Theorem 3 if all other conditions are satisfied. Consider the equation

3 45
(39) (4t3y"(t)) + -y(t)= 2t2,

> O.

This equation has

y(t) /2 lit2
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as a nonoscillatory solution approaching co as --* co. All conditions are satisfied
except condition (29).

4. Bounded r(t).
THEOREM 4. Suppose n 2 and conditions (ii) and (iii) of Theorem hold.

Further suppose that r(t) is a positive bounded function that satisfies the following"

(40) !im
r(t)

dt= co, then (b a)--, co as k co.

Suppose 0 r’(t) L < 1. Let y(t) be a nonoscillatory solution of(l). Then

y(t)O as .
Proo We proceed as in Theorem and arrive at Case 1. Since r(t) is bounded

we have

r(t)y’(t) y’(t) y(t) ,
which is a contradiction. Hence we must have Case 2. Following the proof further
we arrive at conclusion (26).

Now dk > 3d/4 > 0 and the right-hand side of (26) approaches zero as k
due to condition (iii) and conclusion (8), we must have

(41) lim dt=

which from (40) gives

(42)

Let

(b-a)--,co askco.

Then g(t) is increasing. Also let

Now

g(t) t-

g(Ok) ak and g(flk) bk.

g(flk)- g(Ok)
(bk ak)= (ilk

k
g’G)( )

<=(flk--ak)Lo for someLo>0
since 0 =< z’(t) < L < 1. Thus

(43) flk--ak ask.

Again, since g(t) is increasing,

g(t) [a, b] implies e [, fl]
and

ly(g(t)) dff2 for [a, fl].
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Hence

(44) y(t) >= dk/2 >= 3d/8

for e [ek, fl]. From (8) we have

o > a(t)y(t) dt

> a(t)y(t) dt

3d
a(t) dt ask>--

This contradiction completes the proof.
THEOREM 5. Let n 3 and conditions of Theorem 2 hold. Then nonoscillatory

solutions of equation

(r(t)y"(t))’ + a(t)y(t) f(t)

approach zero.

Proof Let y(t) be a nonoscillatory solution of (1). We follow the proof of
Theorem 4 and arrive at

(45) lim (b a) oc, lim (ilk )= .
Here we know that

(46)

(47)

(48)

(49)

ly’(t)l => d/2, e [a, b],

ly;(t)l >= d/2, [,

In view of (8), (45) and condition (ii), let kl be large enough to insure that

a(t) dt > 1,
kl

a(t)y(t) <dt
kl

and
16

>(50) kl- (kl 3d(l L)

Case 1. y;(t) < 0 in [ek,, ilk,]"
Here

(51) y;(t) < d/2 3diS.
We now consider the t-interval

By the mean value theorem, there exists (1 (k, + flk,, ilk,) such that

(52) (, + ,)+ (t- ,- k,)’(6,)( ’(61))= (t) > 0.
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Taking ilk, we have

(53)

since 0 __< z’(t) < L.
From (50) and (53) we have

(54) Y(1/2k, + 1/2ilk,)>
and since y’(t) < 0 in [ek, ilk,I, from (54) we have

(55) y(t) >

From (54) and (55) we have

a(t)y(t) dt >_ a(t)y(t) dt
k k

>= a(t) dt
k

>_ 1, from (48).

But this is a contradiction to (49), and hence we must have the following.
Case 2.

y’(t) > 0,

A similar analysis as in Case yields a contradiction. Hence

y’(t) - 0 ast .
The proof now is the same as that of Theorem 3 from conclusion (34) onward.

The proof of Theorem 5 is now complete.
Remark. Condition (40) on r(t) is automatically satisfied when r(t) >= 7 > O.

Thus Hammett’s results are generalized.
Remark. The hypothesis of boundedness of r(t) was used in Theorems 4 and 5

only to eliminate Case of the proof of Theorem 1. Thus in the statements of
Theorem 4 and Theorem 5, if we eliminate the boundedness requirement on r(t),
the nonoscillatory solutions of the corresponding equations approach finite
limits.

For example, the equation

4
(56) (ty’(t))’ + y(t- re)=

(t- )2
has

y(t) lit2

as a nonoscillatory solution approaching afinite limit as -+ oo. This is not covered
by Theorem 2. But Theorem 4 applies, since if

then (bk ak)-+ oo as k - oo.
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INTEGRAL OPERATORS AND THE NONCHARACTERISTIC
CAUCHY PROBLEM FOR PARABOLIC EQUATIONS*

MICHAEL STECHER"

Abstract. In this paper integral operators for parabolic equations in three space variables are
constructed and then used to construct a singular solution for these equations. Using this singular
solution, an integral representation fi3r the solution to a noncharacteristic surface Cauchy problem is
found.

1. Introduction. We are interested in deriving an integral representation for
solutions to the noncharacteristic Cauchy problem for the partial differential
operator

l[u] =-- A3u + a(x x2, X3, t)u b(x1, X2, X3, g)Ut.

The coefficients in (1.1) are assumed to be entire functions of the (complex) variables
x x2, x3 and t, and A3u denotes Z{=I c2u/cxZi Such a problem arises when one
considers various inverse single phase free boundary problems. For a more
thorough discussion of these matters the reader is referred to [23, [33, [6], [113
and 143.

To get the desired integral representation one first constructs a particular
singular solution for the equation l[u] 0 (cf. 4). An expression involving the
Cauchy data and the singular solution is then integrated over a region in C4

[cf. (5.10)3. This technique is a generalization of the methods of Colton ([-33 and [5])
and Hill ([1 13 and 12) whose work was for parabolic equations of 1- and 2-space
variables. In 2 Bergman type integral operators are constructed which map
analytic functions of 3-complex variables onto solutions of (1.1). For a thorough
treatment of integral operators for elliptic equations see [1], [73, [103 and [15].
For integral operators for parabolic equations the reader is referred to [13 and [43.
In 3 inversion formulas for the operators constructed in 2 are given. These
formulas are then used in 4 to construct the desired singular solution.

The results contained in this paper are part of the author’s Ph.D. thesis
written at Indiana University, Bloomington, Indiana, under the direction of
Professor David Colton, whose advice and encouragement were invaluable.

2. Integral operators. In this section integral operators are constructed which
map analytic functions of three complex variables onto analytic solutions of
l[u] 0. Inversion formulas (which are given in 3) will enable us to conclude
that this mapping is in fact onto.

We first introduce the variables z, z*, x and defined by

z+z*
(2 1) xl Z Z* X2 X3 X, t.

We note that x and x2 will be real if and only if z* - ( denotes the complex

Received by the editors February 15, 1974.
5" Department of Mathematics, Texas A & M University, College Station, Texas 77843.
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conjugate of z). This change of variable transforms (1.1) into

(2.2) L[U Uxx U._.., + A(z, z*, x, t)U B(z, z*, x, t)Ut,

where A(z, z*, x, t) a(x1, x2, X3, t), B(2, 2", x, t) b(x x2, X3, t) and U(z, z*, x, t)
-u(x1,x2, x3, t). Motivated by the work of Colton [4], we look for a solution
of (2.2) of the form

U(z, z*, x, t) [./] (z, z*, x, t)

(2.3) E(1)(z, z*, x, t, s, (, r)

ds

V/1-s2 (

where / x + 2 + -lz*, and 7 is a path from -1 to not passing through
the origin. Let D,- {(:l -e < ]’l < + ,}, 0 < ,< l, D be some domain
in C containing 7, and G C D D,: IC2](z t)}.

THEOREM 2.1. Let E1) E(1)(z, z*, x, t, s, , "c) be an analytic function in G,
and suppose E satisfies the partial d!fferential equation

(2.4)

E( .’;lzz,) + A(z z* x t)E1) B(z z* x t)E(t
s 2 (1 s2)
E(1)+ E (1

( ]g’(1) S2 E)-- S2Lz* 21-
S

E(xls)
S--

/f f(/, (, z) is an analytic function of three complex variables in a domain D D2

D3 such that {(:11 1} c D2, then g(l)[f](z,z*,x,t), as defined by (2.3), is an
analytic .function of its (complex) variables and satisfies L[tl)[f]] 0 in the
domain H H2 H3 D3, where Hi, i= 1,2,3, have the property that if
(z,a*,x)H H2 H3, then (x + (z + (-12:*)(1 s2)GD1 .for all I(l--
and s 7.

Proof. The fact that d, l)f] (z, z*, x, t) is an analytic function of its arguments
is obvious. The conditions on the domains ensure that the integrations over the
respective paths make sense. Thus all that remains is to verify that L[d(1)[f]] 0.
Substituting (2.3) into (2.2) gives

(2.5)

ds d{ dz,+ A(z, z*, x, t)E(l!f B(z, z*, x, t)Ell)f} /1 s2 (
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where fl 3f/81 and fll c32f/812. But c3f/Ola (- 1/2Sl)(c3f/cs), and integrating
by parts shows that if Etl) satisfies (2.4), then (2.5) is identically zero.

We now wish to show that an Etl) function satisfying the conditions of
Theorem 2.1 exists. To this end we introduce the following variables"

1 2z, 2 x + 2’z, 3 x + 2(-lz*, P-- 1/2(2 -I- 3)’
/-- /(1, 2, 3, t; S, , 17) EI)(z,z*, x,t’s,,

(2.6)

(1, 2, 3’ t; ) B(Z,Z*, X,

Equation (2.4) is transformed to

]2S(/22 223 "1-" /33 4/13 -t- ’(1’ 2’ 3’ t; )
(2.7)

/(x, z, 3, t; )/,) (1 $2)/18 -t-- (1/s)/ 0.

We now look for a solution to (2.7) of the form

(2.8) (1, 2’ 3’ t, S [, ) -Jr-
n=l

where (0, z, 3, t; s, , r) 1/(: t), and the p")(l, 2, 3, t; ’, r), n 1,
2, -.-, are to be determined. Substituting (2.8) into the differential equation (2.7)
leads to the recursive relation

(2.9a) p(11) (1, 2, 3, t; ’) /(1, 2, 3, t;- (- t)

,") 4P"3(2.9b) p],+ 1) {P(2"2 2p(2"3 + v33 1, 3,2n+

and
/(1, 2, 3, t; )pln)}

(2.9c) p")(0, 2, 3, t; ) 0, n 1,2, ...,
where pl")= 8p")/c and pl c32p(n)/(C3ij). NOW let Q") Q")(, 2, 3, t; )
be defined by

(2.10) Q") (r t)"+ lp,), n 1,2,

An easy calculation shows that the pC,) satisfy (2.9) if and only if the Q") satisfy

(2.11a) QI) ( t)(l, 2, 3, t; ,) _/(1, 2, 3, t; ),

"C t’l(n) 9Fl(n)
5:522 /-"z523 -- Q(3n3 4Q1"3 + A(I, 2, 3, ’)Q(")Q(1,+ 1)

2n +
(2.1 lb)

(1, 2 3 )QIn) n+l

and

(2.11c) Q(")(0, 2, 3, t; ) 0, n 1,2,



INTEGRAL OPERATORS 799

In what follows, the concept of a dominate is needed. We give a definition
and refer the reader to [1] and [10] for further details.

DEFINITION 2.1. Let

f(z z2 zk ’) a,,...,k(()z]’ zk
nl =0 nk=O

and

g(z Zk) b,,...,kz Zk
nl --0 nk’- 0

We will say g is a dominate of f (denoted by f(zl,--., Zk;() << g(zl, ..., Zk) or

f << g), if 0 =< [a,,...,,(()[ =< b,,...,,, n 0, 1,.-., i= 1,2,..., k, and the in-
equalities hold for all relevant values of the parameter ’.

LEMMA 2.1. Let (1, 2, 3, t; () and (1, 2, 3, t; () be entire

functions in z and i, 1,2, 3, and analytic in for D. Then there exists a
sequence offunctions Qt") Qt")(I, 2, 3, t’(, z), n ,2, which are entire
in t, z and i, 1, 2, 3, and analytic in for ( in such that the Qt") satisfy (2.11).
Moreover for each pair 61, 62 of positive constants there exists a positive constant
M M(61 t2) such that

(2.12)

for Iil < 61, 1,2, 3, [t[ < (2, [’[ ( (2’ and e D, n 1,2,
Proof Let C C(61 62) be a positive constant such that

(2.13) A,B << C

for [i[ < tl, 1,2, 3, it[ < 62, and in . Let N > 2(1)2C. Set

1
(2.14)

and

Qtn+)(l,z,3,t;()= Htn)(tl,z,3,t;(,z)dtl, n= 1,2,...,

where Ht")( 1, 2, 3,t; (, z) is the right-hand side of (2.11b). We see that each
Qt") has the required domain of analyticity and clearly (2.11) is satisfied. Since
each Qt") is analytic we may find an M M(61,62) such that (2,12) holds with this
M for k <__ N. We now assume that (2.12) holds for n k and show that it holds
for n k + 1. Using the standard properties of dominates and the fact that

if Itl, Izl < 62, we find that
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(2.16)
62)k62{ 16(3k+1)2Qk+I)<<M 261 1 (2k+ 1)3 + C

and hence

(2.17)

(7k + 1)l+,k+(2k + 1)2

3(k - 1) (2k + 1)3 + C
(2k+ 1)6 2 +k+

Without loss of generality we may assume that 5 2 > and k > N _> 2C(bl) z.
We thus have

Q(k+l) << M 261)k+1{ 1-1) -1) )(1 )(1 )}-3(k+l)
(2.18)

It now follows by induction that (2.12) holds for all n.
LEMMA 2.2. Let and be as in Lem 2.1. Let p")({, 2, 3, t; , z) satisfy

(2.9). Then the series= sZnnpn) converges absolutely and ungormly on compact
subsets of G C4 x. O x {C2[(z t)}, where C4 is the space offour complex
variables (1’ 2’ 3’ S) and O {’1 g [[ +

Proof Let K be a compact subset of G. Then there exist positive constants
0, and 62 such that

{ ’1 1’i= ’2’3’’s1 62 }(2.19) K (l’2’3’t;S’’r)’O z t,lt Iv 32,D
Pick ,0 < < 1, such that /(1 -)9 < O/(52(462)3), and 31 such that x <
Let Q{")be the functions constructed in Lemma 2.1. Then p{")= ( t)-"-
and, using (2.12) and (2.19), we see that for all points of K we have

IP")(, 2, 3, if, )1
 2.20)

0
2a2 "26/ {(1 )3({)2} 3n, H l, 2,.--

We therefore have

(2.21)
M

Lemma 2.2 and the preceding discussion now imply the following theorem.
THEOREM 2.2. There exists a function E{1)= E) (z, z*, x, s, , z) which is

entire in z, z*, x, s, analytic in for in , and analytic in and r if 4: r., such that
E) satisfies (2.4) and E)(O, z*, x, s, , r) 1/(r t).
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The integral operator (2.3) can be used to map Goursat data, prescribed on
the z 0 hyperplane, onto a solution U(z, z*, x, t) of L[UI 0 such that U(0, z*,
x, t) assumes the prescribed data (cf. Theorem 3.1). In order to handle data given
on the z* 0 hyperplane, we will need a second integral operator. Its construction
will only be outlined. Define d42)[f] (z, z*, X, t) by

dz)[f] (z, z*, x, t)

(2.22) fl fE(2)(z z, x t.s r)f(g(l_s2) r)
ds d dr

=6 l S
2

where/i x + - 1Z .ql__ Z*, and f(fi, ’, r) is an analytic function of three complex
variables (we note the positions of z and z* with respect to the parameter variable
have been interchanged). If the function E(2)(z, z*, x, t; s, , )satisfies the partial
differential equation

E- "-’=z*72)+ A(z, z* x, t)E2)- B(z, z* x, t)El 2)

" E2)
S2 ]7(2) ._ E2,(2.23) + 2- 2/s2 z*s 2/S2

s2 (2

(1 $2)E(2
2s

then d’{2)[f](z, z*, x, t) is an analytic solution of L[U] 0 (cf. Theorem 2.1).
We next introduce the variables r/i, 1, 2, 3, defined by

(2.24) ?/1 2z*, Y/2 x + 2’z*, r/3 x + 2{-lz,

and then define the following functions"

(2.25)

(rl 1, 2, ?13, ) B(z, z* x t)

It is readily verified that (2.23) is transformed into (2.7) with/t, A",/, and/ replaced
by fi,/],/ and/2), respectively. We again look for a solution to this transtbrmed
equation of the form (2.8). From the above it is clear that Theorem 2.2 is true with
E{1) replaced by E2) and E1)(0, Z*, X, S, , T) 1/( t) replaced by E2)

(z, O, x, t; s, , z) 1/(z t).
We remark that the construction of these integral operators does not depend

in an essential manner on the fact that the coefficients in (1.1) are entire. If we
weaken this requirement and only demand that the coefficients be analytic in some
ball in C’, then we may proceed as before. In this case the E1) and E(2) functions
will not be entire in the z, z*, x and s variables.
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3. Goursat problems in the complex domain. In this section we wish to construct
solutions of L[U] 0 which assume prescribed values on the complex hyperplanes
z 0 and z* 0; that is, we wish to solve the following Goursat problem:

LEU] =- U U,, + A(z, z*, x, t)U B(z, z*, x, OU 0,

U(O, z*, x, t) F(O, z*, x, t), U(z, O, x, t) F(z, O, x, t),

where F(z, z*, x, t) is entire in z, z* and x, and is analytic in except possibly at
0, where there may be an essential singularity. The following lemma will be

needed in our construction of.the solution to (3.1).
LEMMA 3.1. Let E(1) and E(2) be the functions constructed in 2. Then E)

(z, O, x, t; s, (, z) and E(2)(0, z*, x, t; s, , "c) can be analytically continued as functions
of(to[([__< land

(3.2) E()(z,O,x,t;s,O,z) EZ)(O,z*,x,t;s,O,z)= 1/(z- t).

Proof This will only be shown for E) as the proof for E(2) is similar. Since

(3.3) E(1)(z, 0, x, t; s, , "c) + s2"(x + z)"p<")(2z, x + 2z, x, t; , ),
n=l

it will suffice to show that p")(2z, x + 2’z, x, t; , z) is analytic in for Il
and that p")(0, x, x, t; 0, z) 0, n 1, 2, The fact that the series still converges
absolutely and uniformly for I’l =< follows by observing that the dominant
estimates that were derived for p(")when " O, will be unchanged when I’l =< 1.
From (2.9) we have

(3.4)

Thus

P(1)(I, 2, 3, t; , "C)

p(1)(2z, x + 2z, x, , z)

.,o2 [(r/, x +_t2[z,x, t; ) /(r/, x + 2’z, x, t; [)-1
(- t)

2{z [A(rl/(2), (’/2)(r/ 2{z), x + 2’z r/, t)
!

B(r//(2), (/2)(r/ 2z), x + 2z rl, t)-]
dq

(z

2 f [A(2, (/2)(22 2z), x+z_t 2z- 22, t)

B(2, ([/2)(2’2- 2[z), x + 2’z- 2’2, t)-] d2
_1

From (3.5) it is clear that p(l)(2z,x + 2z,x,t;,z) is analytic in for I’1
and that p()(0, x, x, t; 0, z) 0. The proofs that p(", n > 1, have the same proper-
ties are similar.
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In the next three lemmas we will show how the data function F(z, z*, x, t)
appearing in (3.1) can be used to define other analytic functions which will then
be mapped by the operators g(1) and d(2) onto the solution of (3.1). We will need
the following formulas:

s2)" d r(n + 1/2)r(1/2)
/1-s r(n+l)

(3.6)

f s2),ds F(n + 1)
27t

(1
s- F(n + 1/2)F(1/2)’

where F(x) is the gamma function and 7 is a curve lying in the complex plane
not passing through the origin (cf. [8]). Since F(z, z*, x, t) is analytic in C3 {Cll0}
we can write F in the form

(3.7) F(z, z*, x, t) E E alrnnpzlZ*mxntp"
l,m,n 0 p

LEMMA 3.2. Let

f(/,t)= F(00,/(1- s2) t)ds
S2"

Then

(3.9) (1)[f](0, z*, x, t) (2)[f (z, 0, x, t) F(0,0, x, t).

Proof F(O, O, x, t)= ,=o Zp= b,px"tp, where b,p aoo,p, , O, 1,...
p 0, +_ 1, +2,.... Using (3.6) we have

(3.10) f(#, t) 4-, b"PF(n +
Since E(0, z*, x, t; s, , z) 1/(z t), we have

d[/] (0, z*, x, t)

(3.11)

ds d
X//1 S2 (

s2)ntp2rci ;l=x

ds _d F(O, O, x, t).

Using Lemma 3.1 and integrating with respect to first, one may similarly show
that

d)tz)[f] (z, 0, x, t) F(0, 0, x, t).
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The following lemmas will be given without proofs as they involve calculations
similar to those in Lemma 3.2. Let F(z, z*, x, t) be defined by

(3.12) F(z, z*, x, t) F(z, z*, x, t) F(O, O, x, t).

LEMMA 3.3. Let

(3 13a) G(z*, x, t)= z* --(o, Oz* [ O]x, )ao

and

(3.13b)

Then

(3.14a)

and

(3.14b)

LEMMA 3.4. Let

(3.15a)

and

(1)[g] (0, Z*, X, t) if(0, Z*, X, t)

([g](z, O, x, t) O.

H(z, x, t) z Oz, O, [1 O]x, t) dO

(3.15b) h(kt, , t) H([1 s2]/z", [1 s2], t)
ds

S
2

Then

(3.16a)

and

(3.16b)

(2)[h](0, z*, x, t) 0

(2)[h-] (z, 0, x, t) =/(z, 0, x, t).

THEOREM 3.1. Let F(z,z*,x,t) be analytic in C3 x {CII(0)}. Let f(#,t),
g(u, , t) and h(#, , t) be thefunctions defined in (3.8), (3.13b) and (3.15b), respectively.
Then the solution to the Goursat problem (3.1) is given by

(3.17)
U(z, z*, x, t) ()[f] (z, z*, x, t) + g()Eg] (z, z*, x, t)

q- )(2)[h] (z, z*, x, t)

for (z, z*, x, t) in C3 X {C 1[(0)}.
Proof U(z,z*, x, t) as defined by (3.17) is certainly a solution of the partial

differential equation L[U] 0. That it assumes the given data is assured by Lemnas
3.2, 3.3 and 3.4.

We remark that one really only needs the data function to be analytic (that is,
not necessarily entire) in the space variables as in the above lemmas no essential
use has been made of the fact that F is entire in those variables.
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It is now a direct consequence of Hormander’s generalized Cauchy-
Kowalewski theorem (cf. [13]) that every analytic solution of L[U] 0, and
hence lu] 0, has a representation of the form (3.17).

4. Singular solutions. In this section we will construct a singular solution to
equation (1.1) which is a generalization to three space variables of the singular
solutions constructed by Hill [11] for parabolic equations in one space variable
and by Colton l-5] and Hill 12] for parabolic equations in two space variables.
The essential distinction between these new singular solutions and the usual
fundamental solution for parabolic equations is that they assume prescribed
Goursat data on intersecting complex hyperplanes and, in the case of an odd
space dimension, have an isolated essential singularity in the complex t-plane
instead of the usual branch point singularity.

Following the method of Hadamard [93, we look for a solution to the formal
adjoint of (1.1) of the form

v(x, t; , to) r’-a/’ uJ)(x, t; , to)C + w(x, t; , to),
j-O

where (x, t; , to) (x1,x2,x3,g; 1, 2, 3,/0), l--’ E/3=l (x i)2, I-’1/2 denotes
the positive square root of F, and the u), j 0, 1, ..., and w are entire functions
of the space variables xi, 1, 2, 3, with a pole-like (or essential singularity) in
time at o. If we define

(4.2)

and

v V(z,z* x t" Zo z,xo to)= v(x t" ,to)

RZ(z, z*, x, zo, z, Xo) F(x; )

(x- Xo)2 -4(z- Zo)(Z* z’)

u(z, z*, x t’, Zo z, Xo to) u(J(x, t; {, to),

cf. (2.1)], then we want Vto satisfy the following conditions for each value of the
parameter variables zo, z], xo, o

(4.3a) M[V] =- Vx V=, + A(z, z*, x, t)V + (B(z, z*, x, t)V), O,

(4.3b) Vzl,_-_; E,Iz-..o o,

V(zo, z, x, t; Zo, z, Xo, to)

(4.3c)
(x- Xo)(t- to)

+ I-I(zo, , x, t; Zo, z, Xo, to),

where H(zo, z’, x, t;zo, z, xo, to) is an entire function of x and has an essential
singularity at o. (The reasons for (4.3b and c) will become apparent in 5.)
We now proceed with the construction of v. Let m[u] be defined by

(4.4) m[u] =- m3u -i- a(x1, x2, x3, t)u --1- (b(x x2, X3, t)u)t"
that is, m is the formal adjoint of the operator defined in (1.1). We wish to determine
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the u(j), j 0, 1, ..., so that

(4.5) m F -1/2 u(J)I --0.
j=

Let u be an arbitrary analytic function. Then
3 c3u

m[uFJ-1/2)] m[u]F-1/2) + 4(j- 1/2) FJ-(3/Z)(x i) OX(4.6) i=

+ 4j(j })uI-’j-(3/2).

If r is a parameter which indicates the radial direction from the point (1, 2, 3)
to the point (x x2, x3), then

3 U U
(4.7) (x,- ,)SU., r

i= UAi

From (4.6) and (4.7) we have

m Ij =o tl(J)rJ 1/2)1
{ u(J+I

(4.8) m[u(J)] +4(j+1/2) r
Orj=O

+(j+ 1)u(j+ Fj-(1/2)

(u(o)

2r__rF- 3/2.

Thus, if we wish (4.5) to hold, we must have

8u(O)

r-r =0,

(4.9)
8uO+ 1)

r + (j + 1)u(j + 1)

8r

Remembering (4.3c), we define

.,m[u(J)], j O, 1,
4( J +

u(O)
o’(4.10)

u(j+ 1)
r-j- fi’4(j + ) sJm[u(J)](s, O, dp)ds,

where r, O, b are the spherical coordinates of the point (x 1, x2, x3) with respect
to the point (1, 2, 3). We note that not only are the u(J), j O, 1, ..., entire
functions of x, l, 2, 3, but they are also entire functions of the parameter
variables i, 1, 2, 3.

Let us assume for the moment that the series in (4.1) has been shown to con-
verge. Making the change of variables (2.1), we have

U(j)R2 O.(4.11) M j=o
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We note that

R2 (x Xo)2(4.12) R21z,=z; ]z=zo
This, along with U() 1/(t to), gives us

vl,=z; E 7l,=;(x- Xo)S-l+ wl,=,
(4.13) s=l

v,l=zo Y ;lz=zoX- Xo)S-’ + Wz,lz=o.
j=l

Hence Vsatisfies (4.3a and b) if W satisfies

M[W] O,

(4.14)
Wig=z j=IE u(J)[z=zo(X Xo)2j-1,

Wl,= Y uJl,--(x Xo)-j=l

We now apply Theorem 1.1, after linearly translating the point (Zo,Z) to the
origin, to infer the existence of W and, furthermore, obtain an integral representa-
tion for this solution to the adjoint equation. Since the condition (4.3c) is auto-
matically satisfied once we have chosen U)= 1/(t- to), the only detail left

uS)F Without loss of generalityto verify is the convergence of the series s=0
set i, i-- 1, 2, 3, and o equal to zero. Define the functions QS)(xl, x2, Xs, t),
j 0,1, by

(4.15) QJ) + uS)

Then we have

QO) 1,

Q(j+ 1) r-J-1 fi"4(j ) sJ{tA3Q) + [td(Xl’ X2, X3’ t)

t)QtJ)+ tb(x x2 X3, t)QlJ)]} ds,(j + 1)b(x1, x2, X3, 1’

where d(x, X2, X3, t) a(x, x2, x3, t) - b,(x, X2, X3, t). The following two
lemmas are stated without proofs since their proofs are essentially the same as
those for Lemmas 2.1 and 2.2.

LEMMA 4.1. If a(xl, x2, x3, t), b(x, x2, x3, t) and d(x1, x2, x3, t) are entire

functions of xi, 1, 2, 3, and t, and QJ), j 0, 1, ..., are defined by (4.16), then
for every pair 61 and (2 of arbitrarily large positive constants there exists a positive
constant N N(6, c52)such that

(4.17) QCJ) << N 3162/J Xl 1- 12)(1- 3)(1--2)t -3j
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LEMMA 4.2. If a(x1, x2, X3, t) and b(x 1, X2, X3, t) are entire functions of xi,

i= 1, 23, 3, and t, then the series =o u(J)FJ, where the u(i) are by (4.s)a a
F i=l(xi- i)2, converges absolutely and uniformly on all compact subsets
of c {cl(0)}.

The above discussion is summarized in the following theorem.
THEOREM 4.1. Let A(z, z*, x, t) and B(z, z*, x, t) be entire functions of their

independent (complex) variables. Then there exists a function V V(z, z*, x, t;
Zo, z’, xo, to) such that

o UJ)R2 nl W(4.18) V
R j=

where R2 (x- Xo)2 -4(z- Zo)(Z* z) and the series in (4.18) converges
uniformly and absolutely on compact subsets of C6 x {C2l(t to)}. The functions
U(), j O, 1,..., and W are entire in z, Zo, z*, z, x, xo and analytic in and o
except when o. Moreover V satisfies the singular Goursat problem (4.3).

5. The noncharacteristic Cauchy problem. In this section we construct an
integral representation for the solution to the following Cauchy problem"

A3u + a(x1, x2, x3, t)u b(x1, x2, x3, t)u O,

U f(x1, X2, X3, t), Un[ g(Xl, X2, X3, t),

where S is a noncharacteristic surface (cf. [13]) and n is a normal to this surface.
We will assume that the surface S is the zero set of a real-valued analytic function
F(xl, x2, x3, t). The Cauchy data is assumed to be analytic in some ball in C4

and the coefficients appearing in the partial differential equation are again assumed
to be entire functions.

As in the preceding sections we make the change of variables (2.1). The
surface S is then analytically continued to the surface , which is realized as the
zero set of the function le(z, z*, x, t) F(z z*, (z + z*)/i, x, t). Let (zo, z, xo, to)
be some point in C4 which does not lie on . We let I(x, t) be the point (zo, z, x, t).
Let P(x, t) (p(z, x, t), z, x, t) and Q(x, t) (zo, q(zo, x, t), x, t) be points that
lie on the surface S. The fact that analytic functions p(z, x, t) and q(zo, x, t) exist
such that P(x, t) and Q(x, t) lie on , for (Zo, z], xo, to) sufficiently close to S and
(x, t) close to (Xo, to), follows from S-being noncharacteristic and the implicit
function theorem. Let Cl(x, t) and C2(x, t) denote, respectively, the straight lines
joining the points l(x, t) and P(x, t) and the points Q(x, t) and l(x, t). Let C3(x, t)
be a path in joining P(x, t) to Q(x, t) and let D(x, t) be the two-dimensional
region whose boundary consists of the curves Ci(x,t), i= 1,2,3. The region
D(x, t) is sketched in Fig. 5.1.

Let "1 {X’IX XOI 61} and let ’-2 {t’lt to] (2}, where 61 and (2
are positive constants (a restriction on 61 will be made later). Define the region G
contained in C4 by

(5.2) G U D(x, t).
(x,t)fx 2

Let L be the partial differential operator defined in (2.2), M the formal adjoint
of L, and let V V(z, z*, x, t; zo, z, Xo, to) be the singular solution constructed
in {}4. Letting U U(z,z*,x, t) be any analytic solution of L[U] 0 in some
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P(x,t)

C3
C

Q(x,t) C 2 I(x t)

FIG. 5.1

region containing G, we integrate the expression VL[U]- UM[V] over the
region G. Since M[V] L[U O, we have

o f VL[V CM[V]} dz dz* dx at

f {(VU VU) (VBU)t dz dz* dx dt

+ 1/2 [ {(Vz, U VU,) + (VU VU)z, dz dz* dx dt.

If 31 is picked so that 31 > 2 sup(z.z,.,o.,o)OO,o.,o {(IZ Zol Iz* zl)l/2}, then the

function _w/(x to)2 4(z zo)(z* z) R is analytic and nonzero for x xo
61 > 61 and Iz zol Iz* zl < 3 /4. (The implications of such a 31 existing

for the region G will be discussed later.) Since the function V can be written as in
(4.18), we see that (VU,- UV,,) has a Laurent expansion in x- Xo. Thus
(VU,,- U V,,),, has a Laurent expansion which does not contain the term
(x xo)-1. We may therefore conclude that

(5.4) v Ux U Vx) dz dz* dx dt O.

Similarly we may conclude that

(5.5) (VBU), dz dz* dx dt O.
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Thus (5.3) reduces to

o  lfo, n f(,,o
{(V,U-VU,)+(VU-UV),}dzdz*dxdt

(5.6)

from the divergence theorem. Here OD(x, t) denotes the boundary of D(x, t), which
equals C(x, t) + C(x, t) + C3(x, t). Since dz* 0 on C(x, t) and V 0 when
z* z, we have

{(V,U VU,,)dz* (VU VUz) dz}
(x,t)

(5.7)

a(x,t) ,(x,t)

Similarly we have

(5.8) fc,, {(V,U- VU,)dz*-(VU- VU)dz} -VUIl(x’t)
Q.(x,t)

(5.9)

Combining (5.6), (5.7) and (5.8) we have

o - lfo, n [fc3(x,, (V *U-VUz*)dz*-(VzU-VU )dz] dxdt

+ -l fn,n {V(P(x, t))U(P(x, t)) + V(Q(x, t))U(Q(x, t))} dx dt

V(I(x, t))U(I(x, t)) dx dt.

Using (4.3c) we evaluate the last term on the right-hand side of (5.9) and get

U(zo, z, xo, to)

(5.10) 8r2 (V,U VU,) dz* (VU VU) dz dx dt
’2 3(x,t)

+ V(P)U(P) + V(Q)U(Q)] dx dt.
-2

Formula (5.10) is a local representation of the solution U in terms of its Cauchy
data on the surface . This representation gives us a means of analytically con-
tinuing this local solution to a global solution.

In our derivation of (5.10)we assumed that

R w/(x Xo)2 4(z Zo)(Z* z)
was analytic and nonzero throughout G, that is, Iz Zol Iz* z[ < 32/4 for all
(z, z*, x, t) e G, where Ix xo] 61 > 31- What this means in terms of the surface
G is that (zo, z, Xo, t) may have to lie close to S in order that 61 may exist.
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GENERALIZED COMPLETELY CONVEX FUNCTIONS
AND STURM-LIOUVILLE OPERATORS*

J. D. BUCKHOLTZ’i" AND J. K. SHAW$

Abstract. A generalization of the class of completely convex functions, those functions in C[0, 1]
whose even derivatives alternate in sign, is developed by means of the Sturm-Liouville differential
operator Lf -(Pf’)’ + Q. The functions obtained are called LB-positive functions. A series expan-
sion associated with the operator is introduced and used to represent LB-positive functions. For
special choices of P and Q, the representation reduces to the classical relationship between completely
convex functions and Lidstone series.

1. Introduction. An infinitely differentiable function f defined on the interval
[-0, 1 is said to be completely convex provided that

(-1)"ftz")(x) __> 0, 0 __< x _< 1, n 0, 1,2,...

This class of functions was introduced by D. V. Widder in 1940 I9]. The most
familiar completely convex function is sin nx, and every completely convex function
is the restriction to 0, 1] of an entire function of exponential type at most n.

There is a close connection between completely convex functions and Lidstone
series. A Lidstone series has the form

{a,A,(z)+ b,A,(1 z)},
n--0

where {a,} and {b,} are complex sequences and A,(z)is the unique polynomial
of degree 2n + determined by the conditions Ao(z z, A,(0) A,(1) 0, and
A(z) A,_ l(Z), for n 1, 2, 3, A function f CI0, 1] is completely convex
if and only if

(1.1) f(x) C sin rex + {a,A,(x) + b,A,(1 x)},
n=0

where C is a nonnegative constant and a, > 0, b, >= 0, n 0, 1, 2,.... The
expansion (1.1) is a result of Widder’s characterization [10] of "minimal" com-
pletely convex functions and R. P. Boas’ [2] extension of Widder’s result to
completely convex functions. In [4] the present authors studied various problems
concerning convergence of Lidstone series.

In this paper, we employ the Sturm-Liouville differential operator to develop
a generalization of completely convex functions. We shall introduce a series
expansion associated with the operator and obtain a representation theorem
analogous to (1.1). The series expansion reduces to the Lidstone series in a special
case. Together with the representation theorem, our principal results include a
characterization of the class of generalized completely convex functions and
several theorems regarding convergence of the series expansion.
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Let P be a positive, continuously differentiable function defined on the
interval [a, b] and let Q be a real continuous function on [a, hi. Let L denote the
Sturm-Liouville operator

Lf -(Pf’)’ + Qf

and let B, and B denote the endpoint linear forms

B,f of(a) + o’f’(a),

Uf fif(b) + fi’f’(b),

where o, o(, fl, fl’ are real numbers such that [al + Io([ > 0 and Ifil + Ifi’l > 0. The
eigenvalue problem

(1.2) Lf= 2f, Uf Sbf O,

is known as a regular Sturm-Liouville system. It is well known that the operator L
is self-adjoint, that the eigenvalues of (1.2) are real and comprise a countable
collection with no limit point, and that the associated normalized eigenfunctions
of (1.2) form a complete orthonormal set.

We shall require only one hypothesis regarding the system (1.2). We suppose
that P, Q, Bo and B are such that

(1.3) the eigenvalues of (1.2) are all positive.

Further, we shall assume that the signs on the constants , ’, fl, fl’ are normalized
so that

0(_<0 and 0>0 if0(=0,
(1.4)

fl’>0 and fi>0 iffl’=0.
If the linear forms B and Bb are given, then (1.4) either holds or can be brought
about by multiplying one or both of the equations B,f 0 and Bf 0 by 1.
Such an operation affects neither the eigenvalues nor solutions of (1.2). Using the
Prtifer substitution method Ill it is not difficult to show that the normalization
(1.4) implies that any solution f of the homogeneous equation Lf-0 which
satisfies either Baf 0 and Bf > 0 or B,f > 0 and Bf 0 is nonnegative in
the interval [a, b].

For each nonnegative integer n, let LB"[a, b] denote the set of all functions f
on [a, b] such that (Lkf)(x), BLf and BbLf are all defined for a =< x =< b and
0 < k =< n. Here, L is the kth iterant of L. Now let LB[a, b] fl=o LB"[a, b].

DEFINITION. Let f LB[a, b]. We say that f is LB-positive provided that
(i) (Lf)(x) >= O, a <__ x <= b, k O, l, 2,...
(ii) (S,,Lf)>__ 0, k 0, 1, 2,

(iii) (BbLkf) >= O, k O, 1, 2,....
Thus if P 1, Q- 0, and a’= fl’= 0, then the LB-positive functions are

precisely the completely convex functions on [a, b. The selection P 1, Q 0
and a fl’= 0 leads to the similar class of functions studied by S. Pethe and
A. Sharma [7].

The eigenvalues of (1.2) will be denoted by {2k} o, with 0 < 20 < 21 <
and lim_oo 2 +oc, and the corresponding eigenfunctions by Yo, Yl, Y2,
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Thus, for each k, one has

(1.5) LYk ’kYk, By BbYk --O.

We recall [1] that each Yk has precisely k zeros in the open interval (a,b), and
that we are therefore free to choose Yo so that

Yo(X) >__ O, a <__ x <= b.

Further, we assume that the Yk are normalized so that

Yk 2 [Yk(X)] 2 dx 1, k O, 1,2,....

Let G(x, t), a <= x, <= b, denote the Green’s function for the operator L.
Recall that G is continuous and that (c/cx)G exists and is continuous on each
of the triangles a __< x __< =< b and a =< =< x =< b. Further, as a function of x,
G(x, t) satisfies

(1.6) B.G BbG O.

It can also be shown [6] that the conditions P(x) > 0 and 2o > 0 imply

(1.7) G(x, t) >= O, a <= x, <_ b.

Let Po and p be linearly independent solutions of the homogeneous equation
Ly 0 which satisfy

Bopo O, BbPo 1,
(.8)

Bp 1, BbP O.

From our remarks following the normalization (1.4), we have

(1.9) po(x) >= O and p(x) >= O, a <__ x <= b.

Observe also that any solution to the homogeneous equation is a linear combination
of Po and p. Define the operator a by

((f)(x) G(x, t)f(t) dt

for f C[a, b], and let if" denote the nth iterant of ft. Thus fro is the identity map,
c51 etc. Finally, define the sequence {Pk}=0 by

Pzk ’Po,
(1.10)

P2k + (ffkp k O, 1,2,

We can now introduce our series expansion. With each f LB[a, b] let us
associate the infinite series

(1.11) f(x) {(BbL"f)p2,(x) + (BoL"f)p2, + l(X)}.
n=0

We shall term a series of the form (1.11) an LB-series. We note that when P 1,
Q 0 and a’= fl’= 0, the LB-series is a Lidstone series. It is the question of
when the LB-series in (1.11) converges that we study first.
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We can now state our principal results.
THEOREM 1.1. Let f e LB[a, b]. Then f is LB-positive if and only if

(1.12) f(x) CYo(X + {a.p.(x) + b.p.+(x)},
n=O

where C >= 0, a, 0 and b, >_ O, n O, 1,2,....
We shall prove that whenever (1.12) holds, a, BbLnf and b, B,L"f,

n 0, 1, 2, .... Moreover, the convergence in (1.12) is uniform in [a, hi.
As a corollary to Theorem 1.1, it will follow that if f is LB-positive, then the

sequence {(L"f)(x)/2}, o is uniformly bounded in [a, b]. The following theorem
characterizes, via endpoint conditions, those functions f with {L"f/2} uniformly
bounded which are also LB-positive.

Let us denote by B, the endpoint linear form

Bf -’f(a) + zf’(a),

and observe that Boyo :/: O.
THEOREM 1.2. Let f LB[a, b]. 7’hen f is LB-positive if and only if

(i) B,,L"f >= 0 and BbL"f >= O, n O, 1, 2,...

(ii) the series
(B"L"f) + (BL"f)

.--o 2
converges;

(iii) lim (B.L"f)_
( yo);
---exists and is nonnegative

(iv) the sequence {L"f/2} is uniformly bounded in [a,

Finally, our techniques yield the following generalization of Schoenberg’s
classical result [3], [8] on Lidstone series.

THEOREM 1.3. Let f 6 LB[a, b] satisfy BL"f BbL"f O, n O, 1, 2,...,
and suppose there exists a positive constant M such that

Then

lim sup I(L"f)(x)l 1/" < M, a < x < b.

f(x) (f, y)y(x), a <= x <_ b.
2k<M

The symbol (.,.) indicates the usual inner product

(u, v) u(t)v(t) dt.

2. Asymptotic estimates. In this section we derive our LB-series (1.11) and
some asymptotic estimates on the sequence {p,}.

For a function o C[a, b], the unique solution to the boundary value problem

(2.1) Ly q), By BbY 0
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is given by

(2.2) y(x) (o)(x) G(x, t)o(t)dt.

Replacing y in (2.1) by its determination y o, we arrive at the identity

(2.3) Lq q,

valid for all qCa,b]. Now let fLB[a,b]. Then (2.3)implies L(f-Lf)
Lf Lf 0, and hence

f- Lf copo + clp,
where co and c are constants. Further, (1.6) and (1.8) give

B,f B,,(f CNLf)= B,,(coPo + clPl)-- cl,
and

Bbf B (f NLf)= Bb(coPo + Clpl)= Co.

We are therefore led to the identity

(2.4) f (Sf)po + (S,,f)p + NLf
for all f6 LB[a, b]. For a function f e LB2[a, b], we can apply the preceding
argument to the function Lf to obtain

Lf (SLf)Po + (S,,Lf)p + CSL2f,
and hence, by (1.10),

NLf (BLf)p2 + (SoLf)p + NL2f.
Substitution of this equation into (2.4) gives the identity

f= (Bbf)po + (B,,f)pl + (BbLf)p2 + (BaLf)p3 + cNZLZf.
By repeated application of this procedure one sees that

n-1

(2.5) f {(B,L’f)P2, + (BaL’f)P2,+ 1} .qt_. N"L"f,
k=0

for each positive integer n and each f e LBn[a, b]. In particular, if f e LB[a, b]
and Bf- Bhf 0, then (2.5) yields the important identity

(2.6) f =(Lf (Bof Bf 0).

To acquire asymptotic estimates on the sequence {p,}, we use the eigen-
function expansion [5]

(2.7) N(p 2-’(q, y,)y,,
k=O

which is valid for all q0 e C[a, b], the convergence being uniform in [a, b]. Since

CSy 2- yk and c5 is continuous, then

(2.8) (nq) y’, 2-r,(q), y)y, n 1, 2, 3,
k=0
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with uniform convergence in [a, b]. Combining (2.8) with (1.10) we now have

(2.9)
P2, 2-"(Po, Y,)Y,,

k=O

P2,+1 2"(pl, yk)yk, n-- 1,2,3,....
k=0

LEMMA 2.1. The sequences {(Po, Y)}Lo and {(Pl, Y)}=o are bounded, and
the sequence offunctions {2- ly(x)}= o is uniformly bounded in Ia, b].

Proof. From the Schwarz inequality,

I(Po, Y)I Pol 2 Y 2 P0 2’

and a similar result holds for (P l, Yk). Applying the Schwarz inequality to 2-ly
y, we have

1-ay,(x)[ G(x, t)Yk(t) dt

< (b a) 1/2 max IG(x, t)[,
a<=x,t<=b

and the result follows.
The following lemma contains the necessary asymptotic bounds.
LEMMA 2.2. There exist positive constants Ko and K such that

(2.10)
[p2,,(x)- 2"(po, yo)Yo(X)l Ko2-",

IPz,+ 1(x) 2"(Pl, Yo)Yo(X)[ <= K121
for a <= x < b and n 1,2,3,---.

Proof. Let n be a positive integer. By (2.9) and Lemma 2.1, there exists a
constant K > 0, independent of n, such that

Ipz,(x) 2"(po, yo)Yo(X)[ 12-"(po, y)y(x)l
k=l

__.< K Z/(n-1) /-nKl Z (l//k)n-l,
k=l k=l

for a =< x < b. The first inequality in (2.10) follows from noting that

-1 (21/2) is convergent for n => 3. The second inequality in (2.10) follows
similarly.

If we let I denote the identity function on [a, b], then (2.8) implies

cffnI 2"(I, yk)y, n 1,2,3,
k=O

Combining this with (2.10), one sees that

0 pZn(X) <= Mo2"(po, Yo),

(2.11) 0 <= PZn+ 1(X) MI2n(pl, Yo),

0 <= ("I)(x) <
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for a __< x =< b, n 0, 1, 2, ..., and for suitable constants Mo, M and M2.

3. Expansion theorems.
THEOREM 3.1. Suppose that f LB[a, b] and that the sequence {(L"f)(x)/2}, o

converges uniformly to 0 in [a, b]. Then

(3.1) f(x)-- {(BbLkf)P2k(X) + (B,Lkf)pzk+ I(X)}
k=O

with uniform convergence in [a, b].
Proof. By (2.5) we have

n-1

(3.2) f- Z {(BbLkf)P2k + (BaLkf)pZk+ 1} if"L"(,, n= 2 3
k=0

and it is therefore sufficient to prove that the sequence {ff"L"f},% converges
uniformly to 0. By (2.8),

"L"f= 2;"(L"f, Yk)Yk, n= 1,2,3,..-

If we write (L"f)(x) 2oe,(x), a < x < b, n 0, 1, 2,.-. then the functions
satisfy lim,_oo Ile,[I2 0, and Schwarz’ inequality yields

I(Lf, Yk)] --( 2)][e.[[2.
By Lemma 2.1, there exists a constant K > 0 such that

I("L’f)(x)l .II2K (’O/k)n-1 a<=x<_b,_

for all n > 3, and the desired result follows.
The expansion (3.1) is an example of a two-point expansion, or "grouped"

series expansion. Note that for LB-positive functions possessing the expansion
(3.1), all the terms in the series are nonnegative. Hence the series converges in the
ordinary sense; i.e., iff is LB-positive with (L"f/2) O, n - oe, and if h2 BbL’f,
h2/+ BaLf, k 0, 1, 2, ..., then

f(x) hkp,(x),
k=O

uniformly iv. [a, b].
We shall next consider necessary conditions for convergence of LB-series.

First, we note that the bounds (2.10) imply

(3.3)
lim [,)pzn(X)/Yo(X)] (Po, YO),

lim [2;p2,+ (x)/yo(X)] (p, Yo)

for all x in (a, b).
THEOREM 3.2. Let {h} be a real sequence and suppose that the series

(3.4) hpdx
k=O
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converges at a point Xo, a < xo < b. Then (3.4) converges uniformly in I-a, b] to
a function F(x), and

(3.5) (L"F)(x) hkPk_2n(X), a =< x =< b, n 0, 1,2,....
k=2n

Moreover, the series =o k, where

02k 2-k(Po, Yo)hzk, 02k+ 2k(Pl, Yo)hzk+ 1, k 0, 1,2,

is convergent.
Proof. Following Widder[10], we observe first that the convergence of (3.4)

at xo implies

(3.6) lim hkpk(Xo) O.

By (3.3), there exists a constant 7 > 0 such that

P2k(Xo) >= 7 and k0P2k + I(X0) 7

for k sufficiently large. Combining this with (3.6), we see that

(3.7) [h2k =< 7o2 and Ih2k+l] =< 71/]-, k 0, 1,2,...,

for certain constants 7o and 71. Thus, noting that 2o < 21, it follows from (2.10)
that the series

(3.8) h2k P2k(Xo) Y,Yo(Xo)] h2 l(Xo)- Y,Y(X)
k=O 00 j -t- k+l Pzk+ j

converges absolutely. Then subtraction of (3.8) from (3.4), evaluated at xo, results
in the convergent series

(3.9) Yo(Xo yo(Xo
(Po, yo)h2 (P,, Yo)h2k+l

=o =o 2 +

The convergence of e follows from noting yo(Xo) O.
Observe now that the bounds (2.10) hold uniformly in [a,b]. Therefore,

(3.8) remains uniformly convergent when xo is replaced by the variable x, a N x N b.
Obviously, the same is true of (3.9). Thus the sum of (3.8) and (3.9), the series (3.4),
converges uniformly in [a, hi.

To prove (3.5), note first that (2.10), (3.7) and the convergence of (3.9) imply
convergence of each of the series

{hzk+2n[P2k- 2-k(Po, Yo)Yo] + h2k+2n+ l[Pzk+l J’k(Pl, Yo)Yo]}

and

Yo [2-k(Po, Yo)h2k+ 2n + ’k(Pl, Yo)h2k+ 2n+ 1], /’/ 0, 1, 2, "’",
k=O

uniformly in [a, hi. Hence their sum, the right side of (3.5), converges uniformly
in [a, b] for n 0, 1, 2,.... Applying the operator aj, termwise to the right side
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of (3.5), we have

Hence

n hkPk- 2n 2 hkPk F
k= 2n k- 2n

2n-1

hkPk"

L"N" hkPk-2n L"F- hkL Pk L"F,
k=2n k=O

and equation (3.5) now follows from (2.3). This completes the proof of the theorem.
If we differentiate the equation

Yk(X) ’k G(X, t)Yk(t)dt

with respect to x, there follows

y’(x) 2k x G(x, t)yk(t) dt.

Using the continuity properties of (c/cx)G and Schwarz’ inequality, one sees that

[y;,(x)[ <K2 a <x <b, k=0,1,2,...

where K is a constant independent of x and k. Therefore the series

2-"(po, yk)y’(x)
k=0

converges uniformly in [a, b] for n >= 3. Taking into account (2.9), one has

(3.10) p2,(x) 2-"(po, yk)Yk(X), a <= x <= b, n >= 3,
k=0

and similarly,

(3.11) P2,+ 1(x) 2-"(pl, yk)Yk(X), a <= x b, n > 3.
k=0

In analogy to Lemma 2.2, one can now prove the following.
LEMMA 3.1. There exist positive constants K’o and K’ such that

(3.12)

for a <= x <= b and n O, 1,2,....
THEOREM 3.3. Suppose that

f(x) ., hkPk(X), a <__ x b.
k=0

Then h2k BbLkf and hzk+ B,Lkf, k O, 1, 2, ....
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Proof. We proceed as in Theorem 3.2. First observe that (3.7) holds for the
sequence {hk}. By (3.12), the series

(3.13) {h2k+2,[Pzk- 2k(Po, Yo)Y’o] + h2k+2,+ [Pzk+ -- 2k(P, Yo)Y)}
k=O

converges absolutely and uniformly in [a, b] for n O, 1, 2,-... Moreover, the
series

(3.14) Y; [2k(po, Yo)h2k+ 2, + 2k(pl, Yo)h2k+ 2,+ 1]
k=O

converges everywhere in [a, hi. The sum of (3.13) and (3.14) therefore converges;
that is,

hkP-2n(X)
k=2n

converges uniformly in [a, b], n 0, 1, 2,.... By (3.5),

7)’x) hp_,X), a

_
x

_
b, n 0, , 2,....

k=2n

It follows that the functionals B and B can be applied termwise to the right side
of (3.5). This results in

BL"f hkBPk- 2,,

k=2n

BbL"f hkBbP- 2,, n--0,1,2,....
k=2n.

Now (1.10) and (1.6) imply B,p, BbP 0, for n 2. By (1.8), then,

B,L"f h2,+ and BbL"f hEn n 0, l, 2,’’’,

and this completes the proof.

4. Principal results. In this section we prove the results stated in 1. We
begin with a lemma concerning the eigenfunctions {Yk}"

LEMMA 4.1. There exists a sequence of positive constants {Ck}_ o such that

(4.1) lYk(X)l <= CkYo(X), a <= x <= b, k O, 1,2,....

Proof. Let k be a fixed nonnegative integer. Since Yo can vanish only at
x a and x --b, it is enough to prove that the quotient Yk/Yo is bounded in a
neighborhood of x--a and also in a neighborhood of x b. Consider the
behavior at x a. If yo(a) 4= 0, the result is trivial. If yo(a) 0, then y’o(a) 4= 0,
as otherwise Yo 0. Then the endpoint condition Oyo(a + o’y’o(a 0 implies
e’ 0. Consequently Yk(a) 0, and so

lim
yk(x) Y’k(a)

,-, Yo(X) y’o(a)"
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Thus Yk/Yo is bounded in a neighborhood of x a. The argument for the endpoint
x b is similar.

We shall also need the eigenfunction expansion [5]

(4.2) f(x) (f, y,)yk(x), a <= x _< b,
k=O

valid for all f such that Baf Bbf 0 and f C2[a, hi, and the self-adjointness
property

(4.3) (Lf g) (f Lg),

which holds whenever Baf Bbf Bag- Bbg- O.
Proof of Theorem 1.1. Suppose that f is LB-positive. For each positive

integer n, let
n-1

S,, {(BbLkf)P2k + (BaL’f)P2k+l},
k=0

R, N"L"f.
Then by (2.5), f S, + R,, n 1, 2, 3, From (1.9) and our assumption on f,
there follows f(x)>__ S,(x)>= 0 for each n and x. Since the Green’s function is
nonnegative, f(x) => R,(x) => 0. Observing that the sequences {S,(x)}.= and
{R,(x)}, are, respectively, increasing and decreasing, let us write

so that

(4.4)

R(x)-- lim R,,(x), a __< x =< b,

f(x) R(x) + {(BL’f)p2(x) + (B,L’f)p2k+ ,(x)}.
k=0

Now Theorem 3.2 implies

(4.5) L"R L"f {(BbLy)P2k_2, + (BaLy)pzk_z,+x,
k=n

for n 0, 1, 2, It follows from Theorem 3.3 that

BL"R BaL"f B.Lf 0

and, similarly,

BbL"R 0, n 0, 1,2,....

We will now show that (R, Yk) 0 for k > 0. Identity (2.5), applied to L’f, yields
m--1

L"f {(BL’+"f)p2 + (BaL’+"f)p2,+l} +
k=O

for all n >= 0 and m _>_ 1. In particular,

m-1

L"f >= {(BL’+f)p2 + (B,L’+"f)pz,+ ,},
k=0

n =0,1,2,...
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Letting m ---, oe and noting (4.5), we find

(L"R)(x) >= O, a _<_ x _<_ b, n O, 1,2,

Now let j be a positive integer. From (1.5) and (4.3),

I(R, yj)l I2-"(R, L"yj)I 2;"I(L"R,
for n 0, 1,2,.... From (4.1),

I(ge, Y)I <= I(g’e)(x)yj(x)l dx <= Cj I(g"R)(x)yo(X)l dx

Cj (L"R)(x)yo(X) dx Cj(L"R, Yo)

Cj(R, L"yo) Cj2o(R, Yo), n 0, 1,2,...

Therefore,

(4.6) [(R, y)[ __< (2o/2)"C(R, Yo), n O, 1,2,....

Letting n ---, oe in (4.6) results in (R, y) 0. By the completeness property of the
eigenfunctions {yk}, there follows

R(x) (R, yo)Yo(X), a <= x <= b,

which, in view of (4.4), completes the proof of the necessity.
For the sufficiency, let F be defined by

F(x) CYo(X + {a,p2,(x + b,p2, + ,(x)},
k=0

with C >__ 0, a __> 0 and bk => 0, k 0, 1, 2, By Theorem 3.2,

L"F C2;yo + Z {ap2,-2, +.bp2-2,,+1},
k=n

so that (L"F)(x) > 0, a =< x __< b, n 0, 1, 2, In view of Theorem 3.3,

BaL"F b, >_ O and BbL"F a, > O, n O, 1,2

and this completes the proof of the theorem.
COROLLARY 4.1. If f is LB-positive, then the sequence {(L"f)(x)/2},=o is

uniformly bounded in [a, b].
Proof. Because of Theorem 1.1, f has the representation

f(x) Cyo(X + hp(x)
k=0

with C >__ 0 and h >__ 0, k 0, 1,2,..., and by Theorem 3.2,

L"f C2yo + hkp_ 2,, n O, 1, 2,
k=2n

By (2.11),

2P2(x) --< Mo(Po, Yo) and 2p2 +l(x) __< M(pa, Yo)
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for a =< x __< b and k 0, 1, 2, .... Therefore,

h2k + 2n k(L"f)(x) C2)yo(X + 2) P2k(X)2o +
k=0

; Cyo(x)+max(Mo,M) e
k=2n

where {e} is defined as in Theorem 3.2. Thus

(L"f)(x)
lim sup Cyo(X),

0

and this completes the proof.

h2k+ 2n+ kot- p+ (x)

n=0,1,2,...,

a<=x<=b,

Proof of Theorem 1.2. Let f be LB-positive. Then (i) is trivial, (ii) is a conse-
quence of Theorem 3.2, and (iv) follows from Corollary 4.1. To prove (iii) we first
write

f(x) CYo(X + hPk(X
k=0

with C > 0 and h >= 0, k 0, l, 2,..., and conclude

(L"f)(x) C2Yo(X + hkPk_ 2,(x),
k=2n

As in the proof of Theorem 3.3, we apply the functional
above equation to obtain

BaL"f C,oBayo

(4.7)

n=0,1,2,....

to both sides of the

0’ hkpk_ 2.(a) + Z hkP- 2.(a)
2n 2n

C2"oByo

for n 0, 1,2,-... Using (2.11) and (3.12), one can easily show that, for some
constant K > 0,

B,,L"f C K(II + I’1) ,(4.8) 2/y k= 2,

and so (iii) follows from the convergence of ak. This completes the proof of
necessity.

Now suppose (i)-(iv) hold. Using (2.11) and the convergence of the series
in (ii), one can easily prove that the series

S(x) {(BbLkf)p2k(X) + (BoLkf)P2k+
k=O
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converges uniformly in [a,b]. Let R(x)= f(x)- S(x). By Theorem 3.2 and
Theorem 3.3, BaLkR BbLkR 0, k 0, 1, 2, .... We shall prove that (R, yk) 0
for k >= 1. First, note that S(x) is LB-positive. By the Corollary, the sequence
{(L"S)(x)/2}, o is uniformly bounded in [a,b]. Noting hypothesis (iv), we find
that the sequence {(L"R)(x.)/2"o}, o is likewise uniformly bounded. Then for k > 1,

I(R, Yk)l 2;"I(L"R, Yk)l

<= 2;" I(L"R)(x)y,(x)] dx

=< K(2o/2,)", n 0, 1,2, ...,
for some appropriate constant K > 0. Letting n results in (R, y)= 0.
Since {y} is a complete orthonormal set, then

R(x) (R, yo)Yo(X), a < x <= b,

and hence

f(x) (R, yo)Yo(X) + {(B,L’f)pz,(x) + (B,,L’f)p2,+ ,(x)}.
k=O

By Theorem 1, it is therefore sufficient to show that (R, Yo)>= 0. For this, we
employ hypothesis (iv). In fact, proceeding as in (4.7) and (4.8), one sees that

(R, yo)= lim
B,L"f

>0
,- 2Byo

and the proof is complete.
Proof of Theorem 3. By (4.2), f admits the eigenfunction expansion

f(x) (f, y)y,(x), a <__ x <__ b.
k=O

Choose k so that 2 _>_ M, let e > 0 satisfy

M e > lim sup ](L"f)(x)] /" a < x < b

and let N be a positive integer such that n _>_ N implies
a_<_x <=b. Thenifn>= N,

I(f, Yk)[ ]2-"(f, Lnyk)[ ]2-"(L"f,

<= 2;" ](L"f)(x)y,(x)] dx

< [y(x)l dx.

Letting n , we obtain (f, y) 0, whenever 2 >= M. Thus

f(x) (f y,)y,(x),

which is the desired result.
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5. Applications. In this section we illustrate our methods by considering the
special case of the harmonic oscillator Loy -y", with general, separated end-
point conditions. Thus, we consider the eigenvalue problem

(5.1) y" + 2y 0, y(a) + ’y’(a)= y(b) + fly’(b)= O,

where , ’, fl, ff are prescribed by (1.3) and (1.4). We begin by observing that,
for this operator, the p are pgRvpolnomials and the eigenfunctions y are entire
functions of exponential type w/2.

TnEOREN 5.1. A function f on [a, b] has an LoB-series expansion

(5.2) f(x) hp(x), a x b,
k=O

with unorm convergence on [a, b], and only iff is the restriction to [a, b] of an
entire function F sati@ing

(5.3) lim (o)-"F")(0)= 0.

Proof. For the sufficiency, let us write

[F(")(0)I ,(o)" n 0 2

where lim. . O. Then

]f(2n)(x)l F(2n+k)(O] xk
k=O

,
< 2(max ej)(exp Xol)5o .+

for a N x N b and n 0, 1, 2, Since (Lf)(x) (- 1)"f(z")(x), n 0, 1, 2,
Theorem 3.1 implies

F(x) [(BLf)pz(X)+ (BLf)p2+ (x)], a N x N b.
k=0

The representation (5.2) will follow if we show that

lim (BLf)p(x) 0

uniformly in [a, b]. Note first that

lim (2BLf) lim (- 1)2g[f(z(b) + f17(2+ (b)] 0

by the hypothesis on F. Then, by (2.11),

BLflim (BLf)pz(X)= lim (2pz(X)) 0

uniformly in [a, b], and this completes the proof of sufficiency.
In the other direction, let

f(x)= hp(x), a <= x <= b.
k=0
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By Theorem 3.2 and the proof of Theorem 3.3, we have

(5.4) (-1)"fz"+J)(x)= h,+z,pJ)(x), a <= x <= b,
k=0

for n 0, 1, 2, ..., and j 0, 1. Define the sequence of functions {gk}=o by

,op(x)
g2dx) yo(X),

(Po, Yo)

g2k +1 (X)
(p2k +

(Pl,YO)
-Y(X)’ k=0,1,2,....

Then (5.4) may be written

(- 1)"f2"+ J)(x) 2; y)(x) k + kS2,
"(J)

+ k(X
k= k=2n

for n 0, 1, 2, ..., and j 0, and where {ek}kO is defined as in Theorem 3.2.
The asymptotic estimates (2.10) and (3.12) imply

gJ)(x)[ < K(2o/2)k k=0 2 j=0

where K > 0 is a constant, and this together with the convergence of =o k
yields

(5.5) If(x)l M(o), a x b, k 0, , 2,-..,

where M > 0 is a constant. Therefore f admits the Taylor series expansion

(5.6) f(x) f(Xo)(X Xo)
k=O

about any point xo, a < xo < b. The bound (5.5) further implies that the series
(5.6) converges at all points in the complex plane, uniformly on compact sets,
and that its sum, say F(z), satisfies

lim (o)-"F(")(0) 0.

Since F f on [a, b], the proof is complete.
The boundary value problem

y" + Xy 0, y() y’(0) 0

has eigenvalues and eigenfunctions

2k
(2k +2 1)) 2, Yk(X) COS

(2k +2 1)x, k 0, 1,2,...

and leads, via identity (2.5), to the modified Abel series

(5.7) f(x) [f(2’)(1)q2,(x) + f(2,+ x)(O)q2 +,(x)].
k=O

Pethe and Sharma [7 have shown that any entire function f of exponential type
less than r/2 possesses a series expansion (5.7). Theorem 5.1 yields the improved



828 J. D. BUCKHOLTZ AND J. K. SHAW

result that lim,_,oo (n/2)-".f")(O)= 0 is necessary and sufficient for f to admit a
modified Abel series expansion.

The following theorem, a trivial consequence of Theorem and Theorem 5.1,
generalizes the result of Widder 9] which relates completely convex functions to
entire functions of finite exponential type.

THEOREM 5.2. Let f C[a, b] and suppose

(-1)f(2")(x) _>_ 0, (-1)"Baf 2" => 0, (-1)"Bbf2" => 0

for a <= x <= b and n 0, 1, 2,.... Then f is the restriction to [a, b] of an entire

function of exponential type not exceeding x2o.
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ON THE ERROR IN THE PADI APPROXIMANTS FOR
A FORM OF THE INCOMPLETE GAMMA FUNCTION

INCLUDING THE EXPONENTIAL FUNCTION*

YUDELL L. LUKE?

Abstract. Closed form expressions for all entries of the Pad6 matrix table and their errors are
derived for the incomplete gamma function

H(c, z) cz e eft dt, R(c) > O, H(O, z) e

Asymptotic estimates for the error are developed. Let (p, v) be a position in the Pad6 matrix table
where p and are the degrees of the denominator and numerator polynomials, respectively, which
define the Pad6 approximant. Our error representations hold for c and z fixed, c not a negative integer,
with p or or both p and approaching infinity. Under these conditions the Pad6 approximants
converge along all rows, columns and diagonals. The asymptotic representations are remarkable in
that they give very easy to apply and very realistic estimates when the parameters and v are rather
small. In the case c 0, that is, the exponential function, uniform asymptotic estimates are developed
for the main diagonal and first and second subdiagonal entries of the Pad6 matrix.

1. Introduction. In 1, vol. 2, pp. 189-194], we developed asymptotic estimates
of the main diagonal and first subdiagonal Pad6 approximations for the incomplete
gamma function

(1) H(c, z) cz e et dt, R(c) > O,

(2) H(c,z) f(1; c + 1; -z); H(O,z) e-.
Here and throughout we make free use of the notation and definitions given in 11.
It is also convenient to use the notation

(3) 1FT(a; c; z) 0 (a)kzk
: (c)k !"

The asymptotic estimates noted above show that the Padh approximants
converge to H(c, z) on all compact subsets of the complex plane. In the present
paper, the analysis is extended to cover all positions of the Padh matrix table
for H(c, z). Let (/, v) be a position in the PadO matrix table where/ and v are the
degrees of the denominator and numerator polynomials, respectively, which define
the PadO approximant. Our error representations hold for c and z fixed with
/ or v or both/ and v approaching infinity. The asymptotic representations are
remarkable in that they give very easy to apply and very realistic estimates when
the parameters/ and v are rather small. For the case c 0, that is, the exponential
function, we show that for/ => v, the error can be expressed as the ratio of two
series, each composed of/ + v terms. The numerator and denominator of.this
ratio involve the Bessel functions K(z) and I,(z), respectively. For the situations

Received by the editors March 12, 1974, and in revised form July l?, 1974.
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p v + s, s--0, 1,2, which corresponds to the main diagonal, and first and
second subdiagonals of the Pad6 matrix, we make use of uniform asymptotic
expansions for the Bessel functions to derive like representations for the error in
the Pad6 approximations. Further comments on this and other matters are
considered later.

Several authors have examined the convergence of the Pad6 approximations
for e which can lie anywhere in the Pad6 matrix. The analysis is based on establish-
ing bounds for the error. Underhill and Wragg [2] and Saff [3] show that all entries
of the Pad6 table for e converge in Izl < b, b fixed but arbitrary. The former
authors also show that the derivatives of the Pad6 approximants for e converge
to this function in the domain cited. Such approximants are called derivative
convergent. Wragg and Davies [4] show that all row and column entries of the
Pad6 table for e as well as the (n, n- a), a 0, __+ Pad6 approximants are
derivative convergent. Ehle [5] proves that entries on the 1st and 2nd subdiagonals
of the Pad6 table for e are analytic and bounded by one in the entire right half-
plane. Saff and Varga [6] study the convergence of particular Pad6 approximants
to e on certain unbounded sets in the complex plane. Such results are needed
in the evaluation of eA where A is a matrix and the application of ea to the solution
of differential equations. Varga [7] proved that Pad6 approximants to e also
converge to eA when A is Hermitian. In that paper and also in Varga [8], the main
emphasis is on application of Pad6 approximations for ea to solve parabolic
partial differential equations. Fair and Luke [9] showed that the (n- a,n),
a 0, Pad6 approximants for ea converge when A is a bounded linear operator
on a Banach space. A priori estimates of the error are developed. Wragg and
Davies [4] use their bounds for the error in the Pad6 approximations to e to
get bounds for like approximations to ea.

In virtue of the data presented in this paper, the results of Fair and Luke
[9] readily apply for all Pad6 approximants to ea. Furthermore, in practice these
data should be sufficient even for large z in view of the multiplicative property
of the exponential function.

2. Pad6 approximations for H(c, z). Let Uu,(z and Vu,(z) be polynomials in
z of degree v and p, respectively, U.v(z)/V.,v(z) be the Pad6 approximant of order
p + v + to H(c, z), and R.,(z) the error in this approximation. Thus

(4) H(c, z) Uu,(z)/Vu,,,(z)} + Ru,(z),
and from [10] we deduce that

(- P)’z’ F
p

() v ()
: (-c-/a-v)k! c-#-v z),

(6) Uu,(z) b,zk,
k=O

(-) (-a)(-c- k)
b=(c+ 1).:o (c-/- v)

(_)k
2Fkl(c + 1)

(7)
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(--)/c(--it)k 3F2( -k’c -+- -+- + v- k,
Itv.bk (--C-- It-- V)kk! + It-- k,c +

If It < v, then the above expressions for bk are valid for 0 < k <= It 1, and

(-)( + v- k)!
(8) bk (c + 1)k(C + + V)u(V k) !’ It <= k < v.

It is proved in [10] that the Pad0 table for H(c, z) is normal provided c is not a
negative integer. The error can be expressed in the form

(_)v+lIt.lz.+V+l F +It+v+2
-z

(9 R.,(zt (c + l.++ 1(c + + % F"[
c-It- v

(10)
(__)v+ lIt!z.+v+ e-Z

(c + 1).+v+ l(C "-]" -- V)/t

1El
c+v+l

c+It+v+2 z)

If c 0, the numerator and denominator polynomials of the Pad6 approxi-
mant are simply related. Thus

( ) c.,(z) v,.(- z).

3. Asymptotic analysis of the error. As a preliminary to the error analysis,
we have need for some expansions of the confluent hypergeometric form which
do not seem to have been previously given in the literature. We have

(12) F(a c z) e"z/c g/cz/c go
k=O

a(c a) a(c a)(c- 2a)
(13) gl 0, g2 2c2(c + 1)’ g3 3c3(c + 1)(c + 2)’

(14) gk+
[a(c- a)gk_ .ql_ kc(c- 2a)g/c]

c2(k + 1)(k + c)

This expansion is readily derived as follows. Starting with the known differential
equation for 1F we easily get the differential equation for e -"z/c 1F and by use
of Frobenius’ method, the above series expansion follows. We remark that the
expansion in (12)converges for all z. Further, with

gk h/c/{(c)/cck-’ k !},
then

(15) hk+a k[a(c- a)(c + k- 1)hk_ +(c-

For fixed 0, fl, 7 and 6, e 4- 0, fl 4: 0, 4 fi, 2 -/3, let a an + 7 and
c fin + ft. Then h2/c and h2/c+ are polynomials in n of degree 3k and 3k,
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respectively. So as n ,
(16) gk O(n- b), b [1/2k + 1/2] k> 1, k fixed

where [m] is the largest integer contained in m.
Again, let a and c be as above except that a ft. Then both h2k and h2k+

are polynomials in n of degree 3k 1, whence as n - ,
(17) gk O(n- k) k > 1, k fixed.

A useful expansion, valid when c is large and (1/2c a) is bounded is

N-1

(18) 1Fl(a c z) ez/2 d,,(z)/u" + O(u-N),
n=O

where

(19) do(z 1,

and the d.’s can be generated by

-zd.(z) + - f(20) d,_ l(z)

In illustration,

u-- 1/2(c- 1),

(1/4t p)d,(t)dt,

Z2 pz Z
4 pz3 (2p2 1)Z2 pz

(21) d(z)=
16 2’ dz(z)=512 32 16 4"

In (18), the order term is uniform in z for [R(z)l <= b, b fixed but arbitrary. For
further details on (18)-(21), see [1, vol. 1, p. 133].

If a is bounded, z is fixed and c is large, then it is known that

’ (a),zk
F] (a c z) (c),k----5 + O(c-’),

k=O
(22)

m_<_g or m<g ifg-.

Application of the appropriate results above shows that for z and c fixed,
the Pad6 approximants converge along all rows, columns and diagonals of the
Pad6 matrix. We make no attempt to give a single formula to cover the remainder
for all values of/ and v. Instead, we propose to give asymptotic formulas for five
stripes of the Pad6 matrix and their neighborhoods including the first row
(t 0), the main diagonal (t v) and the first column (v 0). The other two
stripes can be roughly characterized as lying midway between the t 0 and

t v stripes and midway between the t v and v 0 stripes. In each case we
suppose that

(23) /t + v 2n + O(1),

where n is a large positive integer. In the following discussion s and are fixed
integers with respect to n. The five stripes or cases are as follows.

Case 1. The first row and its neighborhood. Thus/ s, v 2n t.
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Case 2. l r + s, v 3r t, r 1/2n or 1/2n + 1/2 according as n is even or odd,
respectively.

Case 3. The main diagonal and its neighborhood. Thus p n + s, v n t.
Case 4. In 3r + s, v r t, r as in Case 2.
Case 5. The first column and its neighborhood. Thus p 2n t, v s.
We now develop the representations for each of these cases.
Case 1. p s, v 2n t. From (11), (12) and (22), we get

(24)

Ru,(z
(_),+ it !F(c + 1)F(N s)zu-c e e(u-s)z/(u + 1)

F(N)F(N + I)

(N- s)(s 2t- l)z2
3)I+

2(N + I)2(N + 2)
+ O(n

$2 S(S- 1)Z2 3)-+ N- 2(N- 1)(N-2)
+O(n-

N=2n+c+ +s-t.

Case 2./ r + s, v 3r t, r 1/2n or 1/2n + 1/2 according as n is even or odd,
respectively. From (11) and (12), we have

(-)3r+l+’(r + s)!F(c + 1)F(N- r- s)zN-c e
R.,(z) F(N)F(N + l)

{(N r- s)z (r + s)z}’exp
N 21- N-

(N- r- s)(r + + s)z2 (r + s)(N r- s)z2
(25) + 2(N + 1)2(N+2) + 2(U- 1)2(N-2)

+ O(n- 2)],
with N as in (24) if n is even, and N replaced by N + 2 if n is odd.

Case 3./ n + s, v n t. From (11) and (18), we have

(26)
R.,(z)

(-)"+’+’(n + s)!F(c + 1)F(n + c + t)

zN-c e-Z

F(N)F(N + 1)

exp(z[z 4(s + c)]/(4N)) [1 + O(n- 3)],

with N as in (24). Here we have employed the fact that

(27) Y2-- o a/u
2=o (-)%/u

2dl 2d21 3)+--+ + O(u =e2a )],
u -- l/u[| ..1_ O(u 3

where it is understood that if each (at least formal) infinite sum is truncated after
m terms, the remainder is O(u-").

Case 4. p=3r+s, v=r- t, r=1/2n or 1/2n+1/2according as n is even or



834 YUDELL L. LUKE

odd, respectively. From (11) and (12), we have

(28)

R.,(z)
(__)r+1+,(3r + s)!F(c + 1)F(c + + r- t)zN-c e

F(N)F(N + l)

(r + + c- t)z (3r + s)z}exp
N + N-1

(r + + c- t)(3r + +s)z2

+
2(N + 1)2(N + 2)

+ O(n- a)],
(r + c- t)(3r + s)z2

+
2(N- 1)2(N- 2)

with N as in (24) if n is even, and N replaced by N + 2 if N is odd.
Case 5./t 2n t, v s. Again we use (11), but this time it is convenient

to employ the Kummer transformation formula

(29) 1F z) e F
mC v

--c- lu- v

Then with the aid of (22), we have

(_)t+ (2n t)!F(c + 1)F(c + + s)z- e- 2
R.,(z)- F(N + 1)F(N)

(c +t + 1)z (c +t + 1)(c +t + 2)z2 -3)+ N + +
2(N + 1)(N + 2)

+ O(n
(30)

[ (c+t)z (c+t)(c+t-1)z 1’N- +
2(N- 1)N

+ O(n-)

with N as in (24)
It is of interest to compare the remainders for five stripes, one from each of

the cases with s 0. Thus

R.,.(z) (-)"(nrc) ’/2 e
(31)

Ro,z.(Z) 22.+ [1 + O(tl-3),

which shows the superiority of the main diagonal Pad6 approximation over the
truncated Taylor series expansion of essentially the same number ofterms. Actually,
in the computation of the main diagonal approximation for e -z, considerable
economy can be achieved since V.,.(- z) U.,.(z). Thus if we write V.,.(z) M.(z2)
-+- zNn(z2), then the approximation only necessitates the evaluation of essentially
(n + 1) terms. For further details, see Luke [1, vol. 2, pp. 192-194]. A more realistic
approach is to compare R.,.(z) with Ro,.(z for c 0 with s 0, and so find

(32) R.,.(z) nrc(-)"z" e-
[1 + O(n-’)

Ro,.(z 24. + n

which manifests the striking superiority of the main diagonal approximation.
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We also have

R,,,,(z) )r2c + 1(16/27) e- z/2

+ O(n- 1)3,(33)
Rr,3r(_ 3c+(1/2)

R,,,(z) (-)2c+ 1(16/27) e/2
I1 + O(n-1)],(34)

R3r,r(z) 31/2

-n andwhere n is even, r 2

R.,,,(z) (-)"n+(l/z)rc 1/2 e
(35)

R2,,o(Z) F(c + 1)22" [1 + O(n-1)-1.

Clearly, the main diagonal approximation is superior to all other Pad6 approxi-
mations.

We conclude with some numerical examples (see Table 1) which manifest the
striking realism of our error estimates. We take

/+ v=8, /=0(2)8, z=2, c=0.

In Table a number in parentheses following a base number indicates the power
of 10 by which the base number is to be multiplied. Also in the evaluation of the
estimated errors, the order terms are, of course, omitted.

TABLE

U (z)/V,.(z) R,,,,.(z) (True) (z)(Estimated) from Eq.

0 8 0.13650794 --0.117(--2) --0.117(--2) (24)
2 6 0.13535 353 --0.183(--4) --0.183(--4) (25)
4 4 0.13533 834 -0.306(-5) -0.305(-5) (26)
6 2 0.13533 835 -0.307(- 5) -0.303(- 5) (28)
8 0 0.13536 742 -0.321(-4) -0.320(-4) (30)

4. Uniform error approximations for the exponential function. The error
formulas of the last section hold for all z in the complex plane Izl _-< R, R fixed,
and with or v or both # and v sufficiently large. On the pragmatic side, these
tools should be sufficient for virtually all z. For if z p ei, R < p < 2R, we
should apply the multiplicative properties of the exponential function and write
exp (- z) exp (- [p R] ei) exp (-R ei). Subsequent actions are obvious.
Further, in view of the above and the remarks surrounding (32), the main diagonal
Pad6 approximation to e is vastly superior to the best Chebyshev approximation
to e over the range 0 _<_ x < o. For some work on best Chebyshev approxima-
tion of the kind just described, see Cody, Meinardus and Varga [11], Sch6nhage
[12] and Newman [13]. See also the references [3], [-6] already noted.

The above comments notwithstanding, we will develop uniform asymptotic
estimates for the error in the Pad6 approximations to e when / v + r,
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r 0, 1,2 for larg zl < rc/2. Extension of the data to cover the sector larg zl rc/2
is indicated. Some comments on getting results for all/ >__ v are offered. It would
seem that the discussion excludes the error in Pad6 approximations for e when
R(z) > 0. However, the analysis lends itself to this situation in view of known
formulas for analytic continuation of the Bessel functions. A simple approach
is to note from (4) that

(36)
eZ=

Uu,(z)
+ S,,(z), S,,(z) U,(z) Ru,(z),

S,,(z) -eZRu,,,(z).
We now consider uniform asymptotic estimates of the error, and in particular

derive same for the main diagonal, first and second subdiagonal approximations
to e with arg z as indicated. The ideas are as follows. We show that for/ >= v,
the error can be written as a ratio of two functions, where the numerator and
denominator can be expressed as a finite sum involving the modified Bessel
functions Im(Z and K,,(z), respectively. We then apply the known uniform asymp-
totic developments for these functions due to Olver [14] and so obtain our desired
estimates. The general subdiagonal case does not appear tractable by this approach.
A better idea is to seek asymptotic developments of the pertinent confluent
hypergeometric functions which enter theerror by use of the differential equations
satisfied by these functions. We have made some progress in this direction. The
analysis is not complete and we defer further discussiol to a future paper.

From (5) and (29) with c 0, [1, vol. 2, p. 48, eq. (8)], and the definition of
Kv(z in terms of Iv(z) and I_,,(z), we have for/t _>_ v,

it !(Z/rc)l/2 eZ/2 %v (_)k(2/t + 2k)(- 2/ l)k(V /t)kv. Zg

(2g) k=o (2g + 1)k (- V)k
(37)

Ku+(1/2)-(z/2).

Also from [1, vol. 2, p. 48, eq. (8) with/ > v, we have

(38)
/+v+2 ---)l/2()Vz/2()v

+ + 1/2)(2u +
k=O (V + 1/2)k!(/ + v + 2)k Ik+’+(x/2)(Z/2)"

Thus for the main diagonal, first and second subdiagonals, we have the respective
representations

(39) R.,.(z)
(-)’+ arc e-I"+(a/z)(W),

K. + /: )(w)

R, (z)
(- 1)’rc e- z[(1 + q/W)Iq(w) I’q(W)]

[(1 + qw- a)Kq(w) K’q(w)]
(40)

q=n 2, Z-Rw,
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R,,+ ,,,_ (z) (-)’ e-=[AIq(W) BI’q(W)]

(41) [AKq(W) BK’q(w)]
A= +v+(2q+ 1)v2/2q, B=(A- 1), =q/w,

where q and w are as in (40). To get (40) and (41), we have employed well-known
difference-differential properties of the Bessel functions.

To get uniform asymptotic estimates for (39)-(41), we employ uniform
asymptotic expansions for the Bessel functions and their derivatives given in [14].
The pertinent expansions are as follows. Let

UZ ), U (1 -}- Z2)-1/2(42) =u-1 +ln
+u

dU fo’ 2)Us+l 1/2/,/2(| U2)__ + (1 5u U du

(43)

(44)

3u- 5//3 9U2 77u’ 385u6

Uo 1, U1 24 U2 128 192 - -]152’ etc.,

V U u(l u2) Us-1 Af_ u
du

Vo 1, V1
(- 9u + 7u3) 15U2 99u’ 455u6

24 V2 128 192 1152
etc.

(45)

(46)

1/2

1/2

e- V o
ev

vSs=O

e-V; Vs
ys

s’-

V(48) I’(vz)
s=0

The above expansions are valid for Ivl- c, larg vl < rt/2 uniformly with
respect to z in larg zl <- 1/2t e, e > 0.

Using these results, we find as follows"

R,,,,,(z) (-)"+ e e2v eZV’/[1 + O(v- 3)],

u (1 + x2) -1/2(49) v=n+1/2, z=2vx, =u +In
+u

3u- 5/,/3
U1 24

If x is large, then

(50) 2v- z= t- O(x
X 12X2
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and

(51) R,,,,,(z) (-)"/lexp 12x2 - O(x exp [1 + O(v 3)].

To illustrate, let n 4, z 9 whence v 9/2 and x 1. The true value of R4,4(z
is -0.01503. From (49) with order terms neglected, we get R4.,4(z -0.01474.

(52) R,,,,,_(z)

where , U
then

(-)u ( +x)’/ (-)v
1 + =0 v

+
x --o v---

v n 1/2, z 2vx,

and V are as in (42)-(44) with z replaced by x. If now we take x large,

(-)" exp
12x2 +- O(x- 3)

(53) Rn’n- l(Z)
2x + + O(x-1)

(54) zR,,,._ l(Z) (-)nn, Izl-o oe, larg zl _-< 1/2rr e, e > 0.

In illustration, let n 4, z 4. Use (52) excluding all Uk, V terms, k > 1, and get
0.0008533. The true error is 0.00086 59.

R.+ 1,.-1(z) (-)" e2-

---+Ulv O(v-2) + + 2V2vx-i- 1 (1 + x2)l/2(lx + u)
1 --Qlq-O(v-2)

3u u3 u u 2(55) U
24 W1 =-(5u2 + 12u+9), Q1 =-4-(5u 12u+9),

with (, v and z as in (52). Also

(56) zZR,,+ 1,n-1(Z) (-)"n(n + 1), ]z] o, ]arg z] __< r/2 e, e > 0.

The above work is based on representations for e -z. We can also replace z
by z e -ir/2 and so obtain representations for eiz. To evaluate Ru,(z), we need the
connecting relations

(57)

(58)

Thus, for example,

(59)

lv(Z e -irff2) e-i,v2.J(z),

K(z e- ,,V2) 1/2re e"/H,, )(z)

R,,,,(z e-i,/2)
2 ize Jn+(1/z)(Z/2)

.+/2(z/2)
Uniform asymptotic estimates for (59) can also be obtained from appropriate
data in [14]. The results are more complicated than (49), and we omit details.
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DUALITY METHODS FOR
LINEAR VARIATIONAL PROBLEMS IN L*

STEPHEN D. FISHER"

Abstract. Minimization problems of the form inf{llLull.’u U} are considered where L is a

linear operator and U is a convex subset of some Hilbert space determined by a finite number of linear
functional constraints. The usual variational techniques which provide an Euler equation for such
problems in LP for p < are not applicable in L" the solution is obtained and necessary conditions
that it must satisfy are found by dualizing the problem to an appropriate extremal problem in a sub-
space of L1. Several applications are given where L is a linear differential operator acting on a Sobolev
space.

Introduction. The purpose of this short note is to show that some elementary
functional analysis can be used to provide a unified setting for the solutions to
certain variational problems in L. Since the usual direct variational methods
which provide an Euler equation for such problems in Lp for <_ p < co are
not applicable in the L setting, we show that the L problem can be dualized to
an appropriate extremal problem in a subspace of L. It is a consequence of our
investigations that spline functions arise in many instances as solutions to both the
basic problem and to the dual problem. Our main theorem is in 1; several
applications to theorems both new and old are in 2.

1. Main existence theorem. In this section, we give the main existence theorem
which also provides a necessary condition that the solution must satisfy. It is
technically easier to deal with the case where the operator is viewed as starting
in a Hilbert space and ending in L2(), and indeed this will always be the case in
our applications. Throughout, is a bounded domain in some Euclidean space,
and the LP-spaces are taken with respeet to Lebesgue measure.

THEOREM 1.1. Let H be a Hilbert space and L a bohnded linear operatorfrom H
into L2() whose range has finite codimension in L2(). Let N be the nullspace of
L, let 1,..., 1,, be continuous linear functionals on N, let F,..., F be L())
functions and W {x6H’LxL(2)}. For <= j <= m, let L; be the linear
functional on W given by Lj(x)= ynFjLx + 1j(Px), where P is the orthogonal
projection ofH on N. Let A be a closed convex set in m and let

Consider the minimization problem

(*) inf{ Lxl[oo’x U}.
This minimization problem has a solution. If Luo is a solution to (*) and if Uo

{x W" Ljx 0 for <= j <= m}, then there is a g L() with gll 1,0 f gLv
for all v Uo and jn gLuo " consequently, gLuo >= 0 a.e. and ILuol 0 where
gO-0.

Proof. Let H N (R) H’ be the direct sum decomposition of H. L is 1-1 on
H’, and the range of L on H’ coincides with the range of L on H. Further, x e W

Received by the editors April 26, 1974. This work was supported by the National Science
Foundation under Grant 32116.

$ Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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if and only if the projection of x onto H’ is in W. The range of L is closed in L2

since it has finite codimension, and hence the range of L on Wis closed in L and
has finite codimension. Suppose Xk U and IILXklloo-- ; Xk hk + nk where
nk N and hk H’. The open mapping theorem implies that IlhkllU <= C for all k.
Let T’N --+ " by Tn (ll(n),..., l,,(n)), and let No be the kernel of T. Then
N/No is finite-dimensional, and since [ITnkl is bounded, there are elements n,
of N with n- n No and IInll. =< C for all k. Let x h + n, then

=< C + C’ for all k and Lx’ Lx. Some subsequence of {x}, again denoted by
{x,}, converges weakly to an element x of H. Since x lies in the norm closure of the
convex hull of {x}>__o for all ko, we may assume that x, converges in the norm of
H to x. Hence, Lx’ --> Lx in LZ(f2). A further subsequence converges a.e. to Lx;
hence, Lx L, and since Lx’l[ <= + e for k >= k(e), we find that x U and
ILxl] <= o. Thus x is a solution of (.).

We next assert that LUo is a weak* closed in L. To prove this, it suffices to
prove that the unit ball of LUo is weak* sequentially closed. If x, e Uo and
]]Lx.[[ =< for all n and Lx, * u, u L, then, as in the first paragraph, we
may assume that IIx.ll _-< c for all n. Thus we may also assume that {x.} con-
verges weakly to an element x of H. There is a sequence {y.} of convex combina-
tions of {x.} such that Ly, u in L2() and Ly, u boundedly almost everywhere
and {y,} converges weakly in H to some y. A convex combination of the y, gives a
sequence {z.} of elements of Uo such that Lz.- u both in L2 and boundedly
and also z, y in the norm of H. Hence, y U0 and Ly u, which shows LUo
is weak* closed.

Finally, we note that W/Uo is finite-dimensional and hence so is LW/LUo"
also L/LW is finite-dimensional. Thus L/LUo is finite-dimensional, and hence
S {gLl:fngLv 0 for all vUo} is also finite-dimensional since the dual
space of S is just L/LUo Consequently, if Uo is a solution to (*), then

llLuol =inf{lLuo + Lv[o’vUo}
norm of the coset Luo + LUo in L/LUo

norm of Luo as a linear functional on S

sup { gSand Ilgll -< 1}.
This supremum is actually a maximum because S is finite-dimensional, and the
theorem is proved.

COROLLARY 1.2. Suppose that L maps H onto L2() and that l, ..., l,, do not

appear in the definition of L,..., L,,. Then the function g in the conclusion of
Theorem 1.1 has the form Z’ cfjfor some choice of scalars c, c,,.

Proof We know that g lies in S, as do F, ..., F,,. If h e L and j" hFj 0 for

=< j __< m, then because L is onto, h Lx for some x e H, and thus x e Uo so that
h LUo. Hence,. hs 0 for all s S so that S is just the linear span of F1, "’, F,,.

Remarks.
1. There is an alternative method of proof of Theorem 1.1 which makes use of

a lemma of I. Singer on the extension of linear functionals defined on a finite-
dimensional subspace it is, however, no shorter nor any more elementary than the
proof presented here.
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2. The theorem is also valid if the variation is taken in Lp for < p <
although, of course, L must be replaced by L where 1/p + 1/q 1. In this setting,
however, the direct method yields the conclusion with less work.

3. Suppose H is a Sobolev space and L is a linear differential operator, as
wiI1 be the case in our applications. If the linear funct-ionals are evaluations of

f e H or of the derivatives offat points pl, ..., Pm in 92, then roughly speaking,
g will satisfy the equation L*g 0 on 92 {px, ..., Pro} where L* is the formal
adjoint of L. If L* is, in fact, a well-defined differential operator with smooth
coefficients, then g will be nonzero and continuous on "most" of 92, so that Luo
will be constant on a large open set in f. Thus the smoothness of the coefficients
of L will, in turn, imply smoothness for Uo on this set. We shall see in specific
instances in 2 how this general principle applies.

2. Applications.
2.1. Functions of several variables.
Example 1. Elliptic operators. Let 92 be a bounded domain in r and L an

elliptic differential operator of order 2K acting on H2K f-)H for which the
Fredholm alternative holds see [2] for conditions which imply this. Let F, ..., F
be L functions on 92 which are continuous except for finitely many points and
which are linearly independent over any set of positive measure, and let x, ..., lm
be zero. Suppose first that 0 is not an eigenvalue of L; then L maps H2K CI Hg
both 1-1 and onto L2(), and according to Corollary 1.2, the solution Luo to
(*) must, therefore, have constant modulus e a.e. on 92. This is the conclusion in [1].
Suppose now that 0 is an eigenvalue of L; then by Theorem 1.1, a solution to (.)
exists and g satisfies

O=;ngLv for allv6Uo.

To illustrate this case, suppose L has real analytic coefficients and is uniformly
strongly elliptic in f2. There are a finite number of functions f, ..-, fr in L2(92)
which are a basis for the orthogonal complement of the range of L, and hence
these functions must be real analytic in f2. S is the linear span off, .--, fr and
F, ..., F,,, and hence any function in S is real analytic in f2 except for possibly
a finite number of points. Thus g cannot vanish on any set of positive measure, so
that Luo is either or in f with the possible exception of a closed set of measure
zero.

For example, take 92 to be the open unit disc {X2 -t-" y2 < 1}, let p, ...,
be points of 92, take U {f sH2 CI H’f(Pi)sli, i= 1,-.., m} and take L
to be the Laplacian. Then L maps H2 H both 1-1 and onto L2(92) and Fj
is the Green’s function with pole at Pi for =< j =< m. Hence g is harmonic on
92’= 92- {P,’", Pro} and ]Auol on 92. Hence L*g 0 on 92’ and uo is
real analytic on 92’ except possibly on the set where g is 0.

Example 2. Product operators. Let p and q be positive integers and let L be
defined by
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for u in the Sobolev space of order p + q. For simplicity, we will take H to be the
orthogonal complement in this Sobolev space of the nullspace of L. We also take
f to be the rectangle a <- x <= b, c <= y _< d. Let points P l, "’", Pr in f be given
withpl (a,c),letwl, ..., wrbegivennumbersandlet U {f W" f(pi) wi}.
(Since p + q _> 2, the functions in the Sobolev space are continuous on f.) L maps
H onto L2(f) and W onto L(f); if we take Lif f(pi) for 1, ..., r, then

Lif ci .I (Lf)(x)F(x, Pi) dx, <= <= r,

where F(x,s)= c(x- s)p+-l(x2- s2)q+- and c is a constant. According to
Corollary 1.2, the function g is in the linear span of F, ..., F so that g is a "piece-
wise" polynomial in the variables x, x2, and consequently, there is at least
one grid rectangle determined by the points p, ..., p, on which the zero set of g
consists of at most a finite number of line segments. Hence ]Luo] a a.e. on this
rectangle and, of course, on any other rectangle where g is not identically zero.

2.2. Functions of a single variable. Let [a, b] be an interval; let H’p be those
functions f on [a, b] for which f"- is absolutely continuous and f" lies in Lp,

<= p <= . Hno’p consists of those functionsfin Hn’p which also satisfyf(a) 0,
v=0,...,n- 1.

Example 3. The first application is a very brief proof of a theorem of R.
Louboutin [4]; also see I. J. Schoenberg [5].

THEOREM. Let U {f eH"o’(- 1, 1)’f(1) 0, =< v =< n 1, f(1) 1}
and

fl inf f" " f U}.

Then fl (n 1)!2"-2, and there is a unique extremal function fo which satisfies
]fo")1 fl and fo")T_ >= 0 where T,_ is the Chebyshev polynomial of the second
kind of degree n 1.

Proof Take H H’2 and L D". Then W H’ and L maps H onto
L2 and Wonto L and, further, L is 1-1 on H. The functionals L1, ..., L, are

fXLf f((1)= c (Lf)(t)(1 t)"--1 dr, 0 <= j <_ n 1,
-1

where c is a constant so that F is a constant multiple of(1 t)--,0 __< j __< n- 1,
and we are in the setting of Corollary 1.2. Hence g is a polynomial of degree n
(or less). Clearly then, fol fl a.e., and if f is another solution, then so is
1/2(fo + f) so that f(o f and thus fo f. Thus the solution is unique.
Iff e U and p is any polynomial of degree n 1, then integration by parts yields

Thus

f(")(t)p(t) dt 1)" -1 pC.- ,(1).

Ifmax fo")(t)p(t) dt "p has degree n and Ilp]l
-1

max {Ip(-(1)l’p has degree n and p __< 1}.

It follows that p is (a constant multiple of) the Chebyshev polynomial of degree
n of the second kind. Hence, fl (n 1)!2"-2, and the theorem is proved.
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and

Example 4. The next application is a theorem of G. Glaeser [3].
THEOREM. Let Oo, ,-1 and o, ,-1 be given real numbers and let

U {f H"’(a, b):/V)(a) 0v, f)(b) fl, v 0,..., n }

0=inf{ ft") ’feU}.
Then there is a unique solution fo of this minimization problem fo")[ 0 a.e., and
fo") has at most n sign changes in (a, b).

Proof Here again we can take H Hn’2, L D" and W H"’. Also
Ls(f) ftS)(a) for j 0,..., n can be expressed as a linear functional on
the nullspace of D" since

f(x) (Lf)(t)
(x t)n-1

(n- 1)!
dt + p(x), a <= x <= b,

where p is a uniquely determined polynomial of degree n 1. Further, Lj+,(f)
fJ)(b) for j 0, ..., n also has the desired form.
Suppose thatf 6 Uo; thenf)(a) 0 for v 0,.-., n so that the poly-

nomial part off is zero. Hence S is just the linear span of the functions (b x)i,
0, ..., n 1, and so g is a polynomial of degree n or less and thus has

no more than n 1 zeros in [a, b] (g cannot be identically zero since IIg]ll 1).
It follows immediately (as in Example 3 above) that fo is unique and is a perfect
spline with no more than n knots in (a, b).

It is obvious that if the n conditionsf)(a), v 0, ..., n are prescribed
and if r conditions, r _<_ n, involving derivatives offat b of order k or less are also
prescribed, then the solution to the minimization problem exists and, because g
will be a polynomial of degree k, this solution will be unique and is perfect spline
with no more than k knots

Example 5. Since Examples 3 and 4 above represent only the special choice of
L D" and the special choice of {Li} as evaluation offor its derivatives at points
of[a, b], there is considerable latitude remaining for other applications of Theorem
1.1 and Corollary 1.2.

Let E be a closed subset of[a, b] of positive measure and let Lf f(x) dx,
Lf sr"), and H H’Z(a, b). Let k(x, t) ((n 1)!)- I(X t)_-l", then f(x)

f.b k(x, t)Lf(t) dt for allf 6 H, and hence

Ll f (Lf)(t)Fl(t) dt,

where Fl(t fE k(x,t)dx. Note that F _>_ 0 and vanish for t>= o, where o
is the smallest number such that [to, b] E has measure 0, and that F > 0 for
< to. Hence the solution Uo of the minimization problem

0 inf{ f")ll.ff(x)dx-1t
satisfies D"uo 0 on [a, to) and hence is a polynomial of degree n on this interval.
In particular, if to b, then Uo is a polynomial.
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ASYMPTOTIC BEHAVIOR AND LOWER BOUNDS
FOR SEMILINEAR WAVE EQUATIONS

IN HILBERT SPACE WITH APPLICATIONS*

HOWARD A. LEVINE’ AND AMY C. MURRAY:I:

Abstract. In this paper the asymptotic behavior of abstract wave equations of the form

d2u
(1)

dt
+ A(t)u (t, u, u,)

is discussed. The A(t) are nonnegative symmetric operators defined on a dense subdomain D of a

Hilbert space/4 and u :(0, ) D is a twice strongly continuously differentiable solution to (1). Under
certain broad conditions on A and , it is shown that the energy

(t,u) =-Ilu(t)ll + Ilut(t)ll / (u(t),A(t)u(t))

of the solution satisfies

g(t, u) >= KE(z, u)c -y(’)

for some positive constants K, ? unless u 0. Here f(t) for some c >- 0 or f(t) In (t). Using
these abstract results, lower bounds are obtained for solutions to the classical equations of linear

elasticity with time dependent elasticities, for solutions to the Euler-Poisson-Darboux equation and
for a nonlinear equation of motion for a transversely vibrating plate undergoing longitudinal stress.

1. Introduction. This paper discusses the behavior of solutions of an abstract
wave equation

(1.1) u, + A(t)u (t, u,

where the A(t) are symmetric nonnegative operators defined on a dense subspace
D of a Hilbert space H. Under certain broad conditions on A and if, we establish
lower bounds for the energy

o(T, u)= u(T)ll 2 + Ilu,(T)ll 2 + (u(T),A(T)u(T))

of the solution at time T. This bound has the form

(1.2) o(T, u) >_ Kg(’c, u) e -y(r) for T > r,

wheref depends on the properties of A and o.
We assume that the right side of (1.1) satisfies a Lipschitz condition

(1.3) II(t,x,y)ll 2 <= kg(t)4llx[I 2 + k22g(t)2{llyl]2 + (x,Ax)},
for all x, y in D. The coefficient g(t) must satisfy certain technical conditions;
examples of such functions g are t- and for c >= 1. We also assume that the
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family A(t) has a strong derivative A(t) such that

(x, ./l(t)x) >__ -1/2flg(t)(x, A(t)x)

for x D. The functionfor (1.2) will then be an antiderivative of g.
In view of the assumption (1.3), it is convenient to consider directly solutions

of the differential inequality

(1.4) [[ut + A(t)u[[ 2 <= kxg(t)4[[u[ 2 + kg(t)E{[lut 2 "t- (u, Au)}.
In 2 we establish the lower bound (1.2) by means of a weighted energy estimate.
Specifically we have the following results"

(i) If u satisfies (1.4) with g(t) t-
such that

(ii) If u satisfies (1.4) with g(t) for c >__ 1, then there are numbers K and
such that do(T, u) >_

Section 3 contains several physical examples.
The operator Lu utt + A(t)u can be realized as a partial differential operator

acting on functions u u(x, t) in a cylinder f x (0, ) in (x, t)-space. The abstract
formulation of the problem allows several directions of generality. The u(x, t)
can be vector-valued as well as real-valued; this allows application to elasticity.
The operators A(t) need not be second order; this allows application to the vibra-
tion of a clamped plate. By including [u[[ 2 terms in (1.4) and do(t, u), we do not
need to assume a bound of the form

(1.5)

for u 6 D. Such a bound arises from a boundary condition u 0 on cf x when
f is bounded and A(t) is second order.

Protter in [10], I11] has studied the special case of (1.4) where the A(t) are
second order operators in a bounded domain f in n, and the u(., t) must lie in a
subspace of the Sobolev space W(f) where (1.5) holds. By using weighted energy
estimates, Protter showed that nonzero solutions could not decay arbitrarily
fast. Murray in [5], [6] adapted his methods to treat hyperbolic inequalities in
unbounded regions, giving lower bounds for the energy in rapidly expanding
domains of x-space. The assumption of rapid expansion took the place of a
boundary condition. This paper applies the method of [5], [6] to the abstract
problem (1.4). Although it does not sharpen Protter’s results, it does extend them.

Using similar methods, Murray and Protter in [7] gave the lower bounds for
vector-valued solutions of inequalities which are formally similar to (1.4) but in
which the A(t) are independent of and not necessarily symmetric or definite.

In [8], Ogawa found explicit lower bounds for solutions of (1.4), (1.5) by
studying the logarithmic derivative of the more classical energy

F4t, u)= (u, u + (u, ,4(t)u).

Under assumption (1.5), our method reproduces Ogawa’s result. If (1.5) fails,
then d and E are not equivalent and our method produces a sharper bound than
does the natural adaptation of Ogawa’s analysis.

Actually, a slightly weaker assumption will suffice (see 2).
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Levine in [3] extended Ogawa’s arguments and results to certain abstract
inequalities of the form

IlPu,, + Mu, + Null <= O(t){<u,,Pu,) + <u, Nlu)} 1/2,

where the operators P, M, N depend on t, and N1 is the symmetric part of N.
These results, like those of [8], use an energy which is not equivalent with
unless (1.5) holds.

2. The abstract theorem. Let H be a real Hilbert space with inner product and
norm denoted by (., ) and I1" II, Let D be a dense linear subspace of H. We use

to denote the class of twice strongly differentiable functions v’[0, o) D
such that vt also takes values in D, while vt may take values in H.

We consider an abstract wave operator

Lv -A(t),-

defined on functions v in . For each >= O, A(t) is a linear operator from D into
H such that

(A-I) A(t) is symmetric on D and (x, A(t)x) >= 0 for all x D, and
(A-IIa) if v , the derivative d/dt (v(t), A(t)v(t)) exists.

We use QA to denote the quantity

d
QA(V, v) =-- (v(t), A(t)v(t)) 2(v,(t), A(t)v(t)).

The next hypothesis is a weakened version of the bound on A(t) mentioned in
the Introduction

There is a positive constant flo and a positive C-function g g(t) defined
for 0 < < , such that for v

(A-IIb) QA(V, v) >_ -1/2flog(t)(v(t),A(t)v(t)) for > O.

We will use certain technical hypotheses about this function g. These were used by
Murray [5] in her study of hyperbolic inequalities. Examples of such functions
are g(t)= t- and g(t)= for c => 1.

(G-I) If 6 > 0, then lim,_. + ] g(s) ds + .
(G-II) If > 0, then g’(t) >= -g2(t). Further, for each to > 0, there is an

t (to) such that

g’(t) < 0gZ(t) for >= to, 0 >_ 0(to).

(G-III) For every fl >= 3 and every to > 0, there is an 2 2(fl, tO) such that

oflg3(t) + (20 fl)g’(t)g(t)- g"(t) >= og3(t)

for all >__ (2, -- o
(G-IV) There are numbers > 0 and # >__ such that

g2(t) <= /Z exp g(s) ds fort t.
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Two "energies" are useful to measure the size of functions in the class "
E(t, v)=_ vt(t)ll 2 + (v(t),A(t)v(t)),

(t, v) v(t) + E(t, v).

For the rest of this section, let to be fixed so that 0 < to < t. We define

f(t) g(s) ds fort > to.

Under these assumptions, we begin a series oflemmas leading to the basic weighted
energy estimate for functions w in . Applying this estimate to solutions of (1.4),
we will obtain the desired lower bounds (1.2).

LEMMA 2.1. Suppose v e / fl >__ flo and T > z >= to. Then

2 etf(t)(Lv, vt) dt + eM(T)E(T, v)

(2.1)
>__ 1/2fl g(t) ee*(’)E(t, v) dt + eJ()E(:, v).

Proof Suppressing the arguments in v and A, we find

d
2(Lv, v,) Qa(v, v) E(t, v).

Multiplying this by e(’ and integrating the result by parts, we obtain

2 dJ(t)(Lv, vt) dt eefm[QA(V, v) + flg(t)E(t, v)] dt

:r d
[elJ,(t)E(t-/ v)] ,.

The result now follows from an application of (A-lib).
LEPTA 2.2. Suppose w e U and v(t) e’(t)w(t). /f fl > max {rio, 2}, T >

>- to and > o{2(fl, to) then
T

g(ll+ 2)f(t)g- t(t LwlI2 dt 2czeS(r)E(T,+ )

(2.2) _>_ 2 e(+ s(g(t)llw dt

202 {el;f(t)Eg2(t g’(t)] v 2} dt

Proof The auxiliary function v is also in "K. An elementary calculation shows
that

ef(’)Lw {Lv + o[g’(t)- zgZ(t)]v} + 2zg(t)v,.

Since Ix + y 2 2(X, y> for all x, y in H, we find

e2J’(’) [Lw 2 >= 4g(t)(Lv, v,) + 42g(t)[g’(t) gz(t)](v, vt).
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Multiplying by g-1(0 e") and integrating, we find that

eta + 2)ft)g- l(t)l Lw 2 dt

(2.3) >_ 40 eY")(Lv, v) dt

+ 2e2 eaY")[g’(t) egZ(t)](l[vll 2) dr.

Because > o, we can apply Lemma 2.1 to the first term on the right. Thus,
since the left-hand side of (2.1) is nonnegative, we have

(2.4) 4 e")(Lv, v) dt 2er)E( v).

The other term on the right of (2.3) can be integrated by parts. Using the identity

-{eaZ")[g’(t)- eg2(t)]} eaY")[g + (2 fl)g’g- g"]
dt

an.d hypothesis (G-III), one finds

fr d
2)22 ef")[g g2](llvll dt

{ea"[g’- eg2]tlvll2}
d

(.5) 22 dt

+ 2e3 eaY")g3(t) [lv[I 2 dr.

We obtain (2.2) from (2.3) using (2.4) and (2.5).
We now rewrite (2.2) in terms of w only, weakening it somewhat. We have

E( v)= e2fr)[llw, + gwll 2 + <w,
2e2r)[E(T, w) + e2g(r)ll w(r)ll

Using this bound in (2.2), we obtain an estimate for llwll 2 in terms of llLwll 2,
namely, Lemma 2.3.

LzMa 2.3. Suppose w e and > max {o, 2}. If > (, to) and r >
> to, then

e + a)Y)g- (t)llLw 2 dt

+ e+2)(r)[4eE( w) + {6392(r) 22g’(r)} IIw(r)ll 2]
(.6)

2e3 e+2)y")g3(t)l[wl[ 2 dt

+ 2e2 e+2)Y"){eg(z)2 g’(z)} w()ll 2.
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The next step is to bound E(t, w) in terms of IILwI[ 2.
LEMMA 2.4. Suppose w / and fl > max {flo, 2}. If > 0 and T > r. > to,

then

Teq+2)f(t)g-(t) ILwl[ 2 dt eta+2a)f(T)E(T,+ W)
(2.7)

T

o eta + 2)y")g(t)E(t, w) dt + e + 2)Y)E(-, w).

Proof Since (fl + 2) > flo, we can apply Lemma 2.1 to w, with (/3 + 2)
playing the role of ft. Thus

But

eta + 2)Y")(Lw, wt) dt + e + 2)Ytr)E(T, w)

T

>= (fl + 2) g(t) eta + 2)fmE(t, w) dt + eta + 2a)ftt)E(z, w).

2(Lw, wt) <- g- 1(0 IILwll 2 + g(t)Ilwtll

<__ g- (t)IlLwll 2 + g(t)E(t, w).

Combining this with the preceding inequality, we get

rec+ 2oof{t}g- x(t)l Lwll 2 dt e+2=)Yr)E(T,+ W)

>__ (1/2 + 1) e + 2’mg(t)E(t, w)dt + e + a"E(, w).

Since > 2, we get ( + 1) > e, and (2.7) follows. Lemmas 2.3 and 2.4 com-
bine to produce the basic energy estimate.
LA 2.5. Suppose w is in the class . Assume B > max{o,2} and
max {,(to), 2(fl, to)}. If T > max {z,t} to, then there are positive con-

stants C and c such that

2 e+2)ymg(t) tlLw 2 dt + C e{l+a+2=f{r)g(T, w)

(2.8) e+Zmg(t)E(t,w)dt + 2 e+zmg(t)w dt

+ c e + azog(, w).

Proo By adding (2.6) and (2.7), we get

2 e+mg-(t) Lw dt + e+zrH(r)

e+Zmg(t)E(t,w)dt + 2 e+ezmg(t)llwll dt

+ e + Z"h(r),
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where

and

H(T) =- (4o( + 1)E(T, w) + {6o(392(T) 2o(2g’(T)} Ilw(T) 2

h(r,) E(z, w) + 2o(2{o(gz(z) g’(z)} w(z) 2.

It remains to estimate H(T) and h(r) appropriately. Because of (G-II), we have
g’(T) =< gZ(T), and, therefore,

6o(392(T)- 2o(Zg’(T) __<_ 2o(2(3o( + 1)gZ(T).

But since to < < T, assumption (G-I) gives us

gZ(T) p exp g(s) ds la e
f(t’) es(T) < # ef(T)

By defining

we get

If we set

C(o(,/) max {(4o( + 1), 2o(2(3o( + 1)},

H(T) <= C(o(, )eStT)o(T, w).

c(o(, r) min {1,2e2[o(gZ(r) g’(:)]},

then (G-II) assures us that c(o(, r) > 0 and

h(:) >= c(o(,-c)g(r, w).

The lemma follows with C C(o(,/) and c c(o(, r). We can now establish
Theorem 2.1.

THEOREM 2.1. Let u "(0, ) D be a strong solution on (0, ) to the following
differential inequality on (0, o such that ut, the strong derivative of u, takes values
in D"

(2.9) <__ kg(t)llu(t) 2 + kg2(t) {(u(t), A(t)u(t)) +
du

(Here k and k2 are nonnegative constants.)
Then u cannot decay faster than e-:,:(t)for every p > 0 in the sense that

lim infepf(t)g(t, u) > 0

unless u =- O. (u decays faster than e -f(t), by definition, if lim inft_ +o eP(’)g(t, u)
=0.)

Proof The proof follows Murray [5], [6]. Let u w in (2.8) and replace
ILullZbyitsupperboundin(2.9).Thereresults, foranyto > 0,any/ > max {2,/o},
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any 0 > max {Xl(to), 02(to, fl)} and any T, z with T >__ max {z, to, tl} and __> to,

C(a, )g(r, u) e(’ +

>- (0 2k) eta + 2a)z(’)g(t)E(t, u) dt

+ 2(3 k) e( + 2a)f(t)g(t)3 u(t) 2 dt

+ C(O, "C) e(2a+/)f()gv(’c, u).

)4/3Now if we choose e > max {l(to),e2(to,), 2k2,(kl }, we see that for T
>_ max {, to, t} >__ : >_ to and some positive K depending only upon 0,

and :, we have

(2.10) f(r, u) >- K(0, fl, to,/, z)g(z, u) e -(1 + 2+/)f(r).

Now suppose the theorem fails so that u decays faster than e -z(’) for every
p > 0 and that u 0 on (0, c). Then, for some z > 0, we have u(z) 4= 0, g(z, u) > 0.
Let p + 20 + /? where 0 and fl are chosen as above and to e (0, z) is fixed. Then

0 lim int" e(1 + 2+B)f(T)o(T, l) K(cz, fi, to, #, z)g(z, u) > 0,
T’-

which is a contradiction. Therefore, u _-- 0 on (0,
Remark 2.1. Let, for each e (0, oo), B(t) be a bounded linear operator and

suppose that for some constant k and all re(0, co) SUpxu, ltxll=l IIB(t)xll
IIIB(t)lll < kg(t). Then Theorem 2.1 applies to solutions of differential inequalities

of the form

(2.11) Iluu + B(t)u, + A(t)u 2 k4g4(t)llull2 + kg2(t)E(t, u),

where A and g are as in Theorem 2.1. This follows because solutions of (2.11)
are likewise solutions of an inequality of the form (2.9) since

]u,, + a(t)ul 2 =< (llu,, + B(t)u, + A(t)u + B(t)u, ll) 2

=< 2[k41g4(t) u 2 + k2ge(t)E(t u)] + 2 B(t)u, 2

=< 2klg4(t) u 2 + (2k + 2ke)ge(t)E(t, u),
which is of the same form as (2.9).

Remark 2.2. It is possible to extend Theorem 2.1 to the case in which the
domain of A(t), D, depends on time. The only difference is that we require solutions
to (2.9) to have the property that for each e (0, oo), u(t) and u,(t) belong to D(t),
the domain of A(t) and that the a priori estimates obtained in Lemmas 2.1, 2.2,
2.3, 2.4 and 2.5 hold for vector-valued functions with this property.

3. Examples. In this section, we give three examples to illustrate the scope of
Theorem 2.1 and the wide variety of physical problems to which it may be applied.
The list of examples is in no way intended to be exhaustive or complete.

Example I. Let B c_ R 3 be a bounded domain with boundary 8B smooth
enough to admit of applications of the divergence theorem. Let B be filled with
an anisotropic elastic material. Let u (u, u2, u3) denote the displacement
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vector, V,u be the 3 3 matrix [ui,j], and ui,t c3u/c3t. The equations of motion
are assumed to take the following form in B (0, ),

(3.1) p(X)Ui.tt (Cijkl(X t)Ul, l).j -I- ./(X, t, U, VU, ut) 1,2, 3,

where p > 0 is the density of the material and the Cijk are the (possibly time-
dependent) elasticities.

In practice, one prescribes

u(x, 0), u,,(x, 0)

on B and requires that the solutions satisfy

(3.2) B(u)(x,t)=0, (x,t)(C)B [0,), i= 1,2,3,

where the B are linear boundary conditions (displacement, traction or possibly
mixed). (See [2].)2

The system (3.1) (3.2) may be written more compactly as

c3t 2 p(x) cj Ct + p-(x, t, u, Vu,

(3.3)
u(x, t) 0 on c3B (0, ),

where u col (Ul, u2, u3), . col (1, 2, if3), (Cjl)ik cijkl, i, j, k, 1, 2, 3
and Vu (u,j)3 3.

In order to recast (3.2) into a Cauchy problem for solutions to a differential
inequality of the form (2.9) in a Hilbert space, it will be necessary to impose
certain additional conditions on the matrix functions Cjl, the nonlinearity
and the density p(x). We suppose the following"

(p-1) There are constants p and p,, such that

PM > p(X) => Pm > 0

for all x e B. p is a continuous function.
(C-l) C C/, l, j 1, 2,3 and all (x, t)e B x (0, o). That is, ci Cli

(see [21) and these functions are at least continuously differentiable in B x (0, o)
in both x and t.

(C-2) The Ci3(x, t) satisfy, for all (ij),,,,, CMijij - Cijk’lijkl Crnijij
uniformly in B (0, ) for some positive constants CMC,,.

(C-3) For all indices i,.j, k, l, uniformly in x,

C3Cijk < cg(t)

where g is a function satisfying (G-I) through (G-IV).
(F-l) The nonlinearities, , are Lipschitz continuous at u 0; i.e., there

are nonnegative continuous functions k(x, t) and k2(x, t) such that

I/(X, t, , (ij)’ 1112 kl(X, t)ii + k2(x, t)(rlirli d- ijij)

For this example, we shall assume that on the part of the lateral boundary, OB x (0, ), where
the tractions are specified, the elasticities, Cijkt, do not depend upon t. However, this assumption may
be relaxed in view of Remark 2.1.
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for all vectors , 1 in R3 and all tensors (ij)3 3 of rank 2 and all points (x, t) e B
x (0, c).

(F-2) The functions k and k2 satisfy

k l(x, t)<= k4xg4(t), k2(x, t) -< k2g2(t)

for some constants k and k2 and the function g used in (C-3) above.
Let H1 {f" B Rln fZ(x)p(x) dx < and H H1 03 H1 0) H1

{(fl,fz,f3)lflH for 1,2,3}. We make H into a Hilbert space with the
scalar product

For D, we take

where

that

(f, g) ff,(x)g,(x)p(x)ctx.

f 6 HIf C2(B), Mf 0 and A(t)f H},

A(t)f I(Cjl(X,t)p(x) x
Then, taking into account the boundary conditions and (C-l), one easily sees

(f, A(t)g) Jn cuu(x, t)f,jgk, dx (A(t)f, g).

From (C-2) it follows that (f,A(t)f) 0 for all f e D. Thus (A-I) holds. It is
easily seen that (A-II) will hold if we can establish that for all fe D and all fl
>_-/o > 0,

QA(f, f) f Cijkl,t(X, dx

(3.4)
-g(t) jn cuu(x, t),jf., dx.

However, we have that

fBCijkl,t,jfk,l dX fBlCjk,,,l l,jl lfk,l’ dx

g(t)[44 + f,f,] dx

9cg(t) f,, dx

9cc g(t) f cuu,f, dx

flg(t)(f, A(t)f)
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for all fl >_ flo =- 18cc7, 1. Thus (3.4) and consequently (A-II) holds.
Now suppose u’B x (0, oc) --+ D is a solution to (3.3). Then we have that

fB I 12[lltt -’t- a(t)ll{{ 2 ]0(X) Ui,tt (CijklUk,l),j dx
i:

__< f p, k(x, t)u,u, + ke(x, t) [ui,,u,,, + u,,ju,,j] dx

Thus

(3.5)

where K{ p k{ and K k. max (1, c ).
It therefore follows that satisfies a differential inequality of the form (2.9)

subject to conditions (A-1) and (A-II). Then (2.10) holds where

(3.6) g(t,u) fB {p(X)[Ui(X t)U/(X, t) -}- Ui,t(X, t)Ui,t(X, t)].q- Cijk,(X, t)Ui,jUk,t} dx.

Consequently, unless u O, there is Po > 0 such that

(3.7) lim,_+ ooinf [exp Po g(q)dq >0

unlessum CinB (0,).
’SRemark 3.1. Since we assumed that the cijk are bounded above, that is,

ijk,(x, t)ijkt CMijij

for some positive constant CM, we have that (2.11) and (3.7) hold with g(t,u)
replaced by

(3.s) g,(t, u) =_ f. [ui(x, t)ui(x, t) + ui,t(x, t)ui,t(x, t) + uij(x, t)uij(x, t)] dx.

Thus, if g(t) and gl decays faster than e -or for every p > 0, then u 0;
if g(t)= lit and gl decays faster than - for every p > 0, then u --0; and if
g(t) c-1 for some c > 1, gl cannot decay faster than e -pt for every p > 0
unless u 0.

Remark 3.2. If the tractions are specified on the entire lateral boundary of
B x (0, av), then one cannot bound J’B uiu dx above by the operator A(t) with a
Poincar6 type inequality of the form (u(t),A(t)u(t))>_ k(u(t), u(t)). See the
remarks in the Introduction.

Example II. Here we consider an application of Theorem (2.1) as applied
to (2.11) in Remark 2.1. This time we let B

_
R" be a bounded domain and let

cB be smooth enough to admit of applications of the divergence theorem. We
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could consider the Euler-Poisson-Darboux equation

(3.9)
&2 A,,u=O -o < k <t

in B x (0, o) where u is a real-valued function of x and vanishing on c3B x (0, )
and A,u u,ii.

However, we consider a somewhat more general version of (3.9), namely,

#2u #u
u, u,, vu ,(3.1 0) ct-- -t- k(t) ?t

(x, t)6 B (0, o),

where k(t) is a continuous function on (0, o), Vu (u,,..., u.) and the matrix
aij(x, t)],,, with real, continuously differentiable entries satisfies the condition
of uniform strong ellipticity, namely,

(a-l) aij(X t)i >-- aoi > 0

for all { e R", (x, t) e B x (0, o) and some constant ao > O. We assume that

c3ai(a-2) -d(X, t) <= k,g(t), i, j l, 2,...

for (x, t)e B x (0, o) and some constant k where g satisfies conditions (G-I)
through (G-IV) of Theorem 2.1. We will also suppose that

Ik(t)l kg(t), e(O, ),

for some constant k and

(F-l) [(x, t, z1,z2, )l 2 <= kg(t)4z21 + kg(t)2{zZ2 + ii}
on B (0, o) for some constants kl, k2.

We now restrict our class of solutions to (3.10) to those satisfying

(3.11) u(x, t) O, (x, t)e B x (0, o).

Then we can easily show that any such solution satisfies a differential inequality
of the form (2.9) where ]Jill (.[B If(x)] 2 dx) x/z, H 2(B), O {it Hlf C2,
f 0 on c3B, and (A(t)f)(x) (aij(x, t)fi(x)),j H}. Use of (a-l) and (a-2) permits
one to verify that (A-I) and (A-II) hold.

Thus with

f [uZ(x, t) + U(X, t) + aij(X t)u,iu,j dx,g(t u)

we see that Theorem 2.1 holds and

(3.12)

for some p > 0 unless u 0.

lim inf eY")g(t, u) > 0
t---
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In particular, solutions to (3.9) satisfy, for all sufficiently large and some
c > 0 and p > 0,

(3.13) g(t, u) >= ct -,
unless u =- 0.

Remark 3.3. Using the results of 10], one can also obtain (3.13) for solutions
to (3.9). In fact, using the results of Murray [5], one can even obtain this result
for domains which are "expanding faster than light." However, our results
apply also to higher order problems as we see from the next example.

Example III. In this example we consider, in n dimensions, an analogue of
the equation of motion of a clamped vibrating plate under normal loads. Let
[(ai(x)], . be, at each point x in a bounded subset B of R", a symmetric matrix
with C3 entries. Let cB be smcoth enough to admit of as many applications of
the divergence theorem as needed. We wish to consider the problem

c3t---5- -t- i)(x)-x a(x)-x akt(X) X
(3.14) (X, t, U, U,, Du, Dzu) in B x (0, o),

u
u(x, t)= aij(x)n xj 0, (x, t)e B x (0, ),

where a(x) is a given positive C2-function in B, n (n, ..., n,) is the exterior
normal to cB and where Du (t?u/cx,..., cu/cx,,), D2u [c2u/cxi cxj],,. If

0, n 2, % and a =- 1, (3.14) is the classical initial-boundary value
problem for the transverse vibrations of a clamped plate. See [4], for example.

In order to apply our theory directly to (3.14), we shall let H 2(B) as
before and

where

D {f e Hlf e C4(B), Af e H and f aij(x)nif 0 on B},

Af(x) =-xi{ai(x)-x[a(x)-k(akt(x)Cf(x)l
A is symmetric on D; in fact,

Af, g) f a(x)(aifl,i),j(aklfk),t dx.

Moreover, since a > 0 at each point of B, {Af, f) >__ 0 for all f e B.
We shall assume that for every function u(x, t) such that u(-, t)D,

satisfies

(3.15)
I(x, t, u, u,, Du, D2u)l dx =< kg4(t) ft u2(x’ t)dx

+ k2292(t)fn [ )2+ a(x)[(aiju,i),j]2j
for some constants k and 2 independent of the choice of u(x, t).

dx
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Thus from Theorem 2.1, we have

(t, u) Jn [u2 + u2 + a(x)[(ai2u’i)’2]2] dx

cannot decay faster than e -pft for every p > 0 unless u 0.
Remark 3.4. The function a(x) can be time-dependent if we assume that

td--v(x’ t) >= -kg(t)a(x, t)

for some constant k > 0. Then (Af, f) >= -kg(t)(A(t)f, f) so that (A-II) holds
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SUMMABILITY METHODS OBTAINED BY
SUBSTITUTION OF POWER SERIES*

PAUL GORDON]

Abstract. The Euler summability method is obtained by substituting into the series a,,x" the
expression x f(y) y/(1 qy), thereby obtaining a series b,y". In this paper we consider more
general expressions forf(y), f(y) fYi. A class of sequences naturally associated with such methods
is given by a*: {s,} is in r* if lim, < where a, s, s,_ 1. We obtain both matrix conditions
(for an arbitrary summability method) and functional conditions (for the series substitution method)
for regularity with respect to a*. Also, we show that iff >= 0 the method is regular in the usual sense.
Examples, including several from the theory of stability of numerical processes, are given of summability
methods regular with respect to a*.

1. Introduction. The Euler summability method and its generalization
[3, p. 178] is obtained by substituting into the series a,,x" the expression
x y/(1 qy) f(y), thereby obtaining a series b,,y". In this paper we consider
the more general expressions, f(y)= fyi. One result we find is that for f >= 0
(for all i) the summability method is regular (Theorem 4).

Major emphasis, however, is on a particular class of sequences which we
denote by tr*" {s,} is in * if lim, < 1, where a, s, s,_ and so 0.
Section 2 gives matrix conditions (in the standard form) for regularity of a sum-
mability method with respect to a*. (The main result appears as Theorem 1.)
Section 3 discusses summability methods obtained by series substitution. Theorem
2 gives functional conditions for regularity with respect to a* of such methods;
the primary condition is

(1) If(y)t -<- for lyl 1.

A relationship between this condition and the matrix form of the series substitution
method is then obtained (Theorem 3).

It is of interest to note that (1) is the condition associated with stability of
numerical processes (via Fourier series techniques). Whether this relationship
between summability methods and stability of numerical processes will prove
profitable to numerical analysts remains to be seen, but in the meantime we, can
draw on established results of numerical analysis to obtain examples of sum-
mability methods regular with respect to a*. Such examples, as well as several
others, are given in 4.

2. 6*-regular transformations. Given a sequence {s,} and an infinite matrix
C (c/j), the sequence {t,,} is defined by

(2) tm-- 2 CmiSi"
i=1

C is a a*-regular transformation if limm_o lim,_ s, for all {s,} in a*.
We will use the notation gmi ji Cmj [6, p. 39].

Received by the editors May 21, 1973, and in revised form April 4, 1974.
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THEOREM 1. C is tr*-regular if and only if the following conditions are satisfied"
(a) Given any e > O, there exists an m such that for m

for all n.
(b) lim,,_o m, for all n.

Proof. The proof follows the standard format for such results ([3, p. 44],
[5, p. 8], [6, p. 11]). To show sufficiency of the conditions, let a (s,) be in *,
with lim, 6 < 1 and s lim,_. s,. From condition (b) it follows that

(3) lim m, 0 for every m.

Note that Ev=l c,,,is, Ev=I miai- m,N + 1SN Since E [ai[ < m, it follows
from (3) that t, exists and that

(4) t,, aig=i.
i=1

Now, t,- sN =1 ai(gi- 1)+ i--N+I aig,,i. From condition (a), for m
sufficiently large, N can be chosen so large that the second sum is arbitrarily
small. From condition (b), for fixed N, m can be chosen so large that the first sum
is arbitrarily small. Thus, C is tr*-regular.

The necessity of condition (b) is clear. It remains to establish the necessity
of condition (a). Suppose (a) is false. Then there exists e > 0 and two integer
sequences, {mi} and {ni}, where {m} is strictly increasing, such that
>__ (1 + e)"’. The sequence {hi} is unbounded, for otherwise condition (b) would be
violated. Then for every , and fi there exists m > , and n > fi for which

(5)

Two sequences {ink}, {nk} will now be defined inductively. Choose mo no
1. Suppose mk_ and nk- have been chosen. By condition (b) choose m > ink-

such that

(6) m > m [g:,a[ < + , for =( j __--( n 1.

By (5) choose m > m’ and n > nk- such that

(7) Ig,,,k,,.l-> (1 + e).
By (3) choose nk > n’k such that

(8) j > n Igmk,j < :.

Choose 6 in (0,1) such that (1 +e)6> 1. Define a in a* by a =6 and
a 6 sgn g,i for n_ < N n.

Now, from (4), (7), (6) and (8), and the choice of a, we obtain for k 1,

k k-

i=nk- + i= i=nk+

k-

i=nk+

Thus, by the choice of , lim It,ll , or C is riot a*-regular.
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3. Transformations obtained by substitution of power series. Let

(9) g(x) aixi
i=1

and

(10) x--- f(u)-- fu with f(1)= 1.
i=1

Then

(11) g(x) h(u) biui.
i=1

The summability method based on f is denoted by Cs and is defined as follows.
Let a {s,}, where s, i=1 ai. Then Csa {t.}, where t, Z,=I b, and the
bi are defined by (9), (10) and (11).

(If the radius of convergence of the series in (9) is zero, then the above can be
considered a formal manipulation.)

THEOREM 2. Suppose

(12) lim/f.I < 1.

Then C is a a*-regular transformation ifand only if
(13) max f(u)l 1.

Proof By (12), f(u) is analytic in some region lul < R, where R > 1. Suppose
(13) is satisfied. If a is in a*, then the g(x) of (9) is analytic for Ixl < + e, where
e > 0. But then, by (13), h(u) is analytic for lul < + 6 for some 6 > 0. In particular,
h(1) g(1), or Cy is a a*-regular transformation.

Suppose (13) is not satisfied. Then there is a point u* such that f(u*) x*,
where lu*l < and Ix*l > 1. Let

X Z aiXi"g(x)--
x/x* i=

The corresponding sequence a {s,} is in a*. Since h(u) has a pole at u u*,
the radius of convergence of the series (11) is lu*l < 1). Therefore, the series cannot
converge at u 1, or Ca does not exist.

In order to consider the summability properties of Cy we need to find its
matrix representation. We introduce the notations

(14) f(u) Fi,u’ with Fi, 1,
i=1 i=1

(15) If(u)]" Fi,,,ui,

and

(16) [3ni-- Eft.
j=i
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Then h(u)= ,=1 a, If(u)]’= }’j= bfllj, where bj =1 a,Fj, [2, p. 138]. Also

t. bj aiflni 2 Si(flni- fin,i+1) + flnnSn
j=1 i=1 i=1

Thus, the matrix C of the Cz transformation takes the form

(17)

m>n,

Cmn mm m

O, m<n.

Since ,,. fl,,., the matrix conditions under which Cs is a a*-regular trans-
formation are obtained directly from Theorem 1. The result is as follows.

THEOREM 3. CS is a t*-regular transformation if and only if the following
conditions are satisfied:

(a) For any e > 0 there exists an m such that for rn >

(18) Iflm,I <(1 +e)" for alln.

(b)

(19) lim fl,,,, for all n.

COROLLARY. If lira. ,/F.1[ < 1, then conditions (13) and (18) are equivalent in
the sense that either is a necessary and sufficient condition in order that C be a
t*-regular transformation.

Proof We need only note that if lim---- xF,l[ < 1, then (19) is satisfied.
Remark. If f(u) has a radius of convergence greater than 1, then for any fixed

n, lim,,_o fl,,. 1. Thus given any N and e > 0 there exists an m such that for
m > ms, [fl,,.I < (1 + e)" for =< n __< N. In effect, C is a a*-regular transformation
if and only if the Taylor series expansions for If(u)]" converge "uniformly",
in the sense of condition (18). Furthermore, this is possible if and only if

<= for lul 1.
Our final result concerns conditions under which C is a regular transforma-

tion.
THEOREM 4. IfFi >= Ofor all i, the corresponding C transformation is regular.
Proof We need to establish condition (b) of Theorem plus the following

condition which replaces condition (a) [5, p. 8]"

(20) Ic,=l < H,

where H is a constant independent of m. Our earlier discussion for condition (b)
still applies. To establish (20), we first note that from multiplication ofpower series,

j=n+l j=n .i

Then using (16),
m-1 m-j

mn--m,n+l’-Fmn-t- 2 Fjn l- F,, >=0.
j=n



864 PAUL GORDON

From (17) it now follows that %, >= 0. Thus

Since lim,,_, ft,,1 1, condition (20) is satisfied.

4. Examples of t*-regular transformations. We consider now several examples
relating to the preceding theory.

(a) The Euler (E,q) method [3, p. 178] employs the transformation x

u/(1 qu). Normalizing so that f(1) l, we obtain

x f(u)=
+ q [q/(1 + q)-lu + q=o + q

Theorem 4 now gives the well-known result that the (E, q) method is regular for
q>=O.

(b) Poincar6 [7], in establishing an existence theorem for a system of differ-
ential equations, employed the transformation u (e- 1)/(e’ + 1), where
p > O. Inverting we find that

x -ln aiu’ g(u),

where

l 0 if is even,
ai

2/(pi) if/is odd.

Noting that g(u*)= 1, where u*= (e- 1)/(eP + 1)> 0, we obtain x f(u)
,i= aiu. Since i (u*)iai > O, we have from Theorem 4 that C. is a regular

transformation.
(c) We consider f(u) to be a first, second, or third degree polynomial and

look for conditions under which CI is a a*-regular transformation. In these cases
condition (13) seems simpler to verify than condition (18). For example, consider
f(u) 2u u2. Since f(-1) -3, condition (13) does not hold and CI is not
r*-regular. However, it is not so obvious that Cy does not satisfy condition (18).

(i) For first degree polynomials, since we require f(0)= 0 and f(1)= 1,
f(u) u is the only possibility. C is, of course, regular.

(ii) For second degree polynomials we need to consider f(u)= u(u + )/
(1 + e). Condition (13) is satisfied only if e is real and positive. In this case, by
Theorem 4, Cy is regular.

(iii) For third degree polynomials we consider f(u) u(u2 + zu + fl)/
(1 + e +/3). For e and/3 real it can be verified that condition (13) holds only if
z and fl satisfy one of the following sets of constraints" (j) e >__ 0 and fl >= O, (jj)

< fl < 0 and e >_ 41ill/(1 -[ill), (JJj) fl < and e =< -41fll/(lfll 1). In the
case of set (j) C is regular, while in the other two cases C is a*-regular.

(d) We consider next several examples based on numerical methods for
solving partial differential equations. We use the notation v- v(nAt, jAx).
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(i) The heat conduction equation, Ov/ct- 621)/X2, can be approximated
by the difference equation [8, p. 93],

,+1 P(VT+ 1- 2v + vj_ 1)(21) v v
where p At/(Ax)2 >_ O. To study stability of (21) one can substitute the Fourier
term v "uj, where u ei, i= x/--. This gives (1 2p) + p(u + u-1).
For stability it is required that 11 =< for all 0. This requirement is equivalent to
If(u)l <- for [u[ 1, wheref(u) u[p + (1 2p)u + pu2]. Thus we see that (21)
is stable if and only if Cy is r*-regular. From example (c.iii), Cj. is a*-regular only
if 2p _> 0. This is the well-known result for stability of (21).

(ii) Another approximation to the heat conduction equation is obtained by
applying a 4th-order Runga-Kutta formula to cv/ct [9]. This takes the form

"+ =(klj+ 2k + 2k3+ k4j)(22) v vj 2j

where

k2d-- kd q-

and

Pk3j klj -}- ((2k2j)j
k4j klj q- p(r2k3j)

P At/(Ax)2, (c52g) g-I 2g + gj+ 1.

After expansion, this leads to the function

Uf(u) u[a4 nt- a3u -+- a2u2 + al u3 q- aou4 -t- a nt- a2u6 q- a3u7 q- a4u8,

where

ao 2a 2a2 2a3 2a4,

a p (p2/6)(12 15p + 14p2),

a2 (PZ/6)(7p2 6p + 3),

a (p3/6)(1 2p),

a4 p/24.

The difference equation (22) can be shown to be stable only for p __< p*, where
p* 0.69632. (This is somewhat tedious to establish. One can show that all
coefficients are positive for 0 =< p =< 1/2, which establishes stability in this range.
The upper bound p* is obtained by working with the polynomial, in p, resulting
from setting u 1. One then needs to show that u gives the worst case
for 1/2 __< p =< p*.)Thus,f(u)is a cr*-regular transformation for 0 =< p =< p*.
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(iii) The hyperbolic equation v/t v/x can be approximated by the
difference equation [4],

n+ P p2
(23) vj vj

where p At/Ax >_ O. Proceeding as before, we obtain f(u)= u[(p/2)(p- 1)
+ (1 p2)u + (p/2)(p + 1)u2]. Since (23) is known to be stable for 0 =< p =< 1,
we can conclude that Cy is a*-regular for 0 p -< 1. (This result can also be
verified from example (c. iii) for a 2(1- p)/p and fl (p- 1)/(p + 1). For
p > 1, since fl > 0 and a < 0, Cy is not a*-regular. For p __< 1, since __< fl =< 0
and a 4[fl[/(1 [fl[), Cy is a*-regular.)

(iv) Our final examples will indicate that a stable difference equation need
not produce a a*-regular transformation. Let us approximate v/t Zv/dx2
by [-8, p. 931,

n+ n+ _[_ Vj_ ),(24) vj

where p At/Axz >= O. This leads tof(u) u/(u p(1 u)2). The approximation
(24) is stable for all values of p. Thus, C would be a*-regular iff(u) were analytic
for lul =< + 6, for some 6 > 0. However,f(u) fails to be analytic at

(2p + 1)- x//4p +
2p

which is inside the unit circle.
The Dufort-Frankel approximation to Ov/tt t21)/Ox2 is given by ([1],

[8, p. 833)

1-Pv,-"+’= + i +(25) vs + p

where p 2At/Ax2 >= O. The approximation (25) is stable for all p. As above, this
leads to

pb/ 1/2)2 --f(u)=
2(1 +p)

+ u2

For p >= 1, f(u) fails to be analytic at points on the unit circle, while for p < 1,
f(u) fails to be analytic at points inside the unit circle. Thus, C will not be a
a*-regular transformation.

Acknowledgment, should like to thank the referee for several valuable
suggestions. In particular, his reformulation of the assumptions of Theorem
(to their present form) served to significantly clarify and simplify both Theorems
and 3.
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POSITIVE INTEGRALS OF BESSEL FUNCTIONS*

GEORGE GASPER

Abstract. It is shown that some new and some already known positivity results for integrals of
Bessel functions and for generalized hypergeometric functions can be easily obtained by writing the
integrals and functions either as a sum of squares of Bessel functions with positive coefficients or as
a fractional integral of such a sum. In particular, this method is used to prove that

o:(X

t)t+ 1/2j(t)dt > 0, 0 =< 2 =< 1/2, > 1/2, x > 0,

and to give a simple proof of Steinig’s recent result that the Lommel function su,(x > 0 for x > 0 if
/= 1/2 and-l/2< v < 1/2, or if/> 1/2 and / =< v=<#.

1. Introduction. Over the years methods have had to be developed to prove
the positivity of various integrals of Bessel functions. Several excellent examples of
this are contained in the listed references. In [16] Cooke used intricate properties
of Bessel functions and Lommel functions and a method devised by Watson to
prove that

(1.1) J(t)dt > O, > -1,

if x is the second positive zero of the Bessel function J(t). This result, along with
his results in [14], enabled Cooke to complete the proof of his well-known result
that the graph of J(x), x > 0, consists of waves whose areas form a strictly de-
creasing sequence when 0 > 1. Thus (1.1) holds for all x > 0.

Steinig [37] employed an oscillation theorem of Makai [29] (also see [27],
351, 381 and 39]) for second order differential equations and two fractional
integrals to prove that the Lommel function

su,(x 2<u-- I)/21((// v -F 1)/2)x

(1.2) X2 t2)("+v- 1)/2t(v-"+" 1)/2Jtu- +1)/2(t) dt

where # + v > 1, is (strictly) positive for x > 0 if/ 1/2 and 1/2 < v < 1/2,
or if > 1/2 and # v __</ which extends some earlier results of Cooke [15].
Throughout this paper it will be assumed that x > 0.

Askey and Pollard [8] used properties of completely monotonic functions
to prove that X-2c(X2 + 1) is completely monotonic for c > 0, which by a
theorem of Bernstein is equivalent (see and [40, p. 161 ]) to

(1.3) (x- t)2tJ(t)dt >__ O, o > -1/2.
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The positivity of this integral as well as the inequality

(1.4) (x t) + 3/2t + 1j(t) dt > O, > 1/2,

which implies the complete monotonicity of x-C(x2 + 1) for c _>_ 1, were proved
recently by Fields and Ismail [20] (also see [19]) by applying an asymptotic argu-
ment of Darboux type to an integral representation for a F2. Both (1.3) and (1.4)
were motivated by the observations in Askey [1] concerning positivity of the
Ceshro means of Jacobi series.

A limiting case of a conjecture in Askey and Gasper [7] concerning positive
sums of Jacobi polynomials suggested the inequality

(1.5) (x- t)xt+/2J(t)dt > 0, 0N2z- 1/2, e > 1/2.

Note that, by an integration by parts,

(1.6) (x t) + 3/2t + J(t) dt -F (x J+ l(t) dt,

so the case 2 e 1/2 of (1.5) is equivalent to (1.4). The case 2 0 of (1.5) is a
well-known result of Makai [29]. Since the above-mentioned methods for proving
positivity did not seem. to be particularly applicable to the intermediate cases
0 < 2 < cz 1/2 of (1.5), and since when 2 0 and z 1/2 the integral in (1.5)
is a positive multiple of a square of a Bessel function, explicitly

(1.7) t/2J/2(t dt x J/2

the author attempted to try to prove (1.5) by writing the integral as a sum of
squares of Bessel functions with coefficients which are positive. This attempt suc-
ceeded and, as we shall show, it turned out that one could easily prove the positivity
of the integrals in (1.1), (1.3), (1.4), (1.5) and of certain generalized hypergeometric
functions by showing that the integrals and functions have series expansions of
the form

(1.8) x’ a,J]+(x/2),
n=O

with ao > 0, a 0, a2 > 0 and a, 0 for n 3, 4, We shall also use ex-
pansions of the form (1.8) and fractional integrals to give a simple proof of Steinig’s
above-mentioned positivity results for the Lommel function su,(x) and to obtain
some new positivity results for generalized hypergeometric functions.

Before considering our expansions of the form (1.8) we shall point out some
additional applications for positive integrals of Bessel functions. Inequality (1.1)
and the case 2 0 of (1.5) were used by Lorch and Szego [25], [26] to prove an
inequality involving integrals of Bessel functions which arose in Wilf’s work
[41] on the stability of least square smoothing. Askey [3] used the case e 1/2
of (1.4) in an equivalent form to prove a sufficient condition for a function to be the
characteristic function of a unimodal distribution, while (1.1) and some other
special cases of (1.4) are the main tools that were needed in his paper on radial
characteristic functions [2].
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In [42] Williamson shows that

(1.9) (1 t)2t sin xt dt > O, x > O,

which is equivalent to the case 1/2 of (1.4) since sin (rct/2)l/aJ1/2(t), and
then uses this inequality to give a shorter proof of Royall’s result [33] that the
Laplace transform f(s) of a three-times monotone function is univalent for Re (s)
> 0. Hille’s paper [22] considers the distribution of the zeros of generalized
hypergeometric functionS and in it he observes that if p < q and e > 0, then all
but a finite number of the zeros of

pfq(z) pfq[a at,; hi,... bq z]

are located in the sector rt e < arg z < rc + e. Since, by (2.2) and (2.20) below,
each of the above integrals is a positive multiple of a 2F3(-x2/4) function with
positive parameters (in which case 2F3(z) has infinitely many zeros), Hille’s
observation helps explain why it is so difficult to prove the positivity of the above
integrals by using asymptotic estimates (cf. [20]).

In [24] Kuttner considers the Riesz (R, n, x) means

(1.10) G(2, x;u,0)=1/2+ cos nO
<n<u I12]

for the series 1/2 + cos 0 + cos 20 + ..., and shows that a necessary and sufficient
condition for G(2, ;u, 0) => 0 for all u, 0 is that

(1.11) (1 t)" cos xt dt O, x > O,

which is equivalent to

(1 12) (xz tz)t ,/2j _x/2(t) dt >= O, x > O.

Note that the case 2 of (1.12) follows from (1.4) by letting a - 1/2.

2. Integrals of Bessel functions. First observe that using either

(t/2)"
oF,[a + 1’ -ta/4], [17, 7.2(3)](2.1) S(t)

r(e + 1)

or [18, 13.1(56)] we have

(2.2)
fi’ (x t)ztuJ,(t) dt

F(2 + 1)F(0 + # + 1)
F(+ 1)F(+2+#+2)

2F3[(a + la + 1)/2’( +1 + 2)/2 -x2/4
a+ 1,(a+2+/+2)/2,(a+2+/+ 3)/2

F2(v+ 1)22v+ V (n+ v)F(n+ 2v)j(2.3) Z2v 2 t [39, 5.5(1)]
r(2v + 1) /"

n=0 /"

when e + # > 1,2 > 1. Then, using



POSITIVE INTEGRALS OF BESSEL FUNCTIONS 8 71

with z x/2, we obtain the expansion

0:(x t)atuJ,(t) dt

F(2 + 1)F(0 + # + 1)FZ(v + 1) 24_,x + a + u + 2v

F(+ 1)F(+ +#+2)

(2.4) I-n,n + 2v, v + 1,(o + # + 1)/2,(o + # + 2)/2; 1v+ 1/2,0+ 1,(0+2+#+2)/2,(+2++ 3)/2

n! n + 2v J"+

when o+#> -1, 2> -1, and 2v= -1,2,.... Here (v),=F(n+ v)/F(v),
and the factor (2n + 2v)/(n + 2v) must be replaced by when n 0.

To prove inequality (1.5) we set / 2 + 1/2 in (2.4). Then the above sF4
becomes

(2.5)
n + 2v, v + 1,(o + 2 + 3/2)/2,(o + 2 + 5/2)/2

v + 1/2, 0 + 1, (0 + 22 + 5/2)/2, (o + 22 + 7/2)/2

Since it is not at all obvious when these sF4’s are positive, we now set v (0 + 2
+ 1/2)/2 so that the 5F4 in (2.5) reduces to the Saalschiitzian 4F3 series

-n, n + 0 + 2 + 1/2, (0 + 2 + 5/2)/2, (0 + 2 + 5/2)/2 ;-1
(2.6) 4F3

0 + 1, (0 + 22 + 5/2)/2, (0 + 22 + 7/2)/2

When 2 e 1/2 or 2 0 this 4F3 reduces to a 3F2 series which can be summed
by Saalschiitz’s formula [10, 2.2(1)]. It then follows from (2.4) that

fO: (x t) /tJ(t) dt

(2.7)

F( + 1/2)F(2 + 1)F( + 1)23x+ 1/2

F(3o + 3/2)

((2o + 1)/4).((20 1)/4). (2o + 1). 2n + 20

=o ((6o + 3)/4).((6o + 5)/4), n! n + 20

tx/zJ,(t) dt

F2((2o + 5)/4)
(e + 3/2)F(o + 1)

2+ X

(1/2).((2o 1)/4). (0 + 3/2).,o (0 + 1),((2o + 7)/4), n!

-1/2,

Since the positive zeros of J(x) are interlaced [39, p. 479] with those of J+ l(x),
it is obvious from (2.7) and (2.8) that inequality (1.5) holds for > 1/2 when

1/2 Jn+2a+ 1)/4

3

2
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2 0 or/l 1/2. Thus (1.4) follows directly from (2.7) and (1.6).
Even though we cannot sum the 4F3 in (2.6) when 0 < 2 < e 1/2, we can

use Whipple’s transformation formula [10, 4.3(4)] to show that this 4F3 equals

(2 + 1/2).((2- 22- 1)/4).
( + 1).((2 + 32 + 7)/4).

(2.9) 2 + 62 + 3 2 + 62 + 11 2 / 2 2 + 2/l + 5

4 ’- -- 2 ’2’-- 4 ,n++/l+,-n"
7F6

+ 6/1 + 3 + 2+ 7 5 + 2/1- 2 2+ 6/1+
2+ 2.. 5,/1+ ,/1+- n,n +

8 4 4 2’ 4 4

which is clearly positive when 0 < /l < 1/2, since each of the n + terms in
this 7F6 series is positive. This shows that if 0 < 2 < 1/2 and v ( + 2 + 1/2)/2
then the integral in (1.5) has an expansion of the form (1.8) with positive coefficients,
which completes our proof of (1.5).

In the same fashion it can be shown that

(2.10) (x t)t- /2j=(t) dt > O, =<2=<+ 3/2, > -1/2.

This gives (1.4) when /l + 3/2. The restriction /1 =< + 3/2 in (2.10) cannot
be relaxed, for Askey [41 has shown that if > 0 and/1 > 1, then the inequality

fo (x t)t + + J(t) dt >= 0

fails for some x > 0. Also, since

fO’ (x t)tl/2J_ 1/2(t) dt x

the inequality (2.10) fails for infinitely many x when 1/2, 2 1. To prove
(1.3) we set/l 2 and/ in (2.4) and observe that if v 2 + 1/2, then the

5F4 in (2.4) reduces to a 3F2 which can be summed by Watson’s formula [10, 3.3(1)3
to give

(2.11)

fi: (x t)2tJ(t) dt
ztF(4a + 2)2

x? (1/2).(+ 1/2), (4a+2)2.4n+4a+
,o (a + 1),(2a + 1), (2n)! 2n + 4 +

Jn+ 2 + 1/2
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for e > -1/2. The positivity of the integral in (2.11) for e > -1/2 then follows
from the positivity of the coefficients in (2.11) and the fact that the positive zeros
of Jr(x)are interlaced [39, p. 480] with those of Jr+ 2(x). Similarly, to prove Cooke’s
inequality (1.1) it suffices to notice that from (2.4) and Watson’s formula 10, 3.3(1)]
we have

(2.12)

dt
I2(( + 3)/2)2+ 2

F( + 2)

,/-% (( + 2)/2),(( + 2)/2),
( + 2)2 4n + +

(2n)! 2n++

Jn+( + )/2 >0, >

Steinig [36] has pointed out that (1.1) also follows directly from Bailey’s
13, (3.4)] identity

t-2x f/2(2.13) Jz(t) dt 2x J(x sin O) sin 0 dO, > -.
0

In 3 we shall derive the identity

(2.14)

(x t)2tJ(t) dt

23a + 11"( "- f/2 ((x/2) t2) ’/2tj2(t) dt,

which gives yet another proof of the positivity of the integrals in (1.3). So far I
have not been able to obtain such a representation in terms of an integral of a
square of a Bessel function for the integrals in (1.4) and (1.5). However, in this
respect it is of interest to note that from Askey [3 we do have an integral represen-
tation of the form

(2.15) (x t)2t3/2J /2(t) dt 4 (1 cos t)(1 cos (x t)) dr,

which gives (1..4) for the special case a 1/2. A limiting case of Conjecture 4 in
Askey and Gasper [7] is the conjecture that

(2.16) (x t) + 2- /2t +uj(t) dt >= 0

when 0 __< g _<_ and + g >_ 1/2. Since this integral reduces to the integral
(1.4) when and to the case 2 1/2 of the integral (1.5) when/ 0,
we have already proved (2.16) for/ 0, e __> 1/2 and for kt 1, e __> 1/2, which
are the lower and upper boundary lines of the set S {(e, #)’0 __< # =< 1, e + t
=> 1/2}. Replacing 2 and / in (2.4) by e + 2g- 1/2 and + g and setting
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v + #, so that the 5F4 in (2.4) becomes the Saalschtitzian series

(2.17) 5F,

-n n+2+2#,+#+ 2++ 2+#+2
’----- 2

3z + 3# + 3/2, 3z + 3# + 5/2
+#+,+ 1,

2 2

we find that in order to prove (2.16) for any (e, #) in S it suffices to prove the non-
negativity of (2.17) for each n. So far, in addition to the cases # 0 and #
discussed above the only other case I have been able to handle is the case 0 < # < 1,
e + # 1/2, which is the remaining part of the boundary of S. In this case the
series (2.17) reduces to the ,F3 series

(2.18) 4F3[-n,n + 1,(2-#)/2,(3-#)/2;11,3/2 #, 2

which, by the limiting case d a + of Whipple’s formula [10, 4.3(4)], is equal to

#(1 #)(3 #)(5 #) ((1 + #)/2).
2(3 2#)(2n + #- 1)(2n + 3 #)((3 #)/2),

(2.19) -3-# 9-# 3-# __2+# 5__,-# .-
2 ’’ ’ 2 2

n+2 1-n

.7F6
5-# 2 5-2# 3-# 5-#+ n
4 2

,2,
2

n
2

for n 1, 2,.... From this it is obvious that the series in (2.18) are positive for
0 < # < 1, which implies the positivity of the integrals (2.16) for 0 < # < 1,
cz + # 1/2. A reasonable conjecture is that the 5F, series in (2.17) are also positive
for (e, #) in the interior of S (which would then imply the positivity of the integrals
(2.16) for 0 < # < 1,e + # > 1/2), but another method will have to be used to
prove this since Whipple’s formula [10, 4.3(4)] is not applicable to (2.17) in this case.
Some other methods for proving positivity of generalized hypergeometric series
will be mentioned in 3.

By using the formula [18, 13.1(65)]

:(x tz)ztuJ(t) dt

(2.20) e + # +
F(2 + 1)F((o + # + 1)/2)x" +" + 24+ 2

-F(e + 1)F((e + # + 22 + 3)/2)2"+1 F2
z+l,

x2

4

+#+22+3
2

+#> -1, 2> -1,

and (2.3) one can also obtain expansions of the type (1.8) for the above integrals
and then use the expansions to determine values of 2, #, e for which these integrals
are positive. However, since many other integrals (and functions [17], [18], [28])
are multiples of pFq functions, rather than considering each type of integral
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separately it is clearly preferable to consider the general case of expansions of
the form (1.8) for pFq functions, as we shall do in the next section. In particular,
from formulas (3.2) and (3.3) below it is easily seen that the integral (2.20) is positive
in the following four cases:

(i) 2=- 1/2> -1, >/,0 + # > -1,
(ii) #=2+ 1/2>0,>2+ 1/2,

(iii) > -1,2> -1/2,t=0,
(iv) 22=+/- 1,>/,+> -1.

(3.1)

functions. One can use either (2.3) or [28, 9.1 (13)] to find that

X2y-]1, ap,
b 1, ..., bq

Fz(v-+- 1)
,=o n! n + 2v

J"+v(x)

+3Fq+l
-n,n+2v,v+ 1,al,...,ap,y-

v + 1/2, b, bq

when 2v is not a negative integer and either p =< q, or p q + and Ix, Zy[ < 1.
As usual, it is assumed that no denominator parameter bj is a negative integer or
zero.

Settingp=2, q= 3, al =a,a2 v+ 1/2, b b, b2 v+ 1, b3 2v+ a
+ b, y 1, and using Saalschtitz’s formula, we obtain

2F3[a, v + 1/2; b, v + 1,2v + + a b;
(3.2)

F2(v + 1)
,=o (b),(2v + + a b), nl. n + 2-] J,,+v(x).

Since the coefficients in the expansion (3.2) are positive for v > 1/2 under each
of the following conditions,

(i) 0< b<2v+ 1,0< b-a<2v+ l,
(ii) -j- =<2v+ b < -j,-j- < 2v+ +a- b< -j,

(iii) -j- _<2v+ b < -j,-j- <__ b- a< -j,
(iv) -j- <2v+ +a-b< -j,-j- < b< -j,
(v) -j- __<b-a< -j,-j- < b< -j,

where j is any nonnegative integer, it is obvious that the 2F3 in (3.2) is positive
when v > 1/2 and one of the above conditions is satisfied. In particular, formula
(2.2) and the case a v + of (3.2) gives (1.5) when 2 0 or 2 1/2.

When p 1, q 2, a a, b 2a, b2 v nt- and y 1, application of
Watson’s formula [10, 3.3(1)] to (3.1) gives (also see [28, 9.4.7(16)])

F2[a; 2a, v + 1" x2]

(3.3) F2(v+ 1)
,=o (a+ 1/2), n. n+

> 0, v+ 1/2 >a> -1/2,

where for a 0 the right-hand side of (3.3) is the expansion of

X2

(3.4) lim Fz[a; 2a, v + 1" -x2] 1F2[l" 2 v + 2" -x2].
,,o 2(v+ 1)
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Inequalities (1.1) and (1.3) follow from (2.2) and (3.3). Also, Theorem in Fields
and Ismail [20] follows directly from (3.2) and (3.3).

We will now show how (3.2) leads to a simple proofofthe previously mentioned
result of Steinig concerning the positivity of the Lommel function su,v(x). Steinig’s
first step in [37] was to use Makai’s oscillation theorem for second order differential
equations to prove that

(3.5) S1/2,v(X > O, x > O, -1/2 < v < 1/2.

To prove this by the use of expansions of the form (1.8), it suffices to observe that
from (1.2), (2.20) and (3.2) we have

(3.6)
4rcx 1/2 ((1 2v)/4).((1 + 2v)/4).(2n + 1)j.2+ 1/2S1/2’v(X)--- -- 372 ,=0 ((7 2V)/4),((7 + 2V)/4),

Then, as in [37], it follows by using the fractional integrals on page 127 of [37]
(or use (3.15) below) that su,,,(x) > 0 for x > 0 if # 1/2 and -1/2 < v < 1/2,
or if#> 1/2 and-#=< v#.

Equivalent forms of (3.2) and (3.3) were derived in Bailey [11] by using the
formula

(3.7) J2v(x {F(v + 1)}-2(x/2)2v IlF2[v -t- 1/2" 2F + 1, v + 1" --Y2]

to sum the series on the right-hand sides of (3.2) and (3.3). This approach also
yields (see Rice [32, (4.1)])

3F2[a, a -+- 1/2; 23, v + 1, v + -x2

(3.8) --F2(v + 1)--x2)2v n=O (2v +l-n! 2a),,jz,+(x
>0, v+1/2>a.

Also see Bailey [12] for some expansions in Neumann series and Kapteyn series
of the second kind.

Note that by comparing (3.1) and (3.8) we obtain the summation formula

(3.9)
n + 2v, a, a + 1/2;-] (v).(2v + 2a),

4/73 Jv + 1/2, v + 1,2a i 5 i),(2v),

This formula can also be derived by using known transformation formulas.
To further extend our positivity results we first observe that from (3.1) we have

3F4[O{, fl, v-t-1/2; --x217, 2,#, v +

()2 (2v+ 1)"2n+2v4Fa[-n’n+2v’’fl;] 2Fe(v + 1) an+v(X).
,=o n! n + 2v 7, 2, #
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The above 4F3 series is a Saalschtitzian when t + fl + 2v + 7- 2;
and so it follows from Whipple’s formula [10, 4.3 (4)] that

(3.11)

-n, n + 2v,,fl;

,2,+fl+2v+ 1-7-2
(7+ 2-- fl),(1 + fl+ 2v- 7- 2),
( + -/).( + +/ + 2v- - ).

[ a, +a/2,2-fl, 7-fl,,n+2v,-n;
"vF6

a/2,7,,,7+2__,7+2__2v_n, 7+2_+n

where a 7 + 2 fl 1. From (3.10) and (3.11) we find that

,fl, v+ 1/2"-
(3.12) 3F4 j > 0

7,2, + fl+ 2v + 1-7-2, v+

when2v + > 7 + 2- fl> >= 0,2>= fl, 7_>_/L7 > 0,2> 0.
Among the other summation formulas which can be used to sum the coeffi-

cients in (3.1), we shall here only consider the formula

(3.13)
4F3 I- n,n + 2v, b,c + k’,-]

2v + 1,b+ 1,c

ifn =0,

n!(2v + b)._ 1(c- b)k
(b + 1),(2v + 1),_ l(C)k

ifn>0andk=0orl.

This formula is a special case of formula (12) in Minton [31] (see Luke [28, 3.13.3
(39)3 for the case k 0 of (3.13) and also see Karlsson [23, (10)]). Use of (3.1) and
(3.13) gives

+ 1/2, b,c+ k;-
3G + 1,2v+ 1,b+ 1,c

r2(v + 1) J2(x)

(3.14)
+ 2r(v + 1)(). (2v + b),_l(n + v)jZ,+v(x)
=1 (b+ 1),

which is obviously-positive if k 1, 2v + > b > 1, c > b, c > 0, or if k 0,
2v+ >b> -1.

Besides using summation formulas and transformation formulas (see, e.g.,
[10], [17], [28], [34]) to determine cases in which the coefficients in (3.1) are
positive, one can also use expansion formulas [28, Chap. IX] and recurrence
relations (see [6] and [21]). In addition, the above positivity results for pFp+l
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functions can be extended by using the fractional integral [18, 13.1 (95)]

al, ap, at
(x t)"- it dt

bl,... bq
(3.15)

r(")r(v)x" +v- 1, ap, v; ax

1-’(/.t q- v) P+ 1Fq+l
1,...,bq,kt+ VJ

where # > 0, v > 0 and either p __< q or p q + and laxl < 1.
From each of the above results of the form (for all x)

al, at, at+pFp+
bl "’, bs, bs+ 1, bp+

> O,

with al, "", at, bl, ..., bs > 0, it follows by repeated applications of (3.15) that
we also have

al el, "", ar er, ar+ 1, "’", ap, vl,... Vq; --X2 -]
>0,p+qfp+q+

bl + 61, bs + 6, b+ 1, bp+ 1, #1 + vl, #q + Vq

provided that each ei, (3i, vi,/ai is positive and a el, -", a e are positive.
In particular, due to (2.2), from each result in {} 2 of the form

(3.16) (x- t)xtuJ(t) dt > O, x > O,

with e > 1, it follows that if e, 6, 7 => 0 and 0 +/ e > 1, then we also have

(3.17) (x t)2++tu--J+(t)at > O, x > O.

Similarly, due to (2.20), from each result of the form

fi(x tz)xtuJ(t) dt > O, x > O,

with e > 1, we also have

2)2 + + 2e(X 2 t" -aJ+a(t)dt > O, x > O,

when e, 6, >= 0 and + # 2e > 1. These observations enable us to compare
various inequalities; since, for example, from the fact that (3.16) implies (3.17)
we see that the case > 1/2 of (1.3) follows from the case 2 cz 1/2 > 0 of (1.5),
so that it is then clear that (1.5) is a stronger inequality than (1.3) when e > 1/2.

Note that application of (3.15) to (3.7) gives

(3.18) 1Fz[v + 1/2; 2v + 1, v + + 1; --X2] )" 0, V > --1, > 0,

which implies the positivity of the F2 functions in (3.3). This also provides an
example of one of the advantages of representing integrals (and other functions)
in terms of generalized hypergeometric functions. For from (2.2) it is seen that
the integral in (1.3) is a multiple of the F2 function in (3.18) with v e and



POSITIVE INTEGRALS OF BESSEL FUNCTIONS 879

# e + 1/2; so that using (3.15) and (3.7) as above we are led directly to formula
(2.14).

Since a function f(x), x > 0, is completely monotonic if it is the Laplace
transform of a nonnegative measure [40, p. 161], one can use the above positivity
results and the Laplace transformation formulas in [18, Chap. IV] to obtain
some new complete monotonicity results for pFq functions. For example, after
correction of some misprints in [18, 4.23 (18)], we have

al, ape-Xtt2"-1 pFp+
bl, bp+

dt

(3.19)

--F(2tr)x -2" Fp [a’’"’aP’a’a+l/2;-x-2, a>0,p+ 2 +
b bp+

which can be applied to the above positivity results to obtain extensions of the
complete monotonicity results in [20]. In particular, from (3.19), (2.2) and the
case 0 # 1, + 1/2 of (2.16) it follows that the functions

x-3 F[( + 3/2)/2 ( + 5/2)/2" + 1" -x-Z] -1/2 < < 1/22

are completely monotonic. Note that both of the end point cases 1/2
are equivalent to the fact that x-1(x2 + 1)- is completely monotonic.

The methods of this paper have been mainly directed at those positivity
results which seem to be the most useful (in view of the mentioned applications)
and to which they are most applicable. They can also be used to handle some
special cases of the general problem of when

(3.20) .(x V)atuJ(t) dt >= O, x > O,

which is suggested by (1.12); but one could not expect to use expansions of the
form (1.8) to completely determine, as is done in Askey and Steinig [9] and Makai
[30], the values of (, #) for which (3.20) holds when 2 0 and < < 1/2.

In a subsequent paper we shall use analogues of the methods of this paper
to give simpler proofs of the positivity of many of the kernels considered in 1], [5],
[7], [8], [19] and to prove the positivity of some other important kernels involving
orthogonal polynomials.

Acknowledgment. The author wishes to thank Professor R. Askey for some
useful discussions.

Note added in proof In a paper now in preparation it will be shown that the

_F, series in (2.17) are positive when 0 < < 1, + < 1/2. For formula (3.9),
also see Carlitz, Boll. Un. Mat. Ital., 18 (1963), pp. 90-93.
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DUALITY THEORY FOR nth ORDER DIFFERENTIAL OPERATORS
UNDER STIELTJES BOUNDARY CONDITIONS*

R. C. BROWNer

Abstract. The adjoint of an nth order vector-valued linear differential system with boundary
conditions represented by singular matrix-valued measures is constructed when the system is viewed
as an operator with domain and range in a space of L integrable functions. Both the operator and
its adjoint are shown to be normally solvable. The theory is then applied to the multipoint boundary
value problem of Wilder, and some examples are discussed.

(1.1)

1. Introduction. Interest in vector differential systems of the form

y’+Ay=f,

g(y) dry k

goes back to W. M. Whyburn [28], [29], and Mansfield [15] who first systematically
studied them.

In the last ten years Cole [5], Bryan [3], Tucker [26], Halanay and Moro [9],
Krall [11], Green and Krall [8], Brown [1], Vejvoda and Tvrdy [27] and other
writers have made new contributions to the subject.

In many of these articles Green’s functions are constructed and adjoint
systems are derived or defined for a variety of special cases of (1.1).

In [1], for example, we have studied (1.1) with k 0 in the context of operator
theory. If k 0, the system was shown to generate an unbounded closed operator
L in the space of n-dimensional Lp integrable functions on a domain prescribed
by the functional U. Necessary and sufficient conditions were found determining
the existence of the adjoint in the dual space (1/q + 1/p 1). When these
conditions were satisfied, the adjoint operator was constructed; its nullspace
was found to correspond exactly to the adjoint system defined, for example, in [9].
Furthermore, both the operator and its adjoint were shown to be normally solvable
Fredholm operators with mutually orthogonal ranges and nullspaces, and the
index was calculated. Finally, the spectrum of both operators was found to consist
only of eigenvalues, and an estimate on their distribution was given.

A natural generalization of (1.1) would be to the higher order "generalized"
boundary value problem

l(y) AiY(n- i)

i=O

(1.2)

Uj(y, y("- 1)) dwijy(,,- i) O,
i=0

j=l,...,q,
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where the A are m x m matrices satisfying certain regularity conditions and the
wij are p x m matrix valued (m.v.) measures of bounded variation.

Even though the general problem was considered (in scalar form) long before
(1.1), it has received on the whole less attention. Between 1908 and 1940, Picone
[19], Wilder [30], Ciorftnescu [4], Toyada [25] and Smogorshewsky [23] con-
structed Green’s functions for particular examples. Only Wilder and Toyada seem
to have considered the question of adjoint systems. Wilder studied a scalar version
of the problem under the multipoint boundary conditions,

(1.3) Ui(Y -ijJ J(tk)= 0, i= 1,.-.,n.
k=Oj=l

He pointed out that an adjoint in the conventional sense would not exist because
of the discontinuities introduced by the interior points, and that therefore classical
self-adjointness was impossible. These facts were also independently arrived at by
Toyada who seems to have been unfamiliar with Wilder’s work.

More recently the lack of self-adjointness for higher order problems with
boundary conditions at interior points has been reconfirmed by Neuberger [17],
Loud [12], and Zettl [31], [32].

All of these writers based their work on a careful analysis of the Green’s
function, and hence did not consider compatible systems. Also, explicit use was
made of the finiteness of the interior points, and although Loud in particular
constructed adjoint boundary conditions for certain examples of the Wilder type,
a precise description ofthe adjoint system in the general case (1.2) was not achieved.

In this paper we shall study the adjoint theory of (1.2) by extending the point
of view of [1] to the higher order case. Section 3 contains the most significant
results of the paper. There, an adjoint operator for (1.2) will be constructed in the
setting of Lp space and its properties discussed. As in [1 the ranges and nullspaces
of both the operator and its adjoint will be shown to be mutually orthogonal.
We then ( 4) apply our theory to Wilder’s conditions (1.3) and illustrate it with
.some simple examples. Section 5 outlines certain mathematical and physical
applications of generalized boundary value problems and suggests some new
directions for future research.

The reader may wonder perhaps why we regard (1.2) in a vector setting.
The theory, however, is no more difficult (aside from some notational complication)
to develop from this standpoint than from the scalar one, and we find it useful
for certain applications. The real difficulties lie rather in the transition from
the matrix system (1.1) to (1.2)--in either scalar or vector form. While it is true
that considered as equations, (1.2) can be converted to one similar to (1.1), the
operator adjoints of the two systems are essentially different in structure. Our
treatment therefore will require the introduction of several new techniques; it will
also be necessary to sacrifice some of the generality of [1] by making certain
restrictions on the measures

2. Preliminaries and notation. Before proceeding further we observe that the
system (1.2) is equivalent to the system
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(2.1)

/(y) AiY<,,-i)
i=O

U(y, y("- 1)) dviy"- i) O,
i=1

where v is the x m m.v. measure

Wil

(2.2) i
where pq. Henceforth therefore, we will deal exclusively with the system (2.1)
containing the single functional U.

The possibility that the measuresw may be nonsingular requires the introduc-
tion of artificial smoothness conditions on their absolutely continuous parts,
and recourse to a more complex duality theory than is readily at hand. For these
reasons we shall assume throughout the paper that the measures w are singular;
i.e., their support consists only of sets of zero Lebesgue measure.

For more details of a theory of integration of vector-valued functions with
respect to m.v. measures we refer the reader to [1].

Suppose v 1,’", v, are m measures, or matrices. Then the symbol
will.denote the In m measure or matrix

(2.3)

and the symbol 9 will denote the mn measure or matrix (v,, ..., v 1). If P is
a point, Pw) will signify "point mass" measure; that is, p,,)[E] if P e E, and
Uw)[E 0 otherwise. It is evident that with this notation we can write an "atomic"
m.v. measure v supported at the points P, ..., Pr as

(2.4) v v[Pi]#<p,).
i=1

Where necessary ( 3) we will assume familiarity with the basic theory of
linear unbounded operators, particularly with the notions ofthe adjoint and closure
of an operator.

If T is a linear operator, D(T); R(T), N(T) will stand for its domain, range and
nullspace respectively. T* will denote the conjugate transpose, dual, or adjoint
of a matrix, space or operator depending on the context. We will represent the
identity operator on the space X by the symbol Ix and the n n identity matrix
by I,. " will denote n-dimensional space over the complex field under the standard
Euclidean norm. Finally the notation 2[E](t) will stand for the characteristic
function acting on the set E.
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The setting ofthis paper is the Banach space 50,p consisting ofall n-dimensional
vector-valued functions with support in [a, b] under the norm

(2.5) Ilxllp Ixi(t)l 2 615 (X’X)p/2
i=1

So,v can be shown to have the usual properties of other complex Lp spaces.
We denote by ’m the class of m-dimensional vector-valued functions f such

that f"- exists and is absolutely continuous. We define

(2.6) m" {f f e ’7,; f") e f},

and

(2.7) 2tv f f e CI N(U)}.

When there is no possibility of confusion we will often write ,, 5a,v, ",
or ,tv] as ’, a, or ttq. Also when the indices n, p, or m are unity, they will
be omitted.

We define the injection of an n-fold differentiable function y in into
cf, by .9 (y, ytl), ..., yr,-1))t. It is easy to see that is an injection of ,tu
into m,’Ptv, where is the functional J’] d9 z.

We define the operator L’ on a generated by the system (2.1) to be

(2.8) l(y) Aiy"-
i=0

on the domain m", and the operator L as the restriction of L’ to
We will assume that the operators L and L’ are regular, that is, that the

matrices Ai are in class (.-0 and in particular that the matrix Ao is nonsingular
on [a, b].

We associate with L two other operators and L c on 5Vm,. Let

(2.9) i(y) Cy’ + Dy,

where C is the mn x mn matrix

(2.10)

and D is the mn x mn matrix

I,, 0 0

I,, 0

0 Ao

(2.11)

--lm 0

0 -I,,

A,,_ A,,_ 2
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Then J(y) is given by i(y) on the domain

(2.12) c {y.y ,l},
and L(y) is the restriction of to the domain

(2..13) {y’y and z e ,v}.
We call the first order operator associated with L, and f the restricted first

order operator associated with L. The following diagram illustrates the relation
between L, and L.

(2.14)

P

j(v) (0, 0, 0, v) inclusion

We close this section by reviewing several results about L and its adjoint
proved in for the first order case (1.1).

THEOREM 2.1. If the measure v is singular, then the domain of L is dense in

<= p < o. Therefore the adjoint of L exists as a well-defined openator L + in ’,
1/p + 1/q 1. L + is given by

(2.5)

on the domain

l+(z) -z’ + A*z

+ U {z "z(t) + v*[0, t]4 e s’,, z(a +) v*[a]4 z(b-)
e.C

(2.16)
v*[b]4; + (z) exists a.e. in

For p , L (L +)*, even though L + L*.
TgEOEN 2.2. For p , L and L + are normally solvable; that is, they

are closed operators with closed ranges. Furthermore for
(2.17) R(L +) N(L)

ifl<pN,

(2.18) R(L) N(L+)Z;
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(2.19) R(L +) +/-N(L);
/fp I,

(2.20) R(L) +/-N(L + ).
3. The adjoint of L. In this section we define an operator L+ and prove

generalizations of Theorems 2.1 and 2.2.
3.1. The partial adjoints and the matrix . Corresponding to the regular

differential expression l(y) we define the (n + 1) partial adjoint expressions 1;,
j 0, 1, ..., n, as follows:

l(z) Az,

(3.1) If(z) (- 1)i-’(A.*,z)J-i),
i=0

2() (- r- ’(A.*, zr .
i=0

Observe that l] is simply the formal adjoint to which we will henceforth call /

and that the recursion relation

(3.2) l]+,(z) 12’(z + A+ 1Z

holds.
LZMa 3.1. For j 0,..., n,

(3.3) If(z)= Z jz),

where

(3.4) a;r (- 1)j- iB-iA’(j-i-r)
i=0

and

(3.5) B]-’

In particular,

(3.6) aj; (- 1)JA.

If F is a subset of a space V and F’ is a subset of V*. By F- is meant the subset of all elements in
V* that annihilate F. By F’ is meant the set of all elements in V that are annihilated by every element
in F’.
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(3.7)

Proof. Use Leibniz’s rule and reorder the sums.
We define to be the mn x mn companion matrix

where the matrices ij are as given in Lemma 3.1. We observe that the jth row of
consists of the coefficients of the jth partial adjoint expression lf. Since is
lower triangular and ejj (-1)JA, j 0, ..., n- 1, which by hypothesis is
invertible, N is invertible.

3.2. The operator L+ and its associated operators L,/ and L. Define

* U {Z’ + -l*[’O,t]qemn; ’ eSqm, a.e.;

(3.8)
,c,

(a +) ---’*[a]4) (b-) -17"[b]4)

Equivalently 9" consists of all functions z having the property that If.(z)
+ vi+ 110, t]4) is absolutely continuous and satisfying the endpoint conditions

(3.9) lf (z)[a] vCf+ l[a], l](z)[b] vCf+ l[b]b,
where q5 is an arbitrary vector in

We define L + by the formal adjoint l+(z) acting on the domain 9*. It is
evident that if n and Ira,, L + is the adjoint operator defined in [1].
The main result of this section (Theorem 3.2) is that L + L* for <_ p <
and n > 1.

Later we shall show that in many practical cases it is possible to eliminate
the parameter 4 so as to obtain nonparametric boundary conditions of a more
conventional type. For the present, however, the following lemma is adequate for
our purposes.

LEMMA 3.2. 9" is nonempty and dense in qm, <= q < 0. Z in 9" is in class
C[a,b] if and only if the measures Vl, vj+l are nonatomic. Otherwise z and
its derivatives have at most countably many discontinuities.

Proof. The first statement follows trivially taking b 0. The last statement
is true because * is a measure of bounded variation. The second statement is
trivial for j 0 by (3.8). Let us assume it is true for 0, ..., j 1. Then from
(3.3) and (3.8) and for e (a, b),

l]. (z)It + If (z)It- 1)YA(z(Y)(t +) z(Y)(t ))
j-1

(3.10) + %r(z()(t +) z()(t-))
r=O

V]+ 1[/)3.

By hypothesis -1o %r(Z(r)(t+) Z(r)(t-)) vanishes if and only if V .-., vj are

nonatomic. Hence because of the nonsingularity of A, z(J)(t +) z()(t-) depends
only on v’+ [t]. This proves the lemma.
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Following the precedent for L we define the first order operator / associ-
ated with L / in 5q,., to be

i*(z) Mz’ + Nz,(3.11)

where

(3.12) M

and

I., 0 0
I 13

(3.13) N

on the domain

0 -I 0
0 0 --I

* U {z’z’ exists a.e. in
4eC

(3.14)
z(a /) -- *[a]ck z(b-)

The restricted first order operator + associated with L + is given by , + on

{e.z e

Obviously * c c,.
Finally the transformed operator associated with L/ is given by

(3.16) i;(z)-- M-Iz -b {(M-I) + N-I}z
on

(3.17)

The following diagram indicates the relation between L +, L+, .+ and ,
where the maps ^, j and have the same meaning as in diagram (2.13) and T is
the 1-1 onto transformation 9" -, c given by

(3.18) T(z)

We note that the mappings j, and T are continuous isomorphisms, and that

L~+ and f,+ are equivalent under the transformation T; in both diagrams (2.13)
and (3.28), however, the mapping is not necessarily continuous, nor need the
domains tvl or * be dense. At this point we also make no assumption about the
density of !tvl. Nevertheless it is clear from the diagrams that both L and L +

depend in some sense on the operators
and L are operators of the type studied in [1].
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(3.19)

3.3. The closure of L and L+.
LEMMA 3.3. The ranges of the operators E, f,, L, , ,+, , + and L + are closed.
Proof The ranges ofE and are closed by Theorem 2.2. The closure of the

other ranges follows from examining the diagrams (2.13) and (3.19).
At this point we introduce the concept of the minimum modulus of an operator.

The following is proved in Goldberg [7, p. 98, Thms. IV.1.6 and IV.1.7].
LEMMA 3.4. Let X, Y be Banach spaces and T’X - Y an operator with closed

range and nullspace. Define the minimum modulus 7(T) of T by

(3.20) 7(T)--inf
xO(r) d(x, N(T))’

where 0/0 . Then T is a closed operator ifand only ifT(T) > O.
LEMMA 3.5. Let M be a closed operator. Let L c M have closed range. Suppose

also that N(L) N(M). Then L is also a closed operator.
Proof Let z, z in D(L) and L(z,) y. Since M is closed, z D(M) and

M(z) y. Since R(L) is closed there exists 2 in D(L) such that L() y. It follows
that z N(M) N(L). Therefore z D(L). Since M(z) L(z) y, we con-
clude that L is closed.

LEMMA 3.6. The operators L and L are closed.
Proof By Theorem 2.2, E and are closed operators with closed ranges.

Since is equivalent to E + under the transformation the same is true for
E+. By Lemma 3.3, L and f + have closed ranges; moreover it is evident from
their definition that N(f)= N(,) and that N(f +) N(+). Therefore L and
L+ are closed by the previous lemma. It follows from Lemma 3.4 that ,(+) > 0
and 7(L) > 0. It is now sufficient to show that 7(L) > 0 and 7(L +) > 0 to conclude
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by Lemmas 3.3 and 3.4 that L and L + are closed. Since the calculation is essen-
tially the same for both L and L +, we supply the details only for L. Now

p

(3.21) ?(L) inf
[II(P)[[,.,

> 0.
rt,, dO, N(L))

Since

(3.22)

for y in !tvl and n in N(L),

(3.23)

Hence

(3.24)

And so

(3.-25)

Li=O

lye n")lz

> Ily- nil p
dt) lip

d(, N([_,)) >= d(y, N(L)).

7(L) _> y(L) > o,
which is what we wanted to prove.

3.4. L+ and L are mutally adjoint.
LEMMA 3..7 (Green’s relation). Let y P,," and z 9*. Then

(3.26) (y, L / z) (L’y, z) U(y,..., y"-

where dp is an arbitrary vector in CI.
Proof Recall that the definition of the partial adjoint expression If implies

the recursion relation

(3.27) lf+(z) -lf’(z) + Az, j 0,..., n 1.

Therefore,

(3.28) y"-J)*lf (z) ds y’-2)*[lf_ (z) + vT[0, t]6]’ ds + y"-J)*ATz ds.

Forj 1,..., n we can integrate the first integral on the right by parts to
get

(3.29)

*[a t]4)]a + y("-J+ )*l-_ (Z)ds_[y(,-2)*(lf_(z) + v2

+ y("- + 1)*(I;E0, t]4)) ds,

By (2.9) or (2.14) it is clear that II?’ff)ll. III(y)IIP for y
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*[0, t]b and y"- j)since lf_ (z) + r are absolutely continuous functions. Using the
endpoint conditions (3.9), the first term in (3.29) becomes

j)*(3.30) yt" (b)vj [a, b]ck.

*[0, t] is a function of bounded variation, the third integral in (3.39)Since v
may be written (cf. McShane [13, p. 332])

(3.31)

Substituting (3.30) and (3.31) into (3.29) and (3.29) into (3.28) we finally get

y"- )*lf (z) ds (Ajy"-J))*z ds

(3.32) + j= 1,...,n.

By successive applications of (3.32) the identity

(y L + z) y* + (z) ds

(3.33)

follows immediately.

(L’y, z) dvjy"-)
j=l

(L’y,z) U(y,... y("-

LEMMA 3.8. For < q < , let L be the operator L + restricted to those

functions z in 9" for which zti), i= 0,..., n- 1, is absolutely continuous and
vanishes at a and b (i.e., thosefunctions in 9"for which dp is zero.) Then (L )* L’.

Proof See Goldberg [7, Thm. VI.2.3, p. 135] for the scalar case (m 1).
Goldberg’s proof is easily generalized to fit our situation.

THEOREM 3.1. For < p <= o, (L +)* L.
Proof If < p __< v, then _< q < . ConsequentlyD is dense in L.q. Since

? .@*, (L +)* is well-defined. We first show that L (L +)*. Let y _ttq and
z 9*. It suffices to prove Green’s relation"

(3.34) (Ly, z) (y, L+ z) O.

But this holds by Lemma 3.7.
To show the reverse inclusion, note that L- c L + implies that (L +)* c (L-)*.

By Lemma 3.8 it follows that (L +)* c L’. For arbitrary z in 9" and y in D(L +)*,
we have

(3.35) ((L +)*y, z) (y, L +z) 0.

But from Lemma 3.7,

(3.36) ((L+)*y,z) (Y,L +z) dvY- 4).
j=!
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Since is arbitrary in Ct, (3.35) and (3.36) imply that

(3.37) U(y, ..., y"- )) dvy"-) O.
j=l

In other words y e tv. Thus (L +)* L and the two are equal.
THEOREM 3.2. If 1 <= p < or, L* exists and is equal to L+.
Proof We will first consider the case p > 1. Then 5O is reflexive. Since L +

is closed on the dual of 5O, (L +)* is densely defined (Goldberg [7, p. 56, Thm.
II.2.14]) and moreover,

(3.38) (L +)** L+.

By Theorem 3.1, (L+)* L and thus L* L+. This completes the proof of the
theorem in the case < p < .

Assume now that p 1. It is convenient to adopt the notation Lp,,L
to refer to L defined in 5or" and to *, L defined in 5O. Since 5or" c 5O" for p > 1,
it follows that Lp L Because 5ov is dense in 5., and because convergence in

5or" implies convergence in 5O.,, the domains D(Lp) are all dense in 5O., for p >= 1.
Thus L L. By the first part of the proof, L L. Hence t’ + on some

CI L,[0, 1]. On the other hand, Green’s relation shows thatdomain S q
+ S. Since * [0,1]andl+ +L + L" in other words,o

So L%
The next theorem completes our generalization of Theorems 2.1 and 2.2 to

higher order operators.
THEOREM 3.3. For _<_ p <= oo, L and L + are normally solvable operators.

Consequently, for <= p < c,

(3.39) R(L +) n(L)+/-

ifl <p<=oo,

(3.40) R(L) n(L +)+/-;

ifp=,

(3.41) R(L /) +/-N(L);

ifp=l,

(3.42) R(L) +/-N(L /).

Proof The normal solvability of L and L / is just the content of Lemmas 3.3
and 3.6. The statements (3.39)-(3.41) are a consequence of the closed range
theorem for closed operators (see for instance, Goldberg [7, p. 95, Thm. IV.1.2]).

4. The problem of Wilder and some examples. Let us now apply our theory to
Wilder’s scalar multipoint boundary value problem mentioned at the beginning
of this paper. We will consider the nth order regular scalar operator

n-1

(4.1) l(y)
j=0
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with boundary conditions

e!k.)v(n-J)(tk)--O i--1 1.(4.2) Ui(y, yt,-1)) -,J....
k=0j=l

We shall specify that {tk} is a set of r + points in [a, b] such that o a, b,
and k < tk+l, k 0,..., r- 1. We will also assume that the forms (4.2) are
linearly independent, and that < (r + 1)n. It follows at once from (3.8) and
Lemma 3.2 that a function in 9" is in q" in each ofthe intervals Irk, tk / 1] and also
obeys the conditions

(a)(a +) *[a]4

(4.3) (tk)((t) (t-)) *[tk]b

(b)(b-) *[b,]q.

We will now show how the parameter can always be eliminated. Although
the following is intended as a formal rather than a practical method, in many
instances as will be seen at the end of this section it is almost automatic.

Let e be the vector in C"r- 1

((a +), .-., (t) (t-), ..., (b-

Let 5a be the [n(r + 1)] x In(+ 1)] matrix

(4.4)

0 0

(tl) 0

0 Nb

and V the n(r + 1) matrix

(4.5) *[t]

With this notation (4.3) may be written

(4.6) e Vb.
Let V / be the Moore-Penrose generalized inverse of V. If z e !*, (4.6) holds for
some b in C. Then
(4.7) V V+ow’o VV + Vck
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Since

(4.8) VV + Vdp Vdp ,
it follows from (3.7) and (3.8) that z must satisfy

(4.9) VV+.

Conversely if z is a function in 9p" on the intervals [tk, tk+ 1] satisfying (4.9) it is
trivial (taking b V+5e) that (4.6) is satisfied for some q in C I. We call (4.9)
the nonparametric boundary conditions for 9*. It is interesting to note that if
V is invertible, 9" contains functions satisfying arbitrarily prescribed jumps at
the points ti and limits at the endpoints. This happens (because of the linear
independence of the Ui) if and only if (r + 1)n. In this case the adjoint can be
regarded as a kind of "direct sum" of "maximal" differential operators defined
on the intervals Irk, k + 1]"

Of course, the extension of the above remarks to the vector version of Wilder’s
problem is completely routine.

The following are a few simple illustrations of the theory.
1. In his study of self-adjoint multipoint boundary value problems, Loud

[12] constructed adjoint boundary conditions for the three-point boundary value
problem

(4.10) l(y) y", y(-1)- Ay(O), y(1) By(O)

through an analysis of the discontinuities of the Green’s function. Here v is the
zero measure and

(4.11) 1,’ 2 /2(_ 1) -[- /2(0) "[- /2(1)"

Furthermore,

Then by (4.3) the adjoint parametric boundary conditions become

01) z(-l+)} 0 00)0 z’(-1 +) -1
b,

(4.13)
z’(O +) z’(0-)! -A

where 4 (4, qS) is a vector in C. From (4.13) it is easily seen that

z(- 1+) 0, -z’(- 1+) bl,

(4.14) z(0 +) z(0-)= 0, z’(0-)- z’(0 +) A B2,

z(1-) 0, -z’(1-)-- th2,
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or

z(- 1+) 0, z(1-) 0,
(4.15)

z(0 +) z(0-)= 0, z’(0-)- z’(0 +) -Az’(-1 +) + Bz’(1-),

with no constraint on z’(-1 +) or z’(1-). These results agree with Loud’s, but we
did not need to construct the Green’s function.

2. Consider the degenerate boundary value problem

l(y) y",

(4.16) y(-1)--O; y(O)=O; y(1)=O,

y’(-1)=O; y’(O)=O; y’(1)=O.

Here

(4.17)

0

0
I; U(_ 1) + U(0) U(1),

0 0

0

0

0
1;2 U(_ 1) +

-0

0

0

0

U(o -+- u().
0

As before,

Hence the adjoint boundary conditions become

(4.19)

Z( -1+

Z(0 +) Z’(0-) --(2,

z’(-+) ,
z’(O +) z’(0-)= ,

Z(1-)-- --()3, Z’(1-) (/)6"

Thus the adjoint operator is completely unconstrained and can be viewed as the
"direct sum" of maximal operators on the intervals [- 1, 0] and [0, 1].
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3. The theory is particularly simple in the two-point case. Consider the
system

(4.20) l(y) y’ + Py, Ay(O) + By(l) 0.

P is an m x m continuous matrix, and A, B are m constant matrices. Here there
is only one measure v given by

(4.21) F Au(o + Bu(1).
Moreover,

-= I,,o
Hence the adjoint parametric boundary conditions are

(4.22) z(0 +) -A*b, z(1-) B*b.
If both A and B are invertible b can be eliminated, and (4.22) becomes

(4.23) B*-lz(1-) + A*-az(0+) 0.

5. Concll:,i. We end the paper with a brief discussion of physical and
mathematic::t al:piications of boundary value problems similar to (or even more
general than) those considered here. Since we hope to study some of the topics
outlined below elsewhere in more detail, our treatment will not be exhaustive.
Instead we hope to convince the reader that the mathematical theory developed
in the previous sections both has practical justification and ought to be regarded as
a preliminary effort pointing the way to further research.

The most obvious applications certainly should lie in the theory of elastic,
or dynamical systems constrained at interior points or observed at different places
or times. Meyer [16, Chap. IV], for instance, has investigated the deflection of an
elastic rail as well as the solution of the potential equation in an annulus. Although
his point of view is different than ours he does show that both problems lead to
vector second order systems with conditions prescribed at multiple points.
Whyburn [28] suggested that an n-dimensional second order vector-valued
system with 2n-conditions prescribed at n points in time could be used to model the
pencil of trajectories ofan inaccurately aimed machine gun. In general a dynamical
system with many degrees of freedom observed at different times leads to a multi-
point vector differential system.

There are also interesting interconnections between generalized boundary
value problems, splines, and optimal control.

Consider l(y) under the nonhomogeneous side condition

(5.1) U(y, y("- 1)) r, r (l.

Following Jerome and Schumaker [1011, define an "Lg-spline" to be the function

f satisfying the Stieltjes side conditions (,.5. l) and minimizing l(f) in 5g,,2. Choosing
the differential expression l(y) and the .casures v appropriately, this definition
may be seen to include all the classical splines (e.g., cubic, polynomial, etc.) on
finite intervals. If L(r) 2 2W,, --* :,, denotes the nonlinear "r-translate’ of L, i.e.,
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the operator generated by l(y) and the side condition (5.1), then it is not difficult
to show that the equation

(5.2) L +L(r) If] 0

(given that L + L*) completely characterizes the spline f. The structure of
now makes it possible to analyze the local and global smoothness properties of
the spline in terms of the measures vi and the coefficients of l(y). The analysis
gives as special cases many known results as well as some stronger ones which
would be hard to derive by existing methods. For details and proofs see Brown [2].

As Mangasarian and Schumaker [14] have noted, the spline problem itself
is a kind of control problem; i.e., we seek to minimize

(5.3) J u*u dt

subject to

(5.4) u l(y), U(y,..., y("-1))= ro

This observation suggests a class of quadratic control problem which would
generalize our approach to splines. Suppose

ll(y) A iy
("- 0,

i=0
(5.5)

/2(Y) A2iy("- i)

i=0

are regular k-dimensional vector-valued differential expressions.
Consider the problem of minimizing the functional

(5.6) J (l(y)Iz(y) + u’u) dt

subject to

(5.7) u-- /2(Y),

Define 2,’@[v1 2,k by

U(y,..., y("-l))= r.

l(Y)

(5.8) 2,(y)
12(y)].

It is easy to see that 2’ can be regarded as a vector-valued system of order max
(m, n) whose coefficients are 2k x k reck:angular matrices. "urthermore since (5.6)
is the square of the 2,2-norm of .5’, a s,lution u to the co.trol problem exists if
and only if R(2,) is closed in 5a. Moreover if f is a solution of

(5.9) 2,*.’(,’)[f] O,

then u l(f) is the desired control, Notice that 2, is not a regular operator in
the sense considered in the paper. It seems reasonable, however, that 2, can be
analysed by the techniques developed here.
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In view of the essentially variational examples above it is perhaps no accident
that early activity in multipoint problems arose out of the calculus of variations.
For example, Denbow [6] and Reid [20] found that they arose out of the Jacobi
necessary conditions connected with problems of the Bolza type where the func-
tional to be minimized involved intermediate as well as endpoints. This discovery
motivated the early study of Mansfield [15] which was one of the first in the field.

According to Vejvoda and Tvrdy [27] there are applications of integro-
differential systems under interior point boundary conditions to hydrodynamics.
Indeed long ago Von Mises investigated in this connection a second order system
subject to two side conditions represented by continuous Stieltjes measures (see
[28] for details). Unfortunately no fully satisfactory treatment of such side con-
ditions is yet available.

Suppose D(L) is enlarged to include n-fold differentiable functions of bounded
variation and U(y, ..., yt"- 1)) involves left or right limits of functions (or deriva-
tives of functions) in D(L). We call U(y,..., yt"-1)) an interface side condition,
and the associated b.v. problem an interface problem. For example a typical inter-
face side condition for the nth expression l(y) might be written

(5.10) U(y,
k=lj=l

for appropriate scalars or matrices Akj, Bkj.
Interface problems have been studied by Sangren [21], Stallard [24]., Zettl

[32], Krall [11], and others. The general form of the adjoint problem, Green’s
function, etc., however, remains open. Such problems, moreover, have wide
ranging applications. In [21] for example a single nth order equation with a finite
numb of interface conditions is studied and applied to problems in heat con-
duction, potential and vibration theory, and nuclear reactors. Stallard [24]
encountered them in the theory of n stage diffusion problems. Applications have
also been found to the study of orbits in a cyclotron, e.g., [18], [22]. Additional
examples may be found in [16, Chap. III].

In general it is clear that whenever "interface" phenomena are present in
the physical problem, they occur in the differential equation modeling it.

A problem having both interface and multipoint features which the writer is
currently investigating is that of vibrating membrane constrained at interior
points--e.g., by "rivets"--as well as on the boundary. The usual separation of
variables technique applied to the two-dimensional wave equation yields two
second order self-adjoint equations subject to conditions of the form

(5.11) y(ti) O, y’(t) y’(t-) dpi 1,..., k.

Under the conditions (5.10) both systems are self-adjoint and their solutions are
splines.
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NOTE ON A BINOMIAL IDENTITY*

L. CARLITZ"

Abstract. Put

i=o i=0 m- n-j r-

In a previous paper, the author showed that

(.) H(m,n,r,s)- H(m-1,n,r- l,s)- H(m,n-1,r,s- l)= (m + nl (r +

provided m _< or n < s. In the present paper, the left member of (*) is evaluated for m > r, n > s.

Also the identity

is proved.

1. Introduction. Put

H(m, ,) E
i=0j=0

m--i +j)m i+n--j)n+j

Paul Brock proposed the identity

(1) H(m’n)-H(m- l’n)-H(m’n- 1)= (m+n)2m
The published solution [-1] by David Slepian proved the identity by means of
contour integration. Baer and Brock proved the formula in a later paper 2] by
combinatorial methods. The writer 31 gave a proof of (1) as well as certain
generalizations by making use of generating functions. In another paper [4], the
writer defined

min (re,r) min (n,s)

(2) H(m, nlr, s)
i=o 1=o m i+n-n_j j)(r-i+s-J)r_i

and showed that

(3) H(m, nlr, s) H(m 1, nlr 1, s) H(m, n llr, s 1)

provided m N r or n =< s. For m r, n s, (3) clearly reduces to (1).

r +

Received by the editors July 19, 1974.
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The purpose of the present note is to see what can be said when m > r,
n>s.

2. Generalization of (3). It is proved in I4] that

E E H(m, nlr, s)x"y"u
m,n 0 r,s 0

(4) (1 x-- y)-1(1 u-- v)-1(1 ux-- vy) -1

xy(1 x- y)- 1(1 ux- vy)-lT,

where

(5) T= {(1 x- y)(1 ux- vy)+ xy(1 u- v)}-l.

Since

(1 -x-y)(1-ux- vy)+xy(1 -u-v)=(1-x)(1 -y)-ux(1-x)

vy(1 y),

we have

T {(1 x)(1 y)- ux(1 x)- vy(1 y)}-

(1 x)-l(1
ux vy
-y -x

r,s 0

r+s
(1 x)+ (1 y)+

(r + s
-2

r,s=O r
(ux)r(uJ)s E

i=0

s +i i) xi

-1

If we put m r + i, n s + j, this becomes

(6) T= E xmy" Z
m,n=O r=O s=0

n+

Substituting from (6) in (4), we get

(1 ux vy) Z Z H(m, nlr, s)xmynurv
m,n 0 r,s 0

(7)
m,n 0 r,s 0

-xy(1 x y)-
m,n=O r=O s=O r

r+s
S

n+ r-
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If m < r or n < s, we again get (1). Now

(1-x-Y)-1 E x"y" E r+s
m,n=O r=O s=O r

where

m-r +

m,n=O r=O s=O r

n+r-s
r

G(m, nlr, s)xmy"urvs,

i=0 j=0 S

We now assume that
(10) m>r, n>s.

It follows immediately from (7) and (8) that

(11)

ur

n-j+r-s

?.

H(m, nlr, s) H(m 1, nit 1, s) H(m, n 1Jr, s 1)

3. Continuation. The sum G(m, n, r, s) can be simplified. We recall the
identity

m+n+k+n 1).(12)

Thus

n-j + k)
i+n+k-s+l

o+1

i=m-r+

m+n+2
m+l

i+i s)(m+n--i--s+ln_s

i=o

m+s--i+l
S

Since the upper limit is less than m + 1, (12) does not apply. However,

so that

G(m’nlr’s)=r(m-i-r+s)i=os

If is replaced by m r i, this becomes

i+n+r-S+n_s 1).
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Thus

(14) G(m, niT, s) m+n+2)m+ i=0

i+ n-s)i m +s-i+l
S

Comparing (14) with (13), we get

(15) G(m, nlr, s) m+n+m+ 2) -G(m nlm r, n s), m>r, n>_s.

Substitution of (14) in (11) gives

(16)
H(m, nlr, s) H(m 1, nlr 1, s) H(m, n llr, s 1)

Since

H(m, niT, s) H(n, mls, r),

we have also

H(m,nlr,s)- H(m- 1,nlr- 1,s)- H(m,n- llr,s- 1)
(17)

We may now state the following theorem.
THEOREM. For m <__ r or n <= s, H(m, niT, S) satisfies (1). For m > r, n > s,

H(m, niT, s) satisfies (16) and (17). Thus

(18) H(m, nlr, s)- H(m- 1,nlr- 1,s)- H(m,n- l[r,s- 1)>0

for all nonnegative m, n, r, s.

It follows from (16) and (17) that

(19)
i+n--s--1 m+s--i)i=o s i=o

It is not difficult to give a direct proof of (19).
For m 2r, n 2s, (15) reduces to

2r + 2s + 2
(20) G(2r,2slr, s)= r+ s+

2r + 2s + 1)r -l- s

Therefore, taking m 2r + 1, n 2s + in (11), we get

(21)
H(2r + 1,2s + llr, s) H(2r, 2s + llr 1, s) H(2r + 1,2s r, s 1)

(r+s)(2r+2s+r+s

an identity that may be compared with (1).
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AN INTEGRAL REPRESENTATION FOR THE SOLUTION Wkm OF
WHITFAKER’S DIFFERENTIAL EQUATION*

JAMES D’ARCHANGELO

Abstract. Recent results concerning the existence of solutions of ordinary differential equations
with Laplace-Stieltjes transforms for coefficients are applied to Whittaker’s equation. As a result,
integral representations involving, in certain cases, the Legendre functions are obtained for the
solutions Wk,. to Whittaker’s equation and their products.

1. Introduction. Recently, Hartman [3], D’Archangelo [1], and
D’Archangelo and Hartman [2] obtained results concerning the existence and, in
certain cases, the uniqueness of solutions of a particular form involving Laplace-
Stieltjes transforms for the Nth order linear differential equation

N-1

(1.1) DNu + [aj + gj(t)]Du O,
j=O

where Du du/dt u’, and for the first order system of dimension N,

(1.2) y’:[A + g(t)]y,

where aj is a (complex) constant in (1.1) and A is a (complex) constant NN
matrix in (1.2). In (1.1) or (1.2), itwas assumed that g(t) or g(t) is representable as
a Laplace-Stieltjes transform

(1.3) g(t) e-S’dG(s), Gj(+ 0) Gj(0) 0,

or

(1.4) g(t) e dG(s), G(+0) G(0): 0,

absolutely convergent for Re > 0 and satisfying

(1.5)
+0

or

(1.6)
o

for a suitable constant 3/> 0. We considered the problem of the representation of
certain solutions in terms of Laplace-Stieltjes transforms.

The following theorem and corollary for the n th order equation (1.1) were

proved by Hartman [3, Thm. 2.1 and Cor. 2.1]. They are basic examples of the

* Received by the editors August 13, 1974, and in revised form December 20, 1974.
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results obtained for the above problem, and they will suffice for the construction of
integral representations for the Whittaker functions, Wk,,, and their products.

THEOREM l 1 Let PN(A) be the polynomial
N-1

(1.7) P,(A)--A ’ + aA.
j=O

For a fixed real number -, let

(1.8) {A(1), , A(K)} set ofdistinct zeros ofPu(A Im A -,
(1.9) Re ;(1)<...<Re A(K),

1.1 O) k multiplicity of zero A A (1) of PN(A ).

Let the coefficient functions gj(t) be representable as Laplace-Stieltjes transforms
(1.3) absolutely convergentfor Re >0, satisfying (1.5) for y >=k. Then (1.1) has a
unique solution u u(t) representable in the Corm

(1.11) u=e1’ 1+ e-S’dto(s), w(0) to(+0) 0,

absolutely convergent for Re > 0, so that u e’.
COROLLARY 1.1. Assume thatA(1) 0 in (1.8), and that therefore (1.1) can be

written in the form
k+m--1

(1.12) DkP(-D)u+ Z (-1)+g(t)Du =0,
j-O

where m >-_0, k >= O, m + k N and

(1.13) P(t)=at"+. .+a,t+ao#O fort>-_O, a,,O.

Iffor y >- k, we assume (1.5) for j <-_ k 1, and we assume that P > 0 on (0, oo), and
dGj <-0 in (1.3), then dw >-0 in (1.11).

2. Whittaker’s equation. The change of variables u We-’/ transforms the
differential equation

(2.1) u" + u’ +(k/t-(m- 1/4)/t)u 0

into its normal form, called Whittaker’s equation:

(2.2) W"+{-1/4+k/t-/t}W=O, where/3=m-1/4.

For Re > 0, a particular solution of (2.2) which Whittaker denoted by W,, in [4,
p. 340], is given by

(2.3) W,,(t) ct e -’/ s-+"-’/2(1 - S/t)k+m-1/2 e ds,

where c 1/F(-k + m + 1/2), provided these expressions make sense. Since
W,,(t) e-’/{1 +O(t-)} (cf. [4, p. 343]) the following is a consequence of
Corollary 1.1.
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PROPOSITION 2.1. (a) Whittaker’s function, Wk,, has an integral representa-
tion as

(2.4) Wk,,(t) e-’/zt 1 + e dols,(s)

where the integral is absolutely convergent for Re > 0.
(b) If k >=0 and m >=(k 1/2)2, then doo,, >=0.

Proof. Let

(2.5) W Ve -’/2

in (2.2). Then V satisfies

(2.6) -V"+ V’+(-2k/t)V’-[(k2-k-fi)/t2]V=O.

Equation (2.6) is in the form (1.12) where A(1)=0 with multiplicity 1, P(t)-
1 + >0, G(s)=-2ks, and Go(s)=(k- k-)s/2. Therefore (2.6) satisfies the
integrability conditions of Corollary 1.1, and also if k _->0 and (k- k -/3) _-<0, the
monotonicity conditions of Corollary 1.1. Hence, assertions (a) and (b) are
proved.

In [5], Aurel Wintner showed that for k-<0 and m>=l/2 but (k, m)#
(0, 1/2), W,,(t)=e-’dl(s) for t>0, where =k,,(t)is a nondecreasing
function of t.

Originally, the author considered Proposition 2.1 only for k 0, in which
case (2.2) already satisfies the conditions of Theorem 1.1. Philip Hartman pointed
out that Proposition 2.1 also holds for k : 0 by making the change of variables
(2.5) and applying Corollary 1.1 to (2.6).

However, the case k 0 is interesting for the following reason.
PROPOSITION 2.2. Whittaker’s function Wo,, has an integral representation as

--t/2(2.7) Wo,,(t)- e 1 / e dtoo,,(s)

where the integral is absolutely convergent for Re > 0, where

(2.8) tOo,,(s)=P(l+2s) fors>=O,

and where P Pv(o), t, m 1/2 is the unique solution of the Legendre differential
equation

(2.9) (d/dtr)[(1-r2) dP/dtr]+ ,(, + 1)P 0,

regular at tr 1 and normalized by P(1)= 1.
Unlike (1.11) in Theorem 1.1, to(0) to(+0) 1, instead of the usual normali-

zation to(0) to(+0) 0. Formulas (2.7) and (2.8) are analogous to those obtained
for the Hankel functions in Proposition 8.1 in [2], as are the arguments used in
their proof.

Proof. Since W- Wo,,(t) is a solution of (2.2) with k 0, it follows that if v is
the Laplace-Stieltjes transform in (2.7), then

v"- v’- fl/ 2- fly/t2 O,
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By Corollary 2.1 of [3], if the Gj’s of (1.3) are C([0, c)), then ca of (1.11) is
C((0, oo)). Therefore, w Wo,,(s) is C for s > 0, so that

implies that

Differentiating gives

t2
e ds

(s + s)ca’- s (s r)ca’(r) dr O.

(2.10) [(s + s)ca’]’- co’(r) dr O.

Hence, if ca is normalized by ca(0)= 1, equation (2.10) becomes

(2.11) [(s + s)ca’]’-/3ca 0.

The point s 0 is a regular singular point for (2.11) with indicial exponents 0 and
0, so that there exists a unique solution ca(s) (up to constant factor) such that ca’(s)
is of class L on 0<s-<e. This solution is regular at s =0 and is uniquely
determined by the normalization ca(0) 1. The change of variables, o" 2s + 1,
transforms (2.11) into (2.9) with P ca, u m 1/2. This completes the proof.

As an application of the above results, consider the generalized Laguerre
differential equation

(2.12) tL"+ (I +c-t)L’+ vL =0.

After the change of dependent variable, L tV, V satisfies the equation

(2.13) -V"+ V’-{(2v + 1 +a)/t}V’-{v(v+a)/tz}v=o,

which is just (2.6) with k v +(1 + c)/2 and/3 (c2- 1)/4. Therefore by Proposi-
tions 2.1 and 2.2, we get the following.

PRO’OSITOr 2.3. (a) The generalized Laguerre equation (2.12) has a unique
solution of the form

(2.14) L(t) 1 + e dcak,,(s)

where k v+(1 + ce)/2, m a/2, cak,, is as in (2.4), and the integral is absolutely
convergent for Re > 0.

(b) If v+(l +c)/2>=O and v(v+c)<=O, then dca>=O in (2.14).
(c) Ifc 0, (2.12) reduces to what is usually called Laguerre’s equation, and if

v =-1/2, then

(2.15) L(t) -1/2 1 + e d(P._,/2(1 + 2s))

where P-/2 is the Legendre function of Proposition 2.2.
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3. Products of Whittaker functions. Recall that if v v(t) satsifies the
equation v"+ Iv 0 and w w(t) satisfies w"+ Jw 0, then y -= vw satisfies

y"’+ 2(I + J)y’+ (I’+ J’)y (I-J)(v’w w’v).

In particular, if I J, we get that y’"+4Iy’+ 2I’y 0. Using v w Wo,, and
I=-(1/4+/t) as in (2.2) with k=0, we see that (Wo)y satisfies the
differential equation

(3.1) y"’-y’-(4/t)y’+(4/t3)y=O,

which satisfies the conditions of Theorem 1.1 for the zero h =-1. That is,
Theorem 1.1 implies that there exists a unique solution to (3.1) of the form

(3.2) y e-’ 1 + e dU(s) U(O) U( + O) 1,

absolutely convergent for Re > 0. Arguing as in the proof of Proposition 2.2, if u
denotes the Laplace-Stieltjes transform in the last formula, then

u’"-3u"+2u’-(4/t2)u’+(4/t:)(1 + u)+(4/t3)(1 + u)=0.

Thus we get that

-s(s+3s+2)U’(s)+2 [(s-r)+2(s-r)]U’(r) dr+4s+2s=O.
Differentiating this equation gives

-[s(s+l)(s+2)g’]’+4(s+l)g=o if g(O)=l.
Now if we let 2(s + 1)- 1 and U P, we get Legendre’s equation (2.9) again.
Hence U(s)= P(-1 + 2(s + 1)), and we get the following proposition.

Paooswo 3.1. Whittaker’s [unctions, W, satis[y the equations

-ttk+ e-t[ W(t)][ W(t)] e 1 + dw(s)

where the integral is absolutely convergent for Re > 0. In particular, if k O,

Wo(t)]z e-’ 1 + e dP,(-I + 2(s + 1)2)

m 1/2, and P, is the Legendre function of Proposition 2.2.
By Proposition 2.2, we also have that

-t/2[Wo(t)]= e 1+ e dP(l+2s)

which equals e-’{1 +o e dO(s)}, where if O is normalized by O(O)= O(+O)
=1,

(3.3) O(s)= e.(+es)+e P( +a(s-r))e;( +er) dr.
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If we compare this with the result of Proposition 3.1, we arrive at the following
unctional relationship for

PROPOSITION 3.2. For arbitrary u and real s >=0, the Legendre function
P Pv (tr) satisfies

P( 1 + 2(s + 1)2) p(1 + 2s) + 2 P(1 + 2(s r))P’(1 + 2r) dr,

where P’(1 + 2r)=[dP(r)/do’]=,+2r.
As a corollary to Propositions 3.1 and 3.2 we get the following.
PROPOSITION 3.3. The solution to Laguerre’s equation, L L(t), defined in

(2.15), satisfies the equation

}(L(t))2= 1-1 1 + e dP_,/2(-1 + 2(s + 1)2)

t-’ 1+ e dO(s)

where O(s).is as in (3.3), with =-1/2.
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NONLINEAR AXISYMMETRIC BUCKLED STATES
OF SHALLOW SPHERICAL CAPS*

GEORGE H. KNIGHTLY- AND D. SATHER:I:

Abstract. Nonlinear axisymmetric buckled states of a thin, elastic spherical cap satisfying edge
conditions for which the spherical shape remains one possible state of equilibrium when the cap is
subjected to a uniform radial load are studied by constructive methods. The approach used is based
upon the Lyapunov-Schmidt method and shows that buckled states exist near every eigenvalue of
the linearized problem.

1. Introduction. In this paper we study the nonlinear axisymmetric buckling
of a thin, elastic spherical cap satisfying edge conditions for which the spherical
shape remains one possible state of equilibrium (the unbuckled state) when the
cap is subjected to a uniform radial load. Our approach is a constructive one that
in some cases yields information on the number of buckled states branching at
an eigenvalue of the linearized problem and also shows that these states depend
continuously upon the load parameter. The method is suited to deal with branching
problems in which an eigenvalue of the linearized problem has multiplicity
exceeding one. For the problem at hand only multiplicities one and two are
possible but both of these multiplicities can occur; even the first eigenvalue
(the critical buckling load) may be of multiplicity two in some cases. We show
rigorously that buckled states branch from the spherical state at every eigenvalue
of the linearized problem.

In the axisymmetric case considered here, functions corresponding to stress
and deflection are determined by a pair of coupled nonlinear second order
ordinary differential equations together with suitable boundary conditions.
We are able to reformulate the problem in an appropriate real Hilbert space ocg
so that the basic problem of determining the buckled states of the cap is equivalent
to one of finding nontrivial solutions of a single operator equation of the form

(,) f- 2Af + a2A2f + aQ(f) + C(f) O,

where A:W --, W is a linear, self-adjoint, positive, compact operator, Q:of( W
and C :W --. ocg are continuous, homogeneous, polynomial operators of degree
two and three, respectively, Q(f) is the gradient of-}(Q(f), f) and C(f) is the
gradient of C(f), f). The parameter 2 is a measure of the radial load and the
constant a is a measure of the maximum depth of the shallow cap.

In order to set the terminology we say that 2 is an eigenvalue of the linear
operator L, defined by Lf f 2Af + a2A2f, if Lf 0 for some nonzero f
in . The eigenvalues of Lx are related to the characteristic values # of A (i.e.,
of f- #Af 0) by 2 # + e2#-1. The operator A has only simple eigenvalues
so that the eigenvalues of Lx are simple unless 2 #m#, for distinct eigenvalues

* Received by the editors November 27, 1974. This work was supported in part by the United States
Army under Contract DA-31-124-ARO-D-462 and by the National Science Foundation under
Grant GP 39355.

5" Department of Mathematics, University of Massachusetts, Amherst, Massachusetts 01002.
:1: Department of Mathematics, University of Colorado, Boulder, Colorado 80302.
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#,,, #, of A, in which case 2 #m + #, has multiplicity two. Let 20 be an eigenvalue
of L and let V" denote the nullspace of Lo. When dV is one-dimensional, the
methods used here can be applied (e.g., see [12]) to show that there is exactly one
nontrivial buckled state associated with 2o. We therefore restrict our attention
to the more difficult case in which yV" has dimension two.

Since yV is two-dimensional and L is self-adjoint, the method of Lyapunov-
Schmidt (e.g., see [12], [13], [15]) reduces the problem of solving (*) in ocg to that
of finding small solutions (1, 2), in the Euclidean plane 2, of a system

(**) -Ni + (Q(V + 1vl + 2vz) + -iC(V + 1vl + /Vz),Vi)=0 (i= 1,2).

Here {vl,/)2} is a basis for ff, orthonormal with respect to the positive operator A
(i.e., (Av, vs) 6i),
(1.1) N 0- 1(/ /0)

is a real parameter, and V V(, N) is an element of fl (the orthogonal comple-
ment of " in W) that is analytic in and N for I1 < Po, Iql < No (e.g., see [15,
p. 19]) and satisfies

(1.2) IIV(, )11 KII 2 for I1 < Po, I1 < o,

with constant K depending only on Po and No. Thus the problem of finding
buckled states is reduced to the problem of solving an appropriate system of two
analytic equations in 2 involving the load parameter 2.

Of course, finding real solutions of a system of analytic equations in 2
may be a difficult matter. As an added complication we also wish to show that
the solutions vary continuously with the load parameter 2 in an interval con-
taining 2o. We shall show that the appropriate system (**) has, for 12- 2ol
sufficiently small, at least one real nontrivial solution (2) continuous in 2 with
(2o) 0. Consequently, equation (*) has at least one buckled state associated
with each eigenvalue of Lz, i.e., bifurcation from the spherical state takes place at
every eigenvalue of the linearized problem.

In an earlier work on spherical caps, Reiss [11] proves by Poincar6’s method
that bifurcation takes place at the simple eigenvalues of Lz and shows that bifurca-
tion from several of the double eigenvalues is indicated. He also conjectures that
there are solutions near each double eigenvalue of Lz. Our principal result shows
that this is indeed the case.

The method used to solve the system (**) is one developed in our earlier
papers [7], [12], [13]. The relevant equations are first solved in the case q 0, then
implicit function theorem arguments are given to extend the solution obtained to
some interval INI < N0. When the Jacobian involved in this argument is not zero,
the solution obtained is analytic in N. In the degenerate case recourse is had to a
more refined implicit function theorem due to MacMillan [9] and Bliss [4] which is
based on the Weierstrass preparation theorem; in this case the solution is H61der
continuous for INI < N0 but not necessarily analytic at N 0. Nevertheless, it
should be pointed out that even continuity in the entire interval [r/[ < No is a
stronger result than those obtained by methods relying only upon topological
degree or category arguments (e.g., see the results of Berger [3] for thin shallow
elastic shells).
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2. Formulation of the problem. The mathematical model adopted here for the
problem of the shallow spherical cap is the one used by Reiss [11]. If spherical
coordinates (r, 0, q) are chosen with polar angle 0 measured from the axis of
symmetry of the cap and the middle surface of the undeformed cap given by
r R, 0 <= 0 <= 0o, 0 <= _<_ 2n, then the small axisymmetric displacements are
assumed to be governed by the nondimensional equations

(2.1 a) Gf + 2f fg + g,

(2. b) Gg -1/2f2 f,

where Gh(x) x-3(d/dx)[x3(dh/dx)], x 00-1, 0 < x < 1, 2 is proportional to
the constant inward radial pressure applied to the cap and is proportional to
the depth, R R cos 00, of the cap. Here f(x) (o(RO)(d/dO)w(O), where w is
the radial displacement of the surface, and g(x) is a corresponding "excess"
stress function. In addition, symmetry and smoothness at x 0 and a clamped-
sliding requirement at the edge x (see [11, p. 69]) yield the boundary conditions

(2.2) f’(0) g’(0)= f(1)= g(1)= 0.

DEFINITION 1. A classical solution of Problem I is a pair of functions f, g that
belong to C2(0, 1) i") C1[0, 1] and satisfy (2.1) and (2.2) pointwise.

We next proceed to a Hilbert space formulation of a generalized solution of
Problem I. Let ’ denote the linear space of real-valued functions u that belong to
C1[0, 1] and satisfy u(1) 0. An inner product (-,-) and associated norm I1"
are defined on by

(2.3) (u, l)) bl’l)’X 3 dx,

where a prime denotes differentiation with respect to x (that (2.3) actually defines
a norm follows from part (iii) of Lemma below). The Hilbert space off is then
defined as the closure of in the norm defined by (2.3).

LEMMA 1. If f is in , then
(i) f may be identified with a function which is continuous on (0, 1],

(ii) f(1)= 0,
(iii) 0 If(x)l 3x3 dx] /3 --< 2-x/211fll.
Proof. For f in ’ we have

(2.4) f(x) f’(t) dt [f,(t)t3/2]t

so that by Schwarz’s inequality,

(2.5) If(x)l Ilfll t-3dt <= 2-1/2x-lllf[[.

For each fixed x in (0, 1] it follows from (2.5) by a standard limiting argument
that f(x) is a bounded linear functional on off and that (2.4) and (2.5) hold for all

f in . Properties (i) and (ii) then follow from (2.4) and property (iii) is obtained
directly from (2.5).
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Remark 1. It also follows from (2.5) that on the norm tl" is equivalent to
the "weighted" Sobolev norm utlull 21,2 01 U2 d/ + (U’)2 d#, where d# x3 dx.
Thus is equivalent to the "weighted" Sobolev space W],2(0, l) defined as the
completion of in the norm ul x,2.

Now suppose that { f, g) is a classical solution of Problem I and that q is in .
If we multiply (2.1a) and (2.1b) by q9 and integrate over 0 < x < 1, we obtain

(2.6a) (f, (p) [2f- fg og]q)x 3 dx,

(2.6b) (g, 99 [1/2f2 -I- ]q)x3 dx,

where we have used the relation (h, qg) -fo (Gh)q)x 3 dx valid for h in se’ (’l C2(0, 1)
and q9 in s. Equations (2.6) suggest the following definition.

DEFINITION 2. A generalized solution of Problem I is a pair of functions f, g
that belong to and satisfy (2.6) for all q9 in .

LEMMA 2. A pair offunctions f, g is a generalized solution of Problem I if and
only if it is a classical solution of Problem I.

This lemma is essentially due to Friedrichs and Stoker [5]; a proof is sketched
in Appendix A. Note that the boundary conditions f’(0) g’(0) 0 are "lost"
in Definition 2 and must be regained in the proof of Lemma 2.

From (iii) of Lemma 1, it follows for fixed f, g in that each term on the
right in (2.6) is a bounded linear functional of q9 in , e.g.,

t, (f )1/3(f01 )1/3 f )1/3fgfX3 dX -’ ]f13x3 dx ]g13x3 dx ](p13x3 dx
0

(2.7)
=< 2-3/211f11 Ilgll I1011.

The Riesz representation theorem then enables us to write (2.6) as a system of
operator equations"

(2.8a) f- 2Af B(f, g)- aAg,

iB(2.8b) g (f, f)+ Af,

where the linear operator A’oCf and bilinear operator B’ are
defined by

(2.9) (Af q)) fqx dx and (B(f g), q) fgq)x

Remark 2. We see from (2.9) that for f, g, q9 in , the forms (Af, 09) and
(B(f, g), q) are symmetric in all entries. It follows from (2.7) that the operators
A and B are bounded, i.e.,

I(Af, 99)1 2- 5/3 If t1 and I(B(f, g), qg)l 2- 3/2 f Igl Iqo

ifwe now replace g in (2.8a) by the right-hand side of (2.8b) we obtain equation
(*), namely,

(,) f- 2Af + a2A2f + aQ(f) + C(f) O,
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where

(2.10) Q(f) =- 1/2AB(f, f) + B(f Af)

and

(2.11) C(f) - (f B(f, f))

The system (2.8) is thereby uncoupled; if we solve equation (*) for f in , then g
is determined by means of (2.8b). Such an approach is analogous to that employed
previously by Berger and Fife [2] and Berger [3] to treat certain buckling problems
in nonlinear elasticity (see also [7]); in particular, an equation analogous to (*)
is derived in [3, p. 594].

In view of the above discussion, to determine a nontrivial classical solution
of Problem I it suffices to determine a nontrivial solution f in W of the single
operator equation (*).

3. The branching results for Problem I. It is standard to show (using properties
of A, Q, C stated below) that nontrivial solutions of (*) can branch from f 0
only at values of 2 that are eigenvalues ofthe linear part of (*). The next two lemmas
show that the eigenvalues ofL are closely related to the characteristic values of A,
i.e., values of/ for which there is an f in 3/f such that f - 0 and f- #Af O.

LEMMA 3. A is a bounded, linear, compact, self-adjoint, positive operator. Its
2 (n 1, 2, 3..), where co, is thecharacteristic values are simple; in fact, #, co,

n-th positive zero of the Bessel function Jl(x). The eigenfunction corresponding to
2 J (o.x)con is x

Proof. From the definition of A in (2.9), it is easy to see that A is bounded,
linear, self-adjoint and positive on . For the sake of completeness we show that
A is also compact. It suffices to show that if {u,} in ovf is a weakly convergent
sequence, then {Au,} has a strongly convergent subsequence. We note first of all
that if {u,} in 3f is weakly convergent and if q , then H61der’s inequality and
part (iii) of Lemma imply

I(Au,- Au,, qg)l- (u Un)q)X 3 dx

=< 2-1/211q lure Unl3/2X 3 dx

Thus, if the associated sequence {X2Un(X)} has a strongly convergent subsequence
{xZu,k(x)) in the Lebesque space L3/2(0, 1) and if we set q9 Au,k Au,j in (3.1),
.then {Au,} is a Cauchy sequence in . In order to show that {xZu,(x)} is sequen-
tially compact in L3/2(0, 1), it suffices to show that {x2u,(x)} is uniformly bounded
in L3/2(0 1) and the limit

(3.2) lim J,(t)=_ lim I(x -t- f)Zun(x -k- t)- X2Un(X)I 3/2 dx 0
tO tO

exists uniformly with respect to n (e.g., see [14, p. 30]). Since {u,} is bounded in ,,
inequality (2.5) implies the uniform boundedness of {xZu,(x)} in L3/2(0 1). In



918 GEORGE H. KNIGHTLY AND D. SATHER

addition, for x > 0 and > 0, the representation (2.4) yields

(3.3)
lu(x+O-u(x)l Ilull(+’x S

-3 ds
1/2

2-X/Zllu, llx-2[t(2x + t)] 1/2

which together with the inequality

01 2/3

J2n/3(t <= [(x + t)2 X2]3/2Un(X -- t)[3/Zdx

2/3

-+- ]fln(X -Jr- t)- fln(X)13/2x 3 dx

f fff )2/3__< 2t lu.(x + t)[3/2(x + t) 3/2 dx -+- 2-x/211u.lltX/2 (2x q- t) 3/4 dx

=< (const.) /2

implies the desired uniform limit in (3.2). Thus, A is compact. Finally, it can be
shown as in the proof of Lemma 2 that the characteristic value problem for A
is equivalent to the classical problem

xf" + 3f’ + #xf O, f’(O) f(1)= O,

whose eigenvalues and eigenfunctions are those specified in the statement of
Lemma 3.

The properties of L which we require are contained in the following.
LEMMA 4. (i) Lx is self-adjoint.
(ii) 20 is an eigenvalue of Lx if and only if at least one of the two numbers

2 2 __1 2 2
# + (2o + x//2o 4 ), #_ -(2o V/2o 4 )is a characteristic value of A,
i.e., if and only if 2o =/to + 02ff for some characteristic value o of A.

(iii) If 20 is an eigenvalue of Lx, then the corresponding eigenfunctions of A
(i.e., at #+, #_ or both) are also eigenfunctions of Lzo and span the nullspace of Lxo.
In particular, 2o is a simple eigenvalue of Lx unless # + and la- are distinct character-
istic values-of A, in which case V’(Lo is two-dimensional.

The proof of the lemma follows from the factorizations

L,z (I -#+A)(I #_A)= (I #_A)(I #+A)

and the self-adjoint property of A.
Remark 3. The relationship 2 # + 2#-1 shows that 2 => 2 and that a

double eigenvalue of La occurs if and only if2 is the product of distinct character-
istic values of A. The eigenvalue of La of greatest interest is usually the smallest
one (related to the load at which the cap first buckles) which has multiplicity two
if and only if 2 is the product of successive characteristic values of A.

We collect some properties of the nonlinear operators Q and C in the following
lernma; the lemma is easily proved using definitions (2.9) through (2.11) together
with Remark 2.
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LEMMA 5. (i) Q is a continuous, homogeneous, polynomial operator of degree two

and the gradient of the real-valued functional

(3.4) z(.f) =- 7(Q(f),f) .re .
For eachf in the operator Q has a differential Df, which satisfies

Dfg B(f Ag) + B(g, Af) + AB(f g)

for all g in , and is Lipschitz continuous in f.
(ii) C is a continuous, homogeneous, polynomial operator of degree three and

the gradient of the functional

1C(3.5) a(f) =- z((f), f) f Off.

For eachf in ,, the operator C has a differential 6s which satisfies

6sg 1/2B(g, B(f f)) + B(f B(g,

for all g in ,, and is Lipschitz continuous in f.
An additional important property of the functional z(u) is expressed in the

next lemma, whose proof is outlined in Appendix B.
LEMMA 6. Let u,,(x)= x-lJx(%,x) be an eigenfunction of the operator A.

Then

(3.6) 0 < z(u,,) (202m) -1 J(co,,t) dt.

In particular, z(u) does not vanish identically on any ofthe nullspaces ofthe operator L.
We shall also make use of the following lemma due essentially to MacMillan

[9] and Bliss [4] (see also [7] and [13]); the indicated HSlder continuity follows
from a result of Lojasiewicz [8, p. 123]. It is convenient to state the lemma in
connection with the problem of the existence of solutions x x(a) of systems of
the form

(3.7) api(x, 0.) O, x E", 0. 1 (i 1, 2, n),

where the i are real and analytic in a ball Ix[ 2 4- 0
.2 < r2 in E"+ 1.

LEMMA 7. Suppose that i(x, O) qk,(X) + pi(x) (i 1, 2,’.., n), where the
kq, are homogeneous polynomials of degree ki and the pi satisfy Ip(x)l/(Ixl ’) 0

as ]xl O. Suppose that l--[’= ki is odd and the resultant of the homogeneous poly-
nomials q, does not vanish. Then there exist positive constants Xo and 0.0 such that
for Ixl < Xo and I0.1 < 0.0, the system (3.7) has at least one H6lder continuous real
solution x x(0.) with x(O) 0 and H6lder exponent h (I-[’= ki)-1.

Our principal result is contained in the following theorem; the operator S
denotes the orthogonal projection of onto 4(Lo).

THEOREM 1. Let 20 be an eigenvalue of La of multiplicity two. Then there exists
a positive constant such that, for 20 c 2 20 + , equation (*) has at least
one nontrivial solution f(2) of the form

(3.8) f(2) (aa)-l(2- 2o)U* + U*.
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Here u* in the nullspace U of Lo maximizes ,the functional "c(u) restricted to the
"ellipse" =_ {u /" :(Au, u)= 1}, a 3r(u*), and U* in U +/-, the orthogonal
complement of, depends continuously on 2 and satisfies lim_o (2- 2o)- 1U* 0.
If in addition, a is not an eigenvalue of the operator SDu,, then U* is analytic in 2.

Because of Lemma 2, the solution determined in Theorem yields a classical
solution of Problem I so that, taken together with a result of Reiss [11] for the
simple eigenvalue case, Theorem has the following result as a corollary.

THEOREM 2. At every eigenvalue 2o of La, there branches from the spherical
state of the cap a buckled state that exists for 2 in an open interval containing 2o,
i.e., branching is both "upward" and "downward" from every eigenvalue of the
linearized problem.

Remark 4. While it is true that exactly one buckled state branches from the
unbuckled solution at a simple eigenvalue, it might happen that multiple branches
appear at a double eigenvalue (the computations of Reiss [11] indicate three
branches at some of the double eigenvalues). Explicit and complete information
on the number of branches can be obtained by the procedure given below in
the proof of Theorem (see Remark 5, below) if sufficient information is known
regarding the coefficients in the bifurcation equations (**). For the present
problem, such information depends upon a knowledge ofcertain integrals involving
the Bessel function Jl(x).

Proof of Theorem 1. The proof is a variation of a general approach used
previously by the authors [7], [12], [13] and is based upon the Lyapunov-Schmidt
method. The elements f of are resolved into components f v + V with
v Sf 4# and V /I+/-. Equation (*) is similarly decomposed by projection onto

and ". The resulting equation on" is solved for analytic V satisfying (1.2),
by the .method of contraction, whenever v is a sufficiently small member of
and 2 is sufficiently close to/o. Since 2o has multiplicity two, V" is spanned by

2 2 with m- nj cx 1J(co,,x) and f2 C:zX 1Jl(CnX), when 20 o9 + o9,
(see Lemmas 3 and 4); here cl and c2 are arbitrary constants. Let v, v2 be any
basis for such that (Avi, vj) 6i (e.g., v fl and v2 f2 for suitable c, c2).
Then v V" may be represented as v lv + 2V2 and the projection of (*)
onto V" by means of S takes the form (**); in particular, we use here that A maps

into and AS SA.
If we now set

(3.9) z (z, z2) r/-(, 2), q 0-(2 20) 4: 0,

in (**) and cancel a factor r/z, there results the system

(3.10) 0 --Z .ql_ (Q(zIU + Z21)2 .ql_ /,I-iv) + ]o-lC(z1u1 + ZzU2 +/,1-IV), ui

(i= 1,2).

Formally setting q 0 in (3.10) and using (1.2), we obtain the system in [2.

(3.11) 0 -fl, + (Q(vl +//2v2), v,) -= Fi(/) (i 1,2).

It is clear that every continuous solution z(q) of (3.10) yields a continuous solution
of (**) by means of the substitution (3.9). On the other hand, if/* (/3]’,/3) is
a nontrivial solution of (3.11)at which the Jacobian c3(F, F2)/c3(//1,/2) is not zero,
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then an argument involving the implicit function theorem (e.g., as in Theorems 3
and 4 of [12]) shows that (3.10) has a nontrivial solution z(r/), analytic in r/for I1
sufficiently small and satisfying z(0) fl*.

In order to simplify the study of the system (3.11) we make a special choice of
basis for . If u* is defined as in the statement of Theorem 1, we set vl u* and
choose V2 On g such that (Avl, 1)2) 0. Since SQ(u) is the, gradient of :(u) on ,
at the maximizer vl, SQ(vl) const. Avl and (Q(vl), v2) const. (Avl, v2) 0.
It follows that (3.11) reduces to

(3.12)
0 -/1 + a/3 + c/22,
0 -/2 + 2c1/2 + e//22,

where a (Q(vl), vl), c (Q(v.), vl) 1/2(Dvl(v2), v2) and e (Q(vz),V2). The real
solutions of (3.12) are then given by the intersections of the lines /32 0 and
--1 / 2Cfll / efl2 0 with the conic a/2 + c//22 -//1 0; since a > 0 because
of Lemma 6, the system (3.12) always has the solution / (a -a, 0) at which
O(F1, F2)/0(/1,/2) -1 + 2ca-1. Since SD,, restricted to X is diagonalized by
the basis {vl, v2}, it is easily seen that the eigenvalues of that transformation are
2a and 2c. From the last two statements we see that when a - 2c, equation (*)
has a nontrivial solution of the form (3.8) which is analytic in 2.

It remains to verify that even in the degenerate case, a 2c, there exists a
nontrivial solution of the form (3.8). First of all, for the same special basis vl, 1)2
as above, we note the identity (s and are real numbers)

Q(svl + tv 2) sZQ(vl) + stDv(v2) + t2Q(v2).
Using this identity, wc see that if a 2c and if u (v / tvz)/(1 / t2) 1/2, then
u g and

3z(u) (Q(u), u)= a + et 3 + (15a- 36c)t4/8 + O(tS),
so that we must have e 0 in order to maximize r(u) at 0. Thus the system
(3.10) may be written as

az2 + s(1)(z, rl),O= -zl + az +-
(3.13)

0 --Z2 / azaz. + s(2)(z,

wheres(i)(z,q) -= (Q(ZlVl + Z2U2 / /-IV) Q(zIu1 / z2u2) / Flo-lC(z1u1 / z21)2

+ q-1V), vi) for 1, 2. In order to apply Lemma 7 we first make the change of
variables x z a-1,12 z2 to obtain from (3.13),

ax + t(x, rl) =- ’(x,0=xl + axi +-
(3.14)

0 axlx2 / t(2)(x, r/) kI/2(x,

where t")(x, rl) =- s")(z, /). Next we define (x, r/) (x, r/) and

(I)2(X, r/) ritZ(x, q) aXzUlflX(x, rl) --axx2 x + q(x, rl),
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where q(x, rl)=-t(Z)(x,r/)- ax2t(l)(x, rl). Then, in the notation of Lemma 7,
qg l(x) X qg(x) axx2 (a/Z)x k k2 3 isoddand qgl ,qghavenonzero
resultant since (Xl, x2) (0, 0) is an isolated zero (in fact the only zero) of the
vector field {ql(x), q(x)}. Lemma 7 then asserts that the system l(x, r/)= 0,
2(x, r/)= 0 has at least one real H61der continuous solution x(r/) for Ir/I < q0

with x(0)= 0. Then z(r/)= (a-l+ XI(]), X2(]) solves (3.10) for [r/[ < r/0 and
generates the required solution of (*).

Remark 5. By considering the cases c 0 and c 4: 0, it is easy to check that,
regardless of the particular values of a and e, the system (3.12) has at most a finite
number of real solutions. Since a > 0, it follows from Theorem 4.3 in [13] (see also
[6]), that if ae2 + 4c3 0, then every solution (r/) of (**) continuous near r/ 0
with (0) 0 is obtained by means of the substitution (3.9) from a solution z(r/)
of (3.10) continuous near r/ 0 with /

_
z(0)-(0,0). Thus, the problem of

determining all possible continuous solutions of (**) with (0) 0 is reduced to
one of verifying certain inequalities among the coefficients a, c and e.

Appendix A. We give here a sketch of the proof of Lemma 2. Since the
components f, g of a classical solution of Problem I are easily seen to lie in g
and satisfy (2.6), a classical solution is clearly a generalized solution.

For the converse proposition, we see first of all from Lemma that the
components f and g of a generalized solution of Problem I are at least continuous
in (0, 1] and satisfy the classical boundary condition (2.2) at x 1. Let us suppose
for the moment that we have proved the following lemma.

LEMM, A.1. The components of a generalized solution of Problem I lie in
c(0, ).

Then for an arbitrary smooth function 99 of compact support in (0, 1), the
left sides of (2.6) may be integrated by parts to give

(A.1)
[Gf + f- fg g]qgx 3 dx O,

o

Gg + 1/2f 2 + f]q)x3 dx O.

Since the bracketed terms are continuous by Lemma A.1 and 99 is sufficiently
arbitrary, we easily see that f, g satisfy (2.1) pointwise for 0 < x < we must also
establish that f and g are continuously differentiable at x 0 and x and
satisfy f’(0) g’(0) 0. Each of the equations (2.1) may be written in the form

(A.2) (x3h’(x))’--- x30(x),

where h is either f or g and q is one of the quantities 2f + fg + ,g or _1/2f2 f.
Then, using h’(x)= h’(1/2)- /2 h"(t)dt, h"(t)= t-3[(t3h’)’ 3tZh’] and (A.2), we
see that

/2

f
1/2

(A.3) h’(x) h’(1/2) O(t) dt + 3 t- h’(t) dr, 0 < x < 1.
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Since h e , the right side of (A.3) is continuous up to x 1, so that f and g are
at least in C1(0, 1]. We now examine the growth off and g near x 0. From (2.5)
we know that I,(x)l =< cx-2 for 0 < x =< 1; here, and in the sequel, c denotes a
positive constant. Hence, for 0 < x < 1/2

Ih’(x)l <-Ih’(1/2)l + c -2 dt + 311hll -5 dt <= cx -2.

In particular, x3h’(x) is continuous on [0, with value zero at x 0. Consequently,

(A.4) xh’(x) (th’(t)) dt taO(t) dr.

Since 10(x)l <_-cx -, we see from (A.4) that Ih’(x)l =< cx -1 and therefore that
Ih(x)l _-< c(1 / Ilog xl) and I,(x)l _-< c(1 + Ilog xl)a. Use of this latter estimate with
(A.4) shows successively that Ih’(x)l _-< cx for any e > 0, Ih(x)l =< c, I,(x)l _-< c.
These bounds for x near x 0 reveal that f and g are, in fact, continuously
differentiable up to x 0 and satisfy f’(0) g’(0) 0 (an additional iteration in
(A.4) even shows that Ih’(x)l -<_ cx).

It remains to verify Lemma A.1. The proof is basically an application as in [5]
of the du Bois-Reymond lemma of the calculus of vat-iations. Equations (2.6)
take the form

(A.5) (x3h’)q9 dx (x31/)(19 dx

for all q9 in , where h and are defined as in (A.2); in particular, is continuous
on (0, 1). Since q9 is sufficiently arbitrary, (A.5) states that the continuous function

x3O is the distribution derivative of x3h’, so that x3h’, (x3h’) and, therefore, h’
and h", may be identified with continuous functions on (0, 1). An alternative
approach to establishing Lemma A.1 is to make use of some well-known interior
regularity results such as those in Agmon [1 together with some standard Sobolev
embedding theorems (e.g., see the discussion in Appendix B of [7] for an analogous
but somewhat more involved application of the results in [1]).

Appendix B. Lemma 6 is a special case of a result of Makai [10]. For the
convenience of the reader we shall give the ideas here. Since Jl(x) changes sign at

COn (n 1, 2, ...), to establish j’’ J3(x) dx > 0 it suffices to show that

f(Dn(B.1) H d3(x,) dx > 0

for n odd (we take coo 0). If we set z(x) =_ x/d(x), then z satisfies z" + h(x)z O,
-k -= z’(con)= XnJ’I(CO,) < 0, where h(x) -= 1 (3/(4x2)). Let zl(t) z(co, t),
Zz(t) -z(con + t). Then zi(t) satisfies z’i’(t) + h(con + (-1)it)zi(t)= O, zi(O)= O,
z’i(O) k > 0 and zi(t) > 0 for 0 < < s rain (con + o9,, co, con_ 1). Now

(zlzz zlz’2)’ [h(oon + t)- h(co t)]zlz2 > O, 0 < < s,

andz’az2 zlz’2 0att 0sothatz’az2 zlz’2 > 0for0 < < s. Consequently,
zl(t)/Zz(t is strictly increasing on 0 < < s. Since lim_,o (Zl(t)/Zz(t)) 1, we have

(B.2) z a(t) > zz(t) for 0 < <_ s.
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From (B.2) we see that s 09.+ 09. < co. co._ and also

z 3(t)
(B.3)

(co. t)3/2
>

(con -F t)3/2’
0 < __< S.

The inequality (B.1) now follows from (B.3) because

Acknowledgment. The authors are indebted to Professor R. Askey for pointing
out the paper of Makai 10] which provides a proof of Lemma 6.
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STABILITY OF SYMMETRIC HYPERBOLIC SYSTEMS
WITH NONLINEAR FEEDBACK*

GIDEON PEYSERI

Abstract. This paper studies the stability of distributed parameter systems represented by the
symmetric hyperbolic system , +7’=1A,x, +B 0%, with the nonlinear feedback operator 0%.
The trajectory solution is derived, with the system states as elements in the space of square integrable
functions. Stability and instability criteria are obtained for the trajectory solutions. Also, global and
local asymptotic and L2-stability criteria, and analogues of Lyapunov’s first method are derived.

1. Introduction. This paper is concerned with the stability and instability of
distributed parameter systems represented by systems of symmetric hyperbolic
partial differential equations with nonlinear feedback terms (which will always
include the special case of linear feedback terms). The importance of symmetric
hyperbolic systems is due to the fact that many equations of mathematical physics
occur in this form. Specifically, every second order hyperbolic equation can be
reduced to a symmetric hyperbolic system (see Courant-Hilbert [2]).

In the recent literature several authors have investigated the stability of
distributed parameter systems. Stability criteria, applicable mainly to equations of
the parabolic type are due, among others, to Kastenberg [5], [6], [7], Crawford
and Kastenberg [1], Wang [10], [11], [12] and Zubov [13]. The work of Wang [9]
is also applicable to some types of linear symmetric hyperbolic systems. The
objective of this paper is to derive stability and instability criteria for symmetric
hyperbolic systems with nonlinear terms.

In general the methods used in the literature follow corresponding proce-
dures for ordinary differential equations. The existence of the classical pointwise
solution is assumed and stability criteria are then obtained for this solution.
Whereas the assumption of the existence of the classical pointwise solution is
generally justified for systems represented by ordinary differential equations, this
may not always be true for partial differential equations and in particular for our
case of quasi-linear symmetric hyperbolic systems. We shall derive instead the
generalized "strong" trajectory solution, such that the system states are elements
in the space of square integrable functions. The stability criteria are then
developed for this generalized solution.

This paper is restricted to the initial value problem, for which the strong
trajectory solution and the corresponding stability criteria are derived. However,
it is readily seen (even though this will not be done here) that if the existence of the
generalized solution of the initial-boundary value problem with appropriate
homogeneous data is assumed, then the stability criteria can be extended to that
case. It should also be noted that from the physical point of view the solution of the
initial value problem, with the system states in the space of square integrable
functions, may be considered as an approximation of the dynamic behavior of the
given system, with the boundary conditions requiring the solution to vanish at
points sufficiently far out in space.

* Received by the editors May 14, 1974, and in revised form December 16, 1974.

" Department of Mathematics, New Jersey Institute of Technology, Newark, New Jersey 07102.
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In 2 we introduce continuous trajectories in the space of square integrable
functions, and in 3 the initial value problem is shown to be well-posed in the
space of these trajectories. Our main tool is the theory of strong solutions of linear
symmetric hyperbolic systems due to Friedrichs [4] (see also Lax [8]). In 4 three
types of stability are considered, namely, Lyapunov stability, asymptotic stability
and L2-stability. Section 5 considers the existence of local solutions and criteria
for local asymptotic and local L2-stability.

2. Preliminaries. We shall consider in this section some preliminary concepts
which will be required in the analysis of the system of equations, to be introduced
in the next section. Throughout the paper we use the following notations: S is the
m-dimensional Euclidean space with the points x (x, -, x,,), -< x <. H
denotes the (m + 1)-dimensional half-space (x, t)=(x, ., x,,, t), 0<= < c. H is
the slab 0 <- -< T, -oo < x, < oo, and Sr is the hyperplane T. U- (ul, -, u,)
will denote n-dimensional vector functions of the variables x or (x, t). A function
is said to be smooth if its components are continuous and square integrable in the
domain under consideration. A function is very smooth if its components are in C
and vanish for sufficiently large values of I/l, where I" denotes the Euclidean
norm.

will denote the Hilbert space of square integrable functions on S with inner
product and norm

{U,V}=I U Vdx, U V =- u v + + u,v,, dx dx dx,,,

(1)

r is the Hilbert space of square integrable functions in the slab Hr with inner
product and norm:

(2) W, R]r I I W" R dx dt, Wllr W, Wit.
HT

DEFINITION 1. A trajectory, denoted by (I)(x; t), is defined as a mapping from
0 _-< < oo into the state space 5f, --) (I)(x; t). Further, the trajectory is continuous at
to if

(3) lim II1 (" go)Ill- 0.

A continuous trajectory is a trajectory which is continuous at all _>-0.

LEMMA 1. If (X t) is a continuous trajectory, then for every T> O, there exists
a unique function U Ygr, such that U can be identified with the trajectory in the
interval 0 <- <= T, in the following sense. There exists a sequence offunctions U(k),
smooth in Hr, such that

(4) IIu UIIT 0

and

uniformly ]’or all [0, T].

Ill t)- t)lll- 0,
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Proof. We apply the integral mollifiers, due to Friedrichs [3], to the x-variables
of (x; t). Let j(x) be an infinitely continuously differentiable nonnegative
function of x with support in the sphere Ixl < 1, and such that Ij(x) dx 1. We set

(6) U(k)(x, t)= k" j(k(x-))(; t) d.

For fixed t, U(k)(x, t) is infinitely continuously differentiable in the x-variables.
Furthermore,

(7)
III r)lll II1 (  )111,

Ill
t)] < k sup j(y)lllo( t)ll[2.

From these properties of the mollifiers and the assumed continuity of the given
trajectory, it follows that the functions U((x, t) are smooth (pointwise continuous
and square integrable in Hr) and, as functions in 0, form an equicontinuous
sequence for [0, T]. The Arzela-Ascoli theorem now implies that the con-
vergence in of U()(x, t) to is uniform for t[0, T]. It follows that U(>

converges in 7-to a unique function U, which is the required function in the
statement of the lemma. This completes the proof.

From the uniform convergence of U(k we have the following lemma.
LF.MMA 2. If the continuous trajectory dp corresponds in [0, T] to the function

U T, in the sense of Lemma 1, then
r

(8) Ilull - I1 11 dt

and

(9)
r

[U1, U2]r {,, 2} dt.

The implication of Lemmas 1 and 2 is that for a given continuous trajectory
the restriction to the interval [0, T] is a function in Yg-r with the norm and inner
product given by (8) and (9).

We shall utilize in this paper the results regarding strong solutions of linear
symmetric hyperbolic systems, due to Friedrichs [4] (see also Lax [8]). We now
summarize these results in the form in which they will be used here. Given in the
slab Hr, T> 0, the linear system

(10) gU U, + , CU,, + DU= G, G
i=1

where

OU OUgxU,
Ot Ox

Ci(x, t) are n x n symmetric matrices with elements that are bounded and have
bounded continuous derivatives. D is an n x n matrix with bounded continuous
elements. The initial data, given on 0, is U Uo . The principal result states
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that there exists a unique strong solution of this system, satisfying the initial data
the strong sense. Specifically, there exists a unique function U e r and
sequence Wk) of very smooth functions in Hr, such that

I1)- GII + w<’- UIIT + III W<( 0)- Uolll- O.
We shall also need the following, well-known, energy identity which we

derive for the sake of completeness. If V is very smooth in H, then for 0 < _<- T,

Since the matrices G are symmetric and V vanishes for large Ix], it follows from
integration by parts that

[V, CV,],= -IVy,, CV],-[V, (CkV], -IV, CV,],-[V, (C),V],.

Hence,

Also

[V CVxi],---- --1/2IV,

Cv, v,],-- MIIv(., 0111--111 v( o)111.
These identities imply (11).

LEMMA 3. The strong solution U(x, t) of (10) with strong initial data Uo
belongs to the space for every t, 0 <= <-_ T, and is a continuous trajectory in this
interval. Furthermore, U satisfies the identity:

(12) IIIU(., 01112-- IIIUolll+Eu, E (G)x,U-2DU+2G],.

Proof. We apply the energy identity (11) to the approximating functions W(k).
It follows that the sequence converges uniformly for te[0, T]. The limit is
therefore a continuous trajectory in this interval. It follows from Lemma 1 that U
is this continuous trajectory. Finally, (12) follows from the energy identity for W()

as k-+oo.

3. Strong trajectory solution. We introduce the system of equations repre-
senting the distributed parameter system with the nonlinearfeedback operator:

(13)
i=1

Adopting systematically the summation convention for double indices, (13) will
be written as

O, + A,Ox, + B

Ai=Ai(x, t), i=l,..., m, are symmetric n xn matrices with continuously
differentiable elements, which together with their first order derivatives are
bounded in Hr for every T>O. B B(x, t) is an n x n matrix with continuous and
bounded elements in Hr. The feedback operator o o(t) is assumed to have the
following properties:

(a) For fixed >--0, maps the space into itself; that is, if 0 e , then
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(14)

(b) For every => 0, o% satisfies a Lipschitz condition,

II[,(t)q,,- (t)q,=lll =< g(t)lll4,,- 4,2111,
where K(t) is a positive continuous nondecreasing function, which will be referred
to as a Lipschitz function.

(c) , depends continuously on t, uniformly in . Specifically, given e > 0 and
to >_- 0, there exists 8 > 0 such that for It- tol < , and all 0 5f,

(15)

LEMMA 4. , maps continuous trajectories into continuous trajectories.
Proof. If is a continuous trajectory, then by property (a), is a trajectory

and therefore only the continuity has to be shown. Indeed,

IIl,(t)(" t) o%(to)( to)Ill

-<-IIl(t)(" t) (t)(. to)Ill / II[(t)(" to) (to)(

--< K(t)l[I(I’(" t)-(. to)[ll+lll(t)(" to)-,(to)(. to)Ill.
As to, the right-hand side approaches zero by the continuity of the trajectory
and by (15). This proves the lemma.

Let the operators 5o and be defined as follows"

0
A

0o+ ,+u, --o-.The system (13) can now be written in the form

We proceed to define the concept of a strong trajectory solution of the initial
value problem for the system (13) in the space of continuous trajectories.

DEFIrqITION 2. The trajectory (x; t) is a strong trajectory solution (or simply,
a solution) of the system=0with the initial state o, if (x; 0)=o and
if, for every T> 0, there exists a sequence U(k(x, t), of very smooth functions in
Hr, such that as k

(16)

and

(17)

IIl( t)- u(’(., t)lll- 0 uniformly for 6 [0, T].

U7 + A, t)’’)+, U’,-11- 0.

It follows from the uniform convergence condition (16) that a strong trajec-
tory solution is a continuous trajectory.

THEOREM 1. There exists a unique strong trajectory solution of the system

(18) , + A,x, +B- 0

with the initial state

(19) (x; 0)=o 0.
Proof. We denote by r, T> 0, the space of continuous trajectories in [0, T].

For " r let o denote the strong solution in r of the system oW o%" with
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initial data o. It follows from Lemma 3 that to r. We now introduce the
mapping -r of r into itself: to ,r’. It will be shown that ,r has a fixed point in
r. Let w ,r and w2 ,r2; then it follows from (12) that

(20) I{Iw,( t)- 2(" t)ll= (t)(lll- 2]lff
where y(t) is a positive nondecreasing function dependent on the Lipschitz
function K(t) of the operator , and on the coefficients of the matrices A and B in
Hr.

We introduce the norm I{" I1,, in r, defined by
with 1 >0 a constant at our disposal. Clearly the norms I1" I1 and I1" I1,, are
equivalent in r. We multiply (20) by exp (-at) and integrate from 0 to T, using
integration by parts on the right. It follows that

We now choose a such that y(T)/a < 1/5. Then

(21)

Since r is dense in r, the,mapping ., can be extended to a mapping of - intb
itself with (21) continuing to hold. This contraction mapping has a fixed point
tr 6 r, such that o. -ro.. Next we show that o. is a continuous trajectory in the
interval [0, T], and that it is a strong trajectory solution of (18) with the initial state
(19). There exists a sequence o.() r such that o.( ,-o.(- and []o. o-(’ll - 0.
For each k there exists a very smooth function in Hr, which we denote by
V((x, t), such that

(22)

1
for all [0, T],

1 1I[ o v =< Ill o) (I,oll[-_<

This implies that as k

(23) and IIoV(k,- @V()llr 0.

We apply the energy identity (11) to V(). It then follows from (23) that for
fixed t, Vk)(x, t) converges in , and the convergence is uniform for all [0, T]. o.

is therefore a continuous trajectory, and 11370 V(k- oo.]lr 0. Hence o- is a strong
trajectory solution, in the interval [0, T] of (18) with the initial state (19). It now
follows from (11) that o. satisfies the identity

(24) I[Io-( 011[ -I1101112 +[o-, ((A,),- 2B)o.], + 2[0,

Finally, we show the uniqueness of the trajectory solution and its independence of
the particular value of T. If o-1 and o-2 are solutions, in Hr, and Hr2, respectively,
with T _-< T2, of the system (18) with the initial state (19), then it follows from (24)
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that for

IIIo-(.
+ 210-1- 0-2, ,-o"1- ,.0"2]

Hence,

"y(t) o1(’; ’)-o’=(" -)11 d’r.

It follows that [llcr,(" t)-o-2(’; t)[I -0. This shows the uniqueness of the strong
trajectory solution r and its independence of the particular value of T. We now let
T- oo, which yields the strong trajectory solution of (18) with initial state (19) for
0 =< < oo. This completes the proof of Theorem 1.

Now, o- satisfies (24) which by (9) can be written as

IIio-(. ;/)1112=11o112+ {o-, ((A),,-2B)o-+2,o-} d’r.

The integrand is a continuous function of -, since r and oo are continuous
trajectories. This implies the following.

COROLLARY 1.1. The norm IIio-(. t)]l of the strong trajectory solution of
system (18) satisfies the ordinary differential equation

(25)
d
dtll[o-(. t)[l] {o-, ((A,)x;- 2B)o- +

4. Stability. For the study of stability it will now be assumed that the given
system has been formulated about an equilibrium state. Specifically, it is assumed
that 0%0=0, and therefore (I)=0 is an equilibrium state. We introduce the
following types of stability:

DEFINITION 3. (a) The trivial solution of the system 0 is (Lyapunov)
stable if for given e > 0, there exists r/> 0 such that for all initial states o, with

II1"o111 < , the solution * satisfies II1"111 < for all 0-<_t<

(b) The trivial solution is globally asymptotically stable, if it is stable, and if, for
all arbitrary initial states, II1111 - 0 as t-

(c) The trivial solution is locally asymptotically stable, if it is stable, and if
there exists r/> 0 such that for all initial states with II1,o[11 < the solution satisfies

(d) The trivial solution is globally L2-stable if, for any arbitrary initial state the
solution satisfies Jo 111 at <

(e) The trivial solution is locally La-stable, if there exists r/>0 such that

II1’o111 < , implies that II1111 dt < oo.
Instability will be considered as the negation of stability. In particular, the

trivial solution is defined to be unstable, if it is not stable.
We now develop stability criteria.
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DEFINITION 4. The upper response of the operator , denoted by c(t), at
time >_-0, is defined by

(26) o,(t) sup {, ((A)x-2B)O + 2}/11l1112.

LEMMA 5. Old(t) is a continuous function of t.

Proof. We denote (t) --- (Ai)x,- 2B +2. For all and sufficiently small

{, (t)- (to)}/llllll IIl(t)- (to)01ll/l[l/ll < .
This follows from (15) and the properties of Ai and B. Hence {, (t)q,}/ltlq, lll=-
a,(to)-< e. Since this holds for all q 5f, it also holds for the supremum. Hence
a(t)- a(to) _-< e. In the same way we also have a(to)- c.(t) =< e. This concludes
the proof.

DEFINITION 5, The lower response of the operator , denoted by/3(t), at
time >= 0, is defined by

(27) /3(t) inf {, ((A)x,- 2B)q + 2q}/1114,1112.

The proof of the next lemma is analogous to the proof of Lemma 5.
LEMMA 6. ,(t) is a continuous function of t.
THEOREM 2. (i) If o o(7") dT" M< cx3 for all > O, then the trivial solution is

stable.
(ii) If o (’) d" =-, then the trivial solution is globally asymptotically

stable.
(iii) Ifo exp (’o c.(-) d) dt < o, then the trivial solution is globally L2-stable.
Proof. It follows from (25) that

Hence,

(28) (i )II1(- )]1[ II1o1112 exp .(r) d’r

In case (i)it follows from (28) that I11(-, t)lll2< I[1o111 e’, which implies stability.
In case (ii), in addition to stability, (28)implies that II1111-0, for arbitrary o,
which shows that the trivial solution is globally asymptotically stable. In case (iii),
(28) clearly implies that_j, II1111 dt <. This completes the proof.

THEOREM 3. (i) If lim sup,_,oo ’o/3(r) dr oo, then the trivial solution is
unstable.

(ii) If o (r) dr >- N > -oo for all > O, then the trivial solution is not globally
or locally asymptotically stable.

(iii) If o exp (o .(r) dr) dt oo, then the trivial solution is not globally or
locally Lz-stable.
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Proof. It follows from (25) that

d .
Hence,

(29) (;oII1( t)l 12 II1o111 exp /3.(-) d-.

In case (i), (29) implies that for o 0 the solution is unbounded, in the norm, as
--> oo. Hence the trivial solution is unstable. In case (ii), the trivial solution may be

stable, but for arbitrary *o 4-0 it follows from (29) that Ill.Ill2> Ill,olll e >0, and
hence the trivial solution is neither globally nor locally asymptotically stable. In
case (iii), (29)implies that I II1"1112 at--. This completes the proof.

5. Local stability. Local asymptotic and local L2-stability are related to the
local behavior of the feedback operator o.

For p > 0, let 2fo denote the sphere of radius p in
such that II1111--< p. n addition to the previous stipulation that -0 0, it is now
required throughout this section (except when specifically stated otherwise) that
satisfies only local Lipschitz and local continuity conditions. We assume that there
exists p > 0, such that for ,
Also, for to -> 0 and e > 0, there exists 6 > 0 such that for It tol < 6 and all

(31)

The existence of the solution is connected to the stability in the following way.
Even if the initial state lies in the sphere 2fo, the solution of37 0, for increasing
t, may not remain in o, and may therefore cease to exist.

We now denote by a(t; p) the local upper response of in the sphere

(32) a(t; p) sup {0, ((A,)x,- 2B)0 + 2}/111111.
We now consider the existence of the local solution, that is, the existence of

the strong trajectory solution of 0, provided the initial state o is such that
II1"o11[ < , where > 0 is sumciently small.

THEOREM 4. ff satisfies the local Lipschitz and continuity conditions (30)
and (31) in the sphere o, and ff the local upper response (32) satisfieso a(r; p)drNM< for all O, then there exists (p)>0 such that the
system =0 has a strong trajectory solution for all initial states o, with

II1"o111 < .
Pro@ We introduce the auxiliary feedback operator , which coincides with

in o and satisfies the Lipschitz and continuity conditions (14), (15) for all :
[0 for 0 o,

(33) 0 (I IOIll/p)(o/II011> for III0 I1> 0.

To continue with the proof we introduce the following lemma.
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LEMMA 7. The feedback operator satisfies the Lipschitz condi’tions (12) with
the Lipschitz function 3K(t), and the continuity condition (13).

Proof. By definition of , the Lipschitz condition holds for , 0 Y,. Now,
consider first the case Ill4,ll[> o and 1114,2111 > o. Then

K(,) I(1,111-111=111)1+11’=1 II111 IIl.l]l

(
3K(t)lllO- =lll.

Consider next the case lll,lll o, Ill0[ll > o. Then

I!1 p p I111

P P --/

p

Following (31) the continuity of ff requires verification only for I1 o.
Indeed, if It- to < , then

This completes the proof of Lemma 7.
Continuing with the proof of Theorem 4, it follows, from Lemma 7 and

Theorem 1, that for arbitrary 0o there exists the strong trajectory solution of

(34) 0, (x; 0) o.
Consider a(t), the upper response of , and a.(t; p), the local upper response
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of in the sphere o. We show next that ag(t)= a(t; p). Indeed, for II1111 > p,

{q, ((A,)x,-2B) + 20}/111111
{, ((n,),- 2B)0 + 2(1114,111/0)(00/II0 I)//II01

{(o4,/1114,111), ((A,)x,- 2B)(04,/111111) + 2,(o4,/111111)}/111(o4,/1114,111)111.
This implies that ,=(t)--ce.(t;O). It now follows from the assumption
o c.g(’) dr-< M and from (28), that

(35) I1,(-; t)ll=< I,:r’oll exp c,(’r; o) d _-<11,oll e.
Now let rl =/9

’/2 e-M then for all o with II1o111 < , the solution of (34) is such
that II1( ;/lll<p for all t0 and hence o*= q. It follows that * is also a
strong trajectory solution of 0. This completes the proof of Theorem 4.

From (35) follows the next corollary.
COROLLARY 4.1. (a) Under the assumptions of Theorem 5 the trivial solution is

stable.
(b) If o a(r; p)dr =-, then the trivial solution is locally asymptotically

stable.
(c) If l (exp I; a(r; p) dr) dt <, then the trivialsolution is locally L-stable.
The next stability and instability criteria possess an analogy to Lyapunov’s

direct method for systems of ordinary differential equations.
THEORE 5. If the eigenvalues of the symmetric matrix (A)x,-(B+ B) are

uniformly negative in the half-space H(t 0), and if

(36) lim 1114,1ll/lllelll 0

uniformly for all >-_ O, then the trivial solution of 0 is locally asymptotically
stable and locally L2-stable.

Proof. There exists 3">0 such that for all 0e and all t->0,
{0, ((A,)x,- 2B)q} _-< -1114,111. It follows from (36)that there exists Oo > 0 such that
for all }11,/,111 < Oo and all t_>-0, {O, ,4,}/111,/,1112 <--1ll4,11l/ll},/,}ll <- 3,/4. Therefore,

a,(t; Oo) sup {0, ((A,)x,- 2B)0 + 2o4}/II0111

=< sup {0, ((n,),,- 2B)O}/II011 + sup {O, ff0}/110111

2

Hence, Io ,(;0ole,= - and Io (eXplo,(,;Oo)a,)ate/r<. t now
follows from Corollary 4.1 that the trivial solution is locally asymptotically stable
and locally L-stable.

TzoazM 6. If the eigenvalues 4 (A),-(B + B r) are uniformly positive in
the half-space H, g satisfies the global Lipschitz and continuity conditions (14),
(15) and the local condition (36), then the trivial solutiono[ 0 is unstable and
further it is not globally and not locally L-stable.
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Proof. Since satisfies the global Lipschitz and continuity conditions it
follows from Theorem 1 that the strong trajectory solution of 0 exists for
arbitrary initial states 06 ow. The uniform positivity of the eigenvalues implies
that there exists 7 >0 such that for all q 5 and all =>0, {q, ((Ai)x,-2B)q}
_-> 7[[[q[[[2. It follows from (36) that there exists po > 0 such that for all [[[q[[[ < po and
all t _-> 0, {q, q}/[[lq[[[2 -> -[[lqll[/[l[q[[[ > 7/4, and therefore

(37) {q, ((A,L,- 2B)q +2q} _->  lll lll=.
We now show that for arbitrary nonzero initial state o there exists to -> 0 such that
the solution of=0 satisfies ]]]( to)][I -> po. Assume to the contrary that for
all t-_> 0, [[[(. t)[[[ < po. Then it follows from (25) and (37) that

d-SIIl,I,I[l=_-> IIllll=.
This implies that II1(" t)lll2--> II10111 e ’/2, which clearly contradicts the assump-
tion. We show next that for all => to, IIl( t)lll -> Oo. Indeed, if we assume that for
some ta>to, II1 (" ;t,)lll<oo, then there must exist t2, to<h<h, such that
II1 (" t )lll < Oo and also (d/dt)lll (’; t )lll= < 0. This contradicts the fact that (25)
and (37) imply that this derivative must be nonnegative. We conclude from the
above that the trivial solution is unstable. It also follows that Io
and therefore the trivial solution is not globally and not locally Lz-table.
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COMPLETE FAMILIES OF SOLUTIONS FOR
PARABOLIC EQUATIONS WITH ANALYTIC COEFFICIENTS*

DAVID COLTON"

Abstract. A complete family of solutions is constructed for the general linear second order parabolic
equation in one space variable with entire coefficients defined in a domain with moving boundary and
for a class of second order parabolic equations in two space variables with entire coefficients defined
in a cylindrical domain. The construction is based on the use of integral operators and results on the
analytic continuation of solutions to partial differential equations with analytic coefficients. A numerical
example is given which uses a complete family of solutions to approximate the solution to the first
initial-boundary value problem for a parabolic equation in one space variable defined in a cylindrical
domain.

1. Introduction. One of the more important applications of integral operators
for elliptic equations is their use in constructing a complete family of solutions for
the equation under investigation and thus providing a method for approximating
the solutions to a wide variety of boundary value problems associated with
equations of elliptic type (cf. [1, [73, [9, [113, [13], [15]). In recent papers ([33, [5)
the author has constructed an integral operator for the parabolic equation

(1.1) uxx + a(x, t)ux + b(x, t)u u,

and showed how this operator could be used to construct a complete family of
solutions to (1.1) in a rectangle. These last two papers lay the foundation for using
integral operator methods to solve initial-boundary value problems for parabolic
equations in a manner analogous to their use in the solution of elliptic boundary
value problems. It is the purpose of this paper to extend the results of [5] in three
different directions:

(a) Instead of (1.1) we will consider the general linear second order parabolic
equation

(1.2) u, + a(x, t)u, + b(x, t)u c(x, t)u,.

(b) We will construct a set of solutions to (1.2) which are complete with
respect to the maximum norm over the closure ofdomains with moving boundaries
instead of only in a rectangle.

(c) We will show how these results can be extended to the case of parabolic
equations in two space variables defined in cylindrical domains.

Numerical experiments on using the methods described in this paper to
solve initial-boundary value problems for parabolic equations are presently being
carried out by Y. F. Chang of the Data Systems and Services Department at
Indiana University, and we hope to report on this in detail in the near future.
A preliminary numerical example taken from this work is given in 4 of this paper.

2. Complete families of solutions for parabolic equations in one space variable.
We consider (1.2) and for the sake of simplicity assume that the coefficients
a(x, t), b(x, t) and c(x, t) are entire functions of their independent (complex) variables.

* Received by the editors July 15, 1974, and in revised form February 10, 1975.

" Department of Mathematics, Indiana University, Bloomington, Indiana 47401. Now at Uni-
versity of Strathclyde, Glasgow, Scotland. This research was supported in part under AFOSR Grant
74-2592.
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We will further assume that c(x, t) > 0 for - < x < c, 0 =< _< o and, again
for the sake of simplicity, that

o
t) as(2.1)

We note at this point that due to the analyticity of the coefficients, every classical
solution of (1.2) (i.e., a solution of (1.2) that is twice continuously differentiable
with respect to x and continuously differentiable with respect to t) in a domain D
is in fact analytic with respect to x and infinitely differentiable (but not necessarily
analytic) with respect to t. Our aim is to construct a complete family of solutions
with respect to the maximum norm for (1.2) defined in a region D bounded by the
characteristics 0and to as well as the analytic curves x sl(t)and x Sz(t),
where s(t) < Sz(t for 0 =< =< to. The one-to-one analytic transformation

(2.2) c(s, t) ds, t,

reduces (1.2) to an equation of the same form but with c(x, t) 1. The domain D
is transformed into a domain in the (, z)-plane of the same form as that described
above. Hence we can assume c(x, t) in (1.2) to begin with. If we now set

(2.3) u(x, t) v(x, t)exp - a(s, t)ds

we arrive at an equation for v(x, t) of the same form as (1.2) but with a(x, t) O.
Hence, without loss of generality, we can restrict ourselves to equations of the
canonical form

(2.4) u,, + q(x, t)u

where(duetotheassumption(2.1))q(x,t)isanalyticfor-oe < x < oe,O < <= to,
and consider classical solutions of (2.4) which continuously assume the initial-
boundary data

u(s(t), t)= f(t), u(s2(t), t)= g(t), 0 =< __< to,
(2.5)

u(x, O)= h(x), sx(O) <= x <= s2(0),

where x s(t) and x Sz(t are analytic arcs satisfying

sa(t) < Sz(t) for 0 _< =< to, f(0)= h(s(O)), g(0)= h(s2(0)),

and f(t), g(t) and h(x) are continuous functions of their independent variables.
Now suppose that for a given e > 0 we are able to construct a solution

w(x, t)of (2.4)defined in a rectangle R {(x, t)" -Xo _-< x =< Xo, 0 _<_ < to} such
that D c R and

(2.6) max ]u(x, t)- w(x, t)l < e/2,
(x,t)D

where D denotes the closure of D. Let h,(x, t) be defined by
In/Z] .n-

(2.7) h,(x, t)
"o 2k)
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and let u.(x, t) be the solution of (2.4) defined by

(2.8) u,(x, t) h.(x, t) + P(s, x, t)h,(s, t)ds,

where P(s, x, t) is the (unique) solution of the initial value problem

(2.9a) P,x- Pss + q(x, t)P Pt,

(2.9b) P(x, x, t) -- q(s, t)ds,

(2.9c) P(- x, x, t) 0.

The existence of the function P(s, x, t) and the fact that un(x, t) is a solution of (2.4)
follows from the results of [3] and [5]. In particular, P(, q, t) P( r/, + q, t)
can be constructed by the iterative scheme

P(, r/, t) lim P,(, q, t),

(, , 0 -- q(s, t)ds,

(2.10)
P.+ (, rt, t) -- q(s, t)ds

+ fo’f2( p’(t)-q(+"-gi t)P.(rt t))ddq
n>_l.

The convergence of the sequence {/3,} is quite rapid and good approximations
can be found by terminating the recursion process after several iterations. From
the results of [5] we can now conclude that there exists an integer N and constants
al,..., aN such that

(2.11) max
(x,t)R

N

w(x, t) Z .u.(x, t)
n=O

< e/2

and hence from (2.6),

(2.12) max u(x, t) a,u.(x, t) < "(x,t)D 0

i.e., the set {u,(x, t)} is a complete family of solutions for (2.4) defined in D. If we
first orthonormalize the set {u,(x, t)} over the base and sides of D, it is seen that
on compact subsets of D we can approximate the solution to the first initial-
boundary value problem for (2.4) in O by the sum .=o a.qg.(x, t), where

flo (o)a, f(t)qg.(s x(t), t) dt + h(x)qg,(x, O) dx
.st(O)

(2.13)

+ g(t)q),,(s(t), t) dt
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and the set {q,(x, t)} is obtained by applying the Gram-Schmidt process to the
set {u,(x, t)}. Since each qg,(x, t) is a solution of(2.4), error estimates can be obtained
by either applying the maximum principle for parabolic equations or the pointwise
bounds for solutions established by Sigillito in [14]. Thus the problem we are
considering will be solved if we can construct a function w(x, t) defined in R and
satisfying (2.6), and we now turn our attention to this problem.

From the existence theorem for the first initial-boundary value problem for
parabolic equations, the maximum principle for parabolic equations and the
Weierstrass approximation theorem, it is seen that there exists a solution w(x, t)
of (2.4) in D satisfying analytic boundary data on x Sl(t), x Sz(t and 0
such that (2.6) is valid. From the reflection principle for parabolic equations
([3], [4]) (and the regularity theorems for solutions to initial-boundary value
problems for parabolic equationsmc.f. [8]) we can conclude that w(x, t) can be
uniquely continued as a solution of (2.4) across the arc sl(t) into the region bounded
by the characteristics to, 0, and the analytic curves x 2sl(t)- Sz(t),
x sz(t). Applying the reflection principle a second time, but this time continuing
w(x, t) across the arc Sz(t), shows that w(x, t) can be continued into the region
bounded by to, 0, x 2s(t) s2(t and x 3Sz(t 2sx(t). Due to the
fact that s(t) < s2(t for 0 __< <__ to, it is seen that by repeating the above procedure
we can continue w(x, t) into the entire infinite strip -oo < x < c, 0 =< __< to.
In particular, there exists a rectangle R = D into which w(x, t) can be continued
and we have thus established the existence of the desired function w(x, t).

We now make use of the above results to construct a complete family of
solutions to (1.2) without first reducing it to the canonical form (2.4). This is
desirable from a computational point of view in order to eliminate the problem
of inverting the transformation (2.2). From the above analysis and the fact that
P(s,x,t) is analytic for -oo < s < oo, -oo < x < oo, 0 =< =< to (cf. [3]) it is
seen from equations (2.2)-(2.3) and (2.7)-(2.8) that every classical solution of (1.2)
in D can be approximated arbitrarily closely in the maximum norm over D by
a solution of(1.2) which is an analytic function ofx and in the strip
0 __< =< to. Hence from the results of [2] we have that a complete family of
solutions to (1.2) with respect to the maximum norm over D is given by

(2.14)

where

u2,(x, t) - exp - a(s, t) ds
,-el=

U2n + I(X, t) exp - a(s, t) ds
,-l=a

Et)(x, t, z)z" dr,

E(2)(x, t, r)r" dz,

n =0,1,2,...

(2.15)
E{)(x t,z)= + x"p’"(x, t, ),

n=2

-+- E xnP(Z’n)(X’ t,
t--T n=3
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with

p(’l O,

p(1,2) c(x, t)
2(t- r)2

q(x, t)
2(t- "c)’

(2.16a) p(1,k+2)
k+2

-(k + 2)(k + ’1)
[pk’ + q(x, t)p c(x, t)p"k],

p(2,2) 0,

p(2,3) C(X, t)
6(t- z)2

q(x, t)
6(t- z)’

(2.16b) 2
p(2,k + 2) 2PtxZ,k + 1)

k+

(k+2)(k+ 1)
[px’k)+ q(x, t)p(’k) C(X, t)p}2’k)],

and

k>_l,

k>2,

(2.17) q(x, t) b(x, t) 1/2 a,(x, t) + a2(x, t) c(x, t) a,(s, t) ds

The convergence of the series (2.15) for - z and estimates on the rate of this
convergence can be found in [2]. An approximation of the solution u,(x, t) can be
obtained by truncating the series (2.15) and computing the residue in (2.14).

3. Complete families of solutions for parabolic equations in two space variables.
In this section we will show how the methods developed in [5] and the previous
section of this paper can be extended to include the case of the parabolic equation
in two space variables

(3.1) Uxx + urr + c(x, y)u d(x, y)u,

defined in a cylindrical domain f x T, where T [0, to] and f is a bounded
simply connected domain whose boundary Of is three times continuously
differentiable. We will assume for the sake of simplicity that c(x, y) and d(x, y)
are entire functions of their independent (complex) variables and that furthermore
c(x, y) <= O, d(x, y) > 0, for (x, y)

Let u(x, y, t) be a (classical) solution of (3.1) which continuously assumes
prescribed initial-boundary data on t?f x T and fo {(x, y, t):(x, y)e,t 0}.
From the maximum principle for parabolic equations and the Weierstrass approx-
imation theorem, we can assume, without loss of generality, that the boundary
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data assumed by u(x, y, t) on 0f T is a polynomial in t, i.e.,
N

(3.2) u(x, y, t) f(x, y)t, (x, y, t)e cf T,
n=O

where the f(x, y) are H61der continuous functions defined on Of. We now look
for a solution of (3.1) in the form

(3.3) w(x, y, t) w,(x, y)t"
n=O

such that w(x, y, t) u(x, y, t) for (x, y, t) e cf x T. From (3.1) and (3.2) it is seen
that the functions wn(x, y) must satisfy the recursive scheme

O2WN (2WN+ + c(x,y)w 0
c3y2

(3.4)
w(x, y) f(x, y),

(2W
+ + c(x, y)w. ( + !)el(x, y)w.+,

(x, y) e ,
(x, y) e c3f,

(x, y) e f,

wn(x y) f,(x, y), (x, y) e cf,

for n 0, 1, ..., N 1. The existence of the wn(x, y) for n 0, 1, -.-, N follows
from the smoothness of cOf and the fact that c(x, y) <= 0 in f. From the results of
Vekua ([15, p. 156, p. 19]) and the fact that wn(x, y) depends continuously on the
nonhomogeneous term (n + 1)d(x, y)wn+ l(x, y), we can conclude that for e > 0
there exists a solution w(x, y, t) of(3.1) which is an entire function ofits independent
(complex) variables such that

(3.5) max ]w(x, y, t) w(x, y, t)l < e/2.
xT

Now let v(x, y, t) u(x, y, t) w(x, y, t) and let 2n and qgn(x, y) be the eigenvalues
and eigenfunctions, respectively, that correspond to the eigenvalue problem

ux + ury + c(x, y)u + 2 d(x, y)u O, (x, y)e ,
(3.6)

u(x, y) O, (x, y)e cf.

From (3.2)-(3.4) and the expansion theorem for the eigenvalue problem (3.6)
(c.f. [10, p. 229]) we can conclude that

v(x, y, t) anqgn(x, y)exp (-2nt),
n=O

(3.7)

jj. v(x, y, y)d(x, y)dx dy,an

where the series in (3.7) converges absolutely and uniformly in f T. By truncating
the series in (3.7) and again appealing to the results of Vekua, we can conclude
that there exists a solution w2(x, y, t) of (3.1) which is an entire function of its
independent (complex) variables such that

(3.8) max Iw2(x, y, t) v(x, y, t)[ < e/2.
flxT
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The inequalities (3.5) and (3.8) now imply that there exists a solution (x, y, t) of
(3.1) which is an entire function of its independent complex variables such that

(3.9) max IX(x, y, t) u(x, y, t)l < e.
flxT

The above analysis shows that in order to approximate classical solutions
of (3.1) with respect to the maximum norm over f* T, it suffices to construct
a family of solutions which are complete in the maximum norm over T with
respect to the class of solutions to (3.1) which are entire functions of their inde-
pendent complex variables. From the results of [6] it is seen that such a complete
family of solutions is given by

Ez , f ]u2.,.,(x, y, t) Re -/ ,-.l=a
E(z, , z, s)z"(1 $2)n-(1/2) ds dg

(3.10)

u+ ,,.(x, y, t) Im ---/ t- fi ]E(Z, , 75, S)75m(1 $2)n-(1/2) ds d75

n,m= 0, 1,2,--.

where "Re" denotes "take the real part", "Im" denotes "take the imaginary
part", z x + iy, x- iy, and , os2nz

z*

(3.11) E(z, z*, t, s) - + Pt2")(z, *, t) d(*
=1

with

2C(z, z*) 2D(z, z*)p(2)
2

(3.12)

(2n + 1)P(2"+2) -2 p(Zn) _+_ C(z z*) p(2n) d(* D(z z*) p(an) d(*

n>_l,

and

(3.13)
(z -+- z*. z- z*

C(z, z*) - c
2 2i

D(z, z*) 7d
z q- z* z- z*

2 2i

Estimates on the rate of convergence of the series (3.11) can be found in [6], and
approximations of the solution u,,m(x, y, t) can be obtained by truncating the
series (3.11) and computing the residue in (3.10). In particular, for the special case
of the heat equation (c 0, d 1), we have

(3.14) E(z,2 -’c, s)
(- 1)kF(1/2)/ r2S2 k

t- r-( 7 7 it" 75/
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where r2 z X2 -- y2, and using the result

j- r(n + 1/2)r(k + 1/2)
(3.15) (1 $2)n-(1/2)S2kds

r(n + k + 1)-1

we have

r(1/2)r(m + 1)r(n + 1/2) r2 +.t,_bl2n,m(X y, t)--" COS nO
,=o r(k + 1)F(m- k + 1)r(n + k + 1)

(3.16) o r(1/2)r(m + 1)r(n + 1/2) rZk+ntm_ kUz.+,m(X,y,t)=sinn0
F(k+ 1)F(m-k+ 1)F(n+k+ 1)

where x r cos 0, y r sin 0. Noting that since in this special case u,(x, y, t) is
a polynomial in x, y and t, it follows from the results of 2 and the uniqueness
theorem for Cauchy’s problem for the heat equation that another complete
family of solutions for the heat equation defined in x T is given by

(3.17) v,,,(x, y, t) h,(x, t)hm(Y, t)

for n, m 0, 1, 2, ..., where h,(x, t) is defined in (2.7).

4. A numerical example. In this section we given an example of the use of the
methods discussed in [5] and this paper to approximate the solution of the initial-
boundary value problem

(4.1) Ux-XzU=ut, -1 <x< 1, 0<t< 1,

u(-1, t)= exp(-- t), u(1, t)= exp(- t), 0 N N 1,
(4.2)

u(x, 0)= exp (-x2), -1 N x N 1.

Initial-boundary value problems for (4.1) defined in a domain with moving
boundary can of course be treated in an identical manner. A complete family of
solutions for (4.1) was constructed by using the operator (2.8). Since the coefficients
of (4.1) are independent of t, so is P(s, x, t), i.e., P(s, x, t) P(s, x). As an approx-
imation to the kernel P(s, x)we usedPo(S, x) as defined by (2.10). A short calculation
using (2.10) shows that

(4.3) max IP(s, x) Pro(S, x)l N 1.6 x 10-2.
-1NxN1
1NsN1

The set {u,(x, t)} obtained from (2.8) was then orthonormalized over the base and
vertical sides of the rectangle x 1, 0 N 1, to obtain the set {O,(x, t)}
and the solution to the initial-boundary value problem (4.1), (4.2) was approximated
by the sum

14

(4.4) u*(x, t) a,o,(x, t)
n=0

with the coefficients a,, n 0, 1,..., 14, given by (2.13). Note that since the
solution of the initial-boundary value problem (4.1), (4.2) is an even function of x,
the odd coecients a, a3, ..., a3 in (4.4) all turn out to be identically zero.
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(4.5)

The exact solution of the initial-boundary value problem (4.1), (4.2) is

u(x, t) exp (-1/2x2 t).

In Table 1 we give the values of u*(x, t) at selected grid points and also the relative
error defined by

(4.6) relative error
u*(x, t) u(x, t)

u(x, t)

TABLE

Approximate
solution

Relative

0 0.6 0.54881 -1.1541 10 -9

0.2 0.6 0.53794 -8.6797 x 10-1

0.4 0.6 0.50662 3.4421 x 10- lo

0.6 0.6 0.45841 3.6095 10 -9

0.8 0.6 0.39852 1.0898 10 -8

1.0 0.6 0.33287 2.4115 10-8

0 0.8 0.44933 2.7676 10 -9

0.2 0.8 0.44043 2.5721 10-9

0.4 0.8 0.41478 1.5339 10-9

0.6 0.8 0.37531 -1.8415 10 -9

0.8 0.8 0.32628 1.0323 10-8
1.0 0.8 0.27253 -2.7649 10 -8

0 1.0 0.36788 7.3333 x 10-11
0.2 1.0 0.36059 4.9411 10- lo

0.4 1.0 0.33960 2.3005 10 -9

0.6 1.0 0.30728 4.1011 10 -9

0.8 1.0 0.26714 -5.4443 10 -9

1.0 1.0 0.22313 8.4473 x 10-

0 0.4 0.67032 2.2209 10-9

0.2 0.4 0.65705 1.7415 10 -9

0.4 0.4 0.61878 3.2910 x 10-1
0.6 0.4 0.55990 -3.6697 10-9

0.8 0.4 0.48675 1.0332 10-8

1.0 0.4 0.40657 2.0325 10-

0 0.2 0.81873 4.0571 x 10-l

0.2 0.2 0.80252 9.3730 10- lo

0.4 0.2 0.75578 2.7202 10-9

0.6 0.2 0.68386 6.1830 10 -9

0.8 0.2 0.59452 1.1356 10-8

1.0 0.2 0.49659 1.5536 x 10-8

0 0 1.00000 -6.9580 10-9

0.2 0 0.98020 -3.3762 x 10 -9

0.4 0 0.92312 4.2696 10-9

0.6 0 0.83527 8.0803 10-9

0.8 0 0.72615 -4.3613 10-1

1.0 0 0.60653 -2.2466 10 -8
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Since u(x, t) and u*(x, t) are even functions of x, values of the approximate solution
and relative error are only given for 0 =< x __< 1, 0 _<_ =< 1. Note that since each
q,(x, t) is a solution of (4.1), the maximum error (in absolute value) occurs on the
base or vertical sides of the rectangle __< x =< 1, 0 _< =< 1; in this case at the
points (x, t) (_+ 1, 1), where the relative error is 8.4473 x 10- in absolute value.

The computation time to construct u*(x, t) (i.e., to find the coefficients a,,
the Taylor coefficients of qg,(x, t), and to evaluate u*(x, t) at selected grid points)
using the CDC 6600 computer was approximately six seconds.

5. Concluding remarks. The main problem in constructing a complete family
of solutions through the use of integral operators as discussed in this paper, is to
show that every classical solution in a given domain can be approximated with
respect to the maximum norm over the closure of the domain by a solution of the
parabolic equation that is an entire function of its independent complex variables.
In the case of both one and two space variables, this was established through the
use of results on the (global) analytic continuation of solutions to partial differen-
tial equations, in particular, the reflection principle for parabolic equations in
one space variable ([3], [4]) and the results ofVekua which are based on knowledge
of the domain of regularity in the complex domain of solutions to elliptic equations
in two independent variables (cf. [15, p. 32]). What has been established is the
analogue of Runge’s theorem in analytic function theory for classical solutions to
parabolic equations in one and two space variables. In order to extend our results
to parabolic equations in two space variables defined in domains with moving
boundaries and to parabolic equations in more than two space variables, it is
necessary to obtain sharper results on the analytic continuation (with respect to
the space variables) of classical solutions to parabolic equations with analytic
coefficients in several independent variables. This is a difficult problem and only
partial results have been obtained so far. One notable result in this direction is
the reflection principle obtained by C. D. Hill for analytic solutions of parabolic
equations in two space variables ([12]). It is to be hoped that more refined results
in this direction will be forthcoming in the not too distant future.
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A SET OF RATIONAL FUNCTIONS
RELATED TO THE EULER-FROBENIUS POLYNOMIALS*

GEORGE M. MULLERf

Abstract. The asymptotic behavior of the fundamental cardinal spline (Schoenberg’s terminology)
of odd degree n is governed by that particular root of the Euler-Frobenius polynomial FI. which lies
inside of and nearest to the unit circle. Rigorous bounds for this dominant root and an asymptotic
formula for the remaining roots are given. These results are based on the partial fraction expansion of
q,,(- e’W), where q,(z) zl-I,(z)(1 z) 1. Various other properties of the functions qn are discussed,
as is their use in the representation of the fundamental cardinal splines of odd degree.

1. Introduction. Consider the Euler-Frobenius polynomials FI, (Schoenberg
[4, p. 22]), defined by their generating function

z- 1-im(Z
(1)

z e (Z 1) mI""-0

The following facts about these polynomials are well known. For n >= 1, 1-I. is
a monic polynomial of degree n- 1, whose roots (for n __> 2) are simple and
negative; if 2 is a root, so is 1/2. For odd n >= 3, i.e., for n 2m 1, m >__ 2, the
roots, 2tkEra- x), may be ordered

(2) )(2m 1)"2m](Zm--21) < ( "’m)(Zm- 1) < < - < < /(12m 1) < 0,

where (2m 1/(2mm+ -1 /m
We call 2tm2_m 1) the dominant root of 1-12,._ for the following reason. For

each integer m > 2, let L2" " be the fundamental cardinal spline (Schoen-
berg [4, p. 35]) of degree 2m 1. (We recall here that L2" is uniquely determined
by the requirements (i) L2"_ C2"- 2(E); (ii) Vk 7/, the restriction of L2"_
to [k, k + 1] is a polynomial of degree at most 2m- 1; (iii) Vk 7/, L2m_x(k

6k0 (iv) L2m_ is bounded.) If we define 2m- > 0 by

)(2,. 1) -2m-(3) "’m-- --e

then there exists a constant Aa" > 0 such that

IL2m (x)l < A2" e -az"-llxl x "
and no such constant exists if am-x is replaced by any larger positive number.
The preceding statement follows, for example, from Nilson’s explicit representation
[3, p. 448] of L2" , there denoted by A(0); see also equations (42), (43) and (44)
of this paper.

We shall establish a fairly precise result concerning the dominant root.
THEOREM 1. Let rn be an integer >_ 2. Then there exists a positive number ]m,

(4) 1 < r/,. < 1 + 3 -2",

* Received by the editors December 3, 1974, and in revised form February 5, 1975.

" Poulter Laboratory, Stanford Research Institute, Menlo Park, California 94025.
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such that the dominant root of HEm-1 is given by

(5) (2m 1) wm 7m
--m-i- --e- Wm=tan.4m

We shall prove this theorem in 2. The proof will depend on properties of
certain rational functions q, that are closely related to the Euler-Frobenius
polynomials. In 3 we shall consider some additional properties of these functions
and use them in constructing a representation of L2m_ equivalent to Nilson’s.

Before turning to the proof, we note that the theorem implies

2- tan /4m, m ,
where em- is defined in (3). This relation is, in fact, the special case of the
following asymptotic formula" for fixed l, -m + 2 N N m 1,

(2/- 1)(6) log (2m- 1)) n tan m"m- 2m- 1,t am
This formula is suggested by our proof of Theorem 1; heuristically it results
from keeping only the k 0 term in the series expansion (20). The method of
proof ofTheorem 1 can easily be extended to yield the rather weak assertion made
by (6); however, I have not yet succeeded in establishing error bounds comparable
to those contained in Theorem for 1.

A comparison with the exact values of the roots gives an indication of the
remarkable accuracy of formula (6). Table 1 shows the error made in using (6)

(m-}. Table 2 gives the relative error in calculatingas an approximation to "m-

e:_ ,. (Exact values of the roots were taken from Schoenberg and Silliman [5].

Th
[{2- (approximate) {2- (exact)] x 10m- "m-

/=1 /=2 /=3 /=4 /=5 /=6

2 -423,119
3 -38,618 -11,763
4 3,365 565
5 322 -40
6 -31 -3
7 3 0

6,909
869 2,111
77 61
6 -5

228
116 104

2m-l,l

TABLE 2

n(2/- 1)
tan

4m
-1

I=1 1=2 1=3 1=4 1=5 1=6

-1.2E 2
1.1E 3
1.0E 4
1.1E 5
1.1E 6
1.2E 7

-8.8E 4
2.5E 5

-1.2E 6
-8.5E 8
O(E 9)

1.6E- 3
6.4E- 5
3.6E 6
2.2E 7

1.6E- 3
8.9E 6

-3.7E 7 9.2E 4
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Because of the symmetry of the roots, the range of in the tables is =< m
E integer 10 -integer in Table 2.)

by
2. Proof of Theorem 1. Define the sequence {q,} ofcomplex rational functions

(7) q,,(z)= z
z

n=0,1,2

Hille [2, p. 47] has shown that

(8) q,,(z)
P.(z)

(1 z)"+ ’
where P, is a monic polynomial of degree n, with P,(0) 0 for n >_ 1. Except for
an additional factor z, the Hille polynomials, as they have come to be known in
spline theory [1, p. 134], [3], are identical with the Euler-Frobenius polynomials
rI,. (This follows from a comparison of(8) with (11), below.) Our proofofTheorem
depends on proving a corresponding result for q2m-1. We shall proceed by a
series of lemmas, the first of which exhibits a generating function for the q’s.

LEMMA 1. For any complex z v 1, the functions q, defined by (7) satisfy

Z q,,,(z)--(9) ze’ m=0 m!’

the series having a positive radius of convergence.
Proof. Let A = C be open and let F :A C be regular. Then for any fixed z,

z C such that ze A, F(ze) is clearly an analytic function of in some disk

It zl < q, q > 0. Moreover, an easy induction on n shows

z F(ze) f(ze)l=, n O, 1,2,...,

so that

F(zet) z F(ze) It-vl<r/.
m--O rn!

With F defined by F() (1 ()-1, and r 0, z 1, we obtain (9).
With the aid of (9), the relation of the q’s to the Euler-Frobenius polynomials

becomes readily apparent. Writing (1) in the form

z- rI(z)
z_e

,=1+ (z_ 1)m--5’m=l

multiplying this equation by z(z- 1)-1, and replacing by -t, yields, after a
slight rearrangement,

zl-Im(Z tm
+ (l-z)m+ "(10) ze’ z =x m.
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Comparing (10) with (9), we find the required relation,

zrI.(z)(11) q,(z)
(1 z)"+1’

n 1,2,3, ....
This result is hardly new, although I have been unable to find a specific

literature reference. Equation (11) could be obtained very simply by comparing the
known power series representations [4, p. 22]

1-I.(z)
(1 z)"+ ’= E (J + 1)"zJ, Izl < 1,

j=O

and [2, p. 49]

q,(z) j"zi, Izl < 1;

however, the generating function appearing in (9) and (10) is of intrinsic interest
and will be used extensively in 3. (Electrical engineers, by the way, will recognize
q,(1/z) as the Z-transform of the function x".)

Our next result follows directly from the definition (7); we omit the obvious
proof.

LEMMA 2. Let A c C be open, let w A, and let f A C be regular, with

f(w) :/: 1, f’(w) : O. Then

(12) q,(f(w))

f(w) d)"f’(w) w f(w)’ n >_ O,

flw) d ,-1 f(w)
(1 f(w))2’

n_>l.

We now use (12) and the well-known expansion

(13)
sin2nz zt2 (k + z)2’

zq7/,
k=

to obtain an analogous expansion for q.(-eW).
LEMMA 3. Let A C be compact and not contain any point of theform (2k + 1)i,

k 7. Then for each n >= 1,

(14) q,(-ew)
k=_oo (1 q- 2k- iw)"+1

or, equivalently,

(15) q,(--ew) n!
k=O (1 + 2k iw)"+l

(_1).+

(1 + 2k + iw)"+1

the series converging uniformly for w A.
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Proof. Set f(w)=-ew. Then (f(w)/f’(w))d/dw rc -1 d/dw and f(w)
(1 f(w)) -2 -eW(1 + eW)-2 -(4cosh2 (rw/2)) -1. Now cosh2 (rtw/2)
cos2 (irw/2) sin2 re(1/2 iw/2). Hence (13) gives us

f(w)
2., (1/2 + k (iw/2))2(1 f(w))2 42 k=-oo

rc2 (1 +2k-iw)2’
k-"

and (12) takes the form

d"-
q( e) / dw-1 (1 4-2k iw)2"k=

Clearly the series and its term-by-term derivatives converge uniformly for w A;
term-by-term differentiation is valid and establishes (14); and the equivalence of
(14) and (15) is trivial.

The last lemma of this section contains the essence of Theorem 1.
LEMMA 4. For each integer rn >= 2 there exists a positive number Win,

(16) Wm= tan rCrlm/4m < r/m < + 31 2m,

such that q2m_l(--e +w") 0 and q2m_l(--ew) =fi O for W(--Wm, Wm).
For the proof of this lemma, we shall require three simple inequalities"

(17) 0 => sin 0 20/rc, 0 <= 0 <= n/2,

(18) (1 + 2k)-" < 31-"/2, n __> 4,
k=l

(19) (1 n-Z)" > 1/2, n _>_ 2.

The first of these is standard; the second follows readily from

20 f dx 31-"
(1 +2k)"

<
(1 +2x)"-2(n- 1)

To prove (19) we note that, for < x < 1,

(1 x2)1/’ exp (x- log (1 x2)) exp

Hence, for 0 < x <__ 1/2,

2 k-lx2k-1
k=l

(1 x2)1Ix >- (1 > 1/2,

and setting x n- establishes (19).
Proof of Lemma 4. From Lemma 3 it follows that qzm-l(--ertW), regarded as

a function of w, is real and analytic on . Let w e JR, and let m be an integer >= 2.
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From (15) we find

(__ 2)m
Fro(w)

2(2m 1)!
q2m- a(- e’’)

_1 (1 + 2k + iw)2m + (1 / 2k iw)TM

-o (( + k) + w)TM

Z’o= (1 / 2k)2m (1 / w2/(1 -F 2k)2)

1 + 2k + iw 2m

x//(l + 2k)2 + w2

+ 2k- iw

x//(1 + 2k)2 + W2

We define, for k 0, 1, 2,.-., functions Ok’ (--n/2, n/2) by

Ok(W) tan-
l+2k’

the principal value of tan- being understood. In terms of these,

(20) Fro(w) o (1 / 2k)TM
COS2m ok COS 2mOk,

where we have written 0k for Ok(W). Since 0k(0) 0, all k, and 10(w)l < 10o(W)l for
k 1, 2, 3, and w 4: 0, it is easy to see that Fro(w) is strictly positive for 12m0ol
=< r/2, i.e., for lwl =< tan (r/(4m)) a We show now that Fro(w) is strictly negative
for 2mOo (1 + 3 2m)71:/2, i.e., for w tan ((1 / 3 2m)rc/(4m)) = bm. Using
inequalities (17) and (19), we have

cosTM 0o (1 sin2 0o) > (1 0)

1-- 4

> (,1 m-2)m>1/2
and

cos 2mOo sin (3 2,,zr/2 =< 3 2m.

Hence the k 0 term < --3X-Zm/2; together with (18), this implies that Fm(b,,)
is negative. The function Fro, being real and analytic on [am, b,,], must, therefore,
have at least one and at most a finite number of zeros in (am, bin). Since Fro(w)

Fro(-w), the smallest of these zeros, Win, has the properties asserted by the
lemma.

The transformation z -e maps the interval [-win, Wm] one-to-one onto
the interval [-e’w’’, -e-’w"]. Hence it follows from Lemma 4 that qzm_(Z)
has no zeros in the interior of this interval. Since by (11), H, and q, have the same
zeros in C\{0,1}, we clearly must have--see (2)---that 2m2"-1)=--ew’,
/(2m- wm,-x -e and Theorem 1 is proved.



954 GEORGE M. MULLER

3. Some further remarks about the functions q.. In the notation of this paper,
the exponential Euler polynomial A,(.; z) of Schoenberg [4, p. 213 may be
represented in the form

with the aid of (21) below, this can be written more succinctly as

The exponential Euler polynomials are the basic building blocks of the exponen-
tial Euler splines and eigensplines; they are also, although somewhat disguised,
the ingredients used by Nilson [3] in his construction of the fundamental cardinal
spline. Consequently, the functions q. are of interest in their own right, and it is
this interest that provides the motivation for the present section. We note,
incidentally, that (7) leads to an analogous operational definition ofthe exponential
Euler polynomials,

A.(x;z-a)=(1 -z x +z
1 z"

The statements about the roots of the Euler-Frobenius polynomials II.
given at the beginning of are usually derived from the recursion relation
[4, p. 22]

I-I, + x(z) (1 + nz)II,(z) + z(z 1)rI’,(z), 1-I0(z 1,

and the symmetry of the coefficients of the H’s. Corresponding statements about
the functions q, may be obtained directly from Lemmas 1 and 2, without reference
to properties of the Euler-Frobenius or Hille polynomials.

First we apply the expansion (9) to both sides of the identity

to find

Hence

(21)

1
1 zd 1 z-le -t + 1, zetO, 1,

E qm(Z)----1- Z (--1)mqm z 4= 0
m-O ,.--0 m!

qo(1/z) qo(z),

q,(1/z) (- 1)"+ Xq,(z), n>l;

regarded as identities between rational functions, these relations are valid without
the restriction z - 0, 1.

Next, letting f(w) w(w + 1)-a in (12) yields

(22) q" W+ ww (w+ 1).
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Therefore, if we define a sequence of polynomials { G,} by

(23) G.+a(w) w(w + 1)G,(w), Go(w) + w,

then q,(w(w + 1) -1) G,(w). Since the transformation z w(w + 1) -1, with
inverse w z(1 z)-1, maps the extended complex plane onto itself one-to-one,
we have, equivalently,

(24) q,(z) G, i
an alternative form of this equation is obtained by substituting 1/z for z and using
(21)"

(25) q,(z) 1)"+IG" i|/ n>_l.

We shall need the following properties of the polynomials G,.
LEMMA 5. (i) The polynomials G. defined by (23) are of the form

(26) G,(w) w + + n!w"+1 n >

(ii) For n > 1, G, has simple roots at -1 and O, and n simple roots in

(-1,0).
Proof. The inductive proof of (i) is trivial. Suppose that (ii) is true for a

particular n. By Rolle’s theorem, the polynomial G’, has at least n distinct roots in
(- 1, 0). By (23), G,+ has the same n roots, plus those at 1 and 0. Since G,+
is of degree n + 2, all these roots are simple, and there are no others; (ii) is thus
also true for n + 1. The inductive proof is completed by noting that (ii) is true
forn= 1.

(We note, in passing, that the polynomials G, are interesting in a variety of
ways. For example, let us recall that the "differences of zero" AJ0 of the finite
difference calculus [1, pp. 124-125] satisfy A101 and

A10m+ A10m; Am+ 10m+ (m + 1)Am0m;

AJ0m+l j(AJO -t- Aj- 10m), j 2,3, ..., m,

for all positive integers m. From this recursion relation, we easily verify that (23)
implies

Gm(w (w + 1) AJOmwm-j, m 1;
j=l

using this expression in conjunction with (11) and (25) yields the expansion of
Flm(z about z 1:

I-Im(Z) A0m(z- 1)m-, m >= 1.)
j=l

We can now prove the following.
THEOREM 2. The only zeros of q,, n >_ 1, in the extended complex plane are

simple zeros at 0 and , and n simple zeros in (- , 0). If 2 is a zero, so is 1/2.
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Proof. As noted earlier, the transformation w z(1- z) -1 maps the
extended complex plane onto itself one-to-one; in particular, [-oe, 0] is mapped
onto [-1, 0]. From Lemma 5 and (24) it follows then that the only zeros of q,
are at 0, at oe, and at n distinct points in (-oe, 0). Since dw/dz (1 z)-2,
the mapping z w is conformal except at z 1 and z oe. Hence simplicity of
the roots of G, implies simplicity of the finite zeros of q,; the simplicity of the
zero at oe follows from (21), as does the last statement of the theorem.

Various identities satisfied by the q’s follow from corresponding identities
satisfied by their generating function. We have already seen one application of
this method in the derivation of (21); we sketch here some further examples.

Denote the generating function by :

(27) (z, t)

From the identity

zet"

(z, t) ze’(z, t) +
we find, using (9) and comparing coefficients of the representation of the two sides
in powers of t,

(28) q.(z)= z
m=0 m) qm(Z)’ n >_ 1;

solving (28) for q,(z) gives the recursion relation

qm(Z), n >= 1.(29) q,(z)
z m=0

(We note here that (28) is equivalent to a recursion relation derived from (1) by
Schoenberg [4, p. 23] in the same way.)

The identity

z(z, t) eta(z, t) e’

leads similarly to

(30) q(z) 1)+x t (2) t(--1) qm(Z)-- n >_ 1,
zc=o

which could also be obtained by substituting 1/z for z in (29) and using (21).
Forming appropriate linear combinations of (29) and (30), we have

Olt q(z)
( z) -o 2j

q(z) m l,

and

(32)
z {if/2m + (Z)

(1 z)2
2

i=0 2j +
q2j+(Z) + re>l,
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which may be combined in a single formula,

Z [n]2] n
)" }j 2 qn_zj+ (--1(33) q,,(z)

(1 zj[ n 2j

Finally, the identity

xff(x, t) y*(y, t) (x y)*(x, t)(y, t)

gives us

n>_2.

(34) Xqm(X) Yqm(Y)= (X y) o qj(x)q,,_(y), m >= 0;
j=

dividing (34) by x- y, letting y x, and recalling that Zq’m(Z)= q,./ (z), we
further find

(35) qm + 1(z) + qm(z) 0 qj(z)q (Z), m >= 0.
j=

We next prove a result of a rather different nature.
THEOREM 3. Let m, n be positive integers, with n > m. Then

(36) ,x qm(,n))
)n

=, q,+x(2,)) + --(-1

the sum being taken oer the n 1 zeros of q, (and hence of FI,) in (-, 0).
Proof. Consider the complex line integral

fc lfcqm(Z)
dz =- g(z) dzI

zq,,(z)

the contour C being a circle about the origin containing in its interior all poles
of g(z) in the finite z-plane. Using (25) and (26), we find

+... + m!(z- 1)
(37) g(z) (- 1)"-m-

z 1 +... +n!(z- 1)-"

similarly, (24) and (26) lead to

(38)
+ + m!zm(1 Z)

g(z)
z + +n!z"(1-

Equation (37) shows that g(z)= (-1)n-mz -x + O(Z -2) as z--+ oo, and hence
I (- 1)n-re. Now I equals the sum of the residues of g(z) at its poles. These can
only occur at z 1, at z 0, and at the zeros of qn(z) in (-oo, 0). Since n > m,
(37) shows that g(z) is regular at z 1. From (38) we see that g(z) has residue 1
at z 0. Finally, at z 2"), j 1,2,..., n- 1, q,(z) has simple zeros; the

(n) (n) (n)corresponding residues, therefore, are q,,(2j )/(2 q,(2 )) qm(2y’))/q,,+ (2)")), and
the theorem is proved.

The significance of the theorem stems from a corollary that follows readily
if one combines terms corresponding to mutually reciprocal zeros and uses (21).
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COROLLARY. Let m be an integer >_ 2. Then

ml q2/(2}2m- 1))
(39) k 2 m

:x qam(2am-i --1, ,.’., 1,

the sum in each case being taken over the zeros of qm- in (-- 1, 0).
Equation (39) can be used, in conjunction with Schoenberg’s results on

eigensplines [4, p. 26], to establish a computationally attractive representation
of the fundamental cardinal spline L, of odd degree n > 3. We merely state the
result;the rather simple proof, and an algorithm for evaluating expressions of
the form

_
u cmLn(x m), will be given in a later paper.

Let n be an odd integer >= 3. For all z C such that q,+ l(Z) - 0, we define
particular multiples of the exponential Euler polynomials A,,(x; z) and A,,(x" z- ),

p.+(x; z) -z
qo(z)

A,,(x" z)
qn+ 1(2

(40)

( (_l),q,,,,(Z)x, qo(z)
x"

,=o q.+l(Z) Zq../,(z)

q.+ a(Z)
(41)

/=o q. + (z) q;-+ -(z)
in terms of these, we further define the continuous function q,(. ;z)’N --, C by
setting, with k Ix],

f ?p.+(x k ;z), 0 <= <_ x <= + 1,
(42) (I).(x; z)

z-’p2(x k; z), k <_ x <= k + <= O.

In particular, we note the limiting form of (I).(x z) as z 0"

(43)

n-1 )Ixl xn,
o (7) (1 x)",

(I).(x;0)- (x+ 1)"

O,

0_<x<- 1,

-1 <_ x=<0,

Ixl > 1.

With these definitions we have

(n )/2

(44) L,,(x) (I).(x O) + (I).(x 2}")),
j=l

the sum being taken over the zeros of q. in (-1, 0). This representation of L.
is equivalent to Nilson’s [_3, p. 448] but considerably simpler in form. (Note that
in evaluating (44), we may omit the 0 terms in (40) and (41).)

By setting ).(o") 0 we can write (44) alternatively as

(n )/2

(45) L,,(x)
j=O
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the sum now being taken over all the zeros of q, inside the unit circle. We may,
therefore, think of the zero at the origin as contributing the inhomogeneous
component of L,, i.e., the only component which does not vanish at x O.
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APPELL’S FUNCTION F4 AS A DOUBLE AVERAGE*

B. C. CARLSON-

Abstract. A quadratic transformation of a double hypergeometric series of order two (Appell’s F4
with equal denominator parameters) into a series of order three revives longstanding doubts about the
accepted classification by order. Both series can be represented as double Dirichlet averages of x
Appell’s F4 with unrestricted parameters can be represented as such an average with two rows and
three columns. There are six cases in which a restriction on the parameters reduces the number of
columns to two.

1. Introduction. After Appell introduced his four hypergeometric series in
two variables, Horn approached the subject systematically in 1889, defining a
double hypergeometric series to be a series A(m, n)xmy such that A(m + 1, n)/
A(m, n) and A(m, n + 1)/A(m, n) are rational functions of m and n. The larger degree
of the two rational functions is the order of the series. Series of order one are
reducible to series in a single variable. The four Appell functions belong to a
class of 14 series which, together with their 20 confluent limits, exhaust the possible
series of order two. (See [10, 5.7] for more precise statements.) The analytic
continuation of Appell functions entails other series of order two, and hence
Appell functions, which have substantial importance in applied mathematics,
must be studied as part of a larger class. It would be gratifying if series of order
two formed a class sufficient unto itself, but in 1948, Erd61yi [9, p. 380] found an
equality (not explicitly recorded in his paper) connecting two series of second order
with a series of third order. He remarked, "This appears to be an indication of
the inadequacy of the classification of hypergeometric series of two variables
accepted at present". A quarter century later the same classification is still accepted
for lack of a better, and the author has found no reference to Erd61yi’s remark in
the subsequent literature. The matter is raised again by 2 of the present paper,
where Appell’s F4 with equal denominator parameters is transformed quadratically
into a double series of order three.

Thus it is not clear that the class of double hypergeometric series of order
two is the right object to study. A different approach to Appell functions was
suggested by the author [7], who discussed Appell’s F, F2, and F3 as double
Dirichlet averages of x, i.e., as special cases of the function

(1.1) t(b, Z, fl) f (u. Z. v) dt.tb(U dl.t(v),

where u is a k-tuple of positive weights, v a c-tuple of positive weights, and u. Z. v
uiZijvj. The Dirichlet measure/b has the form of a beta distribution in

k- variables, but in the present context the parameters b1,’", bk may be
complex with positive real parts. One component of b is associated with each row
(and one component of/3 with each column) of the k matrix Z with entries in

* Received by the editors November 1, 1974.

" Ames Laboratory-ERDA and Departments of Mathematics and Physics, Iowa State University,
Ames, Iowa 50010.
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the right-half complex plane. Permutation of rows or columns, along with their
corresponding parameters, does not change the value of t. The function is
plainly homogeneous of degree in the elements of Z.

Appell’s F2 is a double Dirichlet average with k 2 and Zll + Z22
Z12 -" Z21, which means that the entries ofZ are the vertices of a parallelogram

in the complex plane. Appell’s F has a representation with k 2, but also
it has more symmetrical representations with k 1, 3 (a single Dirichlet
average since k signifies no integration) and k 2, 3. The permutation
symmetry of replaces the linear transformations of F and F2. For F3 there are
representations with k 2, 3 and k 3. The double series of order
three encountered in 2 has a representation with k 2 and ZZl Z22
which means that the entries of Z are the vertices of a triangle.

When [7] was written it seemed unlikely that could represent the general
case of Appell’s F4,

()+.(/)+. ,/ /(1.2) F4(, fl;7, 6; x, y) E
o
E (-(6-,mii x"y", Ixl + lyl < 1.

m-’0

In 3, however, we shall give such a representation with k 2, tc 3. In 4 we
shall list six cases in which a restriction on the parameters of F permits a repre-
sentation with k 2. These latter formulas will be used in a subsequent paper
[12] on quadratic transformations of

2. Restricted F4 as a series of third order. The single Dirichlet average of x"
is the R-polynomial [4, (3.6)],

n! (p)m(tT)n_(2.1) R,,(p, x, y)
(p + tr),, m I(n m)

xmyn-re.
m--O

Elementary manipulations show that (1.2) can be written as

(),(fl),(7 + 6- + n),F(, fl 7, 6 x, y) R,(1 -6-n -7- n" x y)
.-o (7).().n!

(2.2)

The R-polynomial on the right side is a Jacobi polynomial which, if 7 6, admits
a quadratic transformation [6, (2.8)] for Gegenbauer polynomials,

(2.3) (2v).R.(v, v; , ,) (v).R.[1/2 v n, 1/2 v n;( + ,), ( ,)].
Replacing (x, y) by (x2, y2) in (2.2), we find

(2.4) F(, fl;7, 7; x2 y2) o ()"(fl)------" R,,7 1/2 7 1/2" (x + y)Z, (x y)2]
().n!

Substituting (2.1) and replacing n by m + n,

F(,/;, ;x y) y .Z ()+"(/)+"(7 1/2)(7 k)"(x + y)(x
=o (7)+,(27- 1)+,mn

(2.5)
In Horn’s classification, the left side is a series of second order, while the

right side is of third order. This suggests that the order of a double series is not
a very fundamental propery. Some caution is advisable, for the order of a hyper-
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geometric series in one variable appears significant even though certain series of
different order are connected by nonlinear transformations [5, (10), (11)]. These,
however, result from separating a series into even and odd terms, and they conse-
quently involve three series, not two as in (2.5). Erd6,1yi’s equality of 1948 involves
three series, but the variables are related by linear fractional transformations
rather than nonlinear. See the note added in proof.

The series of order three on the right side of (2.5) can be written as an -function. From [8, (3.4)] and (2.1) we find

(2.6) (la+la’),,,,(la, la’;W;v,v’)=(la),R,,(v,v’;,q), W=I0 r/0].
Thus the right side of (2.4) is

(2.7) (0""(fl’ 7 fl; W"7, 1/2, 7 1/2),
n=O

(x + y)
0

By [7, (6.3)] the sum of the series is

-(fl, 7 fl; W";y 1/2, y 1/2) W" [1 (x + y)2

(2.8)

(x y)2-].

A transformation of F4 with fl e + 1/2 into F2, due to Bailey [3], can be
proved in a different way using (2.2). Replacement of (x, y) by (x2, y2) and sub-
stitution of [8, (5.9)], with use of [7, (2.9)(iii)], gives

(2.9)

If fl a + 1/2, the coefficient of this series becomes (2a)2,/(2n)!. Since the corre-
sponding -polynomials of odd degree vanish [8, (5.8)], the series can be summed
by [7, (6.3)] to yield

2(7-1/2 7-1/2"X"6 X,=[1-x-y-3’6-1/2)’
+x-y +x+(2.10)

This is an F2 since the entries of X’ are the vertices of a parallelogram.

3. Unrestricted F4 in terms of. Burchnall and Chaundy’s representation of
F, [10, Eq. 5.8.1(4)] is

(3.1)

The first listing on p. 242 of [10, vol. 1] should read fl 0 + 1/2 instead of y + ?’ + 1.
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where ReT>Refl>0, Ref>Re>0, and

F(p + a)
u’- 1(1 u) du(3.2) d#(,.)(u) r(p)r(

The double integral provides the analytic continuation of the F-series to the
region defined by Rex < 1, Rey < 1, and Re(x + y) < 1. By [11, (T.1)] the
integral with respect to v is

ux vy)+a-’-a- d(,_,)(v)+a--6(1

(1 ux) ---3.3
1-ux-y

R_ T+6-- 1,1 ++fl-7-f,f-fl;1-y, ,1
UX

The power of ux in the integrand of (3.1) combines with the.power on the
right side of (3.3) to leave (1 ux) -, and even this can be removed by using the
homogeneity of R_,. Thus the right side of (3.1) equals

(3.4)
R_[7 + b a 1,1 + a + fl- 7 b,b fl

(1 y)(1 ux), ux- y, ux] dl(t,r_a)(u).
By [7, (2.8)] we find the desired result,

FEa,//;7, 6;x(1 y), y(1 x)]

_,(fl, , fl Z 7 + 6 1,1 + + fl 7 f, f fl),

(3.5)
Z= I(1- x)(1-

y

1- x

y

1-

Since a vanishing column parameter can be omitted [7, p. 422] along with the
corresponding column of Z, inspection of (3.5) yields three cases in which ene
restriction on the parameters (y + 6 + 1, y + 6 + fl + 1, or 6 fl)
allows F4 to be written in terms of with k x 2. These three are respectively
equivalent to known transformations of F4 into F2, a product of 2Fl-series, or
F [2, pp. 81, 102]. The case 7 fl has a vanishing row parameter but leads only
to a different representation of F It is not essentially distinct from 6 fl because
(1.2) is unchanged by interchanging 7 with 6 and x with y.

Because of the peculiar arguments on the left sides of (3.1) and (3.5) it is
sometimes convenient to put

x sin2
0 + cp

2

(3.6) x(1- Y)=
sin O + sin

(1- x)(1- Y)=
cs O + cs

, Y= sin20- cp
2

y(1 x)
sin 0 sin q9

2

2

x y cos 0cos q.
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4. Restricted F4 in terms of. For convenient reference we list the six cases
in which F4 with a single restriction on the parameters is an 9-function with
k==2. The six restrictions are ),+6=0+fl+ 1, 6=fl, 7+=+ 1,
fl + {, fl + 1, 7 6, and the respective -functions are expressible
as a product of 2F-series, F, F2, F2, F2, and a series of third order. The first three
come from (3.5), the fourth from (2.9) and (2.10), the fifth from [1, p. 27], and the
sixth from (2.7) and (2.8).

F, fl;7, + + fl 7;x(1 y), y(1 x)]

_(, ;x ;, +. )

R_(fl, 7 fl;1 x, 1)R_(fl, + 7;1 y, 1),
(4.1)

X [(1- x)(1- y) 1- x].1-y

F[u, fl;, fl;x(1 y), y(1 x)]

_(B.- ;x; +.- .B- 1-. + ).
(4.2)

x2= [1- x- y (1- x)(1-
y 1- y

F.[., ;, +. ;x(1 y), y(
_.(,- ;X;,l +.- - ),

(4.3)

-,-,
(4.4)

x=[;-x-Y 1-x+;+x-y l+x+

(..fl;..- fl + 1;x y= (fl - fl.x;.- fl + .- fl + )
(4.5 x

( + ( y
F,(, ; , ; x, _(, ; x; , ,

(4.6

X6= [1 (x + Y)2 (x-Y)2Jl
The factorization in (4.1) follows from [7, (6.5)]. These formulas will be used in a
subsequent paper [12] on quadratic transformations of.

Note added in proof Reference [133 contains a linear transformation con-
necting one double series of order two with one series of order three.
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THE EVALUATION OF CERTAIN CLASSES OF
NONABSOLUTELY CONVERGENT DOUBLE SERIES*

BRUCE C. BERNDTf

Abstract. Certain classes of nonabsolutely convergent double series are evaluated in closed form.
Their values are expressible in terms of various types of Dedekind sums. In many cases, it is shown
that the inversion in order of summation yields a different value. In certain other cases, it is shown
that inversion yields the same value.

1. Introduction. In [3] we employed the Poisson summation formula to
evaluate in closed form the nonabsolutely convergent double series

S(d,c)=
(md)2_(nc)2,

tl’- m--
md :

where, here and throughout the sequel, c and d denote coprime, positive integers.
The value of S(d, c) was shown to be expressible in terms of the classical Dedekind
sum s(d, c), defined below in 2. Moreover, S(d, c) is always a rational multiple of
rc2. As a numerical example, we have

3932 39n2

S(11,29)
74008 23. 11 292.

Observe that if we invert the order of summation in S(d, c), we obtain the sum
-S(c, d). We showed in [3] that inverting the order of summation yields a dif-
ferent value. In fact, by using the reciprocity theorem for Dedekind sums, given in
2, we showed that

72

(1.1) S(d, c) + S(c, d) 4cd"

The objective of this paper is to demonstrate that the method which we
employed in [3] can be used to evaluate in closed form a rather wide variety of
nonabsolutely convergent double series. By no means have we attempted to be
exhaustive in our presentation. We have chosen to present only some of the most
elegant illustrations of the method. For most of the double series summed here,
the values obtained involve various types of Dedekind sums.

Dedekind sums are very important in number theory. In particular, the ordin-
ary Dedekind sums appear in the transformation formulas of the Dedekind
eta-function, and as a consequence, play an important role in the theory of the
partition function [2, chap. 3]. The most important property of Dedekind sums is
the reciprocity theorem. In particular, the reciprocity theorem makes feasible the
numerical calculation of Dedekind sums. A short table of values for the ordinary
Dedekind sums has been published by D. Zagier [9]. A more extensive table has

* Received by the editors February 28, 1974, and in revised form October 28, 1974.
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recently been computed by L. Pinzur [6]. For an excellent introduction to
Dedekind sums, see the monograph of Rademacher and Grosswald [8].

For the first large class of series evaluated here, we wil,1 give in full all of the
details. For the remaining classes, we will be content to give just brief sketches of
the proofs, as only the details, not the methods, change from example to example.

2. Double series with periodic coefficients. For this class, we shall need the
periodic Poisson summation formula developed by L. Schoenfeld and the author
[3.

Let A {a.}, oe < n < oe, be a sequence of complex numbers with period
k, i.e., a, a.+k for every integer n. Define the complementary sequence B {b,},

(2.1) aj e- 2nijn/kb. :0
In fact, (2.1) is valid if and only if

k-1

an E bj e2nijn/k,
j=o

-oo <n< oo.

We may now state the periodic Poisson summation formula. Iff is of bounded
variation on [, fl],- ,,=

a,,{f(n + O)+ f(n 0)} bo f(x) dx

(2.2)
+ , (b,, e2’i’x/k + b_,, e- 2’i"’/k)f(x) dx,

n=l

where the prime’ on the summation sign at the left indicates that if n or n fl,
only a, f( + 0) or af(fl 0), respectively, is counted. If A I {1}, (2.2)
reduces to the ordinary Poisson summation formula

/,,..,’ { f(n + O) + f(n 0)} f(x) dx
2--

(.I

+ 2 f(x) cos (2nnx) dx.
n=l

The periodic Bernoulli numbers B.(A), 0 <__ n < oe, and periodic Bernoulli
functions N’,(x, A), 0 =< n < oc, are defined recursively as follows. Let

a bo,aM(x’ A) B(A)
j=o

kl (j 1/2k)aj,B(A) j=o
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and for x _> O,

3(x,A) Bo(A)x- B(A)- ’ aj,
O<=j<-_x

where the prime on the summation sign indicates that ifj x, only 1/2ax is counted.
Forn=> 2andx>__0,1et

3,(x, A) n 3,,_ l(u, A) du + (- 1)"B,(A),

where

Bn(A
k

(k u),,_ l(u, A) du.

It can be shown that ,(x, A) has period k [5]. The definition of ,(x, A) is then
extended to -o < x < o by periodicity. If A I, B.(I)= B. and l,(x,I)

,(x), where B, and ’,(x) denote the ordinary Bernoulli numbers and func-
tions, respectively. The periodic Bernoulli functions ,(x,A),- < x < ,
have the following Fourier series expansions [5]

(2.4) 3,(x,A) -n! (k/2rim)"{b,,e2’i’’x/k + (- 1)"b_,,e-Z’im/k}.
rn=l

From (2.4) it can be deduced that [5]

(2.5) M,,(x,A) k"-
j=o k

Let c and d be positive, coprime integers. Then the Dedekind sum s(d, c;A)
associated with the sequence A is defined by

s(d, c; A) ajl(dj/c, B)l(j/ck),
j(mod ck)

where B is the complementary sequence to A. If A I, then s(d, c;I) s(d, c),
the ordinary Dedekind sum.

In (2.2), put 0, fl ck, and f(x) Nl(dx/c, B)l(x/ck). As in [4, (7.3)],
we find that

(2.6) -aobo + s(d, c; A) Bo(A)B2(B + R(c, d, B),

where

(2.7) R(c, d, B) Y= (b, e2’:inx/k

+ b_. e- 2’anx/k),l(dx/c, B)31(x/ck) dx.

Since 21(x) is boundedly convergent on any interval, we deduce from (2.5) that
l(x, B) is boundedly convergent as well. Hence, after using (2.4), we may invert
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the order of summation and integration below to obtain

fo
k

e2rinx/ktjl(dx/c B)(x/ck) dx

ck e2incyjl(dky, B)l(y) dy

2hi m
(Y )(a e2ni(nc+md)y a e2ni(nc-md)y) dy

a. a

md + nc md- n=1
md

ck a
+

m(md + nc)"
md

Thus, from (2.7),

R(c, d, B) b,
md + ncn=l =1

md

(2.8)
+ b,, Z m(md+ nc)

+ b_,, Z rod- nc md+ ncm-- --md md g:

a-m+ b_,
m(md+ nc)m=l

md

Suppose now that A is even, i.e., a, a_, for every integer n. With the use
of (2.1), it is not difficult to show that B is also even. Hence, (2.8) reduces to

(2.9)
cdk ck =1 ambnR(c, d, B)= 7r,2 S(d, c" B)+-2 m(md + nc)’

md

where

S(d, c "A, B) n:21 re:Z1 (’/d)2 (/’/c)2"
md =/=

Since (c, d) 1, md nc if and only if n rd, __< r < oc. Thus, m rc, and so

ck arab,,
2Z2 Z ’ m(md + nc)

md

k arcbrd
4cd7c2 rEr=l

k
4cdrc2 ((c, d, A, B; 2),
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say. ((c,d, A, B; 2) can be evaluated in closed form by several methods. For
example, see [5, 6]). Putting the above into (2.9) and then substituting (2.9) into

(2.6), we find that

+/-kBo(A)Bo(B + s(d c’A)
4

cdk
Bo(A)B2(B) + ---S(d, c" A, B) +

k
4cdrc2 (c,

d, A, B" 2),

since ao kBo(B) and bo Bo(A). Rearranging the above, we conclude that

2 2
S(d, c; A, B) --Bo(A)Bo(B 9 2kBo(A)B2(B)

(2.10)
2

(c, d, A, B; 2) / --ff, s(d, c" A).
4c2d2 caK

By reversing the roles of both A and B and c and d, we also have

1.C2 2
S(c, d; B, A) -aeBo(A)Bo(B) 9 2kBo(B)B2(A)

(2.11)
2

4c2d2 (c,
d, A, B 2) + c-S(C’ d; B).

For an arbitrary periodic sequence A, the periodic Dedekind sum s(d, c;A)
satisfies the reciprocity law [4, Thm. 7.3]

k
s(d, c; A) + s(c, d; B) --Bo(A)Bo(B + -Bo(A)B2(B)

(2.12)
d

+ -;-Bo(B)B2(A) + x---;C(A, B) ,(0, A),(O, B),
ZC zca

where
k

C(A,B)= Z b,a_j2
r=l j=l

If A is even, it is clear from (2.4) that 1(0, A) 0. Adding (2.10) and (2.11) and
then employing the reciprocity law (2.12), we find that

(2.13)

2
S(d, c; A, B) / S(c, d; B, A) -;--;Bo(A)Bo(B

otca

7
2

+
2c2d2k C(A, B)

2c2d2 (c,
d, A, B’ 2).

Equation (2.13) is more than a reciprocity theorem for double series. By inter-
changing rn and n in S(c, d; B, A), we see that -S(c, d; B, A) is the double sum
obtained from S(d, c;A, B) by inverting the order of summation in the latter.
Thus, the right side of (2.13) gives the "error" made by inverting the order of
summation in S(d, c; A, B).
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We now consider some special cases for even A.
First, let A I. Then Bo(A Bo(B 1, C(A, B) 1/6, and ((c, d, A, B" 2)

/1;2/6. We thus find that (2.13) reduces to (1.1).
Next, suppose that c =- 0 (mod k). Define d’ by dd’ _= 1 (mod k), and let

A’ {a,,a, Then, C(A,B) Bo(B)Bz(A’) [4, Proposition 7.4]. Hence, from (2.13),
2

S(d, c" A, B) + S(c, d B, A) Bo(A)Bo(B)
4a

(2.14)
72

+ -2cdk no(n)n(A’)

A similar formula holds if d 0 (mod k)
Let Z be a primitive character with modulus k. Let

kBo(B)
2c2d2 Z bdr

r=l

-2

G(n, z) z(j) e
j(mod k)

be the Gaussian sum. For primitive characters [2, p. 312],

(2.15) G(n, Z) ,(n)G(Z),

where G(Z) G(1, Z). Thus, if A {g(n)}, where g is primitive, we deduce from
(2.1) and (2.15) that

b, G(- n, z)/k f(- n)G(z)/k.

Suppose that Z is primitive and even. Since B0()0 0, from (2.10) we deduce
that

In particular, if c or d is _-- 0 (mod k),

and

from (2.14), where we interchanged rn and n in the second sum on the left side of
(2.14). Thus, in this case, inverting the order of summation does not alter the value
of the double sum.

Now assume that A is odd, i.e., a, -a_, for every integer n. Then it is easy
to show from (2.1) that B is odd. From (2.8),

R(c,d,B)
c2k k
g,2 T(d, c; A, B) + 4cdrc2 (c,

d, A, B" 2),
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(2.19)

and

by the same argument as before, where

nambT(d, c" A, B)
m{(rod)2 (nc) }.n=l m=l

md =/:

Since A is odd, ao bo 0. Thus, (2.6) and the calculation above yield

2
(2.16) T(d, c" A, B) 4ud(c, d, A, B" 2) -s(d, c" A).

By reversing the roles of both A and B and c and d, we get

2
(2.17) T(c, d; B,A) 4-(c, d,A,B; 2) -d-S(c, d" B).

Again, recall that Bo(A 13o(13)= 0. Thus, by adding (2.16) and (2.17) and then
using (2.12), we find that

C2 T(d, c A, B) + d2 T(c, d; B, A)
(2.18)

n2{2c--(c, d, A, B; 2) - cdC(A, B) ,(0, A)M,(O, B)

Equation (2.18) is not quite as interesting as its analogue (2.13) because
-dZT(c, d;B, A) is not the sum one gets by inverting the order of summation in
C2 T(d, c; A, B).

We consider a couple of special cases for odd A.
If c 0 (mod k), we find that C(A, B) 0, since A is odd. From the definition

of M(x, A), M(0, A) -B(A) since ao 0. Also,

(c, d, A, B; 2) kBo(B b,ar- 2 O.
r=l

Hence, (2.16) and (2.18) reduce respectively to

g2
T(d, c" A, B) --wc, s(d, c" A)

C-K

2
c2T(d, c" A,B) + d2T(c, d; B,A) -B,(A)B,(B).

We obtain the same results if d 0 (mod k).
If a. z(n) is an odd, primitive character ofmodulus k, then b, 2(n)G(z)/k.

Hence, (2.19) gives
nz(m)(n) 7g2

,,E E m{(md)e (nc).} c2G(.As(d c; )(,).
=1 m=l
md nc

3. A double series with terms of alternating sign. In this section, we indicate
briefly how to evaluate

(__l)m +n
U(d, c) E E (rod)2 -rc)2"

md nc
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U(d, c) was not summed in the previous section" for if we put a, (- 1)", then
b, 0 if n is even and b, if n is odd. The value of U(d, c) will be given in terms
of s(d, c; 1/2 1/2), where for arbitrary real numbers x and y, s(d, c; x, y) denotes the
Dedekind-Rademacher sum 7], [4]

s(d,c’x,y)=
j(rnod c)

Here, we have used the customary notation N’x(x ((x)). Note that s(d, c" 0, 0)
s(d,c).
To sum U(d, c), put a -1/2, B c- 1/2, and f(x)= ((d(x +-})/c + 1/2))(((x

+ -})/c)) in the Poisson summation formula (2.3). As in [4, 4], we get

(3.1) s(d, c’1/2, 1/2) --2(1/2) + 2c y’, (- 1)" ((dr + 1/2))((t))cos (2nct) dt.

The integrals on the right side of (3.1) may be evaluated by substituting in the
Fourier series for ((dt + 1/2)) and then inverting the order of summation and integra-
tion. Accordingly, we deduce that

(3.2) s(a c 1/2,1/2) d() cd c (- )+"

+-U(d,c)+2 Z m(mdn-c)"
md

Since (c, d) 1, md= nc if and only if n rd, <= r < oe. Thus,

4cd2(1/2(c + d)).

Since also N’.(1/2) 1/12, we find that (3.2) yields

2 2
(3.3) U(d, c) s(d, c" 1/2, 1/2) - 24d2

2
4c2d22((c + d)).

By interchanging c and d we get

2 g2
(3.4) U(c d) -s(c d" 1/2)-

7r,2

4c2d2.2(-}(c + d)).

In the special instance at hand, the reciprocity theorem for Dedekind-Rademacher
sums is given by [7], [4, 4]

d c
2_(3.5) s(d, c; 1/2, 1/2) + s(c, d; 1/2, 1/2)

24c 24d - 2((c + d)).

Hence, upon adding (3.3) and (3.4) and then employing (3.5), we obtain

(3.6) U(d, c) + U(c, d) O.
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This is quite interesting, because (3.6) shows that reversing the order of summa-
tion in U(d, c) does not change the value of the double sum, which contrasts with
the result (1.1).

4. A generalization of S(d, c). For a real, we shall evaluate

where here and in the sequel we write Eft=-oo for limN_+oo E.u= _N.

In (2.3) put 0t 0,/3 c and f(x) exp (2rcixa/c)((dx/c))((x/c)) to obtain

(4.1)

where

1/4 + v,,(d, c) eZ’""+’*/c)’((dx/c))((x/c)) dx,

c-1

va(d, ) Z e2’"/C((dj/c))((J/c))
j=l

After the change of variable x cy, the integrals in the series on the right are
easily evaluated upon the substitution of the Fourier series for ((dy)) and invert-
ing the order of summation and integration. After this calculation, (4.1) becomes

cd
1/4 + v,,(d, c) V,,(d, c)

(4.2)
c ))+ m(md- nc a)

+ m(md + nc + a
md +

Since (c, d) 1, the congruence md -a(mod c) has a solution if a is an integer.
Let mo denote the least positive solution. Then all positive solutions are given by
mo + rc, 0 r < . Similarly, let m denote the least positive solution of md

a(mod c) if a is an integer, and so all positive solutions are given by m + rc,
0 r < . If 2(a) denotes the characteristic function of the integers, we see that
we can write the expression in curly brackets on the right side of (4.2) as

2(a) 2(a)

2(a)
2cd {;(2’ mo/C) + ;(2, mVc)},

where (s, b) denotes the Hurwitz zeta function. Substituting the above into (4.2)
and rearranging, we find that

2 27Z2 va(d, C)V.(d, c) d +

,(a)
4c2d2 {(2, mo/c) + (2, m’o/C)}.
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If a O,

V,(d, c) 2S(d, c) -t-
7r,2

6d2

2 2C2
+ --rs(d, c)

2cd ca

7r,2

12c2d2’

which is in agreement with the result obtained in [3].

5. Double series and higher order Dedekind sums. We briefly indicate how
to sum

Sp(d, c) n:lE m:lZ mp- {(md)2 (nc)2},
md nc

where p > is odd.
In the Poisson summation formula (2.3), put e 0, /3 c and f(x)

,(dx/c)N(x/c), where p > is odd. We then obtain

c-1

s,,(ct, c) y ,,(cln/c),(n/c)

.n(dx/c)(x/c) dx + 2 Me(dx/c)M(x/c) cos (2nnx) dx

c 4cd(- 1)- )/2p
(p + ln.+ + (2).+ s.(. c)

+ 2cd(p + 1)
Bp + .

The omitted calculations are in the same spirit as those in the previous sections.
The higher order Dedekind sums s,(d, c) were first introduced by T. M. Apostol 1].
One can obtain a reciprocity theorem for S,(d, c) by employing the reciprocity
theorem for sp(d, c) [1].

6. The last example. All of the previous examples involved the use of the
Fourier series of Bernoulli functions. Our last example uses the Fourier series of
R(x), where

if0<x- Ix] < 1/2,

R(x)= -1 if 1/2<x- Ix] < 1,

0 otherwise.

It is easy to show that

(6. l) R(x)
4 sin (2n(2m 1)x)
n.,=l 2m-

-oo < x <
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For simplicity, we make the added assumption here that both c and d are
odd. In (2.3) put e 0, fl c, and f(x) R(dx/c)((x/c)) to get

c--I

1/2 + w(d, c) =- 1/2 + ., R(dn/c)((n/c))

(6.2)

R(ax/c) ((x/c)) dx

+ 2 R(dx/c)((x/c)) cos (2rcnx) dx.
n=l

To calculate the first integral on the right side of (6.2), write

I R(dx/c) ((x/c)) dx c R(dx) ((x)) dx
j-- 0 j/d

and then let x (j + y)/d to get

I L J + y
dy

j=o d
(6.3)

d
R(y)((y)) dy 4d’

where we have used the familiar multiplication theorem for the first Bernoulli
functions [8, p. 4].

To calculate the latter integrals on the right side of (6.2), substitute into the
integrals the Fourier series from (6.1) and invert the order of summation and
integration. Since R(x) 2((2x)) 4((x)), the Fourier series of R(x) is boundedly
convergent, and the inversion is justified. Hence,

(6.4)

R(d,x/c) ((x/c)) cos (2znx) dx

4c
2cd

x sin (2r(2m 1) dx) cos (2rmcx) dx

/12 2 ((2m 1)d)2 (nc)2m=l
(2m-- 1)d

C

Since (c, d)
n (2r 1)d, =< r < oo. Thus,

(2m- 1){(2m- 1)d + nc}"
(2m- 1)d=nc

and c and d are both odd, (2m-1)d= nc if and only if

(6.5)
(2m- 1){(2m- 1)d + nc}n=

(2m- 1)d
2c2d r=l (2r 1)2

2
16C2d
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Hence, substituting (6.3) and (6.4) into (6.2) and using (6.5), we deduce that

72 72 2 2
((2m 1)d)2 (nc)2 8cd 16d2 32c2d2 cdW(d’ c),

(2m-- 1)d@nc

where w(d, c) is defined by (6.2).
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ON THE BEHAVIOR OF PRINCIPAL FUNDAMENTAL SOLUTIONS
OF ELLIPTIC EQUATIONS*

V. R. GOPALA RAO

Abstract. Fundamental solutions which decay exponentially at together with their first
derivatives are called principal fundamental solutions. Such solutions of elliptic equations in Rm,
m >= 2, play an important role in the study of pseudo-parabolic equations in R x R. We establish the
behavior as ]x y[ and as Ix Yl 0 of a function H defined for x, y Rm, x y, which is basic
for the construction of the principal fundamental solution G. It is known that G H O(H). Since
H is closely related to Bessel functions, complex analysis is used to determine its behavior.

1. Introduction. We devote this section to describe (i) notations and the
terminology, (ii) a problem and a method of construction of its solution that has
led to this study, and (iii) a class of functions closely related to the function whose
behavior is the object of this study.

Let Rm, m >_ 2, denote the m-dimensional Euclidean space and any x in R
be written x (xl, ..., Xm). For 1 < p < o, let W2’p(Rm) denote the Sobolev
space of functions which together with their first and second order derivatives
belong to LP(Rm). This is a Banach space with norm given by

tXitXj p

for functions v W2’p(Rm).
Let A be a second order elliptic differential operator defined by

Au(x) ai.i(x
t2u c3u

(X c3xj
+ ai(x)-x + a(x)u’

where ao(X is strictly negative in R and for some positive constants 2 and A,
and R {0},

(1.1) 11 < p(x" ) ( aij(x).x.] 1/2 < AII

A principal fundamental solution (p.f.s.) of Au 0 is a fundamental solution
G(x, y) of Au 0, defined for all x - y, which decays exponentially together with
its first derivatives. In [3], Giraud has shown that a unique p.f.s, exists for Au O,
provided that the coefficients of A satisfy a uniform H61der condition in addition
to the other assumptions already indicated. For a brief review of his construction
see [4]. If (Aj(x)) denotes the inverse of (aij(x)) and S(x) denotes the square root of
the determinant of aij(x), then

G(x, y) Hk(X, y) + ;R’. Hk(X’ )tp(, y)d,

* Received by the editors February 22, 1974, and in revised form December 4, 1974.- Department of Mathematics, Lehigh University, Bethlehem, Pennsylvania 18015.
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where for 0 < k <

e-kp(27rp)(1 3)/2

(1.2) Hk(X y) | t(m-3)/2
S(y)2F((m- 1)/2) Oo

(m 3 )/2

e -t dt

is the p.f.s, of the equation aij(y)(c32u/c3xi Oxj) kZu 0. This article concerns
the function Hk. We define below another function denoted by L(x, y) which will
later be shown to be the principal part of Hk(X, y).

(1.3) L(x, y)

r((m- 2)/2)pZ_m,
S(y)47zm/2

m > 2,

-1
logp,

S(y)27z
m--2.

Observe that L does not involve the positive constant k.
Now we describe a problem and a method of construction of its solution

which prompted this study. Let B be another second order elliptic differential
operator with bounded continuous coefficients defined in R and A be as before.
Let uo wz’P(Rm) and consider the problem of finding a function u R - Wz’P(Rm)
satisfying A(c3u/dt) + Bu 0 in W2’p(Rm) and u(x, O)= Uo(X). This problem has
been solved in [5] by setting up the equivalent integro-differential equation

(1.4) u uo G( y)Bu(y) dy dt

and solving it by successive approximations. Indeed, the solution is given by

u= uo + (-1)"K"uo,

where Kluo is the double integral in (1.4) with u replaced by uo and K" KI(K
In [5], it has been shown that this series converges in wZ’P(Rm) provided that

fR G("Y)f(y)dyll const. flip,

for f LP(Rm) which in turn is valid if

H( y)f(y) dy
2,p

_<_ const. f p

To prove the validity of this inequality it is enough to show that precisely
the same inequality is satisfied by each of the three functions defined by

f L(x y)f(y) dy f(x,Ro) (x,Ro)
(H L)(x, y)f(y)dy

and

fR H(x y)f(y) dy,
B(x,Ro)
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where B(x, Ro) is a ball of radius Ro. The first of these three integrals may be
handled in the framework of the LP-theory of singular integrals. However, in the
case of the second and third integrals we need to know the behavior of H L and
its first and second order derivatives as ix Yi 0 and that of H and its derivatives
up to order two as ]x y[ - .We now come to the third part of this section as indicated earlier. A one-
parameter family of functions known as Bessell kernels (see [1]) is given by

(1.6)
G(x) C, e-Il e-Ixl +

C-1---(2n)tm-1’/22’/2F(m-z+l)2
for 0 < < tn + 1. See also [9].

When A is the m-dimensional Laplacian and k 1, the function Hk(X y)
coincides with G2(x y). For integral e and f in LP(Rm), it is known that

G *f ,p const. f [p.

For results of this nature and additional references, see [9]. If one observes that
for0<0<m+ 1,

(1 A)-/2f G * f,

one quickly notes that the best way ofdealing with G fis through Fourier analysis
and related techniques. This is due to the fact that the operator involved in the
case of G, is of constant coefficients. Since the same is not true of Hk, an alternate
approach is needed to deal with it.

Throughout this article we shall work with H which will be referred to as H.
It should be understood that in all references to (1.2), k 1. For the case k :/:
see the remark at the end of 3.

2. The behavior of H--L. In this section we study the behavior of
(H L)(x, y) as x - y. In 2] Giraud has shown, by complex variable methods,
that H (1 + O(1))L. Since this is not sufficient for our purposes, we shall first
obtain an exact expression for H L and use it to derive an estimate for the same
in B(x, Ro).

THEOREM 2.1. For the functions H and L defined by (1.2) and (1.3), the following
relations are valid.

(i) If rn >= 3 and is an odd integer, then

(2.1)

C f -Opt1-m)/2
2n-

H(x, y) L(x, y)= -ffle Z
l=n

+ r(m- 2)(e -p

n IF(/+ 1)(2p)"-/
l-n

1)p m)/Z(2p)3 m)/2
where C (1/2)(27z)tl-m)/zI-’((m 1)/2)and n (m 3)/2.
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(2.2)

(ii) If rn >= 4 and is an even integer, then

H(x, y) L(x, y)

C1 e-Op(a-m)/Ztconst" p(5-m)/2 + + const, p- /2 + const, pa/2
S(y)

|/’a
+ iv F(s)F(-s (m 3)/2)1"(-s + (m 1)/2)(2p), ds+ - 1--ioo F((m 1)/2)F((3 m)/2) ;

F((m-2)/2)e-P-1
S(y) 4m/2 pro-2

where C 1/2(2n)1-m)/2.
(iii) If rn 2 and C is as above, then

(2.3)
H(x,y)-L(x,Y)=Sy){e-p-2nllg

Ca e-Op- a/2 i/2
+o+ioo )F(s)F2(1/2 s)(2p) ds

n 2hi 1/2 +- ioo

where is any positive number such that 0 < < 1.
Proof of (i). If n (m- 3)/2, then, from (1.2) we have after expanding

(1 + t/(2p))" in powers of and integrating,

C
-pp(1-m)/2 , F(/+ 1)(2p)"-tH(x, y) -s e

= n

(2.4)
S(y) e-Pa m,/2 F(/+ 1)(2p)"

l=n n

+ (e- 1)F(m- 2)p(a-m)/Z(2p)(3-m)/2 + F(m- 2)2(3-m)/ZpZ-n t.
The last term of this equation may be simplified, with the help of the multiplication
theorem of Gauss and Legendre for gamma functions applied to F((m 2)/2) and
F((m- 1)/2), and reduced to L(x, y). This shows that H(x, y)- L(x, y) is in the
required form when m => 3 and is odd.

Proof of (ii). When m is an even positive integer not equal to 2, it can be shown
as in Whittaker and Watson [10], that

H(x, y)

C e -p

S(y) 2hi
F(s)F(- s + (m 3)/2)F(- s + (m 1)/2)p(1 -m)/2

-ioo F((m 1)/2)F((3 m)/2)

(2.5)

(2p) ds,

where C is the constant appearing in (2.2). The path of integration begins and ends
on the half-lines of the imaginary axis and is curved in such a way that the origin
and the negative integers are to the left of the path while the poles ofF(-s(m 3)/2)
F(-s + (m 1)/2), that is,

s n (m 3)/2, n 0, 1,2, ...,
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are all to the right of the path. If I denotes the integral appearing in (2.5), then to
calculate I we first integrate around the contour which is essentially a rectangle
with corners + i, -i, 1 + i and 1 i with a provision to include the points

n (m 3)/2, n 0, 1, ..., (m 2)/2,

where m >__ 4 is an even integer. If we now let - oo, we obtain

I=2ri Rl-1/2 +
I=(4-m)/2 1-ioo

where R, is the residue of the integrand at n, and the integral in the above equation
is taken along the line x 1. It is not difficult to verify that

r(m- 2)
R(3-m)/2 F((m 1)/2)(2p)(3-m)/2.

After calculating the other residues and using them in (2.5), we have

C1 -op(1-m)/2[ F(m.- 2) ,(3H(x, y) - e )F(- i2)tzP)
-m)/2

+ const, p(5-/ + + const, p- / + const, p/a + -The integral appearing in the above equation may be shown to be bounded by
a constant multiple of p, the constant being independent of p. Moreover, the
constants appearing in (2.6) are all numerical. To complete the proof of (ii) we
have only to show that

C F(m 2)
S(y) ptm- )/2 F((m- 1)/2)

(2p)t3 -m)/2 L(x Y), m 4.

This follows by employing reasoning similar to the reasoning used in the proof
of (i) and the fact that C C. (m 1)/2.

Proof of (iii). As mentioned in the proof of (ii), we have for m 2,

C Op_/2I(.7 (, e-
i

where

lf r(s)r (k s)(2p) ds.

The integrand has a double pole at s 1/2. To calculate the residue at s 1/2,
we first note that

(2p)S (2p)’/2(1 + (s 1/2)log 2p + ...),

-1
r(1/2- S)-" ) "Jr-
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and
F(s) x/(1 -(7 + 2 log 2)(s 1/2) + ...),

where, in obtaining the above Taylor expansions around s- 1/2, we used the
Gauss-Legendre product formula for F-functions and is Euler’s constant. The
residue at s 1/2 may now be shown to equal 2x/ log 2p, by using the above
mentioned Taylor expansions. To obtain the value of I, we first integrate around
the contour which is a rectangle with corners + i, -i, 1/2 + e + i and 1/2 + i,
0 < e < 1, and indented at the origin. Now we let ---, and observe that the
integrals along the two horizontal parts of the contour vanish. Thus, we have

I= 2ri log2P+2-
By substituting the above expression for 1 in (2.7), we obtain

H(x, y) S- log log 2

(2.8)
e-Op-’/ fl/2++ i9t+ 2rt2i Cx

1/2 +-i )

The integral appearing in the above equation may be shown to.be bounded by
a constant multiple of p’+ /2, the constant being independent of p. The proof of
part (iii) is now clear from (2.8).

In the rest of this article we will on several occasions use the estimates

63p 32P const, r-(2.9) =< const.,
3xi c3xj

where the constants are independent of x, y Rm. The next theorem concerns the
behavior of c32(H L)/63x Oxj as r -- 0.

THEOREM 2.2. Let H and L be as in equations (1.2) and (1.3) with k 1. Then
for some constant C independent of x R" and all y such that 0 < r <= Ro, we have

Cr if m > 3
(2.o)

(/4-L) <
X Xj Cra- 2 if m 2,

where Ro is any positive constant and 0 < < 1.
Proof. We base this on the three different expressions for H L obtained

in Theorem 2.1.
Case (i). m >= 3 and is an odd integer. From (2.1) we have

(H L)(x, y) - . t=,
d e-P-(+ x) + dm_3(e-O 1)p2-

1
= {Ix(P) + I2(p)},

S(y)

where the constants d,, k n, n + 1,..., rn- 3, are all independent of p, and
n (m 3)/2. Since S(y) is bounded below by a positive constant, it is enough to
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obtain the desired conclusion for 62Ii(p)/cXiOXj and C212(P)/OXitXj. Since I(p) is
a linear combination of the functions

e-pp3-m -p 4-m -p (l-m)/2,e p ,...,e p

each of which has second derivatives obeying inequality (2.10), tzI(p)/gqxicqxj
also obeys inequality (2.10). On the other hand,

(2.11)

212(P) 632/9-{(m- 2)(e-- 1)p-" + e-Pp2-m}

+ (m 2)(m 1)(e- p 1)p-"}.

Now let Ro be any positive constant. Then 0 < r =< Ro implies that p _< Po ARo.
By using the fact that (e-p- 1)/p is bounded for all p > 0 together with the
inequalities (2.9), we conclude, from (2.11), that for all x e R" and for all y such that
0 < r =< Ro, the function g32Iz(p)/g3Xi tOX, also satisfies inequality (2.10).

Case (ii). m 4 and is even. We have, from (2.2),

H(x,y)-L(x,Y)=Z{I3(P)+de-O-Ip,,-2 + d2 e-Op(3-=/2f_oo f(p, t)dt }
= {I3(P) + I4(P) + Is(P)},

S(y)

where d and d2 are constants independent of x and y,

f(p t) pi,F( + it)F m-1) m-3)2
F -it + 2

and where Ia(p) is of the type I(p) introduced in the proof of Case (i). Also, I4(p)
and 12(p) are identical apart from a constant factor. Thus, Ia(p) and I4(p) may be
handled just as we handled I(p) and 12(p). Hence, we obtain an estimate for
632Is(P)/Cqx (Xj. TO this extent we have, if g(p) f-o f(P, t)dt, then

(2.12)

cq2Is(p)
S(y)

2 -p e-

2 62g
+ pz(e-p(a-")/Z)g(p) + e-Pp(a-’)/Zcp2

2p F+ te -)/2)g(p)
8Xi OXL8p Opt3

By using the asymptotic expansion of the logarithm of the gamma function, it is
not difficult to verify that J" f(p, t)dt and its first and second derivatives with
respect to p are of orders O(1), O(r- 1), O(r-2), respectively, uniformly with respect
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to x and y e Rm. Because of this, the dominant term in each of the terms on the
right-hand side of (2.12) is of order O(r -tin+ 1)/2), and hence

215(/9)
-x c?xj <= const, r

the constant being independent of x Rm, and y such that 0 < r < R0.

Case (iii). m 2. If, in (2.3), s is replaced by ) + e + it, we get

H(x y)-L(x y)=
e- llog log2

+ d e-p F( + e + it)F(-e- it)p dt

S(y){I6(P) + Iv(P)+ Is(P)},

where d3 is a constant independent of x and y. To obtain the required estimate for
O2(H L)/c3x c3xj, it is enough to obtain the same estimate for the corresponding
second derivatives of I6(p), I7(p) and Is(p). It is easy to obtain this estimate for
the second derivative of Iv(p). Accordingly we concentrate on I6(p) and Is(p).

c32 I6(p) { e- o

c3x c3Xj --- log

We have

2rip

+
np

+ lg

1} 632p
Ox c3x

e-p- l]Op Op
2np2 OX OXj"

The last four terms in the right-hand side of this equation may be shown to be of
order O(r-1) and hence, if 0 < r =< Ro, of orders O(r 2), 0 < a <. 1, uniformly,
in x e Rm. On the other hand, the first term is of order O(r- lllog r- 11), and hence
of order O(r-2), 0 < a < 1, uniformly in x e R", provided that 0 < r =< Ro.
Thus c3216(p)/c3xicqx obeys the inequality (2.10). For Is(p), we observe that the
integral appearing in the definition of Is(p) and its first and second derivatives are
of orders 0(1), O(r-1) and O(r-2), uniformly with respect to x and y. Thus, it
follows that 0218(p)/Ox Oxj also obeys the inequality (2.10) provided that 0 < r
-<_ Ro. This completes the proof of Theorem 2.2.

3. Global estimates for H and its derivatives. The estimates in this section
describe the behavior of H (and its derivatives) as Ix y] 0 and as Ix
A single expression describes both these aspects. Since L (and therefore H) behaves
like log r as x y in the case rn 2 and like rm-2 in the case m > 2, these two
cases are examined separately. The first result of this section concerns the case
rn > 2 and the second one concerns the case rn 2.

THEOREM 3.1. Let H(x, y) be defined as in (1.2), and k 1. Let a1,..., a be
such that the a are all nonnegative integers with 0 <= [a[ =< 2, where
Then there exists a positive number a, 0 < a < 2, such that for any integer rn >__ 3,

(3.1) [on(x, y)[ <= C e- art2 -m-I1,

where the constant C is independent of x, y Rm.
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Proof. This is based on the expressions for H(x, y) obtained in the course of
the proof of Theorem 2.1.

Case (i). m is an odd integer exceeding 1. Equation (2.4) may be written as

e-p
H(x, y) S-v{Const. p(1-m)/2

_
const, p-tt +m)/2) q_ q_ const, p2-m},

(3.2)

where the constants are all independent of p. Notice that there are 1 + (m 3)/2
terms on the right-hand side of the above equation, arranged in decreasing powers
of p. Thus each term in (3.2) is of the form

m-3
const. e-Ppttl-m)/2)-t 0 <_ <_

S(y) 2

and hence is of order O(e-arr2-m) uniformly for x, y e Rm. The constant a may be
chosen between 0 and 2. Thus the conclusion of the theorem is valid when I1 0.

By differentiating both sides of (3.2) with respect to the coordinates of x, it is
easy to see that

OH c3p e- p

x x S(y)
{const. ptl-m)]2 + const, p-ttl +m)]2) ._ + const, p-m},

where the constants once again are independent of p. Since cp/cx is bounded in
R x R 6, where 6 is the diagonal of R x Rm, an analysis similar to the one
used in obtaining an estimate for H(x, y) yields

< const, e-arr-m < < m,

the constant being independent of x, y Rm. The desired estimate for second
derivatives may be obtained in a similar fashion.

Case (ii). m >__ 4 and is even. From (2.6), we have

(3.3)

1
p2-m p3-mH(x, y)= S- e-O const. + const +

+ const, p-,,,/2 + const, p2-,,,)/2

+ g(t)p(3-m)/2)+it dt

where g(t) is an absolutely integrable function and the constants are independent
of p. By using an argument similar to that used in Case (i), we can show that all
the terms on the right-hand side of (3.2) except that involving the integral satisfy
the estimate (3.1) uniformly in R R" . The integral in (3.3) may be differ-
entiated twice under the integral sign with respect to p. Consequently, this integral
and its first and second derivatives are of orders O(r(3-m)/2), O(r(-m)/2) and
O(r- +m)/2), respectively. Thus, if we define F(x, y) by

F(x, y) e -p g(t)p((3-m)/z)+it dt,
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then we have

IF(x, Y)I =< const, e-rr(3-rn)/2

< const, e- arr2

uniformly in R x R" 6. Similarly, since

we also have

0<a<2,

=< const, e- "{r( -m)/2 .qt._ r(3 -m)/2}

=< const, e-arr l-m, 0 < a < 2,

the constant being independent of x, y e Rm. In a similar manner, we can obtain
the desired estimate for the second derivatives.

THEORtSM 3.2. Let H(x, y) be as in (1.2) and k 1. Let fl (//1, f12) be such
that 1 and are nonnegative integers with 1 =< Ifll __< 2. If rn 2, then for some
constant a, 0 < a < 2, we have

(3.4) IH(x, y)[ =< C e-aqlog rl,

and

(3.5) IDH(x, Y)I C e-arr --Ifll,

the constant C being independent of x, y Rm.
Proof. From (2.8), we have

(3.6) H(x, y) c-KX,,, log + const.,

where the constant is independent of p, h(t) is absolutely integrable and 0 < e < 1.
The first term on the right-hand side of (3.6) is of order O(e-arllog rl), uniformly in
x, ye Rm. Since the second term is of order O(e-Xr’), it is also of order O(e-"rllog rl)
uniformly in x, y Rm. Before we proceed to estimate the derivatives of H, we
remark that the first and second derivatives with respect to p of the integral
appearing in (3.6) are of orders O(r 1), O(r 2), respectively, uniformly in x, y e Rm.
Therefore

=<const. e- + logp +r+r

< const, e art

uniformly in x, y Rm, since 0 < e < 1. The estimate for the second derivatives
may be obtained in a similar way.

Remark. The conclusions of Theorems 2.2, 3.1 and 3.2 are valid even if k
is not equal to 1, but the constant C in each case will then depend on k. The same
comment applies to the constant a appearing in the exponential function involved
in the conclusion of Theorems 2.2, 3.1, and 3.2.
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DUALTRIGONOMETRIC SERIESmA RELATED PROBLEM*

ROBERT P. FEINERMAN AND DONALD J. NEWMAN$

Abstract. For any n, let 0(e ’"x) be defined as cos nx on [0, r/2) and sin nx on [rr/2, 7r]. In this
paper we consider both {(e’"x)}7_-.o and {o(e’"X)},=l and study whether or not they are complete in
L2[0, 7r], and whether or not they are bases in L2[0, 7r].

1. Introduction. Problems in dual trigonometric series usually take either of
two general forms" Given f L210, 7r], c 6 (0, 7r) and a sequence {k,}, does there
exist a unique sequence {a,} (and if so, find it) such that either

(a) a.k. sin nx f(x), 0 <-_ x < c,
n=l

Z a. sin nx f(x), c
n=l

or

(b) a.k. cos nx f(x), 0 <-_- x < c,
n=O

Z a. cos nx f(x), c <= x <- "rr,
n=O

where convergence is in the L2[0, 7r] sense? (Variations involve sin (n-1/2)x
and cos (n- I/2)x instead of sin nx and cos nx respectively. See [3] for a long
discussion of such problems.) It was the study of such problems that led us to the
study of the following problem" For f e L2[0, 7r], does there exist a unique {a.}
such that

Z a. cos nx f(x), 0=x < 7r/2,

Z a. sin nx f(x), 7r/2 <-_ x <= 7r,

(where again convergence is in the L2[0, rr] sense)?
In this paper we shall deal with the case c 7r/2, but it seems fairly clear that

the methods could be adapted to be used with any c (0, 7r).
Our notation is made simpler by the following operator: For any g,(x) defined

on [0, 7r], let

q(g(x)) I Re g(x), O<-x <-,
Im g(x),

Thus our previously stated problem becomes: Given f L [0, 7r], does there exist
a unique {a.} such that a.q(e i"x) f(x)? We are thus studying the question of

* Received by the editors October 8, 1974.
$ Department of Mathematics, Herbert H. Lehman College (CUNY), Bronx, New York 10468.
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whether or not {q(ei"X)},o and {q(ei"X)},=, are bases in L [0, r]. We shall also
study the completeness of those two sets of functions and that is done first.

2. Completeness questions.
THEOREM 1. {(e’")}7=o is complete in L’ [0, r] for p >-_ 1 but is incomplete in

c [0,
Proof. Assume there is an f(x)e L [0, r] (where 1/p+ 1/q 1 if p > 1, and

q c if p 1) such that

0= q(e’"X)f(x) dx cos (nx)f(x) dx + sin (nx)f(x) dx
/2

for n =0, 1, 2,.... Then

cos(nx)f(x)dx+(-1)" sin(nx)f(x+r)dx=O, n =0, 1,2," "-.

r/2

Then certainly

cos (nx)f(x) dx sin(nx) f(x + r) dx O,
0 /2

n=0, 1, 2, 3,-...

Let F(z) (/ cos (zx)f(x) dx): (=/2 sin (zx)f(x + ) dx)2. Then F(z) is entire,
vanishes at all the integers (positive, negative, and zero) and IF(z)[ Me.

By a well-known theorem on the growth of entire functions (see [1])

F(z) C sin z for some constant C.

However, F(z) is an even function of z and C sin z isodd. Therefore, C 0 and
F(z) 0. Then

/2

f)cos (zx)f(x) dx sin (zx)f(x + ) dx,
/2

where we either have + for all z or for all z. In either case we have an even
function equal to an odd function which is impossible unless both are identically
zero. Thus /2 cos (nx)f(x) dx 0, n 0, 1, 2, , which implies f(x)= 0 a.e. on
[0,

Similarly, =/2sin(nx)f(x+)dx=/2sin(nx)f(x)dx=O, for n=l,
2, , which implies f(x)= 0 a.e. on [/2, ].

Thus, f(x)= 0 a.e. on [0, ], and {(e"X)},%o is complete in L [0, w].
To prove {(e")},%o is incomplete in C[0, ], we have only to notice that for

each n, (e") is zero at . Therefore {(e")},%o could not approximate any
function which is not 0 at .

In our next theorem, we prove that for p > 2 we need (1) for completeness.
THEOREM 2. {(e"X)}7=l is incomplete in L[0, ] ifp >2.
Proof. We consider the function (1 + z)(1 + z2)-/2 which is in H" for any

q 6 1, 2). Thus

I= 1 +ei

(1 + e2)1/2 e" dO O, n=1,2,3,-..
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By simplifying the integrand, we obtain

I_/2 2 cos (0/2)e i"

I=/ 2 cos (0/2)ei" I_-’/2 2 cos (0/2) e i"

,/2 (2cos0) 1/2 dO +
(21cos0]) 1/2 dO (21cos01) 1/2 dO=O,

n=0,1,2,3,.-..

Simplifying this expression (by taking into account evenness and oddness), we get

n=1,2,3,...

Thus the function

cos (0/2)
0 < 0 <

(cos 0)/2’ 2’
f(o)

cos (0/2)
icos011/,

is in Lq[0, 7r], 1-<q<2, and is orthogonal to {qg(ei"X)}n=l. Thus {q(e"X)},:l is
incomplete in LP[O, 7r], p > 2.

This function, f(O), can also be used to prove the completeness of {(ei"X)},=l
in LP[0, 7r], 1 -<_ p N 2. The argument goes as follows. Since the addition of q(1) to
the collection {q(e"X)},= makes a complete set in LP[O, 7r], p >- 1, we know there
is at most one function orthogonal to {q(e’"X)},=l. If, for some q >-2, there were a

g L [0, 7r], orthogonal to {q(e"X)},=l then, since that g would also be in all
Lq[O, 7r] for 1 =< q -< 2, that g would have to be equal to C[(O) for some constant C.
But since Cf(O) is not in L2[0, 7r] unless C 0, we must conclude that g(0) 0 a.e.

Thus, we have proved the following theorem.
THEOREM 3. {qg(ei"X)}=l is complete in LP[O, 77"] where 1 <= p <- 2.

3. Basis questions. We now restrict our attention to L2[0, 77"] and consider
the question of whether {0(e’"X)}7= (or {q(e’")}7=o is a basis.

One fact about a basis that we shall need is (see [2])" if {f,}, is a basis, there is
an associated sequence of continuous functionals (abbreviated a.s.c.f.)
such that L, (fro)

We essentially have already proved the following theorem.
THEOREM 4. {qg(e"X)},=o is not a basis in L2[0, 7r].
Proof. We have proved that {q(ei"X)}:__ is complete in Lz[O, 7r]. If

were a basis, then Lo, from the a.s.c.f., would have the property that Lo(o(e’"))
0, n 1, 2,..., while Lo(0(1))= 1, thereby contradicting the completeness

of {q(e’"X)}7=,.
We notice that the proof is based on the fact that q(1) is an "extra" function.

We shall now prove that{(e’"X)},= is also not a basis. Ironically enough this proof
will be based on the fact that in some sense q(1) is "missing."
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In the rest of this paper we shall refer to the function (l-z)(1 + z2)-1/2 as
h(z). We note that:

(i) For 0 =< x =< rr/2, h(e ’x) is pure imaginary, while, for r/2 < x <= 7r, h(e ix) is
real. Thus q(h(e’))= 0 a.e.

(ii) If h(z) is expressed as ,o h,z", then ho 1 and all the h, are real.
THEOREM 5 Let SN(x) NEn=O inxne be the N-th partial sum of the Fourier

series of h(e). Then limN_,o v(S(x)) cos (kx) dx 0 for k O, 1, ,
Proof. Since v(h(e))-O a.e. it will suffice to prove that

lim_,o " v(S(x)) cos(kx)dx Jv(h(e)) cos (kx) dx, or that
lim_o q(S(x)- h(e’)) cos (kx) dx O, k O, 1, 2,....

By H61der’s inequality we have that I’o(SN(x)-h(e’)) cos (kx)dxl
h(e ))ll / ll cos kxll < h(e’))ll3/2, where I1" is the

L[0, 7r] norm. We notice that, for any x, Iq(S,,(x)-h(e’))l-<_.lS,,(x)-h(e’)l,
and then II(S(x)-h(e’))ll/<-_llS,,(x)-h(e’)ll/.. Moreover, since h(e ’x)
L3/2[0, 7r], its Fourier series converges to it in the L3/2[0, 7"r] norm, and,
consequently,

IIS(x)- h(e’X)ll/- 0 as N o.

Combining this with our previously derived inequality, we get our desired result.
THEOREM 6. There exist positive rn and M such that

0<m <-_ll(S(x))ll= <-M forallN.
Proof. See p. 993.
We now combine the previous two theorems to give us the following

theorem.
THEOREM 7. qg(Sn(x)) converges to 0 weakly in L2[0, 7r].
Proof. Take any bounded linear functional on L210, 7r] or, equivalently, take

any g e L2[0, zr]. What we must show is that IS p(Sn(x))g(x) dx converges to 0.
,=o b, cos nx such that IIE. __o b, cos nx g(x)112 < . Then, byGiven e > 0, we find

MTheorem 5, we choose"N so large that [ p(Sn(x))(E,=o b, cos nx) dx[ < e. Then,

Io qg(S(xllg(x) dx

<-_ qg(SN(x))(g(x)- E b. cos nx) dx

<= q(Su(x))ll2l[g(x)- , b, cos nx + e
n=0 2

<=Me+e.
As e was arbitrary we are done.

En=O inxSince S(x) i,,n.e this theorem can also be stated as: o(.=o h. e
converges to 0 weakly, or .=a h.q(e ’’) converges to q(1) weakly (we recall that
ho i and all the h. are real). Moreover, since by Theorem 6, ]lo(S,(x))l]2 => m > 0,
q(SN(x)) does not converge to 0 strongly in L2[0, 7r], or .= h.q(e ’’) does not
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converge to -q(1) strongly in L2[0, 7r]. Using this we can prove our previously
mentioned theorem.

THEOREM 8. {q(ei"X)}7=l is not a basis in L2[0, 7r].
Proof. If it were a basis, there would exist a unique sequence {bk} such that

limN_.o ,=1 b,q(ei"X) -q(1) strongly (in L2[0, r]). Let {Lk}=l be the a.s.c.f.
Then, for any k, -L(q(1))= b. However, since limN_.o ,=, h,q(ei") -q(1)
weakly, we would also have that -L(q(1))= h, and thus have hk b for all k.

,= h,q(ei") does not converge strongly to q(1)However, we proved that ’
which contradicts the assumption that ],u= b,q(e") converged strongly to q(1).

Proof of Theorem 6. Before we can prove Theorem 6 we shall need the
following lemma.

LEMMA 1. LetF(x) be positive and nonincreasing in (0, A ). Then, for any B,

A

F(X sin (x + B) dx fO=< F(x)[sin (x + B) dx.

Proof. Let xl," ", x be the zeros of sin(x+B) in (0, A) (where
0 < xl < xz < < x < A), let Xo 0, X+l A, and let

Xi+l

A, F(x)lsin (B + x)l dx, i=0, 1,-.-,k.

Then, by the monotonicity of F(x) and the periodicity of sin (x +B), A >->_Az>=
=> Ak. Thus

Ao-A +Az-A3+" .+/-A, =Ao-(Aa-A2)-(A3-A4) )<=Ao

and

Ao-A+A2-A3+’"+A,=(Ao-A)+(A2-A3)+.’.+( )>=Ao-AI.

Therefore
A

F(x) sin(B + x) dx IAo-A +A-A3 + +

<Ao+AI= Iox2 F(x)lsin (B + x)i dx,

and the proof is finished by observing that x2 =< 2
We can now proceed with the proof of Theorem 6. We have

Su(x) h(e’)Du(x O) dO,

where Du(t), the Dirichlet kernel, is

1
2r

sin (2N+ 1)(t/2)
sin (t/2)
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and

h(e ’)

ix/- sin (O/2)
(COS 0) 1/2

/ sin (0/2)
Icos 0l

sin (0/2)
Icos 01/

-r/2 < 0 < r/2,

r/2< 0 < rr,

-r<0< r/2.

Therefore

,#(&(x))

sin 0/2)_

Ios -0-] [D’’(x o)+ D,,,(x + 0)1 dO,

sin (0/2)
[DN(x -O)-D,(x + 0)] dO,

(cos 0)/

O<x<-
2’

Thus

dx

sin (0/2) ]2cOs 011/2
(DN(x O) + DN(x + 0)) dO dx

12(COS
(Du(x O) Du(x + 0)) dO dx

If we let

and

=2I,(N)+212(N).

=/2 sin (0/2)
Du(x- O) dO dx,I3(g)

/2 cOs 011/2

fo,/2 [ f,72 sin (O/2)
I4(N) ICOS j17 Du(x + O)dO dx,

f, [ io=/2 sin (0/2)
/: (cos O)/D’(x-O) dO dx,

f,T Ifo
=/2 sin ]2I6(N)

O) 1/2DN(X
nt- O) dO dx,

then we get the following inequalities"

(I3(N))l/z-(I4(N)) ’/2 <= (I1(N)) 1/2 <_ (/3(N)) ’/2 + (I4(N)) /2,



DUAL TRIGONOMETRIC SERIES 995

and

(Is(N)) ’/2 (I6(N)) ’/2 <_ I2(N)) ’/2 (Is(N)) ’/2 + (I6(N)) 1/2.

Then Theorem 6 will be proved once we have proved the following lemma.
LEMMA 2. (a) limN_o I3(N)= limN_/5(N) c > 0, while
(b) lim,_ I4(N)= limu_ I6(N)= 0.
Note. We shall be using the following inequalities:
(a) sinx>=2x/r for 0<=x<=-/2,
(b) ](sin mx)/sin x] <- m.

We shall also write M instead of 2N+ 1.
Proof. (a) If we make the changes of variable U=(MO/2)-Mr/4 and

V= Mr/4-Mx/2, I3(N) becomes

,/4 M,/, sin (U/M+ 7r/4) sin U+ V)
d dV.

Jo (M sin (2 U/M)) 1/2 M sin ((U+ V)/M)

We shall now use the dominated convergence theorem twice. First, for U-1,

sin U/M+ 7r/4) sin U+ V)
(M sin (2 U/M)) ’/2 M sin (( U+ V)/M)

1
(4 U/ Tr.)1/2’

while for U > 1 it is bounded by

(4U/rr) ’/2 2(U+ V)/’rr= 4 U3/2"

Therefore,

’/4 sin (U/M+ 7r/4) sin U+ V)
lio (M sin (2U/M)) 1/2 M sin ((U+ V)/M)

dU

fo sin(Tr/4) sin U + V) dU
3o (2 U)’/2(U+ V)

We now consider

(I /4 sin(U/M+Tr/4) sin(U+V) dU
o (M sin (2U/M)) 1/2 M--ln i-(- ’-/4),

Since, for 0 < U< M/4 (and any V> 0),

sin U/M+ "rr/4) 1
(M sin (2 U/M)) ’/2 M sin (( U+ V)/M)

is positive and nonincreasing (as seen by taking its logarithmic derivative), we
apply Lemma 1.
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Thus

(IOMrr/4 sin U/M+ rr/4) sin( U+ V)
(M sin (2 U/M))I/2M sin ((U+ V)/M)

Therefore

2= sin (U/M+ zr/4)[sin (U+ V)] dU ]2
(M sin --/)s7,-S-il J; -VSTM)/

(4U/zr)1/2d 2 zr for V_-< 1,

2" 1 1d forV->_l.
4 U/ rr 1/2 2 V/ rr 2 Va

22 foM’/4[IoMr/4 sin (U/M+Tr/4) sin.(U+ V)
lim I3(N)= lim
u-,o M-,oo rr (M sin (2 U/M))1/9- M sin ((U+ V)/M) dUl2 dV

2
lrn

Mrr/4 sin (U/M+ rr/4) sin (U+ V) dU ]-Srr o (M sin (2 U/M))1/" M[a-- 7-5)v/)_1 dV

---5-2 Io (I)sin (rr/4)sin (U+ V)
rr (2U)1/= (U+ V) dU) dV

1 sin (U+ V)
d dV.

2rr x/-(U+ V)

(The proof that this is also the limit of Is(N) is essentially the same and is omitted.)
To finish the proof of part (a) we need prove only that this limit is nonzero. That,
however, is easily shown by the fact that the integrand

(sin (U+ V))/-(U+ V) dU

is, obviously, nonnegative and nonidentically zero by continuity and by consider-
ing the integrand at 0 (or at K-).

(b) If we make the changes of variable, V= Mx/2 and U MO/2-Mr/4,
L(N) becomes

2 fM.n./4 ffM.n’/4 sin (U/M+Tr/4) sin (U+ V+MTr/4)
rr Jo \lo (M sin (2 U/M))1/2 M sin U/M+ V/M+ rr/4)

which, since

sin (U/M+ rr/4) 1
(M sin (2 U/M))1/z M sin (U/M+ VIM+ rr/4)

is positive and nonincreasing, is, by Lemma 1, less than or equal to

2

d dV,

Mr/4 2-n" sin (U/M+ 7r/4)lsin (U+ V+ MTr/4)[
d dV

(M sin (2 U/M))I/2M sin (U/M+ VIM+ 7r/4)

2 IoM"/4 (I]’ 1 1

(4 U/)1/2 M/ Ut 2rr
d dV =---.
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Thus limN_,/4(N) 0. (The proof that limN_,o I6(N)= 0 is essentially the same.)
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A NEW INTEGRAL EQUATION FOR CERTAIN PLANE DIRICHLET
PROBLEMS*

JAMES M. SLOSS

Abstract. The solution of the Dirichlet problem for a plane simply connected region, part of whose

boundary contains an analytic arc, is simplified by making use of reflection through the analytic arc. An
integral equation is derived for the double layer potential. A geometrical lower bound on the smallest
eigenvalue is derived when the nonanalytic arc is convex.

1. Introduction. Consider a plane simply connected domain f whose
boundary is a piecewise smooth curve 3" 3’0 U 3’1. Moreover, let 3"0 be part of a
simple closed analytic curve F satisfying certain additional conditions to be
specified and let 3"1 be smooth. We shall show that the Dirichlet problem for 12
with H61der continuous boundary data can be reduced to an integral equation on
3"1 only. The integral equation involves a kernel made up of a double layer
potential and a certain geometrical quantity dependent on 3"0. We shall show that
this integral equation always has a solution. We shall also consider the special case
when 3"1 is convex with continuous curvature and give estimates for the smallest
eigenvalue. The estimates will, in turn, give a rate of convergence which is useful
for the numerical solution of the integral equation by iteration.

The most interesting theoretical aspect of the paper is the use of geometrical
reflection for the construction of the integral equation, which in a certain sense is
simpler than the one found in potential theory. The most interesting practical
aspect of the paper is the fact that we obtain a new integral equation for the
treatment of certain potential problems and when 3"1 is convex we obtain a rate of
convergence estimate given in terms of geometrical quantities.

2. Formulation of the problem. We shall restrict ourselves to curves F whose
interior contains 3’0 and F is of the form

x(0) ak cos kO + b, sin kO,
=0

y(O)= acoskO+sinkO,

0=< O<2r, n =>m, with

x’2(O) + y’2(O) # O, (a., b.) # (0, O) # (a.,, ,.)

and if rn n, then either a +/3 : a + b2. or a.a. + .b. # O.
We consider

z(o-) g[e i’] -ih[ei’]+ g[ei’] ih[e "]

and the reflection of z in parametric form

2(o-)= g[e"*]+ ih[e"]+ g[ei’]+ih[ei’],

* Received by the editors July 11, 1973, and in revised form AuguSt 24, 1974.
Department of Mathematics, University of California, Santa Barbara, California 93106.
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where o- 0 + i with

h t)=
=0 =0

c, (a, ibm, ), "y ifl ).

One can easily check, see e.g. [4], that for a circle, the reflection gives inversion in
the circle. We also require of that if is a zero of

2n 2n

O.(z)= E Dvz or O.(z)= E E.z,
p=O p=0

where

then

D, =(p-n)B,,_p, E, =(p-n)A,,_,,

D. =(p-n)A,_,,, E, =(p-n)Bp_,,,

A, c, + i’),,, B, (., + i.r/,,

g(’r)+ ih(’r)+ g(1/?)+ ih(1/).gl

and

0__-<p_-< n- 1;

n_<-_p <=2n;

yk=0 ifk>m;

g(’r)+ ih(’r,)+ g(l/?)+ ih(1/).g f.

We are looking for a real function u(z), z x + iy, harmonic in f, continuous

u(z)-F(t) asz-t, tonyoUy,

on f LI 3’ and such that

for which F(t) is real-valued and H61der continuous. Let Zl and z2 be the two

common points of ’o and ’1. Without loss of generality we can assume

F(z,)=F(z2)=O

since if not, we consider

Ua(Z)--u(z)-{F(z2) Re Z-ZI -FF(z1) Re Z--Z2 !.
Before we can formulate the integral equation we need to recall certain facts

concerning geometrical reflection. It is shown in [3], [4], that if 7o is of the form
we are considering, then there exists a "reflection function", G(z) for ’o, a

single-valued and analytic function in 11 such that if z f and

(;(z),

then for z close enough to To, ’f. We shall assume for all z f, 2d f. We also
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have

(i) G(I) is a region bounded by 3‘0;
(ii) E- z for z 3‘0;
(iii) G(z) can be extended as a single-valued function analytic on f U 3‘0 U 1

where

( { G(z), z e a}-- G(f);
(iv) G’(z)0 for zefU3‘oU0,U,lCll, and

(v) z for z f U 3‘0 I._J (.
We shall assume 3‘1 (’1 [O. U 3’0 U fi] , (Here we mean 3‘1 does not include its
endpoints.)

We look for u(z) of the form:

u(z) Re- dtlo(t)
t- z

+ Re- dtlxl(t)
t- z

where/(t) is a H61der continuous function on you 3‘1 with

/(t)=Io(t) for on 3‘0,

p,l(t) for on 71,

(zl)--/x(z2) xj(zk)= 0, j 1, 2, k 1, 2.
We recall some facts [2] about Cauchy integrals. Let

1 I. (t)
dt

where q(t) is H61der continuous on 3‘oI.Jyl. Let t* be on 3‘oUyl and let c

(0 < a -< 2r) be the angle through which the vector t*t rotates when the point on
the left of 3‘o U yl and close to 3‘o U 3‘1 moves from a point before t* (3‘o U 3‘1 has
an orientation) to points beyond t*. At all ordinary points (not corners, i.e., not z
or z2) a r and at z l, a a l, and at z2, a =a, see Fig. 1. Then the Plemelj

FIG.

o

22
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formulas tell us that (see e.g. [2, p. 428])

(z)_> +(t,)= ( 1 _) l (t)o(t*)+- our, t- t*

as z --> t* 3’0 LJ 3’ along any path in 1) and

a
,)

1
(z)->-(t*)= -- q(t +- ,,u, t-t----: dt

as z - t* 6 yo LJ yl along any path outside
Utilizing the Plemelj formulas along with (i) and (ii) we get

u(z) to(to),
z

which is valid even for to z l, z2, and

u(z) ,, Re dto(t)

dt

and

(2.2) /Zl(/1)=_Re
1 dttZl(t){1 1 }-5 t- t t- , + g(t’)’

(2.3) g(tl)=2gl(tl)_Re 1 dtFo(t){1 1 }"rrt vo t- tl t-
It is with the integral equation (2.2) that we shall concern ourselves. An

alternative way of writing (2.2) is

Io(2.4) u(r) K(’, s)u(s) ds + h(r),

where

s arc length of y,

sl length of ,,
t=t(s), t, t(’r),

(2.5) K(.,s)=llm{ t’(s) t’(s) }t(s)-)t(r) t(s)- f(r)

h(r)=g[t(’)],
p(’r) =/Zl[/(’r)].

where

which is also valid even for t zl, z2. Thus we see we must have

tzo(t) Fo(t), To, /, F on /,

+/z,(tl)+Re dttz,(t)
t-t, l-1
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(2.6)

As is easily seen and as is well known, see e.g. [1, p. 121],

1/cos (s, ’)
K(z,s)= rs

cos /3 (s, ’) } ={dw dd}p, ds ds

where

(2.7) rs It(s)- t(-)[, ps It(s)- (’)1,
and a(s, r) and/3(s, r) are the angles formed by the exterior normal n constructed
at the point t(s) and the vectors t(s)- t(r), and t(s)- [(r) respectively; co and b are
the angles that t(s)- t(-) and t(s)-/’(-) form respectively with the positive x-axis
(see Fig. 1).

3. Solution of the problem. We shall show that (2.2) always has a solution.
Toward this end we consider

(3.1) v(’) A K(’, s)v(s) ds + h(’),

v(O) v(sl)= 0, h(r) is H61der continuous, and prove the following theorem.
THEORVM 1. A =--1 is not an eigenvalue of (3.1).
Proof. If A =-1 were an eigenvalue and cr[t(s)] a corresponding eigenfunc-

tion, then

o-[t(’r)] K(r, s)o’[t(s)] ds,

Consider the harmonic function on D,

Then

since

and by assumption,

o-It, (0)] 0, o-It(s,)]-- 0.

q(z)=l f, dtcr(t){ 1
"/rl Z

for z on yo

2 z on To and cr(zj) 0, j 0, 1,

Req(z)=0 forzon71.
Thus since Re q(z) is harmonic in D, we have

Req(z)=-O for z in

Let

then

q(z) or(t) dt"
"lrl 7-- Z

(z) (z)- 4(2)
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and

where

Re 0(z) 1/2[O(z)- 4,(2) + 0(z)- 4,(2)]

=-[q,(z)- q,()] +-[q,(z)-

=x(z)+x(z)

=Rex(z),

x(z)= q,(z)-O()

is an analytic function for z on U To U fi U {boundary of F- yl Zo- zl}.
But since

Re q(z)=Re X(z)=0 on OU y,

we have X(z) ib, b real constant for z in O. U y. Since, however, X(z) is analytic
on U you lU{boundary of F-Tl-Zo-Zl} we have X(z) ib there also. Thus
on the smooth Jordan curve which is the same as F except in neighborhoods of Zo
and z and which contains no points of yl, we have

X(z) [g,(z)- qt(z)] ib,

1 1
Im q(z) {O(z)- qt(z)] b on .

But 4(z) is analyticoff of ’1 and thus Im tO(z) is harmonic outside of F and takes
on the value b on F. Moreover, q,(z)O as z oo, thus

Im q,(z) 0 outside F,

and therefore

q,(z) const. 0 outside F.

But q,(z) is analytic off 71 and thus

O(z) 0 off of T1.

Since r(t) is continuous, we see by the jump discontinuity for the potential
that upon approaching tl on y through z inside t and z’ outside O, that
for nontangential limits

lim [g,(z)- 0(z’)] 2or(h),
z,z’-

From this it follows that

0"1(/,) 0 for tl on /1,

Thus Y =-1 is not an eigenvalue.
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COROLLARY. The integral equation (3.1) has a unique solution for every
H61der continuous h(’).

Proof. Since A =-1 is not an eigenvalue of (3.1), (3.1) with h(z)-- 0 has only
the trivial solution. By the Fredholm theorems then, the homogeneous adjoint
equation has only the trivial solution. Thus for the original nonhomogeneous
equation there exists a solution and it is unique since the range of the original
equation is orthogonal to the nullspace of the adjoint equation.

4. Rate ot convergence when ")(1 is convex. To enhance the usefulness of the
integral equation as a practical method for obtaining numerical solutions by
iteration, we shall give a geometrical estimate for the smallest absolute eigenvalue
in the case yl is convex. As the resolvent is analytic in A for [A[ < A0, where Ao is the
smallest absolute eigenvalue, Ao will give an estimate for the rate of convergence
of the successive approximations.

With these ideas in mind we prove the following theorem.
THEOREM 2. Let yl be convex and such that if 3/0 and yl have points z and z2

in common and zlz2 is the chord joining zl to z2, then 3/0 is in one of the half-planes
of the line through zlz2 and yl is in the other. Let ao be the angle through which the
tangent to T1 turns in going from z to z2. Let 1 c convex set with boundary

6(6)= angle through which it turns as

goes from z to z2 along

6o=max6(6);
/lET!

then if A is an eigenvalue of (3.1) we have

where

and

to + Oo
/f6o+ao>O

Note. ho > 1 if 6o + ao < "rr.

Proof. Since in (2.6),

if 6o + ao 0.

angle between t(s)-t(-) and the exterior normal to 3’1 at t(s),

angle between t(s)- [(-) and the exterior normal to 3’1 at t(s),

see Fig. 2,

-(7r/2)_-< a =< (7r/2)

since yl is convex and t(z) is always on the same side of the support line to ’1
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though t(s),

-(7r/2) _-</3 =< (7r/2)

ZI

FIG. 2

since 1 lies in a convex set that has as part of its boundary ’1 and thus (-) is always
on the same side of the support line to 3’1 through t(s), and thus in (2.6),

where

K(-, s)=
1 [cos co]=+/-

doo/ds >= O, dd)/ds >-_ O.

If h is an eigenvalue and u(t) is a corresponding eigenfunction, then for
M= max,,, ,(t)we have

[,,(t)l I[ K(’r, s),(s) ds

=ll (s)
ds

as

[lffOsl d dS + fo d ds]
lM[o+o];
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thus

IA]_-> if Co+ 6o> O,
ao + 6o

and the proof is complete.

COROLLARY.

o<-_,max arc l 21t(O)-F(s)lJt(s,)- t(s)l J
where z, t(O), z2 t(sl), yl t(s), 0 <= s <= s,.

Proof. Construct a triangle with base zz2 and apex at [(s); then the corollary
is simply a statement of the law of cosines.

Remark. If y is a straight line, ao 0, and it is clear that 6o is always < r, then
for all eigenvalues A we have
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MATCHED ASYMPTOTIC EXPANSION SOLUTIONS OF
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

WITHA SMALL PARAMETER*

NOAM GORDON,-

Abstract. The initial value problem in a Banach space

du
=B(t, e)u + F(t, u, e),
dt

u(0, e) r(e), is studied. Here, B(t, e) is a linear, and F(t, u, e) a nonlinear, operator in u, and e is a
small parameter. The solution is found for the case where the null space of B is one-dimensional by a
method of matched asymptotic expansions. The form of the solution is shown to depend on the nature
of the projection on the null space of B of the coefficient of e in the expansion of F(t, u, e) about e 0.

1. Introduction. An ordinary differential equation with a small parameter
multiplying the highest derivative can often be solved by the method of matched
asymptotic expansions. In this paper, we apply this method to solve initial value
problems in a Banach space U of the form

() e-= B(t, e)u + F(t, u, e),

u(O, e)= C(s),

where B(t, s) is a linear operator and F(t, u, s), a nonlinear operator in u.
The case where B(t,s) is stable for each (t,e) has been studied by

Hoppensteadt in [4] and [7]. We shall discuss the case where B has a one-
dimensional null space E 1, but where its restriction in E to a complementary
subspace of E is stable. This case was treated by Hoppensteadt and Gordon 10]
for a problem where B is independent of (t, s); and the small parameter is not a
factor of the derivative term. In that case, a matched asymptotic expansions
method is used to express the solution as the sum of a smooth solution of the
differential equation, known as the outer function, and a function in a fast time
variable, known as the initial layer function, that gives the solution for near zero.
Formal expansions of these functions in terms of the small parameter are
substituted into the problem and the coefficients are derived to give uniformly
valid approximations to the solution.

In this paper, we show that the method solution of (1) varies significantly with
the nature of F(t, u, s). In many cases, the method of 10] can be directly applied.
We consider the case where the projection on E of the coefficient of s in the
expansion of F(t, u, s) about s -0 is nonzero. As a result, the coefficients in the
expansion of the outer solution are determined by successive algebraic equations.

* Received by the editors November 20, 1974, and in revised form January 2, 1975.

Department of Mathematics, City College of New York, New York, New York 10031. This
research was supported by the Faculty Research Award Program of the City University of New York
under Grant 10618.

A linear operator is called stable if its spectrum lies strictly in the negative half-plane.
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Consequently, two initial layer functions are needed to satisfy the initial condition
in E and in its complement in E. A crucial part of our work is showing that both
initial layers satisfy.the "matching condition". The coefficients in the expansions
of the outer and initial layer functions are derived in detail.

A previous study of this problem, where sr(e 0, was made by Trenogin 15].
The determination in [15] of the asymptotic scale for the expansion is generally
incorrect, as shown in 10], and we use the methods of the latter paper. Theoreti-
cally, our method can be extended to cases where zero is a multiple eigenvalue of
B, but the system of equations that arises for the coefficients of the outer solution
expansion may be impossible to solve. The applicability of initial value problems
such as (1) to the solution of partial differential equations is demonstrated in [2],
where the Benard problem is solved by the method of matched asymptotic
expansions.

Conditions on (1) for the use of the matched asymptotic series method are
given in 2. The form of the solution is derived, and Theorem 1, which states the
main result, as well as Theorem 2, which extends the result to the semi-infinite
interval, are given in 3. The coefficients in the expansions of the solution
are derived in 4, and the theorems are proved in 5.

2. Restrictions on the problem. The following restrictions apply to the
operators B(t, e) for 0t T and small e >0:

I. The operators B(t, e) are closed, possibly unbounded, linear operators in
E, with a common domain of definition D(B) which is dense in E and independent
of (t, ).

II. B(t, e) and its adjoint B+(t, e) have one-dimensional null spaces, spanned
by 4) and h +, respectively. We take the normalization (oh +, oh)= 1, where the
notation (th +, th) denotes the action of h E*, the dual of E, on th. Here, 4) and
h are independent of (t, e).

We define operators P and Q in E by Pu=(th +, u)(th +, u)th and Qu
(I- P)u. Then any element u 6 E may be written uniquely as u cch + w, where

cob Pu and w Qu.
III. Let /(t, e) QB(t, e) Q. Then /(t, e) is a closed, invertible operator

acting from QD(B) into QE. We assume that the resolvent of /(t,e),
R (B (t, e), A) exists and is a bounded operator for Re A ->_ O. Also, for some Co > 0,
which is independent of (t, e), and Re A ->_ 0,

The work of Yosida [17] shows that conditions I and III are sufficient to
ensure that for each (t, e), B(t, e) is the infinitesimal generator of a strongly
continuous semigroup of operators, e’" for - => 0. Furthermore, Hoppensteadt
[4] showed that there are positive constants c 1,

, independent of (t, e), such that

We assume the following condition on the operator F:
IV. F is analytic in a sense that is subordinate to a fractional power of/ (t, e).
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In particular, for some a, 0 <= a < 1, and any u E,

F(t, Pu +/-"(t, e)Ou, e) Fj(t, c, Ou)e j,
i,j=O

where F0 is an /-linear operator in c and Ou. We assume that Foo F,,=0.
Consequently, for u D(/(t, e)), we have that for small e > 0, F(t, u, e)
=(llull/ll (t,  )ull)uniformly in e as The properties of
fractional powers are discussed in detail by Sobolevskii [14].

Finally, we assume that the problem is well posed. Sufficient conditions to
ensure that the following assumption holds are given by Sobolevskii [14]:

V. There exists a function U(t, s, e), defined and strongly continuous for
0-< s =< =< T and e > 0, uniformly differentiable in for > s, and satisfying

10
U(t, s, e)+-B(t, e)U(t, s, e)=0.

Ot e

Furthermore, (1) is equivalent to the integral equation

u(t, e)= U(t, O, e)’(e) +- U(t, s, e)F(s, u(s, e), e) ds,

which has a smooth, unique solution on some interval 0 <_- _-< To for each e > 0.

3. Thededsypfie series efld. We now proceed to determine the
scale for the asymptotic expansion of the solution in terms of e. To do this, we
rewrite problem (1) as

dc
e- F(t, c + w, e),

(3) dw
e --=w + QF(t, cdp + w, e),

with the initial condition

(4) c(0,

where P is defined by Pu (b+, u) for u 6 E,
We let v =/w in the steady state problem of (3), which gives the system of

equations

(5) 0 =/SF(t, c4)+fft-lv, e),

(6) 0 v + QF(t, cdp +-Iv, e).

Since QF(t, 0, 0)= 0, and we have assumed the smoothness of QF(t, cqb
+B-l v, e), we may apply the implicit function theorem to (6) to show the
existence of a unique solution v(c, e) which has the expansion

v(c,e)= Z V,c’e,
i,j =O
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where Voo 0. We substitute this expansion and the one for F into (6) and solve
for the coefficients in the expansion of v(c, e). In particular, we find

Vl0 0, V01

Vii -QF,I()- QF2o(, Vol)- OF2o(Vol, d),

V02 --QF02-- Oe2o( Vol, Vol)-- (Fll(Vol),

Next, we substitute the expansion of v(c, s) into (5), and by re-expanding, we get

0 =/Fo18 + PF2o(b, dp)c2+PVl,(dp)c8 +(PF2o(Vo,, Vol)+PF11(Vo,)

(7)

i,j=O

where Goo 0, Go, PEon, Go PFo(b, 4), We shall restrict our attention
to a particular case. We assume:

Via. G,o 0 for < k, Go # 0,
VIb. Go1 0.

We use the Newton polygon method [10] to determine the asymptotic scale for an
expansion of a solution c c(e) of (7) which satisfies c(0)= 0. Thus we find that
the correct scale is e /.

In many applications, the condition Via is satisfied, but Go 0, and G 0.
Such cases can be treated by the method of matched asymptotic expansions
described in [10], as demonstrated for the Benard problem in [2]. On the other
hand, the analysis of the present case proceeds as follows. We let

c=el/kx, W=j-lt)(el/kx, e)+ ey.

The problem (3), (4) becomes

e 1/k dx-= f(t, x, y, e),

(8) dy
e-= By + g(t, x, y, e),

x(O, e)
(9) y(0, s) /(s),
where

f(t, x, y, e)= s-[PF(t, s’/x +-’v(s’/x, e)+ ey, e)]

Gox+ Go1 + O(e 1/:),
g(t, x, y, e)= e-’[QF(t, e’/xck+-lv(e/x, e)+ ey, e)

OF(t, s
--lv,(s/*x, s)PF(t, s/xck+l-v(s/*x, s)+ ey, e),

() --l/kp(S),

n(e) e), s)].
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Here, f(t, x, y, e) O(1), and g(t, x, y, e) O(e’/k), as e 0. From the
expressions for so(e) and rl(e), we require that:

VII. P(e)= O(e’/), Osr(e)= O(e).
Problem (8) is a two-parameter system of equations in e ’/ and e. Conse-

quently, two initial layers, which are functions of 0 tie 1/ and " t/e, respec-
tively, will be needed to satisfy the initial conditions. The form of the solution is
given by the following theorem.

THEOREM 1. Let hypotheses I-VII hold. Also, we assume the following:
VIIIo. If k is odd, let Go< O.
VIII.. I[ k is even, let Go,Go< 0, and if (0) O, let sgn so(0)=-sgn Go.

Then for each small e >0, the problem (3), (4) has a unique solution c(t, e), w(t, e)
for 0 <= <-_ 7". Moreover, the solution is of the form

c(t, )= ’/[x*(t, e)+z(0, e) +x(, e)],

w(t, e)= e[y*(t, e)+ (0, e)+ Y(’, e)]+ ff-’v(c, e),

where 0 tie/ and " tie. Here, x*(t, e), y*(t, e) is a solution of the problem (8)
that is smooth at e 0; $(0, e), 9(0, e) is a solution of the problem

d$

e -’/ d-jy+g(el/O,x*+$, y*+37, e) g(e’/O,x * y* e)
dO

which satisfies the initial condition (0, e)= (e)-x*(O, e)-X(O, e) and the
"matching conditions" X(oo, e)= Y(oo, e)l =0, where the norm . will be
the problem

dX
d

e-/[f(e, x* + X + X, y* + + Y, e)-f(e, x* + X, y* + , e)],

dY-y+g(e,x*+X+X,y*++Y,e) g(e,x*+X,y*+,e)

which satisfies the initial condition Y(0, e)= (e)-y*(0, e)-(0, e) and the
"matching conditions" X(,e)=lY(,e)l=O, where the norm . will be
defined in 5.

These functions have Taylor expansions
N

x*(t, e)= E x(t)e ’/ + O(e
i=0

N

y*(t, e)= E y(t)e ’/ + o(e+’/),
i=0

and similarly for x, , X, Y. The coefficients of these expansions are determined
successively. The error estimates hold uniformly in for 0 T.

The following theorem extends the results of Theorem 1 to problem (1) on
[0, ).
TnOM 2. Let the hypotheses of eorem 1 hold for T . en the results

of eomm 1 hold for T .
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4. Determination of the coefficients. We now proceed to determine the
coefficients in the expansion of the outer and initial layer functions described in
Theorem 1.

The lowest order terms in the expansion of the outer solution satisfy the
equations

Gox*o"+ Go O,
y*o o.

Thus

X *o
Go/

Y*o O.

By hypothesis VIII., GoG,,o< O. Thus there is a bifurcation of two formal real
outer solutions when k is even, but one formal real outer solution when k is odd.

Higher order coefficients are determined successively by the equations

kGkoX*ok-lx*i + f*i (t, X*o, Xi--1, yo, y/*-k-1) O,

/y* + g*(’t, Xo*,""", X*_,, yo*, ", y/*-l) O,
where f* and g* are known functions.

The equations for $o and fo are

d$o
G,,o(X*o(O) + o)" G,,oX*o"(O)

dO

(10) kGox.,O,-l$o+Go,., xo(O) Xo,

/yo= 0.

The initial condition is

(1) z,(0) (0)- x,*,(0).

*(0)"-<0 we require (hypothesis VIIIo)To ensure that kGoxo
that Go< 0 if k is odd, and sgn xS(0) -sgn Go if k is even. The latter condition
serves to select the stable solution for x(t) when k is even. We need the following
lemma to show that o(0) satisfies the matching condition.

LEMMA 1. Let k be a positive integer, k >-2. Also, let

i=2

Then there is a positive number a such that p(A)->_ a for all A if k is odd, and for
A >-- 1 if k is even.

We shall use Lemma 1 to prove the following result.
LEMMA 2. Let hypotheses VlIIo and VIIIz of the theorem hold, and let o(0) be

a solution of (10), (11). Thenfor some positive number, .o(0) O(e-), as 0
These lemmas are proved in 5.
Higher order coefficients satisfy the successive equations

d,_ Go(X,*,(0) + o)-, + f(,,, ,-1, 9,,,dO
t?f, + g,(,,, , ,_,, 9o,..., ;,--,) 0,
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with the initial condition
1

,(o) -,()1._o- x*, (o)- x,(o),

where f, is a known polynomial which decays exponentially as 0- oo, and g, is a
known operator. It follows from Lemma 2 that there exist positive integers % 0,
such that Gko[X*o(O)+g,,]"-’<-3, for 0>0. Therefo", g(0)and 37,(0)decay
exponentially as 0 - co.

The lowest order terms in the expansion of the second boundary layer, X,, and
Yo, satisfy the equations

dX’----2 O,
d Y,___2 Yo.

dr d"
The initial condition is

Thus

Y,,(0) (0).

x,,(r) 0, Y,,() e "( )(0).
We use hypothesis IV to derive the estimate Yo(’) O(e-"), for some positive v.

Higher order terms are derived from the successive equations

dX=(Xo,..., X,_k, Yo,"" ", Y-2k),

dYe__ y, + i(Xo, ..., X,_,, Yo, Y/-1),
dr

with the initial condition

1
Y,(0) -;n n()lo- y,*(0)- ,(0),

where ] is a known polynomial which decays exponentially as r--)oo, and is a
known operator. To satisfy the matching condition, we take X,(’)

-jr (Xo(),..., x,_(), Yo(s),..., Y,_()) ds. Since and , may contain
unbounded operators, a stronger norm is needed for the derivation of decay
estimates. For v eD(), we define Ivl=llvll+llvll. By hypothesis III, the
conditions of the following lemma, which is proved in 10], are satisfied. The proof
given in [8] may now be applied to show that X and Y satisfy the matching
condition.

LEMMA 3. Let hypothesis III hold, and suppose that, for some 0<= a < 1,
G(v, e)= O([v[) as Iv[, -0 uniformly in e near zero, where G is some operator i.n
E. If v(t, e) is a continuously differentiable function of which satisfies dv/dt By

+ G(v, e) for <- 0 with v(O, e) D(), then there are positive constants C, which
are independent of e, such that Ivl <= C e-’ for <- O, provided Iv(())l is sufficiently
small.

The construction in [9] is extended to the present case by using the norm
Thus the results of Lemma 3 are shown to apply for all initial data which lie in the
domain of attraction of the steady state v(t) 0. By hypothesis VII and Lemma 2,
we have that the initial data in our problem satisfy that requirement.
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5. Proof of the theorems. In this section, we prove the theorems and the
lemmas given in the previous section.

ProofofLemma 1. Since p is a polynomial, it suffices to show that p(A) > 0 for
the given ranges of A. This is obvious for A _-> 0 and follows, for A < 0, from

p(A) -- (1 -- [j,)k-1 dJ.

Proof of Lemma 2. We rewrite problem (10) in the form

12 ,, ._.r o(0) 1
,oXotU) PLx(O)jo(O).dO

If k is odd, then by Lemma 1,

for some a > 0 and 0 N 0 <. Also, by hypothesis VIIIo, Go< 0. Therefore, for
some > 0,

Gx(O)- P[x(0)J <- for 0N 0 <m.

It follows that g(0)=O(e--) as 0m. If k is even, and Go>0, then by
hypothesis VIII, we have (0)N 0. Also, we chose x(t) so that x(0)< 0. From
the initial condition (11), we see that

By Lemma 1, we have

Therefore

.go(O)
>-1

Xo*(O)

P[xo*(O)J =a for some a > O.

G,oX*o(O)k-lp[x,o(O)j < 0 at 0=0.

Since these are continuous functions, this inequality holds in a neighborhood of
0 =0. Equation (12) implies that ]o(0)1 decreases in this neighborhood, so

.o(0)
>-1

Xo*(O)

in the closure of the neighborhood. A continuation of this argument shows that

o(0)>1 for0 <0<ooXo*(O)
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Using Lemma 1, we have that

Therefore,

for some/3 > 0 and 0 =< 0 < co.

(0) O(e-) as 0--.oo.

In the case where k is even and Gko < 0, the sane reasoning is used to prove
the lemma.

Proof of Theorem 1. To prove the theorem, it remains to be seen that the
expansions of the outer and initial layer solutions are asymptotically correct. To
do this, we develop these functions in Taylor expansions to order N/k. Then, we
derive a system of equations for the remainders divided by e ,+l/k. The systems are
of the same form as those for the original functions. As described in detail in [1],
we can set up successive approximations to the solutions which are of order
O(el/). The method shown in [6] can be used to show that the successive
approximations converge uniformly to solutions which satisfy the order relation
uniformly in for 0-< <= T. This concludes the proof of Theorem 1.

Proofof Theorem 2. To extend the results of Theorem 1 to the case T oo, it is
necessary to demonstrate the stability of the outer solution. It has been seen that
the outer solution is determined by algebraic equations, whose solutions depend
on Go1 and Go. Therefore the hypotheses of the theorem, together with the
results of Theorem 1, suffice to prove the stability of the outer solution.

Acknowledgment. The author wishes to express his deepest gratitude to
Professor Frank Hoppensteadt of New York University for many hours of
assistance and encouragement.
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SELF-ADJOINT DIFFERENTIAL EXPRESSIONS
IN TWO VARIABLES*

GEORGE E. MITCHELL,

Abstract. Self-adjoint partial differential expressions in two real variables are defined and studied.
The most general self-adjoint partial differential expression in two real variables is obtained.

In !-3] H. L. Krall studied the linear differential operator

L(y)=Ay2.)+"l( 2n )
,--o 2i+1

C2"-2i-lA<Z"-2i-)y<2i+1)’

where C2r_l=r-l(22’--l)B2,,, B2, B4, "", are the Bernoulli numbers Z
d"Z/dx", and A is a function of x alone. He proved that L is self-adjoint, and

that the most general operator satisfying L(y)= M(y) (M the adjoint of L) is of
the form

L(y) E (- 1 2B2s-k+,.
s=o =,, k

Using the definition of self-adjoint given in [1], no self-adjoint differential
operators of odd order exist. In [2], A. M. Krall extended the definition of
self-adjoint by defining the n th order differential operator L to be self-adjoint if
L(y) (-1)"M(y). With this definition, self-adjoint operators of odd orders now
exist. In particular, it was shown in [2] that the linear differential operator

L(y) Ay(*+ c_.A(-*y
=o 2j

where C2r- r-(22r- l)B2r, and B2, B, are the Bernoulli numbers, is self-
adjoint. Furthermore, the most general differential operator satisfying
L(y) :-M(y) is

2s (2S + 1)22-a+2 a (2s-+y(.
s=0 k=0

In [1 ], L. Carlitz explained the surprising presence of the Bernoulli numbers
in the above formulas.

The purpose of this paper is to extend these ideas to linear partial differential
operators in two variables, x and y. To simplify notation, we write D for O/Ox and

D for 0/0y. The adjoint of the partial differential expression

k=0 i=0

is the partial differential expression

M(u) l)D:-’’’’’’ "’
k=O i=O

* Received by the editors February 8, 1974, and in revised form January 16, 1975.
? Department of Mathematics, University of Alabama, University, Alabama 35486.
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where Ak.i are differentiable functions of x and y of class C". L is self-adjoint if
and only if L(u) (- 1)"M(u), where n is the order of L. The following properties
of partial differential expressions are easily established"

(i) There are no odd (even) ordered partial differential expressions satisfy-
ing L(u)= M(u) (L(u)= -M(u), respectively).

(ii) The sum (or difference) of self-adjoint partial differential expressions all
of even order (or all of odd order) is self-adjoint.

(iii) For a given set {A2,.,(x, Y)}--"o of function’s (differentiable of class C2")
there is at most one self-adjoint expression of the form

A similar statement holds for odd ordered partial differential expressions.
THEOREM 1. The even ordered partial differential expression

2, (2n)ADx Dy (u)+ [n-12i+12n-2i-l(=O’ _, 2n )(2i+1)L2, (u) X (2,-,)

,=o j=o =o 2i+1

(2n-2i- 1)_ [1.(2n_2i_k_l) F(k)A ,[F(2i_j+l) F(j)[,,)) ]k 2n--2i--lx y k+jlkx y

where c,-1 r-1(2- 1)B, and the BE’S are Bernoulli numbers, is self-adjoint.
(The A,’s are functions of x and y and are differential of class C".)

Proof. The adjoint of L,(u) is

M2.(u)= D"-’)D )(A,u)]- E E E
i=0 i=0 i=0 k=0 2

ni+1)
(2i+1)(2n+2i-1) ,n(2,-,+ (i)[(D(2n-2i-k-1)l-()A ,,

j k C2n-2i-ll.l-’x 1)Dy ,_.,y

Upon differentiating, we have

Mz.(u) X X ,.-,,, ,
=o =o =o r

-22 E
=o=o =o ,=o q=o 2i+1 ] k

(k+j--q)A ((r)(q)
r q

In order to simplify the limits of summation, note that these sums run over all
values for which the binomial coefficients are defined. Hence we will make no

restrictin if we define ( N ) (_)N+ k
0 and 0 for k > 0 and change the limits

of all the sums from 0 to m. Using formulas involving the binomial coefficients,
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and setting s n and w j + k in the second term, we have

--sj2rqZZ r q w-q w j 2s-l-w+j
[]r(En--w--r) l"(w--q)/ )(’)(r)(q)u)"t2s_lk..x X-y

(Here all sums are from 0 to oo.)
Consider the second term of M.(u). The sum over j alone is

w q 2n 2n 2n-r q

---o w ] 2s-l-w+] ___q w ] 2s-l-w+] \ 2s-1

Combining the two equations in Theorem 1 of [3], we have

Z C2i--1--- Z C2i-1 1 if r 2, 4,-’’
i---o 2i- 1 i--o 2i-1 1-c if r= l, 3, ".

Hence the sum over s alone becomes

(2n-r-q) =P(2n r ),Y"
\ 2s -1 c2s-1 q

s=O

where

0 if 2n-r-q=O,
P(2n r- q) 1 if 2n r- q 2, 4, .,

l--c2,,-,,-q if 2n-r-q 1, 3,....

The second term of Mz,(U) now becomes

(2n)(’2n --r)(2n --t’--q)(D’2"-w-"’tO’-’’A ,tt3’r’t3<q’u)P(2n-r-q).

Setting w in the first term of M2,(u), combining the two terms, replacing q
by s using q s-r and returning to finite sums, we have

M,(u) X E (D(2n-w-r)(w-s+r)a
r=O F S /

(D">D<’-’)u)(1-p(2n-s)).x y
2n 2n 2n

We now use the formula and note that
r=O s=O r=O

1 if2n-s=O,
1-P(2n-s)= 0 if 2n -s 2, 4, .,

cz,_s if 2n-s= l, 3, .,



1020 GEORGE MITCHELL

so that the only nonzero terms of M2, (u) are those terms in which s is odd (s < 2n)
or s 2n. By letting s 2i + 1 and separating out the s 2n term, we have

M.(u= [ ’-’"-’-’u+ Y 2
r=0 r ]2n-rkx Y

i=0 r=0 w=2i+l--r r

2n-2i-1 w+r-2i-1

{(r)(2i+l--r).

M,(u) now becomes L,(u) if we let 2n r in the first term, and replace r
by 2i + 1 -j and set w j + k in the second term. Hence L,(u) is self-adjoint.

This theorem, along with property (iii) above, allows us to state that the most
general partial differentiable expression in two variables of order 2n satisfying
L(u) m(n) is

=o,=o =o=o=o =o 2i+1 j

2- 1
.B_(DZ-Z-I-))ay 2r,k y
r-i

where the B2,-2i are the Bernoulli numbers, and the A2r, are functions of x and y
which are differentiable of class C2r.

The techniques used to prove Theorem 1 can be employed to prove the
following theorem.

THEOREM 2. The odd ordered partial differential expression

(2ji)(2n- 2i + 1)ck.2n_2i+lJ.x[(2n-2i+l-k) l-(k)A.y _l-,Xk+j) [,1_ x[l’(2i-j)r)(j)llz.,,,y

where C2r--1 r-1(22r- 1)B2r and the B2r’s are,Bernoulli numbers, is self-adjoint.
It follows that the most general partial differential expression satisfying

L(u)= -M(u) is

( ) i
2i 2n-zi+a(2r+1)2 2n + 1

AEr+l i(DxZr+l-i)l’)(i)u)-4r ., .,
,.=o =o

"Y
r=O =0=0 ,=0 2i

2i 2r--2i d- . __--__I__ z,-ZiD(2r-2i+l-k)D(k)A (D( ).--)

j k ) 2r-2i +ss - LyU).
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GR)NBAUM’S INEQUALITY FOR BESSEL FUNCTIONS
AND ITS EXTENSIONS*

A. McD. MERCERf

Abstract. Recently, F. A. Griinbaum found a new kind of inequality for the Bessel functions,
namely l+v(a)>-_v(b)+,#v(c) (a2=b2+c2, v>=O, v(x)=F(v+l)(2/x)VJv(x)). Later, another
proof was given by R. Askey. In his paper Griinbaum suggested the desirability of finding a proof
which, when v n/2-1, n 2, 3,. ., made use of the property of these functions of being spherical
functions for the corresponding symmetric spaces. Such a proof is given in the present note, and it is
found that the method provides an extension of Griinbaum’s inequality as well as other inequalities of
a similar nature.

In [2], Griinbaum used an inequality which he had proved for Legendre
polynomials [1] to obtain the following inequality for Bessel functions.

THEOREM 1. I] a b + c2, then

1 + Jo(a) >-_ Jo(b) + Jo().

If we write (x)= F(v+ 1)(2/x)J(x), v>-O, then by Sonine’s first integral
we have

(x) 2v o(x sin 0) sin 0 cos2- 0 dO, > 0,

from which we obtain the following corollary of Theorem 1.
TEOREM 2. I]: a b + c, then

1 +(a)>-_(b)+(c), v>-O.

As we stated previously, Theorem 1 was proved by Griinbaum, who also
proved Theorem 2 when v n/2-1, n 2, 3, 4,- . Subsequently, Askey [3]
gave a direct proof of Theorem 1 and pointed out how Theorem 2 could be
deduced from it by using Sonine’s result. Griinbaum states that it would be
desirable to prove the inequalities corresponding to v n/2- 1, n 2, 3, 4,. .,
by a method which made use of the property of these functions as spherical
functions for the corresponding symmetric spaces. Neither his nor Askey’s proofs
do this, and it is the object of the present note to present such a method of proof.
Indeed, the present method yields rather more, giving two-sided inequalities, and
may also be used to provide other inequalities of a similar nature.

The proofs all depend on the following integral formula proved in [4]. If S(1)
denotes both the (n- 1)-dimensional manifold llxll 1 in Euclidean space E" and
its volume, then we have the following lemma.

LEMMA. If Y’."=I h h and v n/2-1, then

(1
S(1) , k=l

csxkxk ’=v(A)’ n_>2.

* Received by the editors January 6, 1975.

" Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario, Canada.

1021



1022 A. McD. MERCER

Here o1 denotes the volume element in the manifold S(1). First, we shall
prove the following extension of Theorem 2.

THEOREM 3. If a)= b + C 2, then

1 +(a)>--I(b)+(c)l, ,>-0.

Proof of Theorem 3. Taking A b and Z 0, 2 -_< k -< n, in (1), we get

1 fs (COS bx,)o-1 (b).(2)
S(1)

Taking A, b, A:=c and A =0, 3<=k<=n, and writing a for A in (1), we get

1 I (cos bXl COS CX2)O’I ,(a), a b + c(3)
S(1) ,

Now if :t: 1 and 2-- -]’- 1, we have

(1+ cos bx)(1 + 82 cos cx2) >= 0.
Multiplying out, integrating over S(1) and dividing by S(1), we obtain, from (2)
and (3), and from (2) with b replaced by c, that

1 + el.(b) + 2u(C) + E162ffT,,(a) O, a b + C a.
Take 2 1, and then take e e + 1, and we get

1-o(a)<=oC(b)+(c)<-_ 1 + o(a), a= 62+{22,

which is the desired result in the case u n/2- 1, n 2, 3,. The extension to
all ,->_0 can now be made from the special case v 0 by Sonine’s integral, as
before. This completes the proof of Theorem 3.

If, in the above proof, we had instead taken el 1, e2 1, and then taken
e -1, e2 + 1 and proceeded in the same way, we would have obtained the
following result.

THEOREM 4. If a b + c2, then

1 -,,(a) => [(b)-(c)], u =>0.

Clearly, other, similar results can be obtained by changing the number of
factors of the type (1 + e cos bXl) used in the above analysis. The simplest result
uses a single factor and proceeds from the inequality

1 + e cos bx >= O, e + 1,
yielding the trivial result

I.(b)l_-< 1.

However, if we take, say, three factors, take n => 3 in the Lemma and start from

(l+ecosbxO(l+e2coscx2)(l+e3cosdx3)>=O, e +l,

we obtain altogether four inequalities, one of which, for example, is the following.
THEOREM 5. If a b + c + d2, then

< 1 q-o,,((c2nt-d2)I/2)q-o,,((d2q-b2)l/2)qi-,,((b2q-c2)l/2), 12--2.
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ON THE EIGENVALUES OF CERTAIN INTEGRAL OPERATORS*
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Abstract. Let V(_x) be a real function in L(_R,) with bounded support, and let 0 < < n. In the
early 1950’s, M. Kac obtained an asymptotic formula for the eigenvalues of the compact nonnegative
operators

Sf. (_x) I V(s)l_x gl-V(g_)/) d_y, fe L2[R,,],

using probabilistic methods. Subsequently, more general results were obtained by various mathe-
maticians. In the present paper a connection is established between such "Kac limit theorems" and
"asymptotic distribution theorems" for finite section Toeplitz operators, a relation which we use to

obtain new "Kac limit theorems".

Part I. Kac limit theorems for orthogonal polynomials.
1. Introduction. This section is intended to make clear how the ideas of

this paper are related to each other. Let _T be the real numbers modulo 2n and let
a(dO) (1/2n) dO be Haar measure on _T normalized so that _7’ has mass 1. Let V(O)
be a nonnegative function in L_T], and L(k) a nonnegative function on Z, the
integers, vanishing at . We define the operator S on La_T] by

(1.1)

where

and where

S M(V)F*E(L)FM(V),

M(V)f (0) V(O)f(O),

e(L)g (k) L(k)g(k),

f(O)eL2(T_),

g(k) e L2(_Z),

Ff (k) I_ f(O) e-’a(dO),

F*g (0) g(k) eik.

Clearly, S is a completely continuous nonnegative operator on L2(_T). If L(k) is
"nice enough", then it can be shown that "essentially"

(1.2) N+[, S] I{0, k" V(O)2L(k) > fil_TZ as S --, 0+,

where N+[3, SI is the number of eigenvalues of S greater than and 1{. }[zz is
the measure of the set in the product measure space _T x _Z where the measure
on _T is a(dO) and the measure on _Z is the counting measure.

Formulas like (1.2) were first investigated by Kac [6], [7] using probabilistic
methods. They were subsequently studied by Rosenblatt [10], [11, Widom [15,
[16], and the author [4]. We will be interested in the structure of such formulas
which we call "Kac limit theorems". The demonstrations in [4] are based upon the
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following idea. For each e > 0 let n(e) be a finite subset of_Z. Let be a measurable
subset of _T and let

M(n)f (0) za(O)f(O),

E(e)g. (k) Z,()(k)g(k),
We define the family of operators

f LZ[_T],

g 6 Lz[_z].

(1.3) Pn(e) M()F*E()FM(), > O,

on L[T_]. Pn(e) satisfies 0 __< Pn(e) __< I and has rank n(e)*. (Throughout, {. } #
counts the number of elements of the set {. }). Let us now assume that if Q(e, m)
is the number of representations of rn in the form k j where k, j n(e), then

(1.4) lim Q(e., m)/n(e) # 1, all rn 6_Z.
e-O+

Under this assumption, we can show that for any 6 > 0,

N + b, Pa(e)] a()(e)#,
e-0+.(1.5)

N + [6, Pn()] a(fl)()*,
If L(k) is sufficiently "nice", then we can choose n(e) in such a way that S can be
estimated by suitable linear combinations of Pu(e)’s, and (1.5) (together with similar
related results) can be used to obtain (1.2). Such arguments are very efficient in
that they apply in all compact symmetric spaces.

Let us now turn our attention to the Toeplitz operator

TL(e E()FM(L)F*E(e).

Here M(L)g. (0) L(O)g(O) and, because F*E(e) maps Lz[_z] into C(_T), L may be
any real function in L I[_T]. A generalization due to H. Krieger [8] of a famous
result of Szeg6 asserts that if (1.4) holds, if

a{O’L(O) a} a{O’L(O) b} O,

and’if T)(e)is the restriction to E(e)L2[Z_ +] ofTL(e), then as e 0+,

(1.6) N[(a,b); T)()]/(e) # a{O T_’a < L(O) < b}.
Here N[(a, b); T)(e)] is the number of eigenvalues of T)() lying in the interval
(a, b). In his thesis [9], D. Liang has recently given a new proof of (1.6) along lines
different from Krieger’s, but related to the ideas above. Note that in both Krieger’s
and Liang’s work e can belong to a directed set which need not be R__:. We briefly
sketch Liang’s proof. Let

(1.7) Tn(e) E(e)FM()F*E(e).

Liang shows that 0 =< Tn(e) I, and that

N + 6, Tn()] a(fl)n() #,
(1.8) as e 0+

N + [6, Tn(e)] a(fl)() #,

for each 6 > 0, provided that (1.4) holds. Using (1.8) (together with other related
results), (1.6) is proved by approximating TL(e) by suitable linear combinations of
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Tn(e)’s. Liang’s argument works for all Abelian groups with compactly generated
dual, as does Krieger’s. In addition, it works for all compact symmetric spaces.
Moreover, Liang shows that (1.4) (or its analogues in the other cases considered)
is necessary as well as sufficient.

At this point it begins to seem plausible that P,(fl) and T(fl) may be unitarily
equivalent. We will show that this is true. However, this fact does not in itself
advance the theory ofeither Kac or Szeg6 limit theorems on groups. This is because
(1.5) and (1.8) are equally easy to prove, and because the ways in which they are
made to yield (1.6) and (1.2), respectively, are rather different. However, there exist
a substantial number of "Szeg6 limit theorems" in which the functions {ei"},ez are
replaced by one or another orthonormal set. See Grenander and Szeg6 [2].
Specializing these results to the appropriate analogues of the operators Tn(e) and
using the unitary equivalence, which persists between the analogues of the Tn(e)’s
and the Pn(e)’s, we are in a position to use, virtually without change, the arguments
of [4] to obtain Kac limit theorems quite unconnected with groups.

2. General orthogonal polynomials. Let W(dO) be a finite measure with
infinite support on the Borel subsets of _/= [0, hi. We suppose thoughout that if

W(dO) W.(O) dO + W(dO)

is the decomposition of W(dO) into its absolutely continuous and singular parts
with respect to Lebesgue measure, then

(2.1) log W(0) dO <

Let L2[W] be the Hilbert space of those complex Borel measurable functions f(O)
on I for which [[fllw is finite, where

f w ]f(O)12W(dO)

Let _Z + be the nonnegative integers and let {p(k, 0)}keZ,+ be the orthonormal poly-
nomials obtained by applying the Gram-Schmidt process to (cos O)k k Z_ + in
Lz[w], where the p(k, O) are normalized by the condition that the coefficient of
cos kO in p(k, O) is positive. Let Lz[_z +] be the Hilbert space of these complex
functions g(k) on _Z + for which IIg] z is finite, where

If we set

and

tl/2]g(k)12
keg

Ff (k) f f(O)p(k, O)W(dO), f L2[W],

then F is a unitary mapping of L2[W] into L[Z_ /] and F* is its inverse.

F*g (0) g(k)p(k, 0), g Lz[_z+],
keg
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Let V(O) be a nonnegative bounded Borel measurable function on _/and L(k)
a positive function on _Z / such that L(k) 0 as k . Then

M(V)f (0) V(O)f(O),

is a bounded nonnegative linear transformation on L2[W], and

E(L)g. (k) L(k)g(k),

f e L2[W],

geL2[_Z/],

is a compact nonnegative linear transformation on L2[_Z+]. It follows that

S M(V)F*E(L)FM(V)

is a nonnegative compact linear trao.sformation on L2[W]. Let {2s(k)},2s(1)
>_- 2s(2) >_- be the eigenvalues of S. Our goal is to obtain an asymptotic formula
for 2s(k) as k o.

In this section it will be more convenient to replace the parameter e > 0 by
n 0, 1, 2,... (in which case n oe corresponds to e 0+). For f a Borel set
in I, we define M(f)f. (0)= )n(O)f" (0) for f(O)e L2[W], and we define E(n) by
E(n)g(k) Zto,,l(k)g(k) for g(k)e L2[_Z+]. As we remarked in 1, the arguments
necessary to obtain the asymptotic formula just alluded to fall into two parts.
Because the second part is well understood and is developed in [4] in exactly the
form we need, it is sufficient to carry out the arguments which constitute the first
part. In order to make clear what it is we need, we state these results considerably
in advance of their demonstration. We set

Pn(n) M(n)F*E(n)FM(n)

and

Pn,,a2(n) M(n,)F*E(n)FM(n2) + M(n2)F*E(n)FM(f,),

where n, n and nz are Borel measurable sets in I and nl fl n2 . Let it(dO)
(1/r0 dO for 0 e !. The results we must prove are the following.
THEOREM 2a. For each 6, 0 < 6 < 1, we have

N + 6, Pn(n)]/(n + 1) --, it(n)

N + [6, Pa(n)]/(n + 1) - it(n)
as n- .

THEOREM 2b. For each 6, 0 < 6,

NIl, Pn,,n2(n)]/(n + 1) 0 as n --, o.

Here NIl, Pn,,n.(n)] is the number ofeigenvalues ofthe self-adjoint operator
greater than 6 in absolute value.

The ease with which we can prove these results is due to the fact that we can
bring to bear the following special case of a famous result of SzegS.

THEOREM 2c. Let (2.1) be satisfied. If
Tn(n E(n)F*M(f)FE(n)

and if a < b and a, b 4:0 or 1, then

lim N[(a, b); rg(n)]/(n + 1)= it{O’)n(O)e(a, b)].
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Here N[(a,b); T)(n)] is the number of eigenvalues of T)(n)contained in
(a,b), where T)(n) is the restriction of Tn(n) to its range, N[Ta(n)]. Let us set
E_(n) F*E(n)F then F*Tn(n)F E_(n)M(O)E_(n) and Pa(n)= M(f)E_(n)M(f).
It is simple to verify that N[F*Tn(n)F] is the (n + 1)-dimensional subspace of
Lz[w] spanned by the functions {p(k, 0)},=o and that [Pa(n)] is the (n + 1)-
dimensional subspace of Lz[w] spanned by the functions {7a(O)p(k, 0)},= o. Simple
computations show that

where Zfi(k,j) f. p(k, O)p(j, O)7.n(O)W(dO),[Zfi(k,j)],= o,

is the matricial form of F*T(n)F restricted to t[F*Tn(n)F] relative to the basis
{p(k, 0)},= o, and at the same time the matricial form of P.(n) restricted to [P.(n)]
relative to the basis {Z.(O)p(k, 0)},= o. As a consequence of this observation, we
have the following result.

LEMMA 2d. Tn(n) restricted to [Tn(n)] and Pn(n) restricted to [P.(n)] are
similar and therefore hae the same eigenalues (with the same multiplicities).

That Theorem 2a is true now follows from Theorem 2c and Lemma 2d.
LEMMA 2e. We have if t2 f’) ’2 J, ’ U "2,

(2.2) tr [Pn(n)2] tr VPn,(n)2] + tr [Pn(n)2] + tr [Pn,.n(n)2].

Proof. In order to shorten our notation, let us set F*E(n)F(n) _E(n). Then,
since M(f)2 M(f),

Pn(n)2 [M()E_(n)M(n)] [M(}E_(n)M()],

M(f)E_(n)M()E_(n)M().

Using tr AB tr BA, we see that because _E(m) has finite rank

tr [Pa(n)2] tr [M()M()E_(n)M()E_(n)],

tr [M(f)E_(n)M(f)E_(n)],

(2.3) tr [{M(fl) + M(fz)}E_(n){M(f) + M(fz)}_E(n)],
tr [M(f)E_(n)M(ft)E_(n)] + tr [M(fz)E_(n)M(fz)E_(n)]

+ tr [M(fx)E_(n)M(fz)E_(n)] + tr [M(fz)E_(n)M(f)E_(n)].

By the argument given above, the first two terms in (2.3) are equal to

tr [Pn,(n)2] and tr [Pn(n)2].
On the other hand, since m(l)M(fl2) M(f2)M(b) 0, we see that

Pn,,n(n)z [M(f,)E_(n)M(2) + M(f2)E_(n)M(f,)] 2

M(f)_(n)M(f2)E_(n)M(f) + M(2)E_(n)M(t2)E(n)M(fz),

from which it follows as above that

tr [Pa,,n(n)2] tr [M(x)E_(n)M(f)E_(n)] + tr [M(f2)E_(n)M(f2)E_(n)].

Combining these results, Lemma 2e follows.
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We can now prove Theorem 2b. If we divide (2.2) through by (n + 1) and let
n , then using Theorem 2a, we find that

and since

it follows that

lim tr [Pn,n2(n)Z]/(n + 1) p(fl) P(fll) -/(f12) 0,

N[6, Pal,a2(n)] =< 6-2 tr

lim N[6, Pn,,n2(n)]/(n + 1)= 0.

Theorem 2b is thus a corollary ofTheorem 2a. In [4], the analogue ofTheorem
2b is proved directly by an argument parallel to the argument used there to prove
Theorem 2a. However, such an argument is unavailable here.

3. A Kac limit theorem for orthogonal polynomials. In the present section
as in 2, we set 7(n) [0, 1, ..., n]. Since the 7(n)’s are not a very "rich" family
of subsets of_Z /, our sufficient conditions for a Kac limit theorem are correspond-
ingly restrictive.

DEFINITION 3a. The real function L(k) >_ 0, k _Z +, is said to be sufficiently
regular if L(k)can be represented in the form’

L(k) L(k) + L2(k),

where the following five conditions are satisfied"
(i) L(O) >= L2(1) >= L3(2) >=
(ii) L(k) 0 as k +.

For > O, let n() be the largest integer/c in_Z / for which L(k) > . (If is too large,
n() may be undefined.)

(iii) for each fixed a > 0, n(ae) O[n(e)] as e 0+
(iv) n(el) o[n(e)] as e, e 0+ if e o(e);
(v) Lz(k)eReL[Z_ +] and for every 6 > 0, E(6) # is finite where E(6)

{k’lL2(k)l >= 6L(k)}.
Let us define

V(e) I{(O, k)’lV(O)12L;(k) >
THEOREM 3b. For V(O)e L[W] and L(k) "sufficiently regular" in the sense

ofDefinition 3a, we havefor each 6, 0 < 6 < 1,

N+[e,S]>Ii 6]_
aseO+,

where S M(V)F*E(L)FM(V).
Proof As we mentioned earlier, the demonstration of this result falls into

two parts, the first of which we have just carried out. The second part, a systematic
exposition of which is given in [4] shows that Theorems 2a and 2b imply that for
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any fixed 6 > 0,

N+[e, S1] < tp
i +

N+[e, SI]>

where the kernel of S is M(V)F*E(L)FM(V).

ase0+,

Let us define $2(6) to be the integral operator on L2[W] of rank E(6) # whose
kernel is

It is apparent that

Pk(O)pk(tp)1 L’21]
kE(6)

S(1 + 6)S, + $2(6),

S (1 b)S, $2(6).

By the minimax principle (see [1, pp. 132-134]),

N+[e,S] <= N+[e,(1 + 6)S,] + N+[0, S2(a)]

N+[,S]N+[1 + 6’S +E(6).
It follows from this that

N+[e,S]
+ )

ase.

A similar argument shows that

N+[e, S]
6)2

as e .
Since 6 > 0 is arbitrary, our proof is complete.

4. A Kac limit theorem for Jacobi polynomials. In this section, we establish
a Kac limit theorem associated with the Jacobi polynomials of index a, fl where
a > 1, fl > 1, of the same level of generality as the Krieger generalization of
the Szeg6 limit theorem for T quoted in 1. Let p,,(k, O) be the polynomials of 2
corresponding to the weight function

(4.1) W,(dO) 2 + sin cos dO.

It is easily checked that

p,,,(k, 0) {h’,)} /2 P,e’(cos 0),

where the P’a)(x) are the Jacobi polynomials as usually given (see 12]).
Ultimately, we will focus on the p,,a(k, 0)’s, but at the beginning, it is just as

easy to discuss general p(k, 0)’s. Moreover, it is instructive to note at precisely
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what point we use properties which are not shared by all sets of orthogonal poly-
nomials.

It is well known that the p(k, 0)’s satisfy a recursion relation

(4.2) cos 0 p(n, O) A(n)p(n 1,0) + B(n)p(n, O) + C(n)p(n 1,0),

where A(0)= 0 and A(n + 1)= C(n)> 0, n 0, 1,2, .... It is shown in 12,
Chap. 12] that if (2.1) holds, then

(4.3) lim A(n) lim C(n) 1/2, lim B(n) O.

Note further that

(4.4) cos 0 cos kO 1/2 cos [(k + 1)0] + 1/2 cos [(k + 1)0], k _Z +.
For each e > 0, let r(e) be a finite subset of _Z + such that if Q(e, m) is defined

as in 1,

(4.5) lim Q(e,m)/rc(e)#=
eO+

for all m e_Z+ (which implies that it holds for all m _Z). Let L(0) Re L I!, #].
If we extend L(O) to [- r, rt] so that it is even and write Krieger’s theorem in matri-
cial form, we obtain the following.

LEMMA 4a. Let L(O)ReLI[!,p], and let (4.5) hold. If l(O’L(O)=a)
#{O’L(O) b} O, then, in an evident notation,

lim N[(a, b)’T(L,e)]/zr(e) # p{O’a < L(O) < b},
e--*O +

where

T(L,e) IfL(O)cos[(k-j)O]p(dO)]
j,kert(e)

LEMMA 4b. Let q(x) be a real polynomial of degree r, and let {p(n, 0)}n_z/ be
the orthonormal polynomials on I associated with the weightfunction W(dO) satisfying
(2.1). Then

lim I P(J, O)p(k, 0)q(cos 0)W(d0) f q(cos 0)cos [(k j)O]l.t(dO).
j,k ] ]

Moreover, if[j k[ > r, then

xp(j,

O)p(k, 0)q(cos 0)W(d0) I_ q(cos 0)cos [(k j)O]p(dO) O.

Proof Our assertions are immediate consequences of (4.2), (4.3) and (4.4).
THEOREM 4C. Under the above assumptions, if

Tw(q,e.)= [f,,P(J,O)p(k,O)q(cosO)W(dO)lj,k,t)
and ifp{O:q(cos 0) a} p{0:q(cos 0) b} 0, then, in an evident notation,

lim g[(a, b); Tw(q,e)]/r(e) # p{O:a < q(cos 0) < b}.
e--*O +
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Proof It follows from Lemma 4b that

IllTw(q, ) T(q, )111 o(()*) as --, 0+,

where II1" 1112 is the Hilbert-Schmidt norm of the t(e) t(e) matrix in question.
In conjunction with Lemma 4a, this yields, via the Weyl-Courant inequalities
(see [1, pp. 132-134]) the desired result.

Theorem 4c is more general than Theorem 2c in that it permits a richer
family of sets re(e), but it is more restrictive in that it has been shown to be valid
only for polynomials in cos 0. To deal with this deficiency, we note that if L(O)
L I[I, W] and L(O) >= O, then TL(e, > O, and that

tr [Tw(L, e)] f p(k, O)2L(O)W(dO).
keG(e) #I_

Let us suppose that there exists a finite measure W*(dO) on the Borel sets of ! such
that

(4.6) Ip(k, O)12W(dO) <= W*(dO) k e Z_ +

Since p(0, 0) is a positive constant, LI[W*] c L*[W]. If (4.6) holds, it is apparent
that

(4.7)

(4.8)

then

(4.9)

tr [Tw(L, )] <= re(e) ’ I_ L(O)W*(dO).
THEOREM 4d. Let (2.1), (4.5) and (4.6) hold. If L(O) Re LI[W*] and if

p{O’L(O) a} p{L(0) b} O,

lim N[(a, b)" Tg)(e)]/r() # p{O’a < L(O) < b}.
e-O +

Here Tt[)(e) is the restriction of TL(e) to E(e)Z_ +.
Proof. Using (4.7), the set of functions L in Re LI[W*] for which Theorem 4d

is true can be shown to be closed under monotone limits. Since this set includes
all real polynomials in cos 0, it includes Re LI[W*]. See [5, 7] for a similar argu-
ment carried out in detail.

THEOREM 4e. Set W,,tj(O is defined as in 2. Then if- < a, fl, (4.6) holds with

(4.10) W*,tj(dO c(o, 3) sin cos dO,

where c(a, fl) is a constant depending only on and ft.
Proof Equation (4.10) follows from Theorem 3.32.2 of Szeg6 [12].
THEOREM 4f. Let -1 < , -1 < fl, and let (4.5) and (4.6) hold (with Wa

given by 4.10). Then if(4.8) is satisfied, (4.9) is true.

Proof. This is a corollary of our previous results.
Note that Theorem 4f is not a generalization of Szeg6’s theorem. Theorem 2c,

since, although the sets n(e) are more general, L(0) is more restricted! However,
if f is any Borel set in t, za(O) Re L 1[W,*,a], and we can thus apply the arguments
of 2 and 3 to obtain th following.
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THEOREM 4g. Let L l(k), k Z + be a real positive function such that L x(k) - 0
as k - + , andfor each > 0 let

n(e) {kZ_+’LI(k) > e}.
We assume that"

(a) for each a > 0, n(ae)# O[n(e)#] as e, --, ;
(b) n(,)# o[n(e) #] if e,, e -o , o(,);
(c) limo + [n(e) f’l n(e) m] #/n(e) # all m e Z_ +.

Let

L(k) L,(k)+ L2(k),

where wefurther assume that"
(d) for each > O, E(b)# is finite, where

E(8) {k e_Z + "lL2(k)l => 6L,(k)}.

IfV(x) is a positive bounded Borel measurablefunction on I, thenfor each fi, 0 < 6 < 1,

N+[e’S] >
as e - O+

N+[e’S] <tP + b

where (in an obvious notation)

S M(V)F*,aE(L)F,aM(V),

and where tp is defined as in 3.

Part II. The Kac limit theorem forR__,.
5. Basic estimates. We depart here from our principal theme in order to

reprove by our methods a variant of Widom’s "Kac limit theorem for R.". This
variant has an interesting application and we will need the ideas introduced here
in Part III. Let R denote n-dimensional Euclidean space. We use letters such as
x (x, ..., x.), , (y, ..., yn), (t l, ..., t), to denote points of R, and
set

X . X y -t- q- x yn, I_xl U_x-x_3 */2,

ax_ (axe,..., axe), x_ + y_ (x + y1,..., x, + y.).

We shall in the present section apply the methods of [4] to R which is a symmetric
space but is not compact. The first part of the development proceeds quite as
before. The final steps, however, involve significant changes. In what follows, we
will carry out in detail only those arguments which are substantially different
from those given in [4].

We recall a few formulas from Fourier analysis on R in order to fix our nota-
tions. Let a(dx_) (2n) -"/2 dx_

Ff (_t) (2n)-" f e-’-’y(x)a(dx)
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and iffe L2[Rn], then

and

where

f F*[Ff],

We set

F*f (x) fR e’-’-f (t-) a(dt__).

f*g. (_x) (2z0-" | f(x_ _y)g) a(d_y).
OR

We proceed to make a list of various assumptions we will require. (Later it
will be seen to be very convenient to have these collected in one place).

Let V(_x) be a measurable function on __R_. satisfying:

(i) V(_x) >__ 0, x _R.,

(5.1) (ii) V(x_) L[_Rn],

(iii) V(x) has bounded support.

Let L(t) be a real measurable function on R, satisfying the conditions:

(i) L(t) _>_ 0,

(5.2) (ii) L(t) L[__R_,],

(iii) L(t_)0 as t_

For C a measurable set in _R,, C # is the a-measure of C. Define

z(e) {t R.:L(_t) > e}.
We assume that () satisfies the conditions:

(i) lim [(e) (e) t_] #/z(e) # in measure on each set of finite
e-0+

measure in __R_,;

(ii) z(l) # oil(e) #] as el, - 0+ if o();

(iii) for any constant a > 0, there exists a constant A depending upon

(5.3) a such that

[log z(e) # log z(2)#[ =< A
if and 2 are sufficiently small and if

[log e log/2[
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that
We remark that this implies that there exist constants rtl and q2 ) 0 such

(5.4)

for all sufficiently small e > 0.
For Vsatisfying (ii) of (5.1), let

M(V)T. (x_) V(x_)f(x_),

and for L satisfying (i), (ii) and (iii) of (5.2), let

E(L)g. (t_) L(t_)g(t_),

r(e)* O(e-"’), 1/re(e) # O(e") as e -, 0+.

There exists a constant E > 0 such that

ess sup {1_1 "- e ()}/[()*]’/" __<

f e L2[R,],

g e L2[Rj.

Our goal is to study the eigenvalues of the operator

S M(V)F*E(L)FM(V).

The following familiar result is proved in slightly greater generality than is
necessary.

THEOREM 5a. If V(x_) Lz(R,) (’1 L(_R_,) and if L(t) L(R__,), L(t) 0 as
oe, then S is compact.

Proof Given r > 0, we define

=L(t) if[t[ <r,
Ll(r, t_)

0 if It_l >= r,

and

0 if I_tl < r,
L2(r’t)=

L(t_)iflt_l >=r.

For f 6 L2[R,],

Sf (x,) S l(r)f (x_c) + S2(r)f (x),

where, letting L L (r, t_), etc., we have

Sl(r)f(x_ V(_x). [L,(Vf) .(_x),

S 2(r)f(x_) V(x). [L2(Vf) (x_).

Here we have written for F and for F*. It is easy to see that

[S,(r)f. (_x)[ =< [V(_x)[ L,(r)[ 1[1V 211f 12,

[Lx(r)(Vf) (x_c)<__r LI(r)[[IIIV 2If 2, i= 1,-..,n,(5.5) x
[1S2(r)f 2 _-< v 2o g2(r)ll f

The first two formulas in conjunction with Arzela’s theorem imply that Sx(r) is
compact for each r > 0. The third formula implies that S2(r)ll can be made as
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small as we please by taking r large. Since compact operators are closed in the
Banach algebra of all bounded linear operators on a Hilbert space, our theorem
follows.

COROLLARY 5b. If in addition, l/(x_) and L(t_) are nonnegative, then S is non-
negative.

For n(e) defined as in (5.3), let

E(e)g (t) Z)(t)g(t),
and for t2 a set of finite measure in __R., let

M(f)f. (x_) Z,(_x)f(_x),

g(_t) 6 L[R.],

f(_x) L2[Rn].
Our goal is to analyze

and
P.(e) M(f)F*E(e)FM(f)

Pn,,n2(e) M(fI)F*E(OFM(fa) + M(fa)F*E(OFM(f,).

Here f and "2 are sets of finite measure in R..
TnEOP,EM 5C. Let conditions (i), (ii) and (iii) of (5.2) and (i) of (5.3) hold. Then

Pn(e) is a nonnegative compact operator. If 2(e, 1) >= 2(e, 2) >__ are the nonzero
eigenvalues of Pn(O repeated according to their multiplicities, then

(i) 0 < 2(e, k) =< 1, k 1,2,

(ii) 2(e, k) =< (),
k

(iii) 2(e, k)2 fl##[1
k

where 0 <= r(e) <= and where r l(g 0 as e 0 +.
The demonstration of this result follows the pattern of [4] except that there is

a (fortunately unimportant)slip there in the assertion that Mercer’s theorem implies
that (ii) holds with equality. The correct assertion (given above) follows from a
simple corollary of Mercer’s theorem (see 8). Actually, in the context of [4],
equality does obtain in (ii), but this must be shown by a direct calculation, not
by an appeal to Mercer’s theorem.

THEOREM 5d. If(i) (ii) and (iii) of(5.2) and (i) of(5.3) hold, thenfor r(e) <

N+[1 r(e) 1/2, Pn(e)] -> fen(e)[1 4r(e.)/2],
N+[r(e)x/E, Pn(e)] =< n(e)[1 + 4rx(e,)I/2].

The reader who consults [4] will notice that the argument there is carried
through under the assumption that equality holds in conclusion (ii) of Theorem 5c.
However, it is easy to see that only the inequality is actually used.

Let NIl, P,,,,2(e)] denote the number of eigenvalues of P,,,n(e) which exceed
6 > 0 in absolute value.

THEOREM 5e. If(i), (ii) and (iii) of(5.2) and (i) of(5.3) hold, then for any 6 > O,

U + [(1 6), Pn(e)] f*’ n #

as e.--- O+,
N+ 6, P.(O]



EIGENVALUES 1037

and

N[b, Pn,,n2(e)] o(r(e)#) as --. 0 +.

Proof. The proof is routine.

6. Basic estimates continued. In the case where _R_R, is replaced by _T,, the
results of Theorem 5e are sufficient to enable us to establish our principal result.
However, because R. is not compact, an additional result is needed. The following
theorem can be regarded as a far-reaching although very crude analogue of the
precise but special asymptotic formulas obtained by Widom in 16]. The proof is
patterned after a similar argument in 15].

THEOREM 6a. Let the conditions (5.2), (5.3) and (5.4) hold, and let f be a set of
finite measure and bounded support. Thenfor each real c,

(6.1) N+[ec, Pn(e)] O[r(e) #] as --, 0+.

Proof. Because f is bounded, the vector difference f- f is bounded.
Elementary considerations based on homogeneity show that there is no loss of
generality in assuming that the closure of f f lies in the interior of T_, which we
identify with that cube in R. with center at the origin, sides of length 2r and faces
perpendicular to the coordinate axes. Let q(_x)e C[R_,] be 1 on f- f and 0
outside T_,. If

P(e, x) t ei-"
()

then

Pn(e)f (x_c) f_,, Xa(_x)P(a, x Y_)7.a(Y_)f(Y_) a(dy_),

fr Zn(x)P(’ x y_)tp(x_ g)7.n(Y_)f()a(dg).

Let Z. be the points in R. with integral coordinates. For x e T_., we have

P(e,x)tp(x_)= e-x(2n)-" fT f= e-"a(dt)
_e.

ei-’x-f, dt(2r0-" fr qg()ei(t--)’{ a(d)
g. (e.)

Z e’-- q) (_- )(d_).

Repeated integration by parts shows that for any integer r >__ O, there is a constant
B such that

(6.2)

Define

Iq9 (x)l < Blxl-n-", x e

Q’(e) {k:lkl <

Q"(e)- {_k:l_kl => 2EEr(e)#]’/"},
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where E is the constant in (5.4), and set

P’(, x_) e’’- q (k_ t) a(dt),
k__Q’(e) (e)

P"(e, x) ei-’- p (k t_) a(dt).
k_e.Q"(e) ()

Let Pa() and P() be the integral operators with kernels

(_x)p’(, _x g))

and

Z(x)P"(e, _x ’)Za().
Let us denote by Q’(e) the number of points __k in Q’(). Clearly,

rank {P()} Q’()# O[u()].
It follows from (5.4) that if t e 7() and if k e Q"(), then Ik tl -> (1/2)lkl. Using
this and (6.2), we see that there is a constant B’ such that for k e Q"()

It follows that if P(e)ll is the operator norm of P[(e), then

IIP()II O([()*]-’) as 0+.

By (5.3) (iii), there is an integer r > 0 such that [u(a)]-* < c for > 0 sufficiently
small. For such e,

N + [, Pn()] --< N + [, P()] + N+ [0,. P()]
__< 0 + rank {P(e)} O[()] *,

which proves (6.1).

7. The Ka limit theorem forR_R_,,.
THeOReM 7a. Let conditions (5.1)-(5.4) hold. Thenfor each , 0 < < 1,

(i) N/[e, S] > s - as --, 0+,

(ii) N+[,S]<s[i e" 1+
ase 0+,

where

tPs[] -I{-x, t" V(-x)2L(t) >
Here ]{. }l is the measure of the set {. } in the product measure space.

Proof. We consider in detail only the special case V(_x) Za(_x) where is
a bounded measurable set in R,. That the general result can be demonstrated by
similar although more complicated arguments will then be evident from [4].
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Let

T M(f)F*E(L)FM(2).

For any e > O, it follows from the definition of P (e, _t) that

L(t) => P (e, t),

which implies that

T >=
Thus by Theorem 5d,

N + [e(1 6), T] >= N + [e(1 6), ePn(e)] N + [(1 6), Pn(e)]

~f#()* r[] as0+.

Replacing e(1 6) by e, we have

Let e be a function of e such that e 0+ as e 0+, e o(e), and e
o[min {er(e)- /2), et/2)}]. If A JILl , then

which implies that

T N eI + lPn(e)+ APn(e).

By the Weyl-Courant lemma,

We have

N+[e, eI] 0.

Since e, o(er(e)- /), it follows from Theorem 5d that

N + [&, ePde)] * n(e) * r[e] as e 0 +.

By the definition of el, Theorem 6a and (5.3) (ii), we have

Combining these results, we have shown that

N + [e( + 6), T3 n* (e) *

To finish, replace (1 + 6)e by e.
In [4] where replaced ., we had

(7.2) +[0, ,(3 oil(e)3 as e 0+,

simply because Pn(e) had rank n(e,) and n(e) o[n(e)e]. This trivial argument
fails for . which is why it was necessary to prove Theorem 6a. The reader should
compare this demonstration with that given in [13]. Arguments used by Widom
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in 13, 6] can be applied without change to yield the following. Let S(r) be the
sphere in R, with center at the origin and radius r.

THEOREM 7b. Let conditions (5.1)-(5.4) hold except that condition (5.2) (ii) is
replaced by the (more general) assumption: there exists an r > 0 such that

L (t) Ll[S(r)], L(/) 6 L[___.\a(r)].

Thenfor every 6, 0 < 6 < 1, we have

(7.3)

N+, s]> ,I]_
N+e’S]<tPsli e1

where

s[e,] ]{(_x,t)" V(x_)ZL(t) > e}]_R_,,,)(R_,,,).

Widom’s argument is reproduced in 12 in a different context, so we do not sketch
it here.
Widom also shows in 15, 6] that if L(t) satisfies the assumptions ofTheorem 7b

and if K(t_)m L I(R,) satisfies

lim K(t_)/L(t) 1,

then (7.3) holds with L replaced by K. His argument used in the proofofTheorem 3b
can be applied without change and, moreover, is reproduced in 12.

We conclude this section with an example. Let

L(_t) It[-’tI)(_t), 0 < co < n,

where *(t), defined for R.\{0}, is a bounded nonnegative measurable functi.on,
homogeneous of degree 0, and not 0 almost everywhere. We claim that L (t)
satisfies the assumptions of Theorem 7b. Indeed, since

we have

(e) {t R..Itl-O(t) > e}

{_t R.\{0} "lt_l < e-’/oa(_t)’/o},

Our assertion follows immediately from this formula. Thus if V(x) satisfies (5.1),
the formulas (7.3) hold for the eigenvalues of the integral operator on R. whose
kernel is V(x_)L(x_- y)V(y), a fact which has application to the theory of very
large eigenvalues of Toeplitz operators developed in an as yet unpublished work.

8. Mercer’s theorem. Let K(_x(, _y), _x,_y 6 _R,, satisfy

(8.1) K(_x, _y) K, _x),
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(8.4)

(8.5)

and

and

(8.2) fR fR ,K(_x, _y)l 2 dx_ d_y < oe.

Under these assumptions, the operator

Ugf. (x_c) g(x, y_)f) dy_, f6 Lg(R.),

is self-adjoint and compact. If 2,}o= are the eigenvalues of Ug repeated according
to their multiplicities, then (as is well known)

2 )’ IK(_x, _y)l 2 dx d.
k

Suppose now that in addition,

(8.3) Ur is positive semidefinite.

This implies that the 2’s are nonegative. It will be convenient to suppose that. >= . >_ ).a >_ Let us further assume that

K(x, $)e C(R x R),

K(x,. )11 e C(_R.),

(8.6) | K(_x, _x) dx_ <
VR

Then the arguments given in [1, pp. 138-140] can be applied to give Mercer’s
theorem,

(8.7) 2 2 K(x_, x) d_x.
k=

(In [1], only the case where R is replaced by a finite interval in R is explicitly
considered).

COROLLARY 8a. Let K(_x, _y) satisfy (8.1), (8.2) and (8.6) and for each r 1, 2,...,
let K,(_x, ) satisfy (8.1)-(8.6). Then if

(8.8) lim IK(x, .) K,(x, 2)12 dx d2 0,
r-*oo ]R_n J/!n

(8.9) lim l K,(_x, _x)d_x K(_x, _x)dx,

, 21 > t,2 " 23 > are itsit follows that K(x, ) is positive definite, and if k}k=
eigenvalues, then

2 __< K(x, _x) d_x.
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Proof. Using (8.8) and standard results from elementary perturbation theory
[13, pp. 56-59], we have

lim 2(k) 2k,

from which, by what is essentially Fatou’s lemma, we see that

2k=< lim 2tk.
k

k= 1,2,...,

Now use (8.7) for Kr and (8.9).

Part III. A Kac limit theorem for Hankel transforms.
9. Introduction. In order to state the problem we wish to solve, we first need

various facts concerning Hankel transforms. A systematic account of this material
is given in 3, and 2].

Fix v _>_ 0. Note, however, that for v 0 a few of out’formulas require changes.
Let _R + 0, ) and set

c 2-’/F(v + (1/2)),

wv(dx) C71xzv dx,

Jr(x) Cvx(1/2)-vJv_(1/2)(x).

Let

If we define

(9.1)

flip f(x)lPw(dx <__ p <

f ess sup f(x)l.
X/R_

Jf (u) f(x)Jv(xu)w(dx),

then (in an evident notation)

(9.2)

It is not difficult to show that

[[Jvf[[2 fll2

f6 L1JR +, w],

forf6. L[R +, w] L2[_____ +, Wv].

Since L[R +, w] f) L2[R +, wv] is dense in L2[R +, wv] Jv has a unique continuous
extension to all of LZ[R+, wv]. Denoting this extension by J (which will cause
no confusion), we have

(9.3)
Moreover, it can be shown that

113f[12 [Ifl 2,

J(4f) =f,

f6 L2[R +, Wv].

fe L2[__ +, Wv].
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For V(x) e L(R)[R +, Wv] LZ[R +, wv] let

M(V)f(x) V(x)f(x), fe LZ[_R +, wv].

Let L(t)e Re L* [__R_ +, w] be such that L(t) 0 as o, and set

E(L)g(t) L(t)g(t), g

We define

Sf M(V)JE(L)JM(V)f, fe L2[R +, wv].

THEOREM 9a. The operator S is compact.

Proof We have only to imitate the demonstration of Theorem 5a.
COROLLARY 9b. If, in addition, V(x) and L(t) are nonnegative, then S is non-

negative.
Our goal in Part III is to determine the asymptotic behavior of the eigenvalues

of S under assumptions parallel to those in 2 and 3. Since v is fixed throughout
our discussion, we may and do omit it for the most part.

10. Basic estimates, I. Let E(t) E[Zro,,l], M()) M[za], and let

Pa(t) M())J_E(t)jM(),

Pa,,a:(t) M()t)J_E(t)JM(2) + M(12)J_E(t)J_M()),

where gt, gt and gt
2 are Borel measurable sets in R + and gt f’l 22 . Let

#(dx) (1/c) dx for x e R +. (Note that #(dx) in Part III must not be confused with
la(dO) in Part I.) We suppose gt, gtl and gt have finite tt measure.

THEOREM 10a. We have, as

N+[,Pn(t)]/t-#(l)orO asO<< lor> 1,

N[6, Pn,,a:(t)/t O, 0 < 6.

The proof of these results depends upon the fact that if Ta(t) E(t)J_M(l)JE(t),
then

N+[6,Tn(t) o#(gt)or0 as0<6< lor6> 1.

See Grenander and Szeg5 [2, 8.7], together with the relations

N[JTa(t)j J(ux)f(u)W(du); f e L[

N[Pn(t)] Xn()) J(ux)f(u)W(du); f e La[Wv]

TNORE 10b. Let Tn(t E(t)JM(f)jE(t). Then

lim N+[a; Ta(t)]/t = lu(), 0 < a < 1,
to ( O, a > 1.

11. Basic estimates, II. In order to proceed, we need some additional informa-
tion regarding Hankel transforms. Once again we refer the reader to [3] for details.
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For v >__ 0 fixed, let

2(3-(5/2))F(v + (1/2))2
(11.1) D(x, y,z)

F(v)nl/2
(xyz)-2+ IA(x, y,z)2-2,

where A(x, y, z) is the area of the triangle with sides x, y, z if there is such a triangle.
Otherwise D(x, y, z) is taken to be zero. (If v 0, this formula must be modified.)
We have.

(11.2) D(x,y,z) >__ O, 0 <= x,y,z < oc.

The relation

(11.3) D(x, y, z)J(zu)w(dz) J,,(xu)J(yu)

is valid for 0 < x, y, z < o, 0 =< u < c. See [12, p. 367 and p. 411]. The special
case u 0 yields

(11.4) D(x, y, z)w(dz)= 1, 0 <= x, y < o.

We note in particular that

(11.5) D(x, y, z) 0

unless one of the three equivalent conditions

]x-yl<z<x+y,

(11.5’) [y- zl < x < y+z,

[z-x[<y<z+x,

is satisfied.
These formulas are the basis of the convolution theory of the Hankel trans-

form. As in O, we now regard v as fixed and omit it as a subscript.
Givenf(x) L[R +, w], we define

io(11.6) f(x, y) f(u)D(x, y, u)w(du)

f(x, y) in the present theory is analogous to f(x y) in Fourier analysis on the
line. Multiplying (11.6) by J(xz) and integrating with respect to x we find, using
Tonelli’s theorem, that

fo fo fof(x, y)J(xz)w(dx) J(xz)w(dx) f(u)D(x, y, u)w(du)

f(u)w(du) D(x, y, u)J(xz)w(dx)

f: f(u)J(zy)J(zu)w(du).



EIGENVALUES 1045

The analogue ofconvolution for Hankel transforms is as follows. Iff, g e L x[__R_ +, w],
then

f * g. (x) f(x, y)g(y)w(dy) f(y)g(x, y)w(dy).

It is easy to verify that, for example, iff, g L[R+w], then

(11.7) Jf * g]. (u) Jf. (u) Jg. (u).

Let 0 < 7 < 72 < be the necessarily real zeros of J(x). For future use,
we note that

(11.8) m mz as m- +o.

See 14, pp. 504-505]. It follows from the elementary theory of Fourier-Bessel
series developed in [14, Chap. 18] that the functions

m--1

form a complete orthonormal set in L2[[0, 1]; w(dx)]. Consequently, if

1/(m) J(7x)Zw(dx)

and iff L2[[0, 1]; w(dx)], then

(11.9) f(x) f (m)J(x) in L2[[0, 1], w(dx)],
m=l

where

(1 i.9’) f (m) (m) f(x)J(7x)w(dx).

Using the asymptotic formula for Bessel functions, one easily sees that

(m)= O(1) asm.

(Needless to say, much more precise information is available.)
Our goal in this section is to establish the following result.
ToN 11 a. For a bounded Borel set in +, we have for each c > 0,

+ +

Proo Since is bounded in N +, the set

is bounded in N +. From homogeneity considerations, we see that we can assume
that the closure of Ifl 1 is contained in [0, 1). Let O(x) be an even function in
C( , ) such that O(x) for x e I [ and O(x) 0 for x e [1, ). We
assert that if p(t, x) Zto,q(u)J(ux)w(du),

(ll.10)
We have

[p(t,. )(p(. )](x, y) p(t; x, y) for x, y e f.

[p(t,. )(p(. )](x, y) p(t, z)q)(z)D(x, y, z)w(dz).
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Let x, y f. Since D(x, y, z) 0 if z [f _+ fl and since go(z) if z [f [,
we see that

[p(t, )go(. )](x, y) p(t, z)D(x, y, z)w(dz) p(t x, y)

as desired.
We next expand p(t, x)go(x) in a Fourier-Bessel series. Let )() be the charac-

teristic function of [0, t]. Then

p(t, x)go(x) a(t, m)J(YmX
m=l

Using

a(t, m)/oo(m) p(t, x)go(x)J(;,,x)w(dx)

p(t, x)go(x)J(y,.x)w(dx).

p(t, x) Zt(u)J(ux)w(du)

and Fubini’s theorem, we obtain

a(t, re)leo(m) go(x)J(7,,x)w(dx) Zt(u)J(xu)w(du),

Z(u)w(du) (x)J(7x)J(ux)w(dx),

fo ff foZ,(u)w(du) (x)w(dx) a(xv)D(u, V., v)w(dv),

;o foo

z,(u)(u) (u, , v)e (v)(&).

Thus finally,

(11.11) a(t, m)/o)(m) w(du) go (v)D(u, Ym, v)w(dv).

Here go (v) Jgo. (v).
We recall that if

then

Ah (v) h"(v) +
2V

h’(v),

A,](uv) U2J(UV)
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In view of this,

;o fo(- 1)ru2r(O (U) (0(/))( 1)ru2r]J(UV)W(dv) qg(v)NJ(uv)w(dv).

Integrating by parts 2r times, we obtain

)’uq (u) [ao. (v)]J(uv)w(clv)

from which it follows that for each integer r _>_ 0, we have

(11.12) 199 .(u)[ aru -2r, u > O.

It follows from this that if rcm _>_ 2t, then, using (11.1 1),

(1 1.1 3) [a(t, m)[ =< Arm- 2rt2v + 1.

We next assert that

j a(t, m)J(Ymu)D(x, u)w(du) a(t, m)J(Tmx)a(ymyY,
0 m=l m=l

if x, y f. This is equivalent to showing that

’J(Tmx)D(X, Y, u)w(du) x, y0,

for each m 1, 2, ..., which is true because ifx, y f and u >= 1, then D(x, y, u) O.
We have thus finally shown that

fR z,(x)p(t x, y)z,(y)f(y)w(dy)
_+

(11.14)
a(t, m))n(x),l(;mX )n(y)d(Tmy)f(y)w(dy).

--1

We can now complete the proof of Theorem la. Let

P’n(t x, y) a(m, t)Zn(x)J(]mx)J(my)Za(y),

(11.15)
’m-< 2t

P(t; x, y) a(m, t)gn(x)d(YmX)d(ymy)Zn(y),
m 2t

and let P’n(t) and P(t) be the operators on LZ[R__ +, w] corresponding to these
kernels. Then it follows from (1 1.1 5) that

(1 1.16) rank P’n(t) O(t) as + .
From (1 1.1 3) and (1 1.1 5), we see that

IlP(t, x, Y)II =< Bt2+ 2- 2,

and thus a fortiori, that if IIP(t)II is the operator norm of P’(t), then

IlP[(t)ll O(t2v+ 2-2’).
Choosing r sufficiently large, we see that

(11.17) ]lP[(t)l] o(t-).
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Since

it follows that

N + It -, Pn(t)] __< N + [0, P;a(t)] + N + It-, P’(t)],

N+[t-, Pn(t)] O(t) as -+ o.

12. The limit theorem.
DEFINITION 12a. The real function L(t) R + is said to be sufficiently regular

if L(t)can be represented in the form

L(t) L(t) + L2(t),

where L l(t) and L2(t are real and where the following conditions are satisfied:
(i) Ll(t) is bounded and decreasing,

(ii) Ll(t) 0 as - + .
For e > 0, let t(e) be the least upper bound of the values of for which L l(t) >
(If s is too large, t(e) may be undefined).

(iii) for each fixed a > 0 t(ae) O[t(e)] as e 0+,
(iv) t(l) o[t(e)] as el, e 0+ if s o(el),
(v) Lz(t is bounded and for every 6 > 0, E(6) is bounded, where

E(6) {tR + :lL2(t)[ >_- bL(t)}.
The information we have generated now enables us to use familiar techniques

to prove the theorem below. Let us define

(s) [{(x, t)" V(x)2L(t) > e[tR_+,U)_Z+"
THEOREM 12b. Let V(x) be a bounded Borel measurablefunction with bounded

support on R_ + and let L(t) be "sufficiently regular" in the sense of Definition 12a.
Thenfor each 6, 0 < 6 < 1,

N+[e’S] > W 6
(12.1) as 0+,

N+[e’S]<W
+6

where

S M(V)JE(L)JM(V).

THEOREM 12C. Let L(t) satisfy the conditions ofDefinition 12a except that (i) is

replaced by
(i’) L(t) is decreasing and L(t) L 1[[0, a], l(dt)] for some a > O.

Then (12.1) continuous to be valid.
Proof For any a > 0, let

Then

L,(u) [L(u) L(a)]7to,,l(u), K(u) min {L(u), L(a)}.

S M(V)JE(L,)JM(V) + M(V)JE(K,)JM(V) S’ + S".
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Let, as in the proof of Theorem 1 la, q(x) be an even C-function on R_ with
compact support, which is 1 on If +_ f[i We do not, however, assume [fl + fl[
c [0, 1). We set

(12.2) L;(u) D(u, , q)L,() (q)w(d)w(dq).

An argument like that used to prove (11.3) but simpler gives

(12.3)
L"(u)6L[+]’
L’,(u) O(u-) asu +,

for every r > 0, and that

(12.4) Zn(x)[L’,] (x, Y)Z(Y) Zn(x)[L,] (x, Y)Z(Y).

It follows from (12.4) that
s’ M( V)3(L’.)aM( V).

Using (12.3) and applying Theorem 12b to suitable decreasing majorants of
max (0, L’,) and max (0, L’), we see that

N(e, S’] O() as 0 +(12.5)

for every real c.
If we set

(12.6)

Wa(e) {(x, t)" V(x)2Ka(t) > e[R_+,u) Z
then it follows from Theorem 12b that for every 6 > 0

ase0+.

N+[,S"]>tW[-1 e1,+
(12.7) W,() =< tP(e) __< tP(e) + O(1).

Combining (12.5), (12.6) and (12.7), we obtain our desired result.
It seems virtually certain that it is possible to prove a result which stands

in the same relation to Theorem 12c as Theorem 4g stands to Theorem 3b.
However, I have admittedly not tried to carry.out the details.

13. Errata. We use this opportunity to correct some misprints in [4].
On page 321, line 3, ov(c, c’, n n-1) should be q(c, c’, n n-1). On page 321,
line 4", Theorem 2.7 should be Theorem 2.6. On page 323, the formula asserted
in Theorem 2.12 should read

x)(, c,c, y).

"line 3" means the 3rd line from the top of the page "line 4"" means the 4th line from the bottom
of the page.

It is easy to see that
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On page 332, in line 3, > should be _>_ and in line 5, < should be =<. Line 7 is
irrelevant and can be omitted. On page 337, line 2, W(x) should be W(e). On page
339, line 6, h(e, , a) should be hk2R^(e, , a).
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