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CONDITIONS FOR THE NONOSCILLATION OF THIRD ORDER
DIFFERENTIAL EQUATIONS WITH
NONNEGATIVE COEFFICIENTS*

G. J. ETGEN anp C. D. SHIH?}

Abstract. This article is concerned with the oscillation of solutions of third order, linear differential
equations with nonnegative coefficients. The objective of the paper is to obtain necessary conditions
and sufficient conditions for the nonoscillation of such equations. The techniques which are developed
and the results which are obtained depend heavily on the fundamental papers of M. Hanan and A. C.
Lazer on third order differential equations. Extensive use is also made of the survey article on oscil-
lation theory by J. H. Barrett.

1. Introduction. This paper is concerned with the development of necessary
conditions and sufficient conditions for the nonoscillation of third order linear
differential equations of the form

(E) Lly] = y" + p(x)y" + q(x)y = 0,

where p(x) and g(x) are continuous, nonnegative functions on an interval [a, o).
A nontrivial solution y(x) of (E) is said to be oscillatory if the set of zeros of y(x)
on [a, ) is not bounded above, or, equivalently, y(x) is oscillatory if y(x) has
infinitely many zeros on [a, c0). A nontrivial solution which is not oscillatory is
called nonoscillatory. The equation (E) is oscillatory if it has at least one non-
trivial oscillatory solution, otherwise (E) is said to be nonoscillatory. Finally, (E)
is said to be disconjugate on the subinterval [b, ¢),a £ b < ¢ £ 0, if no nontrivial
solution of (E) has more than two zeros, counting multiplicities, on [b, ¢). It is
easily seen that if (E) is disconjugate on the subinterval [b, c0) of [a, c0), then (E)
is nonoscillatory. In contrast to the situation for linear second order equations,
however, the nonoscillation of (E) does not imply the existence of a subinterval
[c, ) of [a, o) on which (E) is disconjugate. See, for example, the discussion by
J. H. Barrett [2, p. 213]. The relationship between disconjugacy and nonoscillation
of (E) has been investigated by the authors [5].

The results in this paper are derived primarily from the fundamental work
of M. Hanan [6] and we shall be referring to his results throughout. We also have
relied heavily on the survey article by J. H. Barrett [3] and the work of A. C.
Lazer [8].

2. Nonoscillation and disconjugacy. As indicated above, the relationship be-
tween nonoscillation and disconjugacy for (E) is more complicated than in the
case of second order equations. In particular, as a consequence of the Sturm
separation theorem, the second order equation

(E,) (f(x)y) + glx)y =0,

where f(x) and g(x) are continuous functions on [a, c0) with f(x) > 0 on this
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interval, is nonoscillatory if and only if there exists a number b = a such that
(E,) is disconjugate on [b, c0]. On the other hand, there are examples of third
order equations which are nonoscillatory on an interval [a, c0) and yet fail to be
disconjugate on every subinterval [b, c0) of [a, o). Barrett [2, p. 213] cites the
existence of several examples and J. M. Dolan [4, p. 385] provides an example.

The following results are either well known, or are the combination of known
results. They establish a connection between the notions of disconjugacy, non-
oscillation and oscillation of (E), and they will be of considerable use in the
development of our necessary conditions and sufficient conditions for the non-
oscillation of (E).

THEOREM A (N. Azbelev and Z. Caljuk [1, Lemma 1, Thm. 2]). The differ-
ential equation (E) is disconjugate on [b, ), a £ b < o0, if and only if the adjoint

(E*) L*y) = [y" + p(x)y]" — q(x)y = 0

of (E) is disconjugate on [b, 0). Moreover, if u(x, b) and u*(x, b) are the solutions
of (E) and (E*), respectively, satisfying the initial conditions

1) yb)=y®).=0, y®b =1, bza,

then a necessary and sufficient condition for each of (E) and (E*) to be disconjugate
on [b, ) is u(x, b) > 0 and u*(x, b) > 0 on (b, ).

THEOREM B ([3, Thm. 2.15] and [4, Thm. 1]). If(E) is nonoscillatory on [a, o),
then either all solutions of (E*) are oscillatory, or all solutions of (E*) are non-
oscillatory. Moreover, if each of (E) and (E*) is nonoscillatory, then each equation
is disconjugate on some subinterval [b, o0) of [a, c0).

THeOREM C ([5, Thm. 5)). If (E) is not disconjugate on any subinterval [b, )
of [a, o), then each of the following is a sufficient condition for (E) to be oscillatory:

(a) y" + p(x)y = 0 is nonoscillatory on [a, ),

(b) p(x) € C'[a, 00) with 2q(x) — p'(x) of one sign on [a, o) and not identically

zero on any subinterval.

In the work which follows, we shall assume that the coefficients p(x) and
q(x) of (E) satisfy the following hypothesis:

p(x)e C'la, ), p(x) 20, ¢q(x)=0, q(x)—p(x)20 onla, o)
(H)
with these functions not identically zero on any subinterval.

Assuming that the coefficients satisfy (H), we have 2¢(x) — p'(x) = 0 on
[a, ). Thus Theorem C applies and we have the following.

THEOREM D. Let the coefficients of (E) satisfy (H). Then (E) is nonoscillatory
if and only if (E) is disconjugate on [b, o) for some b = a.

3. Necessary conditions. In this section we establish necessary conditions for
the nonoscillation of (E). In view of Theorems A, B and D, our necessary con-
ditions for the nonoscillation of (E) are, at the same time, necessary conditions
for the nonoscillation of (E*), and, in fact, are actually necessary conditions for
the eventual disconjugacy of both (E) and (E*).

THEOREM 1. Let coefficients of (E) satisfy (H). If (E) is nonoscillatory, then each
of the following holds :
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(i) there exists a number b > a such that the second order equation
2 Y+ [p(x) + (1/2)(x — c)g(x)]y = 0

is disconjugate on [b, ) for all ¢ = b;
(ii) the second order equation

3) Y+ l:p(x) + Jmo q(t) dt] y=0

is nonoscillatory;

(i) [ x[g(x) — p'(x)]dx < 0.

By Theorem D, if (E) is nonoscillatory, then (E) is disconjugate on [b, o)
for some b = a. In addition, by Theorem A, (E*) is disconjugate on [b, c0), and
u(x, b) > 0, u*(x,b) > 0 on (b, c0), where u and u* are the solutions of (E) and
(E*) satisfying (1). We remark that since u(x, b) and u*(x, b) are each positive on
(b, o0), and since ¢g(x) and g(x) — p'(x) are not identically zero on any subinterval,
neither u'(x, b) nor u*'(x, b) is identically zero on any subinterval of [b, c0).

We now establish a sequence of lemmas which establish the behavior of
the solutions u(x, b) and u*(x, b).

LeMMA 1.1. Let the coefficients of (E) satisfy (H) and let u(x, b) and u*(x, b) be
the solutions of (E) and (E*), respectively, satisfying (1). If (E) is disconjugate on
[b, ), then D,u(x,b) = u"(x, b) + p(x)u(x, b) > 0 on [b, ).

Proof. The disconjugacy of (E) on [b, c0) implies u(x, b) > 0 on (b, ). Sub-
stituting u(x, b) into (E) and integrating from b to x, yields the equation

u"(x,b) — 1 + p(x)u(x,b) — fx p'(t) — q(t)]u(t,b)dt = 0.
b

Thus,
Dyu(x,b) = 1 — j " la) — peute, by d,
b

and we conclude D,u(x, b) £ 1on[b, 0). Now [D,u(x, b)]' = —[q(x) — p'(x)]u(x,b)
< 0 and, consequently, D,u(x, b) is nonincreasing on [b, o). If D,u(x,b) £ 0 on
[c, ) for some ¢ = b, then u"(x,b) £ —p(x)u(x,b) = 0 on [c, o0), which implies
u'(x, b) is nonincreasing on this interval. If u/(x,b) 2 0 on [c, ), then u”(x,b)
= —p(x)u'(x, b) — g(x)u(x,b) £ 0 on [c, ). But u”(x,b) £ 0 and u"(x,b) < 0 on
[c, 0), together with the fact that the coefficients are not identically zero and
u(x, b) is nontrivial, implies u'(x, b) > — o0 as x — o0, contradicting our assump-
tion u(x,b) =0 on [c, ). Thus there exists a number d, d = ¢, such that
u'(x,b) < 0 on (d, o). However, u"(x,b) £ 0 and v'(x,b) < 0 on (d, c0) implies
u(x,b) > —oo as x — oo, and this is impossible. We conclude, therefore, that
D,u(x, b) = u"(x, b) + p(x)u(x,b) > 0 on [b, 0).

LEMMA 1.2. Let the hypothesis of Lemma 1.1 hold. Then u*'(x, b) Z 0 on (b, ).

Proof. Suppose u*'(x, b) changes sign on (b, o) and let x = ¢ be the first
point at which u*'(x, b) has a sign change. Then we have u*'(x,b) = 0 on [b, ¢),
u*(c,b) = 0 and u*(x,b) < 0 on some interval to the right of c. Assume that
u*'(x, b) has a zero on (c, o0) and let the first such zero be at x = d. Let v*(x, b)
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be the solution of (E*) satisfying the initial conditions
4) wb) =0, y®) =1, y(b) =0,

and put A*(x) = v¥(x, b)/u*'(x,b) on (c,d). Using the fact that the Wronskian
of two solutions of (E*) is a solution of (E) (and vice versa), it is readily verified
that

(5) u(x, b) = v¥(x, bu*'(x, b) — u*(x, b)v*'(x, b).

We can now conclude that v*'(d, b) < 0. Hence A*(x) » + o0 as x 1 d. Calculating
the derivative of A*(x) and using (5), we find A*(x) = — D,u(x, b)/[u*'(x, b)]*.
Thus A*'(x) < 0 on (¢, d), contradicting the fact that A*(x) > + co as x 1 d. There-
fore u*(x, b) < 0 on (c, o0).

We now consider u*”(x, b). Since

u*”(x, b) = —p(x)u*(x, b) — [p'(x) — q(x)Ju*(x, b) 2 0

on [c, ), we have u*’(x, b) nondecreasing on this interval. If u*"(x,b) < 0 on
[¢, 00), then we could conclude that u*(x, b) - — oo and this is impossible. Thus
u*’(x, b) is eventually positive, ie., u*'(x,b) > 0 on some subinterval (e, 00),
e = c¢. But u*”(x,b) = 0 and u*"(x, b) > 0 on (e, o) imply u*'(x, b) - + 00, which
contradicts u*'(x, b) < 0 on (c, o0). We conclude, therefore, that u*'(x, b) > 0 on
[b, 0).

LEMMA 1.3. Let the hypothesis of Lemma 1.1 hold. Then D,u*(x, b) = u*"(x, b)
+ p(x)u*(x, b) > 0 on [b, ) and {? D,u*(x,b)dx = 0.

Proof. Substituting u*(x, b) into (E*) and integrating from b to x yields

Dyu*(x,b) = 1 + f " qour(e, by dt.
b

Since u*(x, b) > 0 and g(x) = 0 on (b, 00), the result follows.

LEMMA 1.4. Let the hypothesis of Lemma 1.1 hold. Then u'(x,b) > 0 and
u"(x,b) > 0 on (b, o0).

Proof. If we assume that u'(x, b) changes sign on (b, c0), say at the point
Xx = ¢, then using the same argument as in the proof of Lemma 1.2, we find
u'(x,b) < 0 on (c, ).

The linear operators L and L* are related by the Lagrange identity
(6) zL(y) + yL¥z) = {y; 2},

where

{y;z} =zy" — 2’y + [z + p(x)z]y.

Using the initial values of u(x, b) and u*(x, b), we obtain {u(x, b); u*(x, b)} = 0.
Thus u(x, b) is a solution of the second order equation

™) u*(x, b)y" — u*(x, b)y" + Dou*(x,b)y = 0

on (b, 00). Of course, u(x, b) is a solution of (E) so that upon eliminating the y-term
from (E) and (7), we find that u(x, b) is a solution of third order equation

(&) Dyu*(x,b)y” — q(x)u*(x, b)y" + [P(x)D,ulx, b) + q(x)u*'(x, b)ly" = 0.
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Letting z = y’ and dividing (8) by D,u*(x, b), we obtain
. qx)uX(x,b) + p(x)D,u*(x, b) + q(x)u*(x, b)

Du*(x,b) Du*(x, b) =9,
and this equation can be rewritten
1 A Px)Dau*(x, b) + g(x)u*'(x,b)
® [Dzu*(xab)z] T Dy

Now, (9) is disconjugate on [c, c0) since the function z(x) = u'(x,b) is a
solution such that z(c) = 0 and z(x) < 0 on (¢, o). From Lemmas 1.2 and 1.3,
p(x)D,u*(x, b) + q(x)u*'(x,b) = 0 on (b, o) and [* D,u*(x, b) dx = co. Therefore,
by a theorem of Hille [7], z(x) - z'(x) > 0 on (c, o) and we conclude z'(x) < 0 on
(c, 00). But z(x) = v'(x,b) < 0 and z'(x) = u"(x,b) < 0 on (¢, o) implies u(x, b)
— —o0 as x — oo, contradicting the fact that u(x, b) > 0 on (b, ).

We can now conclude that u'(x, b) = 0 on [b, c0). Finally, since u(x, b) > 0
and u'(x,b) = 0, p(x) 2 0, g(x) = 0 on (b, c0) with none of these functions being
identically zero on any subinterval, it follows that u”(x, b) < 0 on (b, c0) and is
not identically zero on any subinterval. Therefore, u'(x,b) > 0 and u"(x,b) > 0
on (b, c0).

Proof of Theorem 1. Assuming that (E) is nonoscillatory, we have (E) dis-
conjugate on some subinterval [b, c0) of [a, o0), and the solutions u(x, b) and
u*(x, b) of (E) and (E*) satisfying (1) have the properties:

u(x,b) >0, u(x,b)>0, u'(x,b)>0, D,u(x,b) > 0,
u¥(x,b) >0, u*(x,b) =20, D,u*(x,b) >0 on(b,0).

Now, u(x, b) > 0, u'(x,b) > 0 and u"(x, b) > 0 on (b, c0) implies u”(x,b) £ 0
on [b, c0), and not identically zero on any subinterval. Thus the second order
equation
u(x, b)
u'(x,b)
is satisfied by the positive solution u'(x,b) on (b, o0). Using a result of Lazer

(8, Lemma 3.2], it follows that u(x, b)/u'(x, b) = (x — b)/2. Therefore, by the
Sturm comparison theorem, the second order equation

(10) Y+ [p(x) + (1/2)(x — b)g(x)]y =0

is disconjugate on (b, 00) and the first necessary condition holds.

The argument provided by Barrett [2, Lemma 5.2] establishes the second
necessary condition.

To establish the third condition, fix a number ¢ > b. Then u"(x, b) > 0 and
u(x, b)/u'(x, b) > (x — b)/2 implies u(x, b) > A(x — b) on [c, ), where

A = u'(c, b))2.

Now substituting u(x, b) into (E) and integrating from c to x, yields

u'(x,b) — u’(c, b) + p(x)ulx, b) — p(c)ulc, b) + Jq (q(t) — p'(®]u(z, b)dt = 0,

y' + [p(x) + q(x):l y=0
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which can be written

D,u(c, b) = Dyu(x, b) + r [q(t) — p'()]u(t, b) dt.
Thus

Dsu(c, b) > f " la) — PO AG — b)dr,

and we conclude (¥ x[g(x) — p'(x)]dx < oco. This completes the proof of the
theorem.

In view of our remarks concerning the relationship between disconjugacy
and nonoscillation, we have the following equivalent of Theorem 1 providing
oscillation criteria for (E).

COROLLARY. Let the coefficients of (E) satisfy (H). Each of the following is a
sufficient condition for the oscillation of (E):

) V' + ) + (1/2)(x — bg(x)ly = 0
is oscillatory for each b € [a, 0);

(i) o+ [p(x) + " 400 ery =0
is oscillatory

(i) f x[4(x) — p'(0)] dx = .

Remark. Hanan obtained the oscillation criterion (iii) under the added
hypothesis: y” + p(x)y = 0 is nonoscillatory [6, Thm. 5.12]. P. Waltman [9]
obtained an oscillation criterion for nonlinear third order equations and the
linear version of his criterion is the same as our condition (iii).

4. Saufficient conditions. In this section we present two conditions which are
sufficient for the nonoscillation and eventual disconjugacy of (E).

THEOREM 2. Let the coefficients of (E) satisfy (H). If [ xp(x)dx < co and
fz x2q(x)dx < oo, then (E) is nonoscillatory. In fact (E) is disconjugate on some
subinterval [b, o) of [a, ©).

Proof. Assume that (E) is not nonoscillatory, i.e., assume (E) is oscillatory.
The condition ¢(x) — p'(x) = 0 on [a, o) implies that (E) belongs to Hanan’s
class C,[a, o0) [6, Thm. 2.2] and, consequently, every solution which vanishes once
is oscillatory [6, Thm. 3.4]. Thus for each b = a, the solution u(x, b) of (E) deter-
mined by (1) is oscillatory. Fixing b, b = a, substituting u(x, b) into (E) and inte-
grating three times, we obtain

u(x, b) — %(x - b2+ f (x — t)p(t)u(t, b) dt
(11) ”
43 [ 6= 020 ~ ponte, e =o.
b

Let ¢ be the first zero of u(x, b) to the right of b. Then, from (11), we have u(x, b)
< 4x —b)? on [b,c].



THIRD ORDER DIFFERENTIAL EQUATIONS 7

Replacing x by c in (11), we get

3e =07 = [ e = optoute. e + 3 [ e — 070a(0) = P, by,

which implies

1 —-b) (¢ —b)? [°(t — b)?
se=b7 = E52 [ = brpnar+ © 2 [ g - pienae
Therefore

1= [ = optrde + 3 [ € - B2Lat) - pende
(12) b b

C 1 C 1 C
= f tp(t) dt + 5 f t2q(t) dt — Ef t2p'(t)dt.
b b b

Integrating {5 tp(¢) dt by parts yields

C 1 1 C
(13) j tp(t)dt = ~t2p(t)l; — = | t3p'(t)dt.
b 2 2y

Substituting (13) into (12), we obtain the inequality
< 1 1

(14) 1< 2f tp(t) dt + EJ t2q(t) dt + Ebzp(b).
b b

Now since [* tp(r) dt < oo and [ t?q(t) dt < co0, we may assume that b was
chosen large enough such that 2 [ tp(t) dt < 1/3 and (1/2) [ t?q(¢) dt < 1/3. Also,
f2tp(t)dt < co implies that liminf,_, x2p(x) = 0. Thus we may assume that
(1/2)b2p(b) < 1/3. Hence, from (14), we have

1< 2‘ro tp(t) dt + lfmtzq(t)dt + lbzp(b) < ! + ! + ! =1.
=) 2Jy 2 3 3 3
Therefore (E) is nonoscillatory and is disconjugate on some subinterval [b, o0)
of [a, ).

As in the previous section, we have, as a corollary, the equivalent of Theorem
2 giving a necessary condition for the oscillation of (E).

COROLLARY. Let the coefficients of (E) satisfy (H). If (E) is oscillatory, then
[® xp(x)dp = oo or [ x*q(x)dx = oo.

Our final result has been stated by Hanan [6, Thm. 5.13] but there is a mistake
in sign in case (ii), p. 943, lines 15 and 16, of his proof invalidating his result. We
present an alternative proof.

THEOREM 3. Let the coefficients of (E) satisfy (H) and assume that the second
order equation y" + p(x)y = 0 is nonoscillatory. If [* x2[q(x) — p'(x)] dx < o,
then (E) is nonoscillatory.

Proof. By aresult of Hanan [6, Thm. 2.3], the nonoscillation of y” + p(x)y =0
together with the fact that g(x) = 0, implies that (E) belongs to class C,, i.e., if
y(x) is a solution of (E) such that y(x) has a double zero at x = b, b = a, then
y(x) # O on [a, b).
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Now, by assumption,

b
(15) Jim x*[g(x) = p'(x)] dx < oo.

a
Integrating | ’; xp(x) dx by parts, we obtain

b

b 1 b
(16) f xp(x) dx = %xzp(x) EJ; x2p'(x) dx.

a a

Substituting (16) into (15) yields

b b b
lim (f x2q(x)dx + 2f xp(x)dx — x2p(x) ) < 0.
b-ow \Jg a a
Since y” + p(x)y = 0 is nonoscillatory, we have liminf,_ , x*p(x) < 1/4.
Thus there is a sequence {b,} such that b, — oo as n — co and b2p(b,) < 1 for all

n. Hence

b, bn
lim (J x2q(x)dx + f xp(x) dx) < o0,

n— o

and we can conclude that [® xp(x)dx < oo and [ x*g(x) dx < oo. The proof is
now completed by applying Theorem 2.

Again, we have the equivalent result.

COROLLARY. Let the coefficients of (E) satisfy (H), and let y" + p(x)y = 0 be
nonoscillatory. If (E) is oscillatory, then [* x2[q(x) — p'(x)] dx = 0.
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ON CONVERGENCE OF PADE APPROXIMANTS*
WILLIAM B. JONES anp W. J. THRONY

Abstract. Three theorems are given concerning the convergence of sequences of Padé approxi-
mants. The first shows that in a neighborhood of the origin uniform boundedness of the approximants
is necessary and sufficient for uniform convergence. The other two results give sufficient conditions
to insure that uniformly convergent sequences of Padé approximants have as their limit the value of
the expanded function. The first two theorems are proved along the lines of analogous results in con-
tinued fraction theory. The third theorem is based on a recent result of Pommerenke on convergence in
capacity.

1. Introduction. Padé approximants have recently been employed in a variety
of problems in theoretical physics, chemistry and engineering [2], [3], [6], [7],
[10]. Although, in practice, numerical computations frequently indicate that Padé
approximants converge satisfactorily, the general theory of convergence is still
incomplete [1], [2], [5], [13], [15], [18]. We provide here some additional results
in this area. In Theorem 1 it is shown that uniform boundedness is both necessary
and sufficient for uniform convergence of a large class of sequences of Padé
approximants (§ 3). In Theorems 2 and 3 we present sufficient conditions to insure
that when a sequence of Padé approximants is uniformly convergent, its limit is
equal to the value of the expanded function (§ 4). The proofs of Theorems 1 and 2
are similar to those of analogous results in the theory of continued fractions
[11], [17]. The proof of Theorem 3 is based on a recent result of Pommerenke [15]
on convergence in capacity. Pommerenke’s theorem (stated in § 4) does not imply
pointwise convergence of the sequence {R,(z)} of Padé approximants at any point,
but asserts that the error of approximation tends uniformly to zero as v — oo,
except on sets of arbitrarily small capacity. Wallin [18] has given an example of
a sequence of Padé approximants which converges in capacity but diverges and
even is unbounded at each point in the complex plane. In spite of this, the appli-
cation made of Pommerenke’s theorem to obtain Theorem 3 shows that conver-
gence in capacity is a useful property.

Before stating and proving these theorems, we shall give in §2 some
definitions and terminology that are employed in the sequel.

2. Preliminaries. For a given formal power series
.1 Pe)=co+ciz+ ¢z + -+, (o #0)

and for nonnegative integers m and n, the (m,n)-Padé approximant R, (z) is
defined to be the (uniquely determined) rational function

2.2) R,.(2) = %ﬁ%,

* Received by the editors July 5, 1973, and in revised form January 27, 1974.

1 Department of Mathematics, University of Colorado, Boulder, Colorado 80302. This research
was sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, USAF,
under AFOSR Grant AFOSR-70-1888.
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satisfying the formal identity
(2.3) P(2)B,, (z) — A, ,(2) = Kz"*"*! + (terms of higher degree),

where 4,,,(z) and B, ,(z) are polynomials in the complex variable z of degrees
not exceeding n and m, respectively. It is well known [17] that for each m,n = 0,
1,2, .- the (m,n)-Padé approximant exists and is uniquely determined by the
conditions stated above. The Padé table of (1) is the doubly infinite array of
approximants

RO,O RO,l RO,Z

(2.4) Rio Rii Ry,
Ryo Ryi Ry,

A power series (1) is said to be normal iff each entry in its Padé table occurs exactly
once. In that case the polynomials 4,, ,(z) and B,, ,(2) in (2) have degrees equal to
n and m, respectively.

If f is a function and 4 is a subset of the complex plane, we shall mean by
f(A) the set {wlw = f(z), ze A}. By the symbols 4, comp A and diam A we shall
mean the closure, complement and diameter of the set A, respectively. A domain D
will mean an open connected subset of complex numbers.

A sequence of meromorphic functions {R,} converges uniformly on a com-
pact set K if and only if

(1) there exists N(K) such that R, is defined and consequently holomorphic

on K for every n = N(K);
(i) given ¢ > 0 there exists N, = N(K) such that

sup |[R,(z) — R,(z)) <& whenn,m = N,.
zeK

3. Uniform convergence.

THEOREM 1. Let {m,} and {n,} be sequences of nonnegative integers such that
for some e with0 < ¢ < 1,

(3.1 Y, &< 0.
v=0

For each v = 0,1,2, --- let R(z) denote the (m,,n,)-Padé approximant of a given
power series (2.1). Let D be a domain containing the origin. Then a necessary and
sufficient condition for {R(z)} to be uniformly convergent on each compact subset
of D is that for v sufficiently large {R(z)} is uniformly bounded on each compact
subset of D.

Proof. It suffices to prove the sufficiency of the condition in the theorem,
since the proof of its necessity is immediate. Let K denote an arbitrary compact
subset of D. Then clearly there exists an open connected set K, containing the
origin such that the closure K, is compact and such that K = X, = K, = D.
By hypothesis there exist positive numbers M and N such that

(3.2) IR(z2) €M forv= N andzekK,.
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Thus for v = N, R(z) is holomorphic on K. Therefore there exists r > 0 such
that for all z with |z| £ r, ze K, and the Maclaurin expansion

3.3) R(2)= ) w2, vzN,
k=0
converges. Cauchy’s inequality implies that
M
(3.4) £ =, vzN, k=0,1,2,

r
From (2.3) it can be seen that for v = 0,

(3.5) P = ¢, k=0,1,---,n,.
Therefore, letting

(3.6) N, =min{n,n,,}, v =0,

we obtain, for each v = N + 1 and z with |z] < r,
a0

IRy+1(2) = R =| Y &Y =)

(3.7 Lk angeet
<M 2t _ 2Mlzfr™
k=N,+1|7 1 —|z/r|
It follows that
(3-8) Ry2) + Y [R,+1(2) — R(2)]
v=N+1

is uniformly convergent on {z ||z| < er} provided that

(39) e < oo

v=0
But (3.9) is implied by (3.1) as can be seen from the inequalities
an é e 4 ghvrt,

We have shown that {R,(2)} is uniformly convergent on {z||z| < &r}. To complete
the proof it suffices to apply Stieltjes’ theorem [9, p. 251]: A uniformly bounded
sequence of functions holomorphic in a domain K, converges uniformly on K,
provided the sequence converges uniformly on some subdomain of K.

4. The limit of Padé approximants. When the power series (2.1) is normal,
for each k = O there exists a unique continued fraction of the form

aPz* aPz aPz
1+ 14+ 1+

k—1
@.1) Y e + (@ # 0)

j=0
whose approximants occur in the Padé table as the stairlike sequence Ry ;- ,
Ros» Ry Rijs1> Ryjs1> Rypsa, -+ [17, Thm. 9.6.1]. For particular values of z
it is possible to have the continued fraction (4.1) and corresponding power series
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(2.1) both converge, or both diverge, or either one converge while the other
diverges [14, pp. 145-146]. However, an early result of VanVleck and Pringsheim
[14, p. 148] shows that when the continued fraction (4.1) converges uniformly for
|z| < r, the corresponding power series (2.1) also converges to the same limit for
|z| < r. The following theorem is an extension of the VanVleck—Pringsheim result
to more general sequences of Padé approximants. It is noteworthy that the con-
dition that the power series be normal is not needed. Our proof, though similar
to the earlier ones, is included here for completeness.

THEOREM 2. Let {m,} and {n,} be sequences of nonnegative integers such that
{n,} tends to infinity. For each v =0,1,2, --- let R (z) denote the (m,,n,)-Padé
approximant corresponding to a given power series (2.1). Let D be a domain con-
taining the origin. If {R(z)} converges uniformly on compact subsets of D to a
function f(z), then f(z) is holomorphic in D and the power series (2.1) converges to
f(z) for all z in the largest circular disk with center at the origin lying entirely
within D.

Proof. Let K denote an arbitrary compact subset of D. Since {R,(z)} con-
verges uniformly on K, there exists an index N such that, for all v = N, R(2) is
holomorphic in K. It follows that f(z) is holomorphic at each point of D.

Now let » > 0 be chosen such that the disk K, = {z||z| < r} is contained
in D. Let N(r) be chosen such that R (z) is holomorphic in K, for all v = N(r).
If we define { f,(z)} by

(4'2) fN(r)(z) = RN(r)(z)’ fv+1(z) = Rv+ 1(2) - Rv(z)a v g N(V),

then, for all ze K,, f(z) has the uniformly convergent expansion

@3) D=3 £,

v=N(r)

each term of which is a holomorphic rational function for ze K,. Using the
notation (3.3), we obtain the Maclaurin expansions

fN(r)(z) = Z V}cN(r))Zk,
(4.4) k=0

v+ I(Z) Z (.))(V"'l) (ICV))Z," v g N(r),
each of which is uniformly convergent for |z| £ pr for each p with 0 < p < 1.

It follows from Weierstrass’s double series theorem [8, Thm. 8.1.5], that, for
|z] < r, f(2) has the convergent Maclaurin expansion

4.5 fa) =3 a2,

k=0
where, for each k = 0,1,2, ---, a, is given by the convergent series
(46) a =W+ T 08 =),

v=N(r)



CONVERGENCE OF PADE APPROXIMANTS 13

Since the y{” satisfy (3.5) and by hypothesis n, — 00, it follows from (4.6) that

(4'7) ak= lim '));‘V)=Ck, k=0,1,2,"',
Thus
(4.8) fe) =3 ¢z* forzeKk,.

k=0

Let I' denote the largest circular disk with center at the origin lying entirely
within D. If z is an arbitrary point in I', we have shown that there exists a closed
disk K, such that ze K, = D and (4.8) holds. This completes the proof.

Before stating Theorem 3, we shall summarize a few basic facts about loga-
rithmic capacity that we shall use (see [4, Chap. VII], [9, Chap. 16] and [16,
Chap III] for more details). If E is a compact subset of the complex plane, the
capacity of E, denoted by cap E, is defined by

4.9) cap E = lim J,(E),
where, for eachn = 2,3, ---, §,(E) is defined by
(4.10) [BEN®P"D =max  [] |z, — zd-

zjeE 1 <j<kzn

The sequence {J,(E)} decreases to its limit and J,(E) = diam E. If m(E) denotes
the two-dimensional Lebesgue measure of E, then

4.11) m(E) < n(cap E)?.

A countable set has zero capacity, but an infinite connected set has positive
capacity. In particular, the capacity of a circle (or disk) is equal to its radius and
the capacity of a line segment is one fourth its length. The following lemmas will
be used.

LEMMA 1. Let E be a compact subset of the complex plane such that O € E. Then

1
(4.12) cap— < (max |w|2) cap E.
E wel/E

Thus cap 1/E = 0 if and only if cap E = 0.
Proof. The set 1/E is compact, since 0¢ E. For each n = 2, 3, ---, choose

Wi '+, W, contained in 1/E such that
1 |®W2)n—1)
(413) [6nE] = l_[ |Wj,n - Wk,nl’
15j<ksn

and define z¥ = 1/w;,,j = 1,2, -, n. It follows from (4.10) and (4.13) that

1 1/(n/2)n = 1))
5n(§) =[ [1 ij,nwk,n|-|z§"’—z1">|}

12j<ksn

(4.14)
< [max |w|{| S,(E).

wel/E
Our assertion follows from (4.9) and (4.14).
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In order to deal with unbounded sets, we make the following definition.
DerFINITION. Let E be a closed subset of the extended complex plane and,

foreachn = 1,2, ---, let E, be the compact subset of E given by
(4.15) E,=E N {z||z| £ n}.

We then define

4.16) cap*E = lim cap E,,,

n— oo

provided the limit exists.
LEMMA 2. Let E be closed and bounded. Then

(A) cap E = cap* E,
4.17)
(B) cap E = 0 if and only if cap* 1/E = 0.

Proof. (A) follows immediately from (4.16) and the fact that E, = E for n
sufficiently large. To prove (B), first suppose that cap E = 0. Let

F, = % N {w|lwl < n}.

Then, for each n = 1,2,3, -+, 1/F, = E N {z||z| Z 1/n} is a compact subset of E.
Since the capacity of a set is never less than the capacity of a subset, it follows
that cap (1/F,) < cap E = 0 and hence cap (1/F,) = 0,n = 1,2, --- . Since 0¢ 1/F,,
F, is compact and Lemma 1 implies that cap F, = 0, n = 1,2, - - - . Therefore
(4.18) cap* 1/E = lim cap F, = 0

n— oo
as asserted in (B).
Conversely, suppose that cap* 1/E = 0 and let F, be defined as above. Since
4.19) 0 = cap* 1/E = lim cap F,,
{cap F,} is a nondecreasing sequence of nonnegative numbers whose limit is
zero; hence capF, =0,n = 1,2,---. Since 0¢ F, and F, is compact, Lemma 1
implies that cap (1/F,) = 0,n = 1,2, --- . But

1
: E=— :
(4.20) = UH,

n

where H, = E N {z||z| < 1/n} is compact and cap H, < 1/n. Also it is well known
[12,p. 127] that ifcap 4,, S o, m = 1,2, --- , M, then

4.21) cap(4, U --- U 4, £ «'™M[diam (4, U --- U 4,)]' "M,

It follows that cap E < (1/n)Y/?*[diam E]'?, n = 1,2,---. Hence capE = 0 as
asserted. This completes the proof.

THEOREM 3. Let {m,} and {n,} be sequences of nonnegative integers such that
for some fixed A with A > 1,

1
(4.22) zgﬁv—gi and m, — 00 asv— .

m,
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Let f(2) be a function holomorphic on an open connected subset G of the extended
complex plane such that 0 € G and

(4.23) cap* (comp G) = 0.

Foreachv = 0,1,2, -- - let R(z) denote the (m,, n,)-Padé approximant corresponding
to the (convergent) Maclaurin expansion of f(z). If {R,(z)} converges uniformly on
compact subsets of an open subset D of G, then

(4.24) lim R(2) = f(z) forallzeD.

Remarks. (a) The conclusion in Theorem 3 is similar to that of Theorem 2.
However, in the present case, it is not necessary to assume that the sequence
{R,(z)} converges uniformly in a neighborhood of the origin. (b) If in Theorem 3,
the set G also contains infinity, then comp G is compact and hence, by Lemma 2,
(4.23) can be replaced by the condition cap (comp G) = 0. (c) Our proof of
Theorem 3 is based on the following theorem due to Pommerenke, which is stated
here in a more convenient but equivalent form.

POMMERENKE’S THEOREM [15]. Let {m,} and {n,} be sequences of nonnegative
integers such that for some fixed A with A > 1 (4.22) holds. Let f(z) be a function

holomorphic on an open connected subset G of the extended complex plane such
that 0e G and

(4.25) cap (

comp G) =

For each v=0,1,2,---, let R/(z) denote the (m,,n,)-Padé approximant cor-
responding to the (convergent) Maclaurin expansion of f(z). Let ¢ > 0 and r > 1
be given. Then

(426)  lim cap {wlw = SHSRIRE - @2 e'"v} 0.

Remarks. In view of Lemma 2, conditions (4.23) and (4.25) are equivalent.
Thus Pommerenke’s theorem may be applied to the function f(z) of Theorem 3.

Proof of Theorem 3. For all sufficiently large v, R,(z) must be bounded (hence
holomorphic) on D, since by hypothesis the convergence is uniform on compact
subsets. It follows that R(z) = lim R,(z) is holomorphic on D.

Assume that R(zo) # f(zo) for some z, e D. Then, by the continuity of f(z)
and R(z), f(z) # R(z) for all z on a closed disk A contained in D. Moreover, the
disk may be chosen so that 0 ¢ A. Again by continuity,

4.27) M= mi? |f(2) — R(z)| > 0.

Then there exists N such that
(4.28) |R(z) — R(z)| < M/2, v= N, zeA.

Hence, for v= N and z€ A,

429)  1f(@) — RS2 2 |f(2) — R@)| = IR(2) = R(2)| > M — 5 =

M M
2 2
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Now choose ¢ such that 0 < ¢ < min {1, M/2}, choose r such that
Ac{zlr "t S|zl =1}

and let

s

(4.30) E, = {w|w =

N[ -
N | e

<l <nlf@ - R 2 a}, ,

v
=

Then by Pommerenke’s theorem,

(4.31) lim cap (E,) = 0.
But
4.32) % < E, forv=N,

and cap (1/A) > 0, since 1/A is a disk. Since the capacity of a set is not exceeded
by the capacity of any subset, (4.31) and (4.32) lead to a contradiction. This com-
pletes the proof.
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A MIXED PROBLEM FOR THE EULER-POISSON-DARBOUX
EQUATION IN TWO SPACE VARIABLES*

EUTIQUIO C. YOUNGt

Abstract. An explicit solution of a mixed problem for the Euler-Poisson-Darboux equation
uy + (k/thu, — u,, — u,, = f(x,y,1) is obtained in the quarter space x > 0, —0 < y < o0, t > 0 for
k > 0, in which case uniqueness of solution holds. The uniqueness property is lost when k < 0 as a
nontrivial solution of the corresponding homogeneous mixed problem can be easily found. The method
used is similar to that employed by Davis [6] and Young [20], which is based on analytic continuation
of a generalized Riemann-Liouville integral developed by Riesz. Although only the case of two-
space variables is treated, the method is also applicable to the general case of n-space variables provided
k>n—1(k>n—2whenniseven, n > 4).

1. Introduction. This paper is concerned with an explicit solution of the
mixed problem

k
(1) Lu = u, + —t—u, = Uy — Uy, = f(x,9,1),
2 u(x,y,0)=0, ulx,y,0)=0,
3) u0,y,t) = gy, 1),

in the quarter space x > 0, —o0 < y < oo,t > 0, where k > 0 is a real parameter
and f and g are twice continuously differentiable functions such that g(y,0)

Equation (1) is the well-known Euler-Poisson—-Darboux (abbreviated EPD)
equation in two-space variables. While the equation for different numbers of
space variables and special values of k has occurred in many classical problems
for over two centuries, the general case of n-space variables and arbitrary values
of k was fully treated only twenty years ago by Weinstein [16], [17], Diaz and
Weinberger [8] and Blum [1]. Since then the EPD equation has been the object
of much investigation, see, for example, Diaz and Ludford [7], Walter [15],
Davis [6], Lions [13], Carroll [3] and just recently, Bresters [2]. A concise survey
of more recent work on the EPD equation can be found in Gilbert [10]. All of
these works, however, have been concerned with the Cauchy problem for the
EPD equation. Indeed, as far as the author knows, the only other mixed problems
considered for the EPD equation were done in one space variable by Weinstein
[18], Lieberstein [12] and Fusaro [9]. Copson [4] and Copson and Erdélyi [5]
solved a mixed problem for a generalized EPD equation but only in the case of
one-space variable.

When k = 0, equation (1) reduces to the wave equation in which case the
problem (1), (2), (3) is then classical (see Hadamard [11, pp. 247-253]). We con-
sider here only the case k > 0 because, then, our solution is uniquely determined
by the use of Green’s formula. There is no uniqueness when k < 0 as evidenced

* Received by the editors August 13, 1973, and in revised form January 7, 1974.
t Department of Mathematics, Florida State University, Tallahassee, Florida 32306.
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by the existence of a nontrivial solution, u = xt! ~¥, of the corresponding homo-
geneous mixed problem Lu = 0, u(x, y,0) = 0, u,x, y,0) = 0, u(0, y,t) = 0.

As is well known, for points (x, y, t) such that x = ¢t > 0, the boundary con-
dition (3) plays no role in the determination of a solution and, hence, it may be
ignored. In such a case, the unique solution of the problem (1), (2) was obtained
by Diaz and Ludford [7] who showed that

k- _
@ ux, y, 1) = 2 lf’kf(é”“’ k 1-1~5)d¢dndr,
D

RVZR¥2 7\ 2 "2’R

where D is the domain bounded by the plane t = 0 and the retrograde character-
istic cone

©) R=(t-1-(x--(-n*=0, (-1>0
with vertex at (x, y, t), and where
(6) R=@t+10-(x-8 —@-n

The solution (4) is no longer valid in the region 0 < x < t. Therefore, the basic
problem in (1), (2), (3) is the determination of a solution in the region 0 < x < t.
We propose to consider this problem by using a method due to Riesz as was
adopted by Davis [6] and Young [19], [20]. We remark that although we treat
here only the case of two-space variables, our method and procedure can be
applied to the case of n > 3 space variables as well, providedk >n — 1(k >n — 2
when nis even, n = 4).

2. The solution formula. The Riesz method consists essentially in finding a
kernel function V?(x, y,t;¢&,n, 1), depending on two points (x, y, ) and (£, 7, 1),
and a parameter «, such that V* vanishes together with its first derivatives on the
retrograde cone (5) and satisfies the relation

™ LV**2(x,y,t;&,1,7) = Vi(x, y,t;¢,1, 7).
Moreover, with respect to the point (&, , 7), it satisfies an analogous relation
@®) MV** 2 (x,y,t;&,1,1) = Vi(x,p,t;¢,1,7),

where M is the adjoint of L defined by
MU = Uﬂ. - k(g) - v§§ - U'm.
The kernel function for the operator L was determined by Davis [6] (also by
Young [19]) who showed that
2Kk
22" g2 (/2T (o — 1)/2]
RG~312 (k a+k—-3a—-1R

Vix,y,t;&,n,1) =

©)

R¥z “\2> 2 2 °'RJ

where R and R’ are defined in (5) and (6), respectively. For a fixed point (x, y, )
in the quarter space & > 0, T > 0, we note that the hypergeometric function F in
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(9) converges absolutely and uniformly with respect to (£,#,1) for 1 = &> 0,
because in that space |R/R’| < 1. Moreover, for « > 3, V* remains bounded at
T =0.

Now let us seek a solution u of the problem (1), (2), (3) at the point (x, y, t)
where 0 < x < t. Let D denote the domain bounded by the retrograde cone
R = 0 with vertex at (x, y, t) and the planes £ = 0 and = = 0. For « > 3, we have,
by Green’s theorem,

f (Ve 2Ly — uMV**2) d¢ dn de

Va+2 Va+2
J (V“” + k2 ) as,
oD on T

(10)

where du/0n is the conormal derivative

ou Ou ou ou
— =V, — Vg — —V
on o0t 9EC on"
with v, v,, v, being the components of the outward unit normal vector on 0D,

the boundary of D. Since V**?2 and its first derivatives vanish on R = 0, and in
view of (8), formula (10) yields

ou over?
a = J**2 — wt2 - _gldnd
(11) Pu(x,y,t) = I “f(x, y,t) L(V PE FE gl dndr
in which we have introduced the notation
(12) IFu(x, y,t) = f wé,n, Vix,y,t;&,n,1)dédnde
D

and substituted the data given in (1), (2), (3). The domain of integration T of the
last integral in (11) is that intercepted off the plane & = 0 by the cone R = 0
(t > 0).

In order to eliminate the term du/0¢ from (11), we consider the kernel function
Vit (—x, y,t; & n, ) corresponding to the point (—Xx, y, t) which is symmetric to
(x, y, t) with respect to the plane ¢ = 0. Denote by D* the domain lying in the
quarter space ¢ > 0, t > 0 and bounded by the retrograde cone

Ro=(t—1-(x+& —-(p—-n*=0

and vertex at (—x, y, t). Notice that D* is in the interior of D. For « > 3, it is
clear that V"2 vanishes together with its first derivatives on R, = 0, and satisfies
both the relations (7) and (8). Hence for V%*? and the domain D*, we obtain by
applying formula (10),

ou over?
13 Fu(—x,y,t) = I*"2f(—x, y,t -—f (V“”——— *
(13)  Kau(—x,y ¥ S(=x,y,0 . FEARTY:
Here I u denotes the integral (12) over D* with the kernel function V3. Now,
since V* = V4 on T, it follows by subtracting (13) from (11) that

Fulx,y,0) — Lau(—x,y,t) = I""2f(x, y,8) — I2**f(—x, y,1)
+ J4 2g(y, 1),

gl dndx.

(14)
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where

Ve ove

0¢ o¢

For a > 3, we observe that each of the integrals in (14) converges and defines
an analytic function of «. Moreover, if we extend the function u as an odd function
of x for x < 0, that is, u(—x, y,t) = —u(x, y, t), then the integral I5u(—x, y,t)
over D* becomes the negative of the integral I*u(x, y, t) whose domain of inte-
gration is the reflection of D* with respect to £ = 0. Hence the term I*u(x, y, t)
— L%u(—x, y,t) (and also I**2f — I%*2f) can be expressed as the volume integral
over the domain extending into the quarter space & < 0, t > 0, and bounded
simply by the retrograde cone R = 0 and the plane t = 0. Then, since V**? and
its first derivatives vanish on R = 0, the differentiation implied in the operator L
may be applied under the integral sign of each of the integrals in (14). In view of
relation (7), we then have

LIPu(x,y,t) — LIu(—x,y,t) = LI***f(x,y,t) — LI.*2f(—x,y,1)
(16) + LJ**2g(y, 1)
=DIf(x,y,0) = Lf(=x,y,t) + J*g(y, 1)

(15) Iy, 1) = f ( )g(n,r) dn d.
T

As will be shown in the next section, when u and g are continuously differ-
entiable, it is possible to continue analytically each of the integrals in (16) with
respect to ainto —1 < a < 3, and that

(17a) IPu(x,y,t) = u(x,y,1),
(17b) Ig“(_x’y,t) = 0’
(17¢) Jog(y,1) = 0.

Then, by the principle of analytic continuation, (16) will yield the result
Lu(x’y’t) = f(X,y, t),

thus verifying that I°u(x, y, t) = u(x, y, t) satisfies equation (1). Further, by per-
forming the analytic continuation of (14) to o« = 0, we will obtain the explicit
solution

(18) ux,y,0) =1°"2f(x,y, 1) = IL72f(=x,p,0) + J°"2g(y, 1),

which will be shown to satisfy conditions (2), (3). It is in this sense that formula
(14) provides a solution of the problem (1), (2), (3).

3. The analytic continuation. We first establish the identity (17a). Let D,
denote the conical domain bounded by R = 0(t — 7 > 0)andt =t — x = 0,and
set D, = D — D,. Then, as was proved by Davis [6], the part of the integral I*u
over D, yields the desired identity when it is continued analytically to a = 0.
On the other hand, by the same procedure the other part of Iu over D, and the
integral I5u both vanish when they are continued analytically to « = 0, since the
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domains of integration D, and D* do not contain the points (x, y, t) and (—x, y, t),
respectively. We shall demonstrate here the technique for carrying out this
analytic continuation in connection with the integral

(19) Kg(y, 1) = f V(x, v, 150, 1, )gn, 7) dn ds.
T

The result of this will be used to establish the identity (17c).

Let z = Ry/R;, where R, and Rj denote the values of R and R’ on T, that is,
when ¢ = 0. Since |z| < 1 for © > 0, we may expand the hypergeometric function
in V* in infinite series and write

F

2 2 T2 °F T(k/2)TT( + k — 3)/2]

. {': T(k/2 + 1 4+ AT« + k — 1)/2 + e
= (r+ DT + 1)/2 + r] ‘

Eoz+k—3.cx—1‘)= N (e — 1)/2]

(20)

The infinite series on the right-hand side of (20) converges uniformly for |z| < 1;
in fact, it may be written as
k+2ot+k—1 o+l

2 b 2 b b b 2 b b

(21) C(a, k) 3Fz(

where C is some factor depending on o and k, and ,F, is a generalized hyper-
geometric function (14, p. 73). Thus the integral (19) may be written as the sum
of two integrals, the first being given by

“4gln, ORG "

Uo) = A(oz,k)J~ R dn dt
22) T 0
yt (2-x2)1/2 t=[x2+(y=n)?2 ok ,T)RE@= /2
=A(oz,k)f dnf %dt,
y—@2-x2)!/2 0 0
where
2k—a+1
(23) Ao, k) =

w20 (o/2) (o — 1)/2]°

The integral (22) defines an analytic function of « for « > 1. In order to
continue it analytically into 0 < « < 1, we introduce in the inner integral the
new variable s, where t = s{t — [x* + (y — #)*]/*}. Then (22) becomes

y+ (2 — x2)1/2
U0 = A(a, k)f {1 =[x + (v — )2} 02 gy

1
f G(x,y,t,8)sf1 — s)@~ 32 gs,
0

where G represents all the other factors in the integrand of (22). We consider the
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inner integral and integrate it by parts. We obtain

1
f G(x, y,t,s)s*(1 — 5)@= 32 gs
0

2
= —mG(X,y,t,S)Sk(l — )@
(25)

1o
j —(G(x, y,t,8)s(1 — s)@~ V2 gs
a—1 Os

= f —(G(x, y,t,5)s"(1 — s)@" V2 (s,
since the boundary terms vanish for > 1. But now the last integral in (25) con-
verges for —1 < a = 1 and defines an analytic function of a there. In view of the
factor 1/(I'(«/2)) in (23), it follows that (22) vanishes when it is continued analytically
toa =0.

The second integral of (19) is given by

2k—a+1c(a k T g(" ‘L' (az 1)/2
20 (o/2)T (o — 1)/2] J¢ R’”"/2
involving the function (21). This integral converges for a > —1, and, again,
because of the factor 1/(I'(/2)), it vanishes at « = 0. Thus we have shown that
(19) can be continued analytically with respect to « into —1 < o < 1, and that
K°(y,t) = 0. We shall use this result to verify that J%g(y, t) = 0.

We observe that on T,
ovr ovy  ar® 6V°‘ 6
o0& o0& ox x
Since V* vanishes on the intersection of T with R = O for large o, we may write

(26) Us(e) = 3Fx(2) dn de

(x y,t;0,1n,7).

0
Jgly, 1) = —26—f V(x, v, 1;0, 1, )gln, ) dn d.
XJr

By the principle of analytic continuation and from the previous results, we see
that J*g vanishes as a is continued analytically to a = 0.

4. The explicit solution. We notice that all the integrals on the right-hand
side of (14) converge for « > —1. Thus by analytic continuation to a = 0, and
by (17), we obtain our explicit solution

u(x,y,t)=2k—1f ™f(&,n,7) (k k—11R

o RUZR,k/Z Ea 2 2 R,) dé d"] dT

2t e k() [k k—11 R,
@) K L,‘ RPREE T2 2 g | St
_zgfrkg(n,r) K k=1 1R,
7 ox ), RVZRFZ |2’ "2 2R,

Now, for 0 < t £ x, the domains of integration D* and T in (27) are both
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empty and, hence, (27) reduces to the formula (4) which solves the problem (1),
(2). On the other hand, as x tends to zero, the integrals over D and D* cancel
out since D* approaches D, and R and R’ coincide with R, and R, respectively.
Thus we need only show that

(28) lim JOT2g(y,t) = g(y, ).
To this end, we write
ylE—o?—x212 1k (,7)
JO*2g(y, ———f f T8 Y) p(Ro/RY) dn dt,
g(y s ax [(t_t)Z_XZ]I/Z 1(1/2118‘/2 ( 0/ 0) ’1 t

where, for convenience, we have omitted writing the parameters of the hyper-

geometric function. If we introduce the new variable s = (y — 1)/ /(t — 1)> —x 2
in the inner integral and perform the indicated differentiation, we obtain

JO+2g(y. 1) = —(t _ x)kf o g()’,) )2]k/2(1 — s?)" 12 gs
1
(29)

f f - [g,(;?,,i F(RO/RO):|(1 — )" V2 dsdr.
1

Now the differentiation with respect to x in the second integral on the right-
hand side of (29) gives rise to a factor x, and so, the integral vanishes as x tends
to zero. On the other hand, the first integral yields

k

.2 1 (y,t — x) »
ll_I:f(l) ;(t - x)kJ:I [(2t g_y z]k/z (1- ) 2ds = gy,1),

thus establishing (28). This completes the verification that (27) indeed satisfies
the conditions (2), (3).

REFERENCES

[1] E. K. BLuM, The Euler—Poisson—Darboux equation in the exceptional cases, Proc. Amer. Math.
Soc., 5 (1954), pp. 511-520.

[2] D. W. BRESTERS, On the equation of Euler—Poisson—Darboux, this Journal, 4 (1973), pp. 31-41.

[3] R. W. CARROLL, Some singular Cauchy problems, Ann. Mat. Pura Appl., 56 (1961), pp. 1-31.

[4] E. T. CoPsON, On a singular boundary value problem for an equation of hyperbolic type, Arch.
Rational Mech. Anal., 2 (1958), pp. 349-356.

[S] E. T. CopsoN AND A. ERDELYI, On a partial differential equation with two singular lines, Ibid.,
2 (1958), pp. 76-86.

[6] R. Davis, On a regular Cauchy problem for the Euler—Poisson—Darboux equation, Ann. Mat.
Pura Appl., 42 (1956), pp. 205-226.

[7] J. B. Diaz AND G. S. S. LUDFORD, On the singular Cauchy problem for a generalization of the
Euler—Poisson—Darboux equation in two space variables, Ibid., 38 (1955), pp. 33-50.

[8] J. B. Diaz AND H. F. WEINBERGER, A solution of the singular initial value problem for the Euler—
Poisson—-Darboux equation, Proc. Amer. Math. Soc., 4 (1953), pp. 703-715.

[9] B. A. FUsARO, A solution of a singular mixed problem for the equation of Euler—Poisson—Darboux,
Amer. Math. Monthly, 73 (1966), pp. 610-613.

[10] R. P. GILBERT, Function Theoretic Methods in Partial Differential Equations, Academic Press,
New York, 1969.

[11] J. HADAMARD, Lectures on Cauchy’s Problem in Linear Partial Differential Equations, Dover,
New York, 1952.

[12] H. M. LiEBERSTEIN, A mixed problem for the Euler—Poisson—Darboux equation, J. Analyse Math.,
6 (1958), pp. 357-379.



24 EUTIQUIO C. YOUNG

[13] J. L. LioNs, Operateurs de transmutation singuliers et equations d’Euler—Poisson-Darboux
generalisees, Rend. Sem. Mat. Fis. Milano, 28 (1959), pp. 124-137.

[14] E. D. RAINVILLE, Special Functions, Macmillan, New York, 1960.

[15] W. WALTER, Uber die Euler—Poisson—Darboux Gleichung, Math. Z., 67 (1957), pp. 361-376.

[16] A. WEINSTEIN, Sur le probleme de Cauchy pour I’equation de Poisson et I’equation des ondes,
C.R. Acad. Sci. Paris, 234 (1952), pp. 2584-2585.

, On the wave equation and the equation of Euler—Poisson, Proc. Symp. Appl. Math. 5,

McGraw-Hill, New York, 1954, pp. 137-147.

, The generalized radiation problem and the Euler-Poisson—Darboux equation, Summa
Brasiliensis Math., 3 (1955), pp. 125-147.

[19] E. C. YOUNG, On a method of determining the Riesz kernel for the Euler—Poisson—Darboux
operator, J. Math. Anal. Appl., 16 (1966), pp. 355-362.

, A solution of the singular Cauchy problem for the nonhomogeneous Euler—Poisson—Darboux

equation, J. Differential Equations, 3 (1967), pp. 522-545.

(17)
(18]

(20]



SIAM J. MATH. ANAL.
Vol. 6, No. 1, February 1975

NONLINEAR DEGENERATE EVOLUTION EQUATIONS AND
PARTIAL DIFFERENTIAL EQUATIONS OF MIXED TYPE*

R. E. SHOWALTERY

Abstract. The Cauchy problem for the evolution equation Mu'(t) + N(t,u(t)) = 0 is studied,
where M and N(t,-) are, respectively, possibly degenerate and nonlinear monotone operators from a
vector space to its dual. Sufficient conditions for existence and for uniqueness of solutions are ob-
tained by reducing the problem to an equivalent one in which M is the identity but each N(t,-) is
multivalued and accretive in a Hilbert space. Applications include weak global solutions of boundary
value problems with quasilinear partial differential equations of mixed Sobolev-parabolic-elliptic
type, boundary conditions with mixed space-time derivatives, and those of the fourth or fifth type.
Similar existence and uniqueness results are given for the semilinear and degenerate wave equation
Bu'(t) + F(t, u'(t)) + Au(t) = 0, where each nonlinear F(t,-) is monotone and the nonnegative B and
positive A are self-adjoint operators from a reflexive Banach space to its dual.

1. Introduction. Suppose we are given a nonnegative and symmetric linear
operator ./ from a vector space E into its (algebraic) dual E*. This is equivalent
to specifying the nonnegative and symmetric bilinear form m(x, y) = {.#x, y) on
E, where the brackets denote E* — E duality. Since m is a semiscalar-product on
E, we have a (possibly non-Hausdorff) topological vector space (E,m) with
seminorm “x — m(x, x)"/?”, and its dual (E,m)’ = E’ is a Hilbert space which
contains the range of 4. We let A/(t, - ) be a family of (possibly) nonlinear functions
from E into E*, 0 < t < T, and consider the evolution equation

IIA

(1.1) %(///u(t)) + A(t,u(t)) = 0, 0Zt<T.

By a solution of (1.1) we mean a function u:[0, T] — E such that .#u:[0, T] - E'
is absolutely continuous (hence, differentiable almost everywhere), with A7(¢, u(t))
€ E' for all ¢, and (1.1) is satisfied at almost every t € [0, T]. The Cauchy problem
is to find a solution u of (1.1) for which .#u(0) is specified in E".

The plan of the paper is as follows. In § 2 we use elementary linear algebra
to show that (1.1) is equivalent to an evolution problem essentially of the form

(1.2) —ut)ye M~ o N(t,u(d)),

where .4 ! denotes the (possibly) multivalued operator or relation that is inverse
to .. Our main results on the existence and uniqueness of solutions of (1.1) (or
(1.2)) are stated and proved in § 3, and provide a natural application of nonlinear
evolution problems with multivalued operators. Section 4 gives some applications
of our results to various nonlinear boundary value problems which may contain
derivatives in time of at most first order. Each such problem is reduced to (1.1)
in an appropriate space. The examples include boundary value problems for

* Received by the editors September 11, 1973.
1 Department of Mathematics, University of Texas, Austin, Texas 78712. This work was sup-
ported in part by National Science Foundation grant GP-34261.
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equations of the form

ou 0 [|oulP~20u
”’"‘)5;)) ~ x| |ox &) =0,

where my(x) = 0, m(x) =2 0, and p = 2. A first order time derivative may also
appear in boundary conditions such as in boundary value problems of the fourth
and fifth type. In § 5 we study the abstract wave equation

(1.3) Bu"(t) + F(t,u'(t)) + Au(t) = 0,

where 4 and B are self-adjoint with A strictly positive and B nonnegative and
each F(t,-) is monotone. When the operators in (1.3) are realizations of partial
differential equations, we obtain results on the solvability of (e.g.)

0* "9 ou oulP~1 du
a—t'z mo(x)u(x, t) - jz;:l };ij(X)gx_l) + a—t b? —
wherein each m; is nonnegative and bounded, and p = 2, and boundary con-
ditions may contain second order time derivatives.

Abstract equations of the form (1.1) have been considered by C. Bardos,
H. Brezis, O. Grange and F. Mignot, H. Levine, J.-L. Lions, M. Visik and this
writer. Our results of § 3 are closest to those in § 5 of [3] and those of [14], while
in [4] it is assumed the leading operator in (1.1) is bounded from a Hilbert space
into itself. The writers in [21, pp. 69-73] and [29] consider linear equations with
time-dependent operators uniformly bounded from below by a positive quantity,
hence, nondegenerate, and this last assumption was removed in [28]. Each of the
preceding works has been directed toward the solution of boundary value prob-
lems, many of which have been studied by more direct methods. We refer the
reader to the extensive bibliographies of [26], [27] for the theory and application
of nondegenerate equations with mixed space and time derivatives (i.e., of Sobolev
type) and to [7], [28] for additional references to (degenerate) mixed elliptic-
parabolic type. See [24] for a treatment of (1.3) when B is the identity.

%(mo(x)u(x, t) — a%

Au = f,

2. Two Cauchy problems. Let m denote the nonnegative and symmetric bi-
linear form given on the vector space E. Let K be the kernel of m, i.e., the sub-
space of those xe€ E with m(x, x) = 0, and denote the corresponding quotient
space by E/K. Then the quotient map q:E — E/K given by

q(x) = {ye E:m(x — y,x — y) = 0}
is a linear surjection, and it determines a scalar product m on E/K by

@1 m(q(x), q(y)) = m(x,y),  x,y€E.

The completion of (E/K, m) is a Hilbert space W whose scalar product is the
extension by continuity of m, and we denote this extension also by m.

Let E’ denote the strong dual of the seminormed topological vector space
(E,m). E' is a Hilbert space which is important in the discussion below, so we
consider it briefly. Letting (E/K)’ and W' denote the duals of the indicated scalar
product space and Hilbert space, respectively, and noting that E/K is dense in
W, we have each f e W’ uniquely determined by its restriction to E/K. This re-
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striction gives a bijection of W’ onto (E/K)' and we hereafter identify these spaces.
Regard g as a map from E into W. Its dual is the linear map g*: W’ — E’ defined
by

2.2) q*(f), x> =<fqx)>, feW’, xeE.

Since q(E) = E/K is dense in W, g* is injective. Furthermore, each g € E' neces-
sarily vanishes on K, so there is a unique element f € (E/K)’ with foq = g. That
is, g = q*(f), so g* is a bijection of W’ onto E'. It follows from (2.1) and (2.2)
that g* is norm-preserving,.

We easily relate the linear map .# :E — E’ given to us by

{Mx,yy =mx,y), x,y€E,
to the Hilbert space isomorphism .#,: W — W’ of F. Riesz defined by
<'/%Ox’y> =m(x,Y), x,YGW‘

For any pair x, y € E we have {q*.#4yqx, y> = {Myqx,qyy = m(gx, qy) = m(x, y)
= {Mx,y), and, hence,

2.3) M= q* Mog.

The notion of a relation £ on a Cartesian product X x Y of linear spaces
will be essential. A relation # on X x Y is a subset of X x Y. For each xe X,
the image of x by Z is the set Z(x) = {ye Y:[x, y]€ #}, and the domain of Z# is
the set of x € X for which #(x) is nonempty. The range of # is U{%(x):xe X}.
The graph of every function from a subset of X into Y is a relation on X x Y,
and we so identify functions as relations. The inverse of # is the relation
R~ = {[y,x]:[x,y]€e R} on Y x X.If ais a real number, we define

aR = {[x,ay]:[x,yl € #}.
If & is a second relation on X x Y, then
R+ & ={x,y+z]:[x,y]e Z and [x, z] € &}.
If 7 is a relation on Y x Z, then the composition of # and J is
T o R = {[x,2]:[x,y]€e R and [y,z]€ T for some ye Y}.
If 2 is a relation on W x X, then composition is associative, i.e.,
(T o R)e P =T o (R-P).

Also, we identify the identity function Iy on Y with its graph {[y, y]:ye Y}, and
easily obtain the inclusion Z 0 2~ 2 I,. These sets are equal if (and only if) 2
is a function, i.e., each Z(x) is a singleton. Finally we note that

(T R =R 1oT L.

Suppose that for each t € [0, T] we are given a (not necessarily linear) function
N'(t):E — E*. Define a corresponding relation Ag(t) on W x W’ as follows:
[w, f] € AHy(t)if and only if there is an x € E such that g(x) = wand A(t, x) = q*(f).
Since g* is onto E', it follows that the domain of A(t) is precisely the image
q(D()), where we define D(t) = {xe E: A(t, x) € E'}. Also, for each t € [0, T] and
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x € D(t), there is exactly one fe W’ with A(t, x) = q*(f), so we have
24 N(E,x) = q* o M(t)og(x), O0=t=T, xeD().

Finally, we define a family of composite relations on W x W by (t)
= Myt o N(t), t€[0, T). That is, [x, z] € «(t) if and only if there is a y € W’ for
which [x, y]e A5(t) and y = #,z. Since 4, is a bijection, /(t) and Ay(t) have
the same domain, q(D(t)).

Remark 1. Note that A4(¢) is a function (as is 2/(¢)) if and only if A(t, x)
= N(t,y) for every pair x, y € E such that A(t, x) and A(t, y) belong to E’ and
M x = My. This is frequently (but not always) the case in applications, even where
A is not injective.

We shall relate solutions of the evolution equation (1.1) to those of an
evolution problem determined by the relations 2/(¢), 0 <t < T. A function
v:[0, T] —» Wis called a solution of the evolution problem

2.5 v'(t) + (L, v(t)) 20, 0Zt<LT,

if it is (strongly) absolutely continuous (hence, differentiable a.e.), v(t) € g(D(t)) for
every t, and (2.5) is satisfied at a.e. t. Since the domain of each «/(t) is contained
in E/K and since the maps #,:W — W’ and g*: W’ — E’ are linear isometries,
it follows that v is a solution of (2.5) if and only if v:[0, T] —» E/K, is absolutely
continuous, (hence, g*.#,v:[0, T] — E'is differentiable a.e.), v(t) € q(D(t)) for every
t, and

(q* Mov(t)) € —q* Ao(t, u(t))

at a.e. t. Let v be such a solution, and for each t € [0, T] choose a representative
u(t)e D(t) from the coset uv(t)e E/K. Then q(u(t)) = v(t), Mu(t) = q*My(t) and
N, u(t) = g* A, v(t)) for each ¢, so u is a solution of (1.1). Conversely, if u is
any solution of (1.1), then the function v = g o u is a solution of (2.5), so we have
the following result.

PROPOSITION 1. If v is a solution of (2.5) and for each te[0, T], u(t) € D(t)
belongs to the coset v(t)€ E/K, then u is a solution of (1.1). Conversely, if u is a
solution of (1.1), then v = q - u is a solution of (2.5).

COROLLARY 1. Let ug € D(0). Then there exists a solution v of (2.5) with v(0)
= q(uo) if and only if there exists a solution u of (1.1) with Mu(0) = Mu,.

COROLLARY 2. Let ug € D(0). Then there is at most one solution v of (2.5) with
v(0) = q(uo) if and only if for every pair of solutions u,, u, of (1.1) with .M#u,(0)
= Muy(0) = Muy, we have Mu,(t) = Mu,(t) for all t € [0, T], hence

H(t, uy (1)) = A(t, uy(1)).

Remark 2. In the situation of Corollary 2, uniqueness holds for solutions of
the Cauchy problem for (1.1) if for each t € [0, T] and each pair x, y€ E, A x = My
and A(¢t, x) = A(t, y) € E' imply that x = y.

Example. Take E = R? = E* with {[x,, X,], V1, V21> = X1¥1 + X,y,. Let
M([xy,x3]) = [x1,0]and A(¢)[x;, X,] = [X,, —Xx]. Then the kernel of # + A(t)
is null, so uniqueness holds. Note, however, A4(t) is not a function. This cor-
responds to the (trivial) evolution equation

u,l(t) =0, uZ(t) =0, t2 0,
for u(t) = [uy(t), u,(t)].
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3. Existence and uniqueness. Evolution problems of the form (2.5) have been
considered by many writers, and we refer to the recent work of M. Crandall and
A. Pazy [10] and J. Dorroh [12] for references in this direction. In particular, a
sufficient condition for uniqueness of solutions of Cauchy problems associated
with (2.5) is that each .2/(t) be accretive.

DEFINITION 1. A relation o on W x W is accretive if for every pair [x,, w,]
and [x,, w,] in &/ we have m(w, — w,, x; — x,) = 0.

A related notion is that of monotonicity for functions (or relations) mapping
a subset of a vector space into its dual. Such a condition holds for many operators
associated with the variational formulation of (possibly nonlinear) elliptic bound-
ary value problems [5], [7].

DEFINITION 2. Let D be a subset of the vector space E and denote by E* the
(algebraic) dual of E. A function A" :D — E* is D-monotone if for each pair x,,
x, € D we have {A(xy) — #(x;), x; — x> = 0.

Because of our intended applications, it is essential that D-monotonicity of
each A/(t) imply accretiveness of the corresponding /(t), where A'(t) and 2/(t)
are the functions and relations of § 2. This was our motivation for portions of the
construction in §2, and its success in this direction is reflected in the following
central result.

PROPOSITION 2. For each t € [0, T] let A'(t) and <4(t) be the respective function
and relation of § 2. Then /(t) is accretive if and only if A'(t) is D(t)-monotone.

Proof. Let [x,,w;] and [x,, w,] belong to /(t). Then there are u,,u, in
D(t) such that x; = q(u;) and A(t,u;) = q*Mow;, j = 1,2. Thus we have

m(w; — wy, Xy — Xp) = {Mo(wy — Wy), q(uy — uy))
= Lq* Mo(wy — W), uy — uy)
= <'/V‘(t9u1) - '/V‘(tau2)sul - u2>'

Hence, if A(¢) is D(t)-monotone, then .&/(t) is accretive.

Conversely, if u,, u, € D(t), there is a unique pair w; (j = 1,2) in W with
N(t,uj) = q*Mow;. Then [q(u;), w;] € H(t) and, as above, (A (t,u;) — A(t,u,),
Uy — uyy = mw; — w,, x; — X,), 0 &(t) being accretive implies A(¢t) is D(t)-
monotone.

DEeFINITION 3. If in the definition of accretive (or D-monotone) the inequality
is strict whenever x, # x,, then we say that .« is strictly accretive (respectively,
N is strictly D-monotone).

If u,, u, € D(t), then A(t,u;) — A(t,u,) € E', so there is a constant k such
that

KN (t,uy) — N(t,uz), )] < kmle,e)''?,  eeE.

If Mu, = Mu,, then setting e = u; — u, in the above identity shows that
N, u) — A(t,u,), uy — uyy = 0. Thus, if A(t) is strictly D(¢)-monotone then
u; = u,, and Remark 1 shows that </(t) is a function. The first part of the proof
of Proposition 2 shows then that o/(¢) is strictly accretive. Conversely, if «/(t) is
a strictly accretive function, and if <A"(t,u;) — A(t,u;), u; — u,> = 0 in the
second part of the proof of Lemma 1, then w, = w,, hence A7(t,u;) = A(t,u,).
These remarks prove the following.
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COROLLARY 1. In the situation of Proposition 2, A'(t) is strictly D(t)-monotone
if and only if it is injective and </(t) is a strictly accretive function.

From Remark 2 and the preceding argument applied to .# + A'(t), we
obtain a sufficient condition for uniqueness.

THEOREM 1. Let A'(t) be D(t)-monotone and let M + A'(t) be strictly D(t)-
monotone for each t € [0, T]. Then, for each uqy € D(0), there is at most one solution
u of (1.1) for which Mu) = Mu,.

We turn now to the considerably more difficult question of existence. Our
results in this direction will be obtained from recent results of M. Crandall, T.
Liggett and A. Pazy on the existence of solutions of evolution problems like (2.5)
in general Banach space [9], [10]. We shall present the special case of their results
as they apply to Hilbert space and obtain through Proposition 1 a corresponding
set of sufficient conditions for the existence of a solution of (1.1).

To begin, we shall describe the existence results of [10] that are relevant for
(2.5). We assume that 2/(t) is accretive and that the range of I + /(¢) is all of W
for every t € [0, T] (Each «/(t) is m-accretive [16] or hyper-accretive [12]). It follows
that the range of I + A2/(t) is W for every 4 > 0, so its inverse

L =U+ A0)7 8, A>0,

is a function defined on all of W. The dependence on t will be restricted in two
ways. First, the domain of </(t) is independent of t, and we shall denote it by
q(D). Second, there is a monotone increasing function L:[0, c0) — [0, c0) such
that

G.1) 1928, ) — Jie, Dlw < At — tIL(xllw) (1 + inf {|yllw:[x, y] € L(2)}),

' t,720, xeW, 0<i<l.
It is shown in [10], under hypotheses somewhat more general than those above,
that for each vy € g(D) there exists a (unique) solution v of (2.5) with v(0) = v,.
The preceding result will be used to prove the following.

THEOREM 2. Let the nonnegative and symmetric linear operator M from the

vector space E into its dual E* be given. Let E' denote the dual of the topological
vector space E with the seminorm {#x, x»/?; E' is a Hilbert space with norm

If1e = sup {I<f,x)l:x€ E,{Mx,x) < 1}.
For each t [0, T] let /'(t):E — E* be a (possibly nonlinear) function, and define
D(t) = {xe E:N'(t,x)€E'}. Assume the following: for each t, A'(t) is D(t)-
monotone and the range of M + N(t) contains E'; M(D(t)) is independent of t;
and there is a monotone increasing function L:[0, c0) — [0, c0) such that

(A, w) — A, Wlg =t — TLKAWw, WA + |4, Wlg),
t,t=0, weD().
Then, for each uy € D(0), there exists a solution u of (1.1) with Mu(0) = Mu,.
Proof. From Proposition 1 it follows that we need only to verify that the
relations 2/(t) constructed in § 2 satisfy the conditions listed above. Proposition 2

shows that each /() is accretive, and .#(D(t)) being constant implies that the
domain g(D(t)) of </(t) is constant. Since g*.#, maps W onto E', the identity

(3.3) (M + AN W)(X) = g* o Moo (I + A1) q(x), x€E,

(3.2
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shows that I + A2/(t) maps q(D(t)) onto W if (and only if) # + AA"(t) maps D(t)
onto E'. Thus, we need only to verify the estimate (3.1).

Before proceeding to the verification of (3.1), we obtain some identities and
estimates. First, we recall g*.#,, is an isomorphism of W onto E’, and

(3.4) lg*Mowlle = IWllw, weW.
Also, we have from (2.1) and (2.3),

(3.5) | Mx|| g = {Mx,x)'?, xeE.
From (2.3), (2.4) and (3.3) follow the identities

(3.6) (g = (q*Mo) "' N (D),

(3.7 I + Ast(t) = (q*Mo) ™ q*(Mo + AN(2)).

This last result with the properties of relations mentioned in §2 (e.g., goq~ !
= Igg) gives us

Jy0) = [a*( Mo + AN)] ™ ' q* M,
(3.8) = q(M + IN () 'q* M,
= (q* M) MM + AN ()™ (g* Mo).

This shows that (4 + AA(t))"! is a function. Thus, if x,;, x, € D(t) and
(M ~+ AN ()X, = (M + AN(t))x,, then M x, = Mx,. Furthermore, this shows
N()x, = N ({)x,, 50 N () (M + AN(t)"! also is a function on E'. From (3.8)
we now obtain

(3.9 ATHI = Jy(0) = (q* o)™ N (W) (M + AN ()™ N g* Mo).
Since (M + AN (t))"! is a function, we have
(3.10) MM A+ AN @) N M+ AN ()x = Mx, x € D(t).
Also, # + AN () is a function and so follows
(3.11) (M A+ AN O)NM + AN @) =I5
We recall that each J,(t) is a contraction on W, i.e.,

10wy — Li@wallw < Ilwy — wallw, wy, W e W,

and this implies through (3.4) and (3.8),
MM+ AN W) xy — MM A AN )Xol S Xy = Xales
Xy, X, €E.

(3.12)

That is, #(M + AN ()" is a contraction on E'. Also, (3.6) shows that /(t)q
is a function and

(3.13) lL(@Og)w = 1A Oxllg,  xeD(),

and the identity [10]

IATHT = Jy@Ow lw < inf {Ilyllw:[w,yle L)},  weq(D),



32 R. E. SHOWALTER

together with w = ¢(x) and (3.9) gives
I &AM + AN O) x| < A Ox|p,  xeD),
so we have the estimate
(3.14) |\ AN W) M + AN (@) M x| g £ inf {|A @Oyl :q(x —y) =0}, xeD().

After this lengthy preparation, we are ready to verify (3.1) and thus complete
the proof of Theorem 2. Let ¢, t1€[0,T],0 < A = 1, and x€ E. From (3.4) and
(3.8) we have

19:0)a(x) — LX) |lw = | M (M + AN @) M x — MM+ IN(O) " MX| g
Using (3.10), we have this quantity given by
| MM+ AN () WM+ AN Q)M+ IN ()l x — MM A+ AN () X5

Let we (M4 + AN (1))"*#(x). Then from (3.12) it follows that the above is
bounded by

1A+ AN @)(W) — Mx| g
By (3.11), this is equal to
(M + AN (@YW — (M + AN Q)M + AN ()" M x| g
= (M + AN ()W — (M + AN (O)W| g
= AN, W) — A (T, W)
From our hypothesis (3.2), the estimate (3.14), and (3.5) we now obtain
19:(0)q(x) — J6)a()lw < Alt — <|L(|.Aw]E)
(L + N EM A+ AN (@) X )
< e — <L AM + 2N @) Ax]E)
(1 + inf {| A (@)l p:q(x — y) = 0})

if g(x) € q(D). In order to estimate the term involving L in the above, we pick x,
with g(x,) € g¢(D) and then use (3.10) and (3.12) to obtain

MM A IN @) Mx — Mxo| g
= | MM + AN @) M — MM A AN @) M+ AN ()Xo &
S ldtx — (M + AN (@)xoll e -
From (3.2) it follows that
Kr =sup {[A4(t, xo)llp:0 S t £ T} + 2| Mxo]p < 0,
and so we have
|l A(M+ AN @) Mlx|p < | Mx|p + Kr,  q(x)eqD), 0<Ais 1.

This estimate together with (3.13) and (3.5) show that (3.15) implies (3.1) with L
replaced by the monotone increasing function

L9 =L+ KpY), ¢zo0.

(3.15)
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Remark 3. If each «/(¢) is a function, then Theorem 2 follows from T. Kato’s
result [16]. This will be the case in many of the applications below.

4. Boundary value problems. We shall describe realizations of the abstract
evolution equation (1.1) as initial and boundary value problems for some partial
differential equations of mixed elliptic-parabolic-Sobolev type. Our intent is to
indicate a variety of such problems to which our results imply existence or unique-
ness of solutions, so we do not attempt to attain technically best results in any
sense. In particular, we shall limit consideration here to autonomous equations
with spatial derivatives of at most second order. After introducing the Banach
spaces which we shall use, we construct a quasilinear elliptic partial differential
operator following the technique of F. Browder [5], [7]. Then we deduce from
the appropriate surjectivity results of [5], [7] the information necessary to apply
Theorem 2 of §3. We illustrate the application of our resulting Theorem 3 to
boundary value problems through the methods of J.-L. Lions [20], [21], [23].

Let G be a bounded open set in Euclidean space R" with G locally on one
side of its smooth boundary 0G. The space of (equivalence classes of) functions
on G with Lebesgue summable pth powers is denoted by LP(G), and W?(G) is
the Sobolev space of those ¢ € L?(G) for which each of the (distribution) partial
derivatives D;¢ belongs to LP(G), 1 < j < n. Letting D, be the identity on L?(G),
we can express the norm on WP(G) by

n 1/p
16l = [ & (D1 "

There is a continuous and linear trace map y: W?(G) — L?(0G) with dense range,
and it coincides with “restriction to G” on smooth functions on G. (When it is
appropriate to mention the variable s € dG, we shall suppress the trace map by
writing, e.g., ¢(s) = (y¢p)(s) for ¢ € WP(G).) Since 6G is smooth, there is a unit
(outward) normal n(s) = [n(s), - - - , n,(s)] at each se€ dG for which we have

@.1) [ Do~ [ somas.  15isn

for functions ¢ € W(G).

Let V be a Banach space continuously embedded in W¥?(G) and containing
the space Cg(G) of infinitely differentiable functions with compact support in G.
Suppose we are given a family of functions N;:G x R"*' - R, 0 < j < n, for
which we assume the following:

Each N/(x, y) is measurable in x for fixed ye R"*!, continuous in y for fixed
x € G, and there are a C > 0 and g € LYG) with ¢ = p/(p — 1) and p > 2, such that

42 INYISC Y Inlf~! +8(x), xeG, yeR"™!, 0<jsn,
k=0

(4'3) z(Nj(xay)_Nj(xaz))(yj——zj)goa y,ZGR"H, XGG,
j=0

and there are a ¢ > 0 and h e L%G) such that

(44) S Ny + hx) Z P, yeR™!, xeG.

Jj=0
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Letting D¢ = {D;¢:0 < j < n} for ¢ € WP(G), we find that each N;(x, Dé(x))
belongs to LYG), so we can define A" :V — V' by

4.35) AN P> = i . N (x, D(x))Dy(x) dx, o, yeV.
j=0
Note that the restriction of A4 ¢ to CF(G) is the distribution on G given by
@6) N@) = — Y (DN{-,D$) + Nof-. D).
j=1

This defines our quasilinear elliptic partial differential operator N:V — 2'(G),
the space of distributions on G. From (4.1) we obtain the (formal) Green’s identity

04(s)
ON

47 (N — No Yy = LG W) ds, VeV,

whenever A47(¢), and hence N(¢), belong to LYG), and we have let

5;/’12[8) j; Nj(s, Dp(s)nj(s),  s€0G,

4.8)

denote the conormal derivative.

(Note that L%G) is simultaneously identified by duality with subsets of V'
and 2'(G).)

One can use (4.2) and dominated convergence to show that .4 is hemi-
continuous, i.e., continuous from line segments in V to V' with the weak topology.
Also, (4.3) shows that A" is V-monotone while (4.4) implies

ND,d) 2 cllPlwe) — |hlrall @l  dEV,

so A is coercive: (NP, p)> — o0 as ||P|ly» = c0. These three properties are
sufficient to make A" surjective [5], [7].

Suppose we are given a continuous, linear and monotone 4 :V — V'. Then
A + A is hemicontinuous, coercive and monotone, hence maps onto V'. Assume
also ./ is symmetric and let E denote the space V with the seminorm induced by
. Then the injection ¥V — E is continuous, and hence E' = V', so the range of
M + A includes E'. From Theorems 1 and 2 we obtain the following result.

THEOREM 3. Let V be a reflexive Banach space and M :V — V' a symmetric,
continuous, linear and monotone operator. Let A :V — V' be hemicontinuous,
monotone and coercive, and uy € V with A ug € E', where E is the space V with the
seminorm induced by M. Then there exists an absolutely continuous u:[0, T) — E,
such that A'u(t)e E' forall te[0, T],

d
a(ﬂu(t)) + Nu(t) =0, ae te[0,t],
and Mw(0) — ug) = 0. The solution is unique if M + N is strictly monotone.

Remark 4. By our choice of V, we may obtain stable boundary conditions
from the inclusions u(t)e V, t€[0, T], or variational boundary conditions from
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the identity

< dit(,/iz’u(t)) + Au(t), v> = L { %(Jlu(t)) + N u(t)} v(x)dx,

veV, tel0,T].

We shall illustrate the application of Theorem 3 to boundary value prob-
lems by four examples. In the first two examples, we choose V = W§(G), the
space of those ¢ € W?(G) for which y(¢) = 0.

Example 1. Degenerate elliptic-parabolic equations. Let mge L'(G) with
mo(x) = 0,ae. xe G, r = p/(p — 2), and define

MY sf Mo dx, P UEV.
G

4.9)

Let uge V= W5(G) be given with N(uy) = mi/?g for some ge L?(G). Then
Theorem 3 asserts the existence of a solution of the equation

(4.10) 2 motoute, 0) + N, 0) =0, x€G, 150,

with u(s,t) = 0 for s€dG and t = 0, and u(x,0) = uy(x) for all xe G with
meo(x) > 0. Such problems arise, e.g., in classical models of heat propagation, and
mg(x) then denotes a variable specific heat capacity of the material.

Example 2. Degenerate parabolic-Sobolev equations. Let my be as above, but
define

sy =[ {owem L opow).  ower

Since (M ¢, d> = (|p].2)?, we have L*(G) = E’, and so Theorem 3 shows that
for each uy, € W3(G) with N(u,) € L%(G), there is a unique solution of the equation

-:—t{u(x, t) — i Dj(mo(x)Dju(x, t))} + N(u(x,t)) =0, xeaq,
j=1

with u(s, t) = Ofor s € G, t € [0, T] and u(x, 0) = uy(x) for all x € G. Such equations
have been used to describe diffusion processes wherein m,, is a material constant
with the dimensions of viscosity [11], [26]. Also see [8], [18], [25].

Many variations on the preceding examples are immediate. For example,
one can use Sobolev imbedding results to get a smaller choice of r in the first
example, and other choices of V could replace the Dirichlet boundary condition
(in part) by a condition on the conormal derivative (4.8). Such is the case in our
next two examples which consider equation (4.10) with evolutionary boundary
conditions.

Example 3. Parabolic boundary conditions. In order to simplify some com-
putations below, assume that G intersects the hyperplane R"~! x {0} in a set
with relative interior S. Let ae L*(S) be given with a(s) = 0, se S, and define
the space

V={peWPG):¢(s)=0if s€0G ~ S, a'’*(s)D;p(s)e L*(S)for 1 < j < n — 1}
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with the norm

n—1 1/2
1y = I $lwe + ( [a’T ds) .

Let mq be given as in Example 1 and n, € L'(S) with ny(s) = 0, a.e. se S. Define

(M = L Mo + fs no(s)p(sH(s) ds,

and

n—1
NP, ) = (45) + L a(s)( '21 Dﬂ&(s)D,-g/x(s)) ds.

For u, as in Example 1, Theorem 3 asserts the existence of a solution of equation
(4.10) which satisfies the initial conditions

mo(x)(u(x,0) — uo(x)) =0,  x€G,
no(s)(u(s, 0) — uo(s)) =0,  seSs.

Since for ¢ € V we have ¢(s) = 0 for se G ~ S we obtain from (4.7), (4.9) and
(4.1) (applied to S) the variational boundary condition

%(no(s)u(s, 1)) + aiN(u(s, t)) = ':21 Dj(a(s)Du(s, t)), seS, te[0,T].

Also, we have the stable condition u(s,t) = 0 for s€ G ~ S and t € [0, T]. Bound-
ary value problems of this form describe models of fluid flow wherein S is an
approximation of a narrow fracture characterized by a very high permeability.
Thus, most of the flow in S occurs in the tangential directions. See [6], [28] for
applications and references.

Example 4. The fourth boundary value problem. (This terminology is not ours,
but comes from [1].) Let V = {¢ € WP(G):y(¢) is constant on G} with the norm
of W?(G), and define A" by (4.5). Let m, be given as in Example 1 and define

MDYy = Lmo¢w+y<¢>-y<~/z>, byev.

Then from Theorem 3 it follows that for each u, € V, with N(up) = mi/?g for some
g € L*(G), there exists a solution of equation (4.10) which satisfies the boundary
conditions of the fourth kind

u(s,t) = f(t), se€dG, te[0, T,

0
£ + L ) e

ds =0,

as well as the initial conditions

mo(x)(u(x,0) — up(x)) =0,  x€G,

f(0) = ug(s), a constant.
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Such problems are used to describe, for example, heat conduction in a region G
which is submerged in a highly conductive material of finite mass, so the heat
flow from G affects the temperature f(¢) in the enclosing material. This problem
was introduced in [1], together with a problem of the fifth kind (to which our
results can be applied).

5. Two degenerate wave equations. We shall give results on existence and
uniqueness of two second order evolution equations with (possibly degenerate)
operator coefficients on the time derivatives and then indicate some applications.
As before, we illustrate the variety of potential applications through the simplest
examples.

THEOREM 4. Let A and B be symmetric and continuous linear operators from a
reflexive Banach space V into its dual V', where B is monotone and A is coercive:
there is a k > 0 such that

CAp, ¢ Z kldly,  deV.

Denote by V, the space V with the seminorm induced by B and let F:V — V' be a
(possibly nonlinear) monotone and hemicontinuous function. Then, for each pair
u,, u,€V with Au, + F(u,)€ V,, there exists a unique absolutely continuous
u:[0, T] — V with Bu':[0, T] — V, absolutely continuous, u(0) = u,, Bu'(0) = Bu,,

(5.1 F'(t)) + Au(t)e V;, ae. tel0,T],
and
(5.2) (Bu'(t)) + F(u'(t)) + Au(t) =0, a.e.te[0,T].

Proof. Define a pair of operators from the product space E = V x V into
E* = V* x V* by

M([D1,$;]) = [A9,, Bd,],
N (b1, $:)) = [—Ad,, Ay + F(¢,)].

The symmetric and nonnegative .# gives a seminorm on E for which the dual is
E =V’ x V;. The operator A:V — V' is an isomorphism, so u is a solution of
the Cauchy problem for (5.2) if and only if [u,u’] is a solution of the Cauchy
problem for (1.1) with the operators above. Uniqueness follows from Remark 2
of § 2, and existence will follow from Theorem 2 if we can verify that the range of
M + A contains E'. Since A is surjective, an easy exercise shows we need only
to verify that A + B + F maps onto V. This follows by [5], [7],since A + B + F
is hemicontinuous, monotone and coercive.

The Cauchy problem solved by Theorem 4 appears to ask for too much in
two directions. First, our previous results suggest we should specify (essentially)
F(u(0)) = F(u,) instead of u(0) = u,, since, e.g., we may take B = 0 in (5.2). The
second point to be noticed in the Cauchy problem associated with Theorem 4 is
the inclusion (5.1). In applications, (5.1) can actually imply that a differential
equation is satisfied, so this Cauchy problem possibly contains a pair of differ-
ential equations.

In our next and final result, we obtain a considerably weaker solution of a
single equation similar to (5.2) subject to initial conditions with data that need
not satisfy the compatibility condition, Au; + F(u,) e V3.



38 R. E. SHOWALTER

THEOREM 5. Let the operators A, B and F and spaces V and V), be given as in
Theorem 4. Then for each pair u,, u, € V, there exists a unique summable function
w:[0, T] - V for which Bw:[0, T] — V}, is absolutely continuous,

(Bw) + F(w):[0, T] > V'

is (equal a.e. to a function which is) absolutely continuous,

(BW)(0) = Bug,  ((BW) + F(w))(0) = Au,,
and
(5.3 ((Bw) + Fw)) + Aw=0

ae.in[0, T].

Proof. The Cauchy problem above for (5.3) is equivalent to that of Theorem
4 as well as to that of (1.1) with the operators given in the proof of Theorem 4.
In short, if u is the solution of (5.2), then w = v’ is the solution of (5.3) and [u, w)
is the solution of (1.1).

We continue our listing of examples with references to their applications and
history.

Example 5. Degenerate wave-parabolic-Sobolev-elliptic equations. Take

V= WG),

the indicated Sobolev space introduced in § 4, and define the coercive form

s ¥y = [ 3 DDy, duweV.

Let m;e L*(G) with mj(x) = 0, a.e. xe G, for 0 < j < n, and define the operator
B by

B9y = [ 3 mDADYIdx,  deV.

Finally, let F = A" be given by (4.5), where we assume (4.2), (4.3)and 1 < p < 2.
(This last requirement is quite restrictive but is relevant here since it gives the
continuous inclusions L*(G) - L?(G) and LYG) — L?*(G). Then, Theorem 5 shows
there is a unique generalized solution w of the equation

n

afo i
54) Ei{a—t(mow(x, t) — Z Dm;(x)D;w(x, t)) + N(w)} - ,Z'x Diw(x,t) =0,

xeG, te[0,T],
where N is given by (4.6), and w satisfies the boundary conditions
w(s,t) =0, sedG, te[0,T],
and the initial conditions
Bw(-,0) —up) =0,  (BW) + NW)=o = wy,

where up € V and w, € V' are given.
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Equation (5.4) includes the classical wave equation as well as the equation
0[ow
== — AAw] — Aw = 0,
6t( ot )

which arises in classical hydrodynamics and the theory of elasticity [15]. Appli-
cations in which B is a homogeneous differential operator of order two include
the modeling of infinitesimal waves [22] by the equation

2 2 3
?—7( Y Diw(x,0)| + Y Diwx,t)=0
o j=1

and the Sobolev equation

213
pr j; Df—w(x,t)) + Diw(x,t) =0,
which describes the motion of a fluid in a rotating vessel [27], [29]. (An ele-
mentary change of variables will bring this last equation to the form of (5.4).)
Example 6. A gas diffusion equation. Taking the special case of (5.4) with

B = 0, we can solve problems for the equation

a n
(5.5) —=Nw) - Y Diw=0,

ot =1

in which N is given by (4.6). Setting N ;=0forl <j<nand
No(x, s) = mo(x)|s|?~* sgn (s),

where my € L*(G), mo(x) 2 0,and 1 < p < 2 gives us the degenerate and nonlinear
0
2 Mo(x)wi? “lsgn(w)) — Aw = 0.

The change of variable u = |w|[?~! sgn (w) puts this in the form [3], [4]

a n
(5.6) ¢ MoXulx, 1)) — (g — 1) 2 Dj(jul*"2Dju(x, 1)) = 0,

J
withg—2=02 —p)p —1)=0.
Note that (5.6) is not of the form suitable for the results of § 3, since the non-
linear part is not monotone, but it can be rewritten as

2047 o) — =2, = 0,

where 4 is given in Example 5. We also note that (5.5) includes one of the Stefan
free-boundary problems [4], [17], and the nonlinear term can contain spatial
derivatives.

Our final example illustrates an application of both Theorem 4 and Theorem
5 to a situation in which B acts only on the boundary 8G and F is multiplication
by a nonnegative function on G. Other combinations are possible and useful, but
the following is typical of higher order evolutionary boundary conditions.
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Example 7. Second order boundary conditions. Let S = dG and define V to be

the subspace of W?(G) consisting of those functions which vanish on G ~ S.
Let the operator A and the function m, be given as in Example 5, and define

(Fop, ¥y = L Mo (x) dx.,

(B, ¥y = f oW ds, @ eV

Let woe V, w, € LXG) and w, € L%(S). Since A is an isomorphism, there is a
u; € V with

{Auy,v) = L wi(x)v(x) dx + L w,(s)u(s) ds.

From Theorem 5 it follows that there is a unique w:[0, T] — V which is a general-
ized solution of the partial differential equation

0
(5.7 a(mo(x)w(x,t)) — Aw(x,t) =0, xeG,t >0,
subject to the boundary conditions
w(s,t) =0, sedG~S, t>0,
*w(s,t)  Ow(s,t)
P n =0, seSs, t>0,

and the initial conditions

w(s, 0) = wo(s), seS,

ow(s, 0)
(at = WZ(S)a SE€ Sa
w(x, 0) = wy(x), where mgy(x) > 0.

Since V, = L*(S), the pair u,, u, € V satisfies Au; + Fu, e V} if and only if

—Au; + mou, =0 inG,

and

ouy, .,

n € L*(S).
These conditions imply a regularity result for u; depending on the smoothness
of my. If u; and u, are so given, and if w denotes the solution of the Cauchy prob-
lem of Theorem 4, then (5.1) implies that w is regular (depending on m,) and
satisfies (5.7) and the null boundary condition on 0G ~ S. The equation (5.2)
implies the second boundary condition above, and the initial conditions in
Theorem 4 assert that w satisfies w(x, 0) = u,(x), x € G, and dw(s, 0)/0t = u,(s),
s€ S. The data in this case are more restricted and the conditions stronger than
above, but we obtain a correspondingly stronger solution. Problems of the above
type (with mg(x) = 0) originate from the equations of water waves or gravity
waves. See [13], [22] for additional results and references.
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AN INVESTIGATION OF STABILITY OF MOTION UNDER
CONSTANTLY ACTING DISTURBANCES*

J. R. WEISSt anp E. Y. YU}

Abstract. This article discusses the total stability, or stability under constantly acting distur-
bances, of a system of nonlinear ordinary differential equations. Total stability differs significantly
from Lyapunov stability in that the former allows for a disturbance in the equations of motion, as
well as a disturbance in the initial condition. The purpose of this study is to extend the mathematical
theory for total stability into a form which can be used directly in applications. To do this, a specific
Lyapunov function is constructed. Then, using this Lyapunov function in a new total stability theorem
we obtain explicit expressions for maximum magnitudes of the initial condition and the disturbances
in the equations of motion. These maximum magnitudes are expressed in terms of the prescribed
bound of the motion from the equilibrium, and in terms of the parameters of the physical system
which the differential equations describe.

1. Introduction. Consider a set of first order ordinary differential equations
(1 x(t) = f(x,1),

where x is an n-vector and the dot denotes the total derivative with respect to
time, t. The vector function f(x,t) is zero at the equilibrium x(t) = 0, ie.,
f(0,t) = 0, continuous and in class E, i.e., it assures the existence of a unique
solution to (1) for all time. Let || - | be the norm of a vector. The equilibrium of
(1) is said to be Lyapunov stable [1], [4] if there exists for each ¢ > 0 a function
d4(&,to) > 0 such that || x(to)|| < J, implies ||x(t)| < & for t = tq. If (1) is not the
precise mathematical model of the physical system that it is supposed to describe,
or if there exist disturbances acting on the physical system, then an additional
error term or perturbing force term would be added to (1), namely,

(2) x(t) = f(x,t) + glx, 1),

where the perturbation function g(x, t) is assumed to be continuous and such
that the right-hand side of (2) is in class E. In general, it is not required that
2(0,t) = 0, so the equilibrium of (1) may not be a solution to (2). To investigate
the effect of the perturbation term it is necessary to extend the concept of Lyapunov
stability to that of stability under constantly acting disturbances (or total
stability) as first introduced by Dubosin [2]. The equilibrium of (1) is said to be
totally stable if for every ¢ > 0 there exist two positive numbers J,(¢) and d,(¢)
such that if | x(to)| < &, and [|g(x, t)|| < d,in {(x,t)|[ x| < &t = to} then [[x(t)|| <e
for all t = t,, where x(t) is the solution to (2). A major theorem on total stability
was given by Malkin [6], which is stated here: If there exists a function v(x, t)
such that in some bounded domain including x = 0 it is positive definite, has its
first partial derivatives with respect to the components of x bounded, and has its

* Received by the editors February 19, 1974.
+ Department of Mathematics, Roosevelt University, Chicago, Illinois 60605.
1 Bell Telephone Laboratories, Columbus, Ohio, 93213.
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total time derivative for (1) negative definite, then the equilibrium of (1) is totally
stable. The proof of Malkin’s theorem may be found in [3] and [6]. Nevertheless,
Malkin’s theorem cannot be put into use unless the expressions of the upper
bounds of d,(¢) and d,(¢) are found for a given ¢ > 0. But these bounds of 4, and
0, cannot be determined unless a Lyapunov function is constructed, which has
its total time derivative negative definite along a solution of (1). Recent work by
Yoshizawa [7] also establishes the total stability of (1). However, his work does
not include the construction of a Lyapunov function for the actual calculations
of 3,(¢) and d,(¢). It is therefore seen that in order to apply the theory of total
stability it is necessary to overcome two essential difficulties. The first is to find
a Lyapunov function for (1). The second is to incorporate into the actual physical
system an energy dissipation mechanism such that the total time derivative of
the Lyapunov function following the motion of the physical system, as represented
by the solution of (1), is negative definite. Such a damping scheme should be
realistic, as the motion of the physical system and its stability behavior depend on
the specific damping scheme. This is a key point often overlooked in stability studies.

The Hamiltonian of the physical system, which is sometimes used as a
Lyapunov function in stability analysis, cannot be used here as a Lyapunov
function in total stability. This is because the total time derivative of the Hamil-
tonian of a nonconservative system incorporated with damping can be shown to
be only nonpositive but not negative definite. Therefore, in the investigation of
total stability the class of Lyapunov functions is more restrictive than in stability
analysis. Due to these difficulties, little work has been done on obtaining explicit
expressions for d,(¢) and d,(¢) in terms of the parameters of the physical system
described by (1).

In this paper we first construct a Lyapunov function for (1) following a
method suggested in [4], and then develop some lemmas and a theorem for the
total stability of (1) which explicitly yields the desired bounds. In the work
presented here the use of a particular Lyapunov function permits the calculation
of upper bounds of 4,(¢) and J,(¢) in terms of the physical parameters of the
system. The class of functions f(x, t) in (1) considered in this paper is such that
f(x,t) can be decomposed into linear and nonlinear parts such that

3) x(t) = f(x, 1) = Ax(t) + h(x,1).
Here, the n x n constant matrix A is diagonalizable and its eigenvalues have
negative real parts, i.e, Re(4,) <0,i=1,2,---, n, (due to the damping mech-
anism provided in the physical system), and A(x, t) = o(| x|), or
h
LEXTN
Ixli=o  [lx|

The eigenvector of A corresponding to /; shall be denoted by ¢;, ie., Ap; = 1,¢;.

2. Definitions. In order for this paper to be self-contained, a few necessary
definitions shall be stated here which may be found in some books on stability
(as, e.g., [3])-

DEFINITION 2.1. A continuous real function, w(r), is in class K if it is defined
on 0 £r <R for some R > 0 such that w(0) = 0 and w(r) increases strictly
monotonically with r.
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DEFINITION 2.2. A continuous real function, v(x, t), is decrescent if there exists
a function ¥(r) in class K such that v(x, t) £ ¥(||x||) for ||x| < R and t = ¢, for
some tg.

DEFINITION 2.3. A continuous real function, v(x, t), is positive (or negative)
definite if there exists a function ¢(r) (or x(r)) in class K such that v(x, t) = ¢(||x])
(or £ —x(|Ix]) for ||x|| < Rand t = t, for some ¢,.

DErFINITION 2.4. A function which is positive definite, decrescent and which
has its total time derivative negative definite along any solution of (1) is a Lyapunov
function for (1).

Unless otherwise stated it shall be assumed that all n-vectors are written in
the basis {e;}7-,, where each element of the n-vector e; is zero except for the ith,
which is unity.

If A is an n x n matrix, (Ax, x) shall represent (4x)TX, where the superscript
T denotes the transpose and the bar denotes the complex conjugate.

Denote by S the matrix which transforms the basis vector e; onto the eigen-
vector ¢;,1e,Se; = ¢, i=1,2,---,n.

3. The construction of a Lyapunov function. In [4] a technique is presented
which assures the existence of a Lyapunov function for an equation of the form
x = Ax if A is a matrix whose eigenvalues have negative real parts. However, it
is not possible in general to actually obtain such a Lyapunov function. If 4 is
diagonalizable then the method of [4] does explicitly yield a Lyapunov function,
as will be shown later. Such a Lyapunov function will be used in a revised form
of Malkin’s original theorem on total stability to obtain expressions for bounds
of 4, and §,. :

It is known that if the n x n constant matrix A4 in (3) is diagonalizable then
its eigenvectors form a basis for n-space. In this new basis, D, the diagonal form
of A has A, as the ith diagonal element. Now, rewrite the linearized part of (3) in
the basis {¢;}7-,, i.€.,

(4) x(t) = Dx(t).

Consider a diagonal matrix B, written also in the basis {¢;}"- ;, whose ith diagonal
element is —1/(2 Re 4;).
LEMMA 3.1. In the basis {¢;}7-, v(x,t) = (Bx, x) is positive definite, i.e.,

llx|1?
> — A
g 60 2 Bl where dl1xl) = 53— Be
and is decrescent, i.e.,
2
(6) o, 1) < W(Ix]).  where W(|x]) = ~— )

~ 2min|Re A}’

Proof. The proof is trivial due to the definition of the matrix B.

It is known [1] that the existence of the function v(x, t) given by Lemma 3.1
establishes the asymptotic stability of the equilibrium of (4) and hence of (1). If
one wishes to calculate the bound for the norm of the initial condition so that
the norm of the solution to (1) is less than ¢, one could use this Lyapunov function.
Here, we are interested in the more realistic problem of total stability, and must
do more to obtain bounds for d, and J,.
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LeMMA 3.2. The function v(x, t) given in Lemma 3.1 has its total time derivative
negative definite along solutions of (1) and (3), expressed in the basis {¢;}}_,.
Proof. Choose a constant o between 0 and 1. Select a number 6 such that in
the basis {¢;}7-,,
llh(x, o)l

(7 2||B| x| < a whenever | x| < 9.

Such a 6 > 0 exists since h(x,t) = o(||x||). The total time derivative of v(x, t)
along a solution of (1) or (3) is (here, * denotes adjoint)

U,(x,t) = (D*B + BD)x, x) + (Bh(x, t), x) + (Bx, h(x, t))
= —|x|®> + 2Re (Bh(x, t), x).
It follows that

h
®) 610, 0) [—1 28! (”’;’"t)"} 112,

Consequently, based on (7), v,(x, t) is negative definite, i.e.,
© 0y(x,8) £ —x(lxl), where x(lx|]) = (1 — ®)l|x||?

in a bounded domain | x|| £ 6. This completes the proof.

THEOREM 3.1. Let A in (3) have the properties specified in (3). Then the equi-
librium of (1) is totally stable, with upper bounds for x(t,) and the perturbation
g(x, t) given, for any preassigned positive constant &, by

[mi‘n IRe A, ]”2
<egl +1—
(10) o =¢ max [Re ;|1 ’
_ min |Re 4|
(1) 5, < “)[ i ]
2||Bll

max [Re 4|

Proof. Express (1) and (2) in the basis {¢;}7_,. With ¢ determined as in the
proof of Lemma 3.2, choose ¢ such that 0 < ¢ £ §. Take the Lyapunov function
v(x, t) as established in Lemma 3.1. Let b = min v(x, t) on the surface ||x| = e
Since v(x, t) is positive definite as in (5), b = ¢(e) = &*/(2 max; |Re 4;). Choose a
number ! between 0 and ¢(¢). Consider a solution x(t) to (2) such that v(x,t) = [
at some time, t*. Since v(x, t) is descrescent, if follows from (6) that

lx]? = 2l(mjn Re iil)
at x(t*). Then, (9) implies that
(12) Oy(x,t%) < =2(1 — a)l(mjn Re iil) < 0.

Now, the total time derivative of v(x, t) along a solution of (2) is

U,(x, t) = 0,(x,t) + 2 Re (Bx, g(x, 1)).
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So at t* this means

Uy(x, t*) = —2(1 — a)l(min IRe lil) + 2|BI 1x[l llg(x, £)] -

By virtue of (5), ||x(t*)] £ [2] max; |Re 4,]]"/2, so that

1/2

Uy(x, %) = —2(1 - OC)l(mi.n Re iil) + 2Bl llg(x, )| [21(111?17( IRe lil)]

If, in the basis {¢;}7-,, there exists a positive number J, such that ||g(x, t)| < 9,
at x(t*), then

1/2
(13) Uy(x, %) < =2l(1 — a)(min IRe Ail) + 2||B||52|:2l max |Re A,-|:| .

Since [ is an arbitrary number in the interval between 0 and ¢(¢), it can be taken
arbitrarily close to ¢(g). Hence, v,(x,t*) <0 if |g(x,t*)|| < §,, where 5, can
easily be shown to have the upper bound given in (11).

Now, pick a positive number J, less than or equal to ¢ such that in the basis
{i}i= 1, v(x(ty), to) < | whenever ||x(to)] < J,. By virtue of (6) and the fact that
[ has been taken arbitrarily close to ¢(¢), the maximum possible upper bound,
8, for ||x(to)| is such that W(5,) = ¢(e). That is, 5, = ¥~ '[¢(e)] which is the
bound given in (10).

Let x(t) be a solution to (2) under an initial condition || x(t,)| < J,. Suppose
that | x(t)] reaches the value ¢ at some time t; > to,. Then v(x,t,) = ¢(e) > |,
indicating that v(x, t) has increased and passed through the point v(x, ) = I. But
this is impossible, since at any point x(t*) for which v(x, t*) = [ it has been shown
that ,(x, t*) < 0. Therefore, if ||x(to)|| < 8, and ||g(x, t)|| < J, in {(x,t)|[|x]| < &,
t = to}, then |x(¢)] <e for all t = t,. This proves the total stability of the
equilibrium of (1).

COROLLARY 3.1. For any &, and &, satisfying (10) and (11) respectively, for
a given ¢ > 0, the total stability defined in the original basis, {e;}i ,, takes the form

IxGo)l < 8 = 3,/1S ™|
and
lgle, Ol < 85 = ,/IISTHI in {Ce, OllIx]| S &t Z to}
imply
x| <& =¢||S| forallt =t,.

Proof. The proof is trivial, as x in the basis {¢;}]-, is now replaced by
S~ !x with x in the basis {e;}7_ .

The corollary together with (10) and (11) indicate that in order to assure
Ix(®)|l < ¢ for all t = ¢, for some given & > 0, it is sufficient to have || x(t,)|| < &)
and [g(x, t)|| < 95 in {(x, )|l x| < ¢, t = to}, where all vectors are written in the
original basis, {e;}{-, and 0] and J} satisfy the inequalities

g min |RC i,l 1/2
ISIIS™ || Lmax |Re 4,

¢(1 — a) [mjn IRe iil]
’ S i )
2= 2UBLISIIS ™! max [Re 4

(14)
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In (7) a positive number § was defined such that whenever ¢ < J, the theorem
is established. There is no reason for requiring § to be greater than & Thus (7)
becomes

h(x,t
JI(—)“ < o whenever ||x|]| < e.

el —

It is seen from (14) that the number 6, may be made large by making o small.
Hence, the optimal « is the smallest value allowed by (15).

(15) 2| B

4. Concluding remarks. The foregoing result on the total stability of a non-
linear differential equation may be applied to many physical systems. While
there are theorems in the literature which establish that such a system is totally
stable [3], [6], [7], those works cannot be directly used. This is because these
theorems neither include expressions for bounds of ¢; and J} in terms of param-
eters of the physical system, nor indicate how to construct a Lyapunov function
so as to obtain such expressions. In this work, however, we have converted these
theorems to a form which can be used in applications and have obtained explicit
expressions for bounds of 7 and 95 .

As stated earlier, the physical system must be incorporated with a damping
mechanism such that the eigenvalues of the constant matrix A in (3) have negative
real parts. It is not difficult to devise such a damping scheme in practice. For such
a given physical system, of which (1) or (3) is the mathematical model, the eigen-
values 4; of the matrix A, the matrices B and S, and the number « are known
functions of the physical parameters. If a bound, ¢/, for the deviation of the motion
from the equilibrium is chosen, then one can compute from (14) the upper bounds
for the norms of the initial condition and the constantly acting disturbing force
in order for || x| not to exceed ¢ at any time. On the other hand, if the magnitude
of the perturbing force or the estimate of the error term is known, then (14) will
allow one either to determine a bound of the motion for a given physical system
or to design the physical system for a desired bound of the motion from the
equilibrium.
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ON THE LAPLACE TRANSFORM FOR DISTRIBUTIONS*

DOUGLAS B. PRICE%

Abstract. A new characterization of the Laplace transform for Schwartz distributions is developed,
using sequences of linear transformations on the space of distributions. The standard theorems on
analyticity, uniqueness and invertibility of the transform are proved, using the new characterization
as the definition of the Laplace transform. It is shown that this sequential definition is equivalent to
Schwartz’s extension of the ordinary Laplace transform to distributions which he obtained from the
Fourier transform.

1. Introduction. The Laplace transform has been an important tool of
applied mathematicians and engineers for many years. The properties of the
ordinary Laplace transform have been well known at least since Widder published
his book, The Laplace Transform [12], in 1941. L. Schwartz [11] extended the
Laplace transform to distributions in 1952, and there have been many other
extensions since then; e.g., Zemanian [13], [14], [15] and Ishihara [9]. In this
paper we give another characterization of the Laplace transform for distributions
and use it to prove the standard theorems on analyticity, uniqueness and in-
vertibility of the transform.

The work which led to this study was motivated by a paper of E. Gesztelyi
on linear operator transformations [7]. Two classes of transformations he con-
siders are the dilatations U, and exponential shifts T2 which are defined for
ordinary functions f, complex numbers p and positive integers n by

U.f(1) = nf(n),
T2f(1) = e7"f(1).

Gesztelyi shows that whenever the sequence U,f converges (in the sense of
Mikusinski convergence [10]), the limit is necessarily a complex number. In
addition, he proves that if f is a function which has a Laplace transform at p,
then the sequence of functions {U,T ~?f (1)} converges (in the Mikusiriski sense)
as n — oo to the classical Laplace transform of f at p. He then defines the Laplace
transform of a Mikusinski operator x as the limit (whenever it exists in the sense
of Mikusinski convergence) of the sequence {U,T ?x}, and shows that this
definition generalizes the previous formulations of the Laplace transform for
Mikusinski operators of G. Doetsch [4] and V. A. Ditkin [2], [3]. Since the
dilatations U, and shifts T ~? may be defined on the space of Schwartz distributions,
we were led to consider whether there might be results analogous to Gesztelyi’s
in this different setting.
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Denote by 2(R") the space of all infinitely differentiable complex-valued
functions of the n-dimensional real variable t = (t,,t,,---, t,) with compact
support. If j = j,,j,, - - -, j, is @ multi-index, then by ¢¥(t) or ¢/¢(f) we mean

amd)(tl, Y tn)’
ot oti - - - otir

where |jl = j; +j, + -+ +j.. If {¢,} is a sequence in P(R"), then we say that
{¢,} converges to zero in Z(R") as k — oo if there is a fixed compact set K con-
taining the support of every ¢,; and for every multi-index j, {¢{’} converges to
zero uniformly on K as k — 0.

Denote by 2'(R") the space of all linear transformations f from 2(R") to the
complex field which are continuous in the sense that if {¢,} converges to zero in
2(R"), then the sequence of complex numbers {<f, ¢,>} converges to zero as
k — oco. Although there are several different ways to assign topologies to 2(R")
and arrive at the set 2'(R") of continuous linear functionals on 2(R"), we shall
not define a topology for Z(R") explicitly, since the notion of sequential con-
tinuity is sufficient for our needs. The elements of 2'(R") are the distributions
defined by L. Schwartz in [11]. In the sequel, when the dimension of the space
R" is understood, we shall write 2 and 2’ for 2(R") and 2'(R"). Following
Schwartz [11] and Zemanian [13], we associate a locally integrable function f(¢)
with the distribution f which assigns to each test function ¢ in 2 the value

Sy = N fOP(t) dt.

With this convention we have the result that for any infinitely differentiable
function y(¢),

S @), ¢(1)> = <f(0), YD)

Let #(R") (or &) denote the space of infinitely differentiable complex-valued
functions of t = (t,,t,, -, t,) which approach zero faster than any power of
1/]#| as || - oo0. Give & the locally convex topology defined by the family {q, ;}
of seminorms, where

qi j(¢) = max {|(1 + t>)*0’¢(1)| :t € R"}

for every positive integer k and multi-index j. The space & of weakly continuous
linear functionals on & consists of the tempered distributions, or distributions
of slow growth.

Let &(R") (or &) denote the space of all infinitely differentiable complex-
valued functions on R". For each compact set K and each multi-index j, define
the seminorm g ; by

gk j(¢) = max {|07p(1)| :1 € K}.

Equip & with the locally convex topology defined by the family {g ;} of semi-
norms, and let '(R") (or &’) denote the space of weakly continuous linear function-
als on &. Then & is the space of distributions of compact support. Standard results
in the theory of distributions tell us that 2 < & < &, that 2 is dense in both &
and & with their respective topologies, and that §' <« &' < 9"
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In § 2 we introduce the space £ of bounded infinitely differentiable functions
and its subset %, consisting of those functions in # which converge to zero along
with each derivative as |t{| » co. We characterize distributions in %, sometimes
called integrable distributions, as those which satisfy certain a priori bounds
when applied to test functions in &, then show that each distribution in % may
be extended to all of 2. This allows us to prove that if f is in %, then {U;f}
converges in &' as j — oo to {f, 1)6. Using this result, we show that the Laplace
transform of a distribution f can be defined by

1 . —p

(11) LU = 4G lim U2, 6,

where ¢ is a testing function in 2 such that ¢(0) # 0. Theorem 2.3 tells us that if
T~Pifand T~ P2fare both in &, then we may use definition (1.1) for all complex
numbers p with Re p, < Re p < Re p,. Thus we have all the machinery necessary
to show that definition (1.1) is at least as general as Schwartz’s definition of the
Laplace transform for distributions, and that the two are equal whenever f has a
Laplace transform in the Schwartz sense. This is done in § 4, after we have defined
the transform by (1.1) and used the new definition to prove the standard properties
of analyticity, invertibility and uniqueness of the Laplace transform.

In trying to determine the generality of the new definition of the Laplace
transform, we characterize (in Theorem 3.2) those distributions A that are limits
of sequences of the form {U ;f} as linear combinations of 6(t) and p.v. (1/t). This
characterization gives an example (p.v. (1/t)) of a distribution f which is not in

0» but for which the sequence {U;f} converges in 2.

The question of generality is finally answered by Theorem 3.4 which says that
if {U;f} converges, then f is in #’. Thus, our definition of £[ f](p) is valid only
if T72fis in &, and (1.1) can be no more general than Schwartz’s definition of
the transform. Hence the two definitions must be equivalent.

In § 5 we extend the results of §§ 3 and 4 to distributions in 2'(R"). The ex-
tensions are, for the most part, straightforward; and we prove only those which
require basically new methods in n dimensions. The Appendix contains the con-
struction of a partition of unity used several places in the text and a lemma used
in the proof of Theorem 2.2.

2. The space A,. Denote by #(R") (or, where R" is understood, by %) the
space of all complex-valued functions of an'n-dimensional real variable

t:(t17t27"'atn)

which possess continuous and bounded partial derivatives of all orders. For each
multi-index j, define the seminorm ¢; on # by

(2.1) q;(¢) = sup {|¢'¢(r)| :t € R"}

and equip # with the locally convex topology determined by the family of semi-
norms {g;}. (For convenience, hereafter, sup f(z) or sup, f(r) will denote
sup { f(1):te R"}.) A sequence {¢,} converges in % to a function ¢ with respect
to this topology if and only if each derived sequence {¢’¢,} converges uniformly
to di¢.
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It is easy to see that 9 = # < &. The subspace 2 is not dense in &, however,

for the constant function 1(f) is in & but cannot be uniformly approximated by
functions in 92, since for any ¢ in 2,

qold(t) — 1(1)] = sup|o(r) — 1()] = 1.

For this reason the dual space #’ of # cannot be identified with a subspace of the
space 2’ of distributions. In fact, Zemanian [14] demonstrates this by giving an
example of a nonzero generalized function in %’ whose restriction to 2 is the
zero distribution.

Since we wish to work within the class 2’ of distributions, we will consider
a subspace %, of # consisting of those functions in & each of whose derivatives
approach zero as |f| — oo0. To be more specific, we say that a function ¢ is in 8,
if and only if ¢ is in # and for each multi-index j and each positive number ¢,
there is a compact set K, such that if ¢ is not in K,, then |0'¢(1)| < e.

Give 4%, the topology induced by %, which makes %, a locally convex
topological vector space. To see that 2 is dense in %,, let {y,} be a sequence of
functions in 2 such that

1, | £k,
Plt) = {

0, |t| >k+1,
sup [yP()| < sup [y$(#)] for every multi-index j.

If ¢ is a function in 4,, then {y,@} is a sequence in 2 that converges in %, to ¢,
which shows that 9 is dense in %,,. Therefore, the dual space %, of %, is a sub-
space of 2’ and a distribution f in %y, is completely determined by its values on
2. The following theorem is a useful characterization of distributions in %y.

THEOREM 2.1. A distribution f in D' is also in B if and only if there is a number
K such that

(2.2) I<f, ¢>l < K maxsup |¢pY)| for every ¢ in 9.
lilsK ¢
Proof. To prove that condition (2.2) implies f belongs to %, let {¢,} be a
sequence in 2 that converges to zero in the topology of %,. Then sup |¢{’| — 0
as k — oo for every j and we have

lim |[{f, ¢>| < lim K max sup [¢})| = 0.
k— o0 k— o0 lilsK t

To show that f can be defined on all of 4,, let ¢ be a function in %, and {¢,}
a sequence in 2 that converges in %, to ¢. Then the set { K max,;x sup, |V}
is bounded above and so {|<{f, ¢, >|} is also bounded above. Since {¢, — ¢,} is
a sequence in 2 that converges to zero in %, as k and [ tend to infinity inde-
pendently,

klli_fflw {fody— =0

and {{f, >} is a Cauchy sequence with a finite limit.

Define {f, ¢> = lim,_, , {f, ¢,>. If {,} is another sequence in 2 that con-
verges in %, to ¢, then {¢, — ¥} converges in %, to zero, so {f,¢) is well-
defined. Since 2 is dense in 4,, fis extended to all of %, and the extension is clearly
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linear. To see that f is continuous on %,, notice that
I<f, > = K max sup |¢Y|
lilsK

holds even for ¢ € B,. Thus fis in %;,.
The proof that condition (2.2) holds if f is in % proceeds by contradiction.
Suppose that {¢,} is a sequence in %, such that for each k,

I<f, >l > k max sup (1)
ljlsk ¢t

= kmaxq;(¢,),

lilsk
and define 0, = ¢,/[k max ; <, q;(¢,)]. Then 6, is in %, for every k and
G Pm)
k max,; <, q(d)
< 1/k ifk=m,

s0 6, = 0in %, as k — oo. Since f'is in %, this means that { f, 6,> — 0. However,
by the definition of 6,,

qm(ek) =

I<f dul
I<f> 0] K max,, < d,(&) > 1.
This contradicts the fact that {f, 6,> — 0, and so there can be no such sequence
{¢:}. Therefore, if f is in %}, condition (2.2) holds, and the proof is complete.
Since B, = # and the topology of %, is that induced by %, each element
of #' has a restriction to 4, that is in #,. The next theorem shows that a con-
verse is also true, i.e., that each element of %, can be extended to all of %.
THEOREM 2.2. Each distribution f in By has a unique extension f in %' with
the property that {f, ¢,> converges to { f, ¢> whenever {¢,} is a uniformly bounded
sequence in % that converges to ¢ with respect to the topology induced on % by &.
Proof. If f is in %, then by Theorem 2.1 there is a number K such that for
every Y in 4,,

K90l = K max s1t1p|6f|//(t)|.

Let ¢ be in # and suppose I is a finite set of nonnegative integers. Let {y;};2,
be the partition of unity defined in the Appendix. Then

\(f, Yy |S K max sup

iel

aj( Y 7))

iel

< K max sup
lilsK ¢

) ( ,J() (Z vi)(k)qs‘f‘“(t)

k=sj iel
< KKYK!)" max sup |y®(t)] max sup |¢4)(1)|
k<K ¢ ISK

= B.

Now B is independent of the choice of the set I, so by the lemma proved in the
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Appendix we know that for any finite set I of nonnegative integers,

LIS vl < 4B.

iel

Therefore
Y IKSf. vyl < 4B
i=0

and the series Z;";O {f,v:¢) converges absolutely.
Define an extension f of f by

o8> = 3 (S

for every ¢ in 2. To see that f = fon A, notice that if yy € 4, then z;"zo Syl
is also absolutely convergent and the sequence {)¥_ 74} converges to ¥ in
B, as k - 0. Thus

o> = 3 <Fond = <f, >y = (.

It remains to be shown that f is continuous on 4. This will follow from the
second part of the proof which shows that f is continuous even with respect to a
weaker topology than the one given to 4. To this end, let {¢,} be a uniformly
bounded sequence in & that converges to zero in the topology of &, and let

Cx = maxsup sup |0/¢,(1)],
sk kot

where K is the constant defined for f by Theorem 2.1. Let I be a finite set of non-
negative integers and for each i e I, let k; be a positive integer. Then

><f’ ZI: 7i¢k.~>

< K max sup 5j(z ))i¢kx)
lilsK ¢t

iel
< KK™(K!)"Cy max sup |d'y,(t)]
lilsK t
=B.

Therefore, for every finite subset I of nonnegative integers and every choice of
the collection {k;} of positive integers,

(2.3) Z I<f, )’id’k,->| <4B.
iel
Now we already know that for each k, ) ; ([, 7,¢,> converges absolutely.
We will show that this convergence is uniform with respect to k. Let ¢ be a positive
number. Then for each k the absolute convergence of ' | (f, 7,¢,> guarantees
the existence of a smallest positive integer N, such that

9}

24 > KS bl <3

i=Ni+1

Suppose that the set {N,} cannot be bounded above. (Assume N, > 1 for every
k, choosing, if necessary, a subsequence of {¢,} for which this is true.)
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Since N, is the smallest positive integer that satisfies (2.4), there must also be
positive integers {M,} such that for each k,

My e
@) Y IS0l 2 5

i= Ny
Pick a sequence {v,} in the following way. Let v, = N,. Since M, < oo, we can
pick v, such that N,, > M, . Similarly, for each k, pick v, such that N, > M, |
Then if M is a positive integer which is larger than 8B'/e, we have by (2.5)

M ka
X 2 Kfineol = M > 4B'.
k=1 i=Ny,

But this is a sum of the form

2L 1!

iel
given in (2.3), where the finite set

I= U U {i},
1Sk=M Ny, SisMy,

and k; = v, for N, <i £ M,, . The assumption that the set {N,} is unbounded
has led us to a contradiction ; so we may assume there is a positive integer N such
that N, < N for every k, and we have

o0

€
2.6) Y Kfuhol <o for every k.
i=N+1 2

Now {¢,} converges to zero in the topology of &, and the derivatives of y;
are uniformly bounded for all i; so there must be a positive integer N’ such that
ifk >N,

2.7 K max sup

lJIsK ¢

aJ

Z v¢k)

i=0

Then, by (2.6) and (2.7), if k = N’ we have

IKF bl =

i s v

=[(r 5
ai(ii vi</>k) 48

Therefore lim,_, ., {f, ¢,> = 0. This proves that f is sequentially continuous.
Since 4 is Hausdorff and the topology of % is defined by a countable family of

seminorms, 4 is metrizable. Thus sequential continuity of f on % guarantees that
fisin &'

oy 1S

i=N+

< K max sup
JISK t

&
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The remarks at the beginning of this section show that there may be more
than one way to extend a distribution f in &, to all of . However, & is dense in
& and, therefore, 2 is dense in # with the topology induced by &. Moreover, if
¢ is in 4, there is a uniformly bounded sequence {¢,} in & that converges to ¢
in this topology. Thus any two extensions of f which satisfy the property of the
theorem must also be equal on 4. That is, there can be only one such extension,
and f is unique. The proof of Theorem 2.2 is now complete.

In the sequel, whenever we apply a distribution f in %, to a test function ¢
in @, we understand this to mean < f, ¢>, where f is the particular (unique) ex-
tension of f defined in Theorem 2.2. In particular, the constant functions are in
A, s0 if fis in By, {f,¢> = c{f, 1) is then defined. If f happens to be a regular
distribution in %}, determined by an integrable function f(f), then

Sl = Rnf(t)dt-

For this reason, distributions in %, are frequently called integrable distributions.

There are two more results concerning %, which will be needed in later
sections. Recall that if a and b are in R", a < b means q; < b;, i = 1,2, ---, m,
and e is the function exp [}7_, a;t;]. Let C" denote the linear space of n-tuples
of complex numbers.

THEOREM 2.3. If fis in 2'(R™) and a, b are in R" with a < b such that e *f(t)
and e”"f(t) are both in &', then for every p in C" with a < Rep < b, e™P'f(t) is
in By.

Proof. Let p be in C" with a < Re p < b, and let ¢ be in R" with ¢ > 0 such
that

¢; < min{Rep; — a;,b; — Rep;:i = 1,2, -+, n}.

If A(f) = e + e~ %, then A(t) e P'f() is in &’ and 1/A(f) is in &. Also, for every
¢ € By, (p/A)(1) is in &£, so we may write

e f (1), p(1)y = <UD e” [ (1), (/A1)

This expression clearly identifies e ?'f(¢) as a continuous linear transformation
on %, as long as a < Re p < b, so the theorem is proved.

THEOREM 2.4. If f and g are in B,(R"), then their convolution can be defined
and is also in B,(R").

Proof. Recall that if f is in @', then f is the distribution defined for every
deD by

o d> = S0, (=0
Using the tensor product ® to formally define f* g, we have
(f*g by = [ R gD), ¢t + 1))
= (f(1), (1), p(t + 1)5)
= {f(1), <&®), ot — 7))
= {f(0), @ * ) ).
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This string of inequalities will be justified and the convolution f * g will be de-
fined as a distribution in %j if we can show that g * ¢ is in # when ¢ is in %,
and g is in %, and that g * ¢, converges to zero in & whenever ¢, converges to
zero in %B,. To do this, consider

sup 1048 * $)(1)] = sup 107¢&(x), p(t — )
= sup |0/¢g(1), ¢(t + )l
= sup [<g(2), 9Nt + 1))
< sup K max sup 10'p(t + 1)
=K max sup | (o)

= BKJ’

where K is the constant defined for g by Theorem 2.1.

Therefore § * ¢ is in B, and if ¢, converges to zero in %, then sup, |p{+ ()|
converges to zero, and g * ¢, must converge to zero in #. Thus {f*g, ¢)
= {f, & * ¢) defines f * g as a distribution in %, and the theorem is proved.

In the sequel we shall frequently use the fact that %, is a subset of &’. This
is easily seen to be true, since ¥ < %, and & is dense in %, with respect to the
topology of %,. Another way of verifying that #, = %’ is to compare Theorem
2.1 with the corresponding result for &’ (Zemanian [13, p. 111]).

3. The transformations U; and 7°°. In this section we define and give some
results concerning two linear transformations on the space 2'(R"). Although the
definitions of the transformations will be stated for n-dimensional distributions,
the theorems proved in this section will concern only distributions in 2'(R).
The generalizations to 2'(R") of these results will be postponed until § 5.

Ifa=(a,, - ,a,) > 0in R" define the linear transformation U, on 2'(R")
by

<Uaf(l), ¢(t)> = <(11(12 e anf(altla T antn)a ¢(t1’ ) tn)>

I 1 In
= t ,...’t . —_— e, e, —
<f(1 n) ¢al a, a,

for every distribution f and every test function ¢. By a > 0 where a € R", we mean
{a; > 0:1 £i < n}soU,f is well-defined as a distribution. Also, U,, is continuous
and linear on 2(R"), as can be verified.

Another useful transformation on 2'(R") is defined in the following way:
Foreachp=p,,---, p,, it C"let T™? be defined by

CTPf(D), (1)) = Le”Pf(1), (1))
= <CXP(_ZPiti)f(t17 e L), By, e, tn)>

for each distribution f and test function ¢. The transformation T~7 is clearly
continuous and linear on 2'(R").

3.1)

(3.2)
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The rest of this section will be devoted to proving results about these two
transformations applied to 2'(R), the one-dimensional distributions. We are
primarily concerned with the convergence of the sequences of distributions
{U,f} or {U;T"?f} as j » oo. The first theorem is a direct corollary to Theorem
2.2.

THEOREM 3.1. If fis in %, then

lim U,f = <f,1)3,
j— o

where the limit is taken in &'.

Proof. Let ¢ be in & and for each positive integer j let ¢;(t) = ¢(t/j). Then
¢, is also in @ for each j and the sequence {¢;} converges uniformly on compact
sets as j— oo to the function ¢(0)1. Also, if k = 1, the sequence {¢{(1)}
= {(1/j)*¢™(t/j)} converges uniformly on compact sets to zero as j —» co. There-
fore, the uniformly bounded sequence {¢;} in % converges with respect to the
topology induced on 4 by &, and by Theorem 2.2,

lim <U,f, ¢> = lim <[, ¢,>
= {f, ¢(0)1)
=S, 158, ¢).

Thus we have shown that
lim U, f = (f, 1)6,
j= o

and the proof is complete.

An obvious question to ask is: Does the sequence {U,f} ever converge if
fis not in %,? The answer is given by demonstrating a distribution f which is
not in %} but for which the sequence {U;f} does converge. This is done in the
following examples.

Example 3.1. Let f(1) = —>* 8t — v). If ¢ is in D, then

9}

frd> = Zl ¢V();

v=

and the sum is actually finite since ¢ has compact support. In fact, if the support
of ¢ is contained in {7:1 £ K}, we have

lim CU,f. ¢ = lim { — 3 80t — v),¢(§.)>

j—o

| (1)(3)
lim ) -¢ ;

Il

j—oo =1 ]
- f $1) di = B(K) — $(0)
0
= —Pp0) = — {5, ¢

Therefore, lim;_, U,f= -6
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To see that fis not in 4, look at the function ¢(t) = (sin 2xt)/t. If we define
¢(0) = lim,_, ¢(1), then ¢ is in %, since it is infinitely differentiable and each
derivative approaches zero like 1/t as |t] - oo. However, {f, ¢ is not defined in
this case since

1
<fa¢>=2 2;, ;

and this series does not converge. Thus f(f) = ) *_, d'(t — v) is a distribution not
in , for which the sequence {U;f} converges.
Example 3.2. Recall that the one-dimensional distribution p.v. 1/t is defined

by
<p.v.%, ¢>(t)> = 1313)[ :; (Litzdt + Jjo @dt],

where ¢ is always positive. This distribution is not in %, (since it obviously can-
not be extended to all of %) but it is invariant on £ under all transformations of
the type U,, where a is a positive real number.

The next theorem characterizes all distributions which are limits in 2'(R)
of sequences {U;f} as j — .

THEOREM 3.2. If f is a one-dimensional distribution and {U,f} converges in
9' to a distribution h, then

h(t) = ¢, p-v- (1/t) + ¢, 6(¢),
where ¢, and c, are constants.

Proof. Since U;f — hin &’ as j — o, it is easy to see that U ,h = h for every
positive real number a. Therefore, if a # 0,

(3.3) h(at) = (1/a)h(1),

and we may differentiate (3.3) with respect to a and evaluate the result at the
point a = 1, to get th"Xt) = —h(t). Therefore (th(1))" = 0, and by a familiar
result on the differentiation of distributions (Horvath {8, p. 327]) there is a constant
¢, such that

3.4 th(t) = c,.
But for any constant ¢, , the constant distribution c¢,(¢) satisfies
(3.5) c,(t) = tey p.v. (1/1).

So, from (3.4) and (3.5) we get
tlh(1) — ¢, p.v. (1/1)] = 0,
which implies (Horvath [8, p. 352]) that there is a constant ¢, such that
h(t) = ¢, p.v. (1/1) + ¢, 8(2).

The proof is now complete.
The next theorem will show that in the cases of interest to us, ¢; must be zero.
THEOREM 3.3. If there are two complex numbers p, and p, with Re p, # Re p,
such that {U;T~P'f} and {U;T?*f} both converge in 9; as j — oo, then for every
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complex number p for which the sequence converges there is a constant c(p) such
that
lim U;T™?f = c(p) &(t).
j— oo
Proof. We may assume without loss of generality that p;, = 0 and that
p, = p has real part greater than zero. Let ¢ be a function in £ whose support
is contained in (0, 00), and for every positive integer jlet ¢ (1) = e~ ?¢(r). Clearly,
the sequence {¢;(f)} converges to zero in P as j — co.
By Theorem 3.2 we know that {U,T"?f} converges to

c1(p) p-v. (1/t) + c,(p) 6(1);

and since ¢ does not have support at the origin, <6, > = 0. Therefore
lim CU;TTPf, ¢ = {cy(p) p-v- (1/1), §(1)) .
jo o

But
lim CUT™2f, ¢y = lim (U f(1), €™ P(1))
j—o o J7?©
= lim U, f,¢,> =0
Jj=®

since ¢; —» 0 in 2, {U; f} converges in 2', and convergence in 2’ is uniform on
bounded subsets of 2. Furthermore, the support of p.v.(1/t) is the whole real
line, and the only way {c,(p)p.v.(1/f), ¢(¢)> can equal zero for every ¢ with
support contained in (0, o0)is for ¢,(p) to be zero. Thus lim;_, , U;T~?f = c,(p) (t).
Now, let g(t) = T™Pf(1); let o be a function in & with support contained in

(—00,0); and for every positive integer j, let o;(t) = eP'g(t). Then {o;} converges
in 2 to zero and as before we get

lim (U,;f,0) = lim {U;T?g, o)

j— oo

Jj— oo

= lim (Ujg,0
j— o

=0.

But lim;, , U;f = ¢,(0) p.v.(1/t) + ¢,(0) 6(t) and <6,5) = 0, so {c,(0) p.v.(1/),
a(t)) = 0. As before, this can happen for all ¢ in & with support contained in
(—0,0) only if ¢,(0) is zero. Therefore, lim;, , U;f = c,(0)5. Thus for every
complex number p where the sequence converges,
lim U;,T™?f = c(p)d.
j— o
COROLLARY 3.1. If f is a distribution and there exist real numbers o and f
such that {U;T~?f} converges in 9’ as long as o < Re p < B, then for each such
complex number p,
lim U;T?f = c(p)d.
Jj— oo
CoroLLARY 3.2. If {U;f} converges in 9" to ¢, p.v.(1/t) + c, 8(t) where
¢y # 0, then the sequence {U;T ~2f} cannot converge in 9’ as long as Rep # 0.
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Our purpose is to use sequences of the form {U;T ~?f} to define the Laplace
transform of f at p. Therefore, we would like to strengthen Corollary 3.1 by
showing that if there are two complex numbers p,, p, such that {U;,T~?'f} and
{U,T~#f} both converge, then as long as Re p; < Rep < Rep,, {U;T"?f} also
converges. This will follow from the next theorem which shows that whenever
{U,f} converges in &', then fis in &".

THEOREM 3.4. If f is a distribution such that the sequence {U,f} converges in
D asj— oo, then fe S

Proof. It is easy to show that if { f,} is a sequence that converges in 2’ and
K is a compact set in R, then there is a constant C and a positive integer r such
that for every test function ¢ with support contained in K,

[{frr &I = Crlﬂag sup ¢V

is satisfied. Therefore there are constants C and r such that if the support of ¢
is in the interval [ —1, 1], then for every j,

KU;f, 9ol = C ﬂix sup |¢9].

If ¢ is in @ with support contained in the interval [ —k, k], then the support of
¢(kt)isin [—1, 1], so

IS )1 = IKULS s dlk)))
(3.6) =C max sup [ (k)]

< Ck" max sup |¢").
li|=r

Now, let {y,} be the partition of unity defined for R in the Appendix and let
0 be a function in &. Then the function y,0 has support contained in the set
{t:k — 1< || £k + 1}; so by the properties of y, and inequality (3.6) we have

<S>l = Clk + 1y max sup |[7:01°)
3.7) = ,
< CL(k + 1) I]I}ax sup {|09(n):k — 1 <t <k + 1},
where L = rr! max <, sup 7. Since 6 is in &, there is a constant C’ such that
(3-8) max [09(1)] < __C
lil<r (4P
for all ¢. So from (3.7) and (3.8) we get

BRI CLC'sup{ k1Y o ci<ka 1}

(1 + |t|2)r+2 :

(k+ 1)
(1 + lk _ 1|2)r+2
L ’
=< (—k—C+L1)2 aslong as k = 3.

Therefore the series Y ° ; < f, 7,0 converges absolutely.

= CLC
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Since 0 was an arbitrary function in¥, f may be extended to & by defining
for any 6 in &

(39) 0y =Y (fonb).
k=0

If f were already in &, then (3.9) would be satisfied for every 8 in &; so our
definition is consistent. It is easy to see that (3.9) extends f to & in a linear and
continuous fashion, so f'is in %, and the proof is complete.

COROLLARY 3.3. If there are two complex numbers p, and p, withRe p, < Re p,
such that {U;T"?f} and {U;T"Pf} both converge in %', then whenever
Rep; <Rep < Rep,, {U;T?f} convergesin 9’ to {T2f,1)6.

Proof. If {U;T™?'f} and {U;T~?2f} both converge in &', then by Theorem
34, T"P:fand T P2f are both in &'. Also, by Theorem 2.3, T~ ?f'is in &, as long
as Rep, < Rep < Re p,. Therefore, by Theorem 3.1,

lim U;T™?f = KT *f,1)6,
J 0
and the corollary is proved.

4. The Laplace transform. In this section we give a new characterization of
the Laplace transform for one-dimensional distributions. We use it to prove the
standard theorems concerning analyticity, uniqueness, and invertibility of the
transform, then show that the new characterization is equivalent to Schwartz’s
definition of the Laplace transform for distributions. However, the development
given here is completely independent of Schwartz’s treatment.

We say that a distribution f is Laplace transformable if there is an open
interval (o, 8) such that whenever p is a complex number with real part in (a, f),
T ~?fis a distribution in %, If (, B) is the largest such open interval, then the set

Q = {p:Repe(a, )}

is called the domain of definition of the Laplace transform for f. The existence
of the set Q follows from Theorem 2.3.

If fis a Laplace transformable distribution whose transform has domain of
definition Q, then for any p € Q, we define the Laplace transform of f at p by

. L
(4.1) 3[f]@)=m}irg<UjT 19>,

where ¢ is a test function in 2 with ¢(0) # 0. Theorem 3.1 guarantees the existence
of the limit in (4.1) and tells us what it is. Thus, we have another characterization

(4.2) LI 1p) =LT77f,15.

By (4.2) we see that Z[f] is a complex-valued function of the complex
variable p with domain Q. It also follows from (4.2) that the mapping & is linear.
For,if fand g are distributions that are transformable at p and a and b are complex
numbers, then af + bg is Laplace transformable at p and

Zlaf + bg] = <T"Plaf + bgl, 1)
= a(T?f,1> + b{T ?g, 1>
=a¥(f1p) + bZL[gl(p).
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The next theorem shows that if f is Laplace transformable in Q, then £[f] is
an analytic function of p in Q.

THEOREM 4.1. If f is a distribution that is Laplace transformable in €, then
L1 f] is analytic in Q and

;—ff[f](p) = ZL[-1f ()] (p).
p

Proof. Suppose that Q = {p:a < Rep < B}; pick p, in Q, and ¢ in (0, 1)
such that ¢ < min{Rep, — o, B — Repy}. If At) = €* + e™%, then 1/4 is in
S < By, and AT " P°f is in B,. Also, as long as |p — po| < &, we have

Zif1p) — LS e r — et
o 10,10
D — Do D — Po

=(p—pot _
=<A(t)e""°'f<z),1-(lt—)[—e — 1]>
1]

_ — pot —t (p—po)t*> & [—(p— po)tV 2
‘<“’)e Ot T 5 >

Now, each derivative of
i ;‘2 (= — pot)"?
M) = J!
is bounded in absolute value by the corresponding derivative of (£2/(t)) ele—poxl,

and is therefore in . Thus, as p — p,, (1/A(t))[(e"®~?" — 1)/(p — p,)] converges
in B, to —t/A(t), and we have

i ZU10) = 211100

P po P — Do

</1(t)T“"°f(t),%)>

= TP [=1f (1)), 1(1))
= L=/ (0] (po)-

This completes the proof of Theorem 4.1.

Much of the usefulness of the Laplace transform is a result of the way it
treats the convolution of two distributions. This important property of the trans-
form is given by the next theorem.

THEOREM 4.2. If f and g are Laplace transformable distributions such that the
domains of their respective transforms have intersection Q, then f * g is Laplace
transformable in Q and for every p in Q,

LIS *gl) = Z[f1p)Z[2)(p)-

Proof. For p in Q, T™?f and T ?g are both in %;; so by Theorem 24,
T ?PfxT Pg= T P(f*g)isin &,. Therefore f * g is Laplace transformable at

d
a—}—)ff[f](Po) =
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p; and from (4.2) and the definition of convolution we get
ZLIf*gl(p) =T ?(f*g), 1)
=T ?f*T""g, 1)
=T ?f(t) ® T "g(1), 1t + 1))
=<(T7?f(1) ® T "g(r), 1()1(r)>
=(T7?f,1)<T %, 1)
= Z1f1pZLglp),

which completes the proof.

No theory of the Laplace transform would be useful without inversion and
uniqueness theorems. The next theorem has these results as corollaries. In what
follows we have as independent variables at various times the real variable ¢ and
the real and imaginary parts of the complex variable p. For this reason we some-
times indicate the particular independent variable for a space or an operation by
a subscript, e.g., { f(1), e” %), where f(1) is in %,, and w is a parameter.

THEOREM 4.3. If f is a distribution in B, then

1 o .
“3) 7 =5-tim e @), e, dos
where the limit is taken in ;.
Proof. For each function y, in the partition of unity {y,} defined in the

Appendix, { (1), 7(t) e~ %) is a continuous function of w and, as shown in the
proof of Theorem 2.2, the sum Z‘l’f: o< f(1), pr) e "> converges uniformly.
Therefore { f(t), e~ '*) is a continuous function of w and the integral in (4.3) is
well-defined. Let ¢ be in 9, and r be a positive real number. Then by standard
theorems on the integration of distributions and test functions with respect to
parameters, we have

< [ s, e, do ¢(z>> = [ ceocsn e gty do
| @67 (e, G0, do

= J_ f(2), <7D, (1)), dw

= <f(‘f)a J' (e (1)), da)>
=<f(r),Jr ik on e (t) dt da)>

- < f(r),fi Q) dé> ,
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where ¢ = —w and ¢(&) is the Fourier transform of ¢(f). Clearly, as r — o,
Jr_, €5 ¢(&) d& — 2n(r) uniformly with respect to 7, and similarly

d* L r )
‘EU ) dé] = f (i6)* €5(&) dE — 2mp™()
uniformly. So the limit in &, of [*_, ¢¥*¢(&) dé as r — oo is 2n(c), and we have

<2_11; }Lnl J‘:reiwt<f(t)’ e—iwt>t dw, ¢(z)> = 2—1n—<f(1,'), r]Ln; Jtr <eiw(t—t), ¢(t)>t d(l)>t

= 50, 27902,
= S0, 60

Thus, as distributions,
1 o ,
10 = 52 lim [ e, e, do.

and the theorem is proved.
COROLLARY 4.1. If o is a real number such that e~ *f (1) is in B, , then

110 = lim g [ e .16,

where the limit is taken in 9,.
Proof. If e”*'f(t) is in %,,, then as long as Rep = o, e"P'f(t) is in %, and

1 ro .
e %tf(1) = m lim f e e f (1), e ") dw.
Trow J_,
Therefore

1 4 , .
f(t) = é; r]ggf &%t elwt<e—0tf(.[)’ e—um:>t dw

1 o +ir
= — lim f e’ (e P f(1), 1(7)>, dp,
27 r> o0 6 —ir
which proves the corollary.
COROLLARY 4.2 (Inversion theorem). If f is Laplace transformable in

Q= {p:a<Rep < B},

then, as long as o < 6 < B,

o +ir

s =tim s [ 1110,

2T[i o—ir
where the limit is taken in 9,.
COROLLARY 4.3 (Uniqueness theorem). If f and g are Laplace transformable

distributions such that [ f1(p) = ZL[g](p) on some vertical line in the common
domain of the transforms of f and g, then f = g as distributions in 9,.
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The next theorem gives sufficient conditions that an analytic function F(p)
be the Laplace transform of a distribution f(¢), and characterizes the distribution f.

THEOREM 4.4. If F(p) is analytic for p in Q = {o + iw:a < 06 < B} and is
bounded in Q by a polynomial in w (or in |p|), then F(p) = L[f](p), where the
distribution f(t) is defined by

o+ir

4.4) f() = lim ﬁ% e”"F(p) dp

with the limit taken in 9, for any fixed value of ¢ such that o < ¢ < B.
Proof. The proof will be accomplished in four steps. It will be shown that
(i) f is a distribution, (ii) f is independent of the value of ¢ chosen in (4.4) as long
asa < g < B, (iii) e “'f(t) is in B, aslongas a < ¢ < f,and (iv) F(p) = L[ f1(p)
= (T7?f, 1) for every p in Q.
(i) To see that fis a distribution, let « < ¢ < f and let ¢ be in ,. Then

<2n fﬂ ' eP'F(p) dp, ¢(t)> < f "e“'F(g + iw) dw, @( t)>

= Q;J_rF(G + iw)F e " 'P(— 1)](w) do.

Now e™*'¢(—1) is in Z,, so its Fourier transform is certainly in &,. Also,
since F(o + iw) is a function bounded by a polynomial in w, it is a regular dis-
tribution in &,. Therefore, the limit as r — co of the last integral in (4.5) is well-
defined as the value of the regular distribution F(¢ + iw) at the testing function

F e *¢Pp(—1)], and we have otir

(0,90 =( 5 lim e”F(p) dp, ¢(l)>

lr-ow

(4.6) o
= 57—r<F(O' + iw), Fle”"¢(— N](®)),,-

Clearly, if {¢,} is a sequence that converges to zero in &, as k — oo, then the
sequence {#[e” "¢, (—1)]} converges to zero in &, as k — o0; so by (4.6),
{f, ¢x> = 0 also. Thus (4.4) defines f as a distribution in Z,.

(i) To see that f is independent of the choice of g, choose g, ¢, such that
a < 0y, <0, < f;and for every positive real number r, let T, be the closed path
in Q defined by the lines Rep = g,, Rep = 0,, and Imp = +r. Since F(p) is
analytic in Q, Cauchy’s theorem says that Irr e”"F(p) dp = 0. Therefore

Gy —ir

gy +ir a3 +ir o1 +ir
4.7) f e? F(p) dp ——J e F(p) dp =f e? F(p) dp +J e F(p) dp.
oy —ir oy —ir oy —ir oy +ir
But
gy tir 2
<f e”F(p) dp, ¢>(z)> = J ("M F(g £ ir), ¢(1)) do
ey tir t oy
43) = [ o £ e 40y do

= sz F(o + ir)<et™, e”¢(1)) do.
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Now (e*i" e'¢(t)) is a function in &, for every value of ¢, and the integral (4.8)
is over a bounded interval ; so as r — oo the integral (4.8) approaches zero. Thus
by (4.7) we see that

o1 t+ir Gy +ir
lim e”F(p)dp = lim e F(p) dp
aslongasa <o, <0, <f.
(iii) In proving that e™ (1) is in %; whenever a < ¢ < f, we use (4.6) and
the fact that F(o + iw) is in &, to get bounds on (e~ f(t), ¢(t)), where ¢ is in
9,. We have

Km0, 803 =| 5 [ Flo + i e, g0, o

T

(1 + w0 Lo, g,

é Cl sup d(l)rl

» r,:)w2k<e‘w',<it)”¢(t>>,|

1
k=0

= C, sup
4.9)

r

< Cysup ) k)Iiwlz"Kei“",(it)"¢(t)>,|
© k=0

< Curyrs! max sup (e, [ 601
klgry o

< Cyryry! max C, max sup |(1 + £2)2[(ir)" (r)] 2+,
[kl sry lilsr2 ¢
where the last inequality follows from the fact that ¢’ is a distribution in &,
that is uniformly bounded with respect to w. It is clear that we may expand the
derivative of the product using Leibniz’s rule and consolidate the various con-
stants in (4.9) to get a positive number C and positive integer r which do not
depend on ¢ such that

[e™"f (@), (0] < € maxsup (1 + LY.

This bound means that e~ *f(¢) is in &, for all ¢ such that « < ¢ < f8, and
so by Theorem 2.3, e~ **f(1) is in &y, for all such o.

(iv) Part (iv) of this proof can be verified by using the first three parts and
the uniqueness theorem for the inverse Fourier transform. However, it will be
proved here by actually showing that (T ~?f,1) = F(p). Let p = ¢ + itr, where
o < o < B, and let ¢ be a function in 9, with ¢(0) = 1 and such that the support
of ¢ is contained in (— 1, 1). Then by Theorem 3.1, we see that

eTPf(n), 1)) = Jlgg U; e Pf(1), (1))
s
lim 51; f : F(o + iw)<e“‘""", ¢(§)>dw.



68 DOUGLAS B. PRICE

Let F = F; + F, where the support of F, is contained in {0 + iw:|lw — 1] < 1}
and F, = F in {0 + iw:|w — 1] < 4}. Also choose k = 2 large enough so that
G(w) = Fi(o + iw)/[i(w — 7)]* is in L}, that is, an integrable function of w. This
can be done since F(o + iw) is bounded by some polynomial in w for p in Q.
Then we have

oo
= 11';?0 --j G(w) <[l(w — 1)k el ¢(£)> dw
lim l)kf G( )<l(w t)t ¢(k)( )>

—1 k _,,,¢(k)(t/1) 1 it
lim L%Jlj j J G(w) e dw dt

joow ]

(4.10)

Il

(k)
= tim GO [ oDz vawnn

j= o J

Now since G(w) is an L!-function, its inverse Fourier transform is certainly
bounded in absolute value, say by B. Therefore, the integrand in (4.10) is bounded
in absolute value. We have

=2 Jow(s
T JJ; J

. o)
Jv e—itt¢ );t/.])g,—-
-
< (B/j)(2)) sup |9
= 2B sup |¢®)].

Since k = 2, we see that the limit in (4.10) must be zero.
The term we have neglected is

1 [ .
lim —f Fy(o + iw) (e~ ¢ £ dw
Jj—= o 271: -0 J t

—tim [ e”i“¢(§)9'“l[F2(a+ iw)] (1) dt.

[G@)](1) dt

@.11)

JjooJ o

Now Z ~![Fy(0 + iw)]isin ¥, s0 asj — oo, {¢(t/j)F ~'[F,(o + iw)](1)} converges
in & to & ![F,(c + iw)]. Also, e” " is a regular distribution in %}, so the limit
in (4.11) is

J " e F R0 + i) () dt = Fyo + i) = F(o + it)

= F(p).

Thus we have shown that

(T~*f, 1) = F(p)

as long as « < Re p < B, and the proof of Theorem 4.4 is complete.
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The Laplace transform has been developed so far without any reference to
the extension of the classical Laplace transform to distributions as defined by
Schwartz. However, it is easy to see that the development given here is equivalent
to that of Schwartz. First, notice that by Theorem 2.3 and the fact that #;, < ¥,
a distribution f is Laplace transformable in our sense if and only if e 7' f(¢) is in
& for every p in Q. Therefore, the transformable distributions and domains of
the transform are the same for both definitions of the transform. Next, we see
that if there is an open interval (e, §) such that e™”f(¢) is in %|,, whenever o is in
(o, B), then the Fourier transform of e ?*f(¢) is an ordinary function of w defined
by

4.12) Fle f ()](w) = (e""‘f(t),e'“‘")_

The right-hand side of (4.12) makes sense as the application of a distribution in
%, to a testing function in &. To see that (4.12) is true, let ¢ be a function in &,.
Then

(Fle™ ")), pl@)>, = <e~"f (1), d1),

= <e""f(t), J‘jo et P(w) da)>

- f 0, e g(e) do
= e (D), ey, ()

Thus, if f is Laplace transformable in Q and p = ¢ + iw is in Q; by Schwartz’s
definition of the transform we have

’?[f](p) = «g:[e_atf(t)](w) = <e_‘”f(t)’e—iwt>t
= e P f (), 11)), = T7°f, 15,

and the two definitions of the Laplace transform are equivalent.

We will next derive some of the standard operation-transform formulas for
the distributional Laplace transform using the characterization of the transform
given in (4.1).

Let f be a Laplace transformable distribution whose transform has domain
of definition Q = {p:a < Rep < B}. Then fV) is also Laplace transformable in
Q. To compute the transform of V), let ¢ be a function in 2 such that ¢(0) = 1,
¢'(0) # 0, and let j be a positive integer. Then if p is in Q, we have

UT(0, 6 =<f<“(z),e-'"¢(§)>

(4.13) =<f(t),pe"”¢(§) - %e—pr¢(1)(§)>

1
= pCU TP, ) — ;(U;T""f, .

As j — oo, the second term in the right-hand side of (4.13) converges to zero, and
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so by (4.1) we have
L1 D1p) = lim pCU;T7Ff, ) = pZ1f1(p).
j— o
By an inductive argument it is easy to see that for every positive integer k

(4.14) L1 )p) = pZLLf*" V1(p) = PLLf 1)

Another operational formula is furnished by Theorem 4.1, which says that

LIt () = dfl;ff[f](p).

This formula can be extended by induction to get, for every positive integer k,

k
4.15) LUTO1() = (- 1)*%$[f](p).

If f is Laplace transformable in Q, then f(t — 1) is transformable in Q for
every real number 7, and we have

U T2 f(t = 1), @) = {f(t — 1), e "'lt/j)>
Cf(0), e PT0((t + /i)y

= e PU;T™?f(1), ot + 1))
Now, ¢(t + 1) is in Z; and as long as ¢(t) # 0,

lim e~ P CUT 20, 0 + ) = o™ CT P, 1.0 9l + 9,

SO
(4.16) LIt = Dp) = e "ZL[f1(p).

If g is a fixed complex number and f is Laplace transformable in Q, then
e f(t) is Laplace transformable in Q' = {p:a — Req < Rep < B — Reg}, and
we have

CUTPle”f (0], p(1)) = KU, T-P70f ¢
Therefore, as long as p is in

(4.17) ZLle " f](p) = Z1f1p + 9).

If k is a fixed positive integer and f is Laplace transformable in Q, then U, f
is Laplace transformable in Q" = {p:ka < Rep < kB}. For pe Q" we have

U TTPULSY, ) = KULS e P él/j))
= (f(1), e P(1/jk)>
= (U TP, §(1/k)) -
As j — oo, this converges to (T ~P*f 15(6, ¢), so we get the formula
(4.18) ZLIUS1p) = Z1f1p/k).
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In order to demonstrate some of the theory developed so far, consider the
distribution

f)= =3 89t — ).
v=1

Recall that in Example 3.1 we showed that f is not in %, but that {U;f} con-
verges in 2’ to —§ as j — oo. Notice that if Re p > 0, then T ?fis in 4y, so f has
a Laplace transform defined in Q = {p:Re p > 0}. Also notice that

d <9}
0= =g ¥ 8-,
so by (4.14)if g(t) = ) 2, o(t — v),

ZLIf1p) = —pZ[gl(p) foreverypin Q.

If () is a function in 4 such that A(t) = 0 for t < 0 and A() = 1 for t = 1,
then by (4.2),

L1g)p) = (T7g. 1) = <§ 8t = ), e-'"a(t)>

0

Z e P =P i (e—p)v
v=0

v=1

= 1/(e? — 1), peQ.

It

Therefore, for p in Q,
Z[f1p) = —pZL[gl(p) = p/1 — €).

5. The N-dimensional Laplace transform. In this section the results proved
in §§ 3 and 4 for distributions in 2'(R) will be extended to 2'(R"). At the beginning
of § 3, the linear transformations U, and T ~* were defined, where a is in R" with
a > Oand pisin C". Here, as in § 3, we are concerned with the limit of the sequence
of distributions {U;T~?f}. However, in this section, j represents a multi-index,
J=J1.j2s ", ju, instead of a positive integer-valued index. Let j — oo mean that
ji—=> 0, j, >0, -, j,> o0, and for each i and k, 1 £i<nand 1 £k <n,
ji = o independently of j,. If {f;} is a “sequence” of distributions in 2'(R")
indexed by the multi-index j, then the statement

lim f; = h

J— o
means that if ¢ is in 2(R") and ¢ > 0, then there is a positive integer N such that
whenever j, = N for every k, 1 < k < n, then |[(f;,¢> — <h,¢)| <.

The need for being very specific about what is meant by the limit of a sequence
indexed by multi-indices will be demonstrated by the following example. Let the
distribution h be defined by

2 y2
D=

Then h(x, y) is a rational function of x and y with a removable singularity at the
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origin and can be considered a distribution in 2'(R?). It is easy to see that for
every positive integer k,
h(x, y) = k*h(kx, ky).
Therefore, if U,h is defined by
U,h(x,y) = k*h(kx, ky),

then lim,_, Uh = h. However, it is not true that lim;,, Uh = h, where j
represents a multi-index of order 2. To verify this, let j, = (2k, k) for every positive
integer k. Then

lim U, h(x, y) = lim 2k*h(2kx, ky)
k- k> @

4k2x2 - k2y2
— i 2
= Jm 2k [(4k2x2 + k2y2)2]
_2(4x? — y?)
T (4x? + y?)?
# h(x, ).

Thus, by our definition of the limit, h does not equal lim;_, ,, Uh.

Since the results in this section are n-dimensional analogues of results already
proved, we shall prove only those for which the one-dimensional proofs do not
generalize immediately. In particular, Theorem 3.1 may be generalized to n-
dimensions without changing the statement or the proof significantly, so we
accept it as an n-dimensional result without proving it again here.

The next theorem has a corollary which is the analogue in n-dimensions of
Theorem 3.2 and its converse.

TueorM 5.1. If h is in 2'(R"), then Uh = h for every positive multi-index j
if and only if

2”

5.1) =% e[ ® i e(@),
v=1 iel, L i¢l,

for some constants c,, 1 < v < 2"

Remark. In words, the theorem says that any distribution 4 in 2'(R") which
is invariant under each U; is a linear combination of 2" terms, each of which is
the tensor product of n one-dimensional distributions of the form §(¢;) or p.v. (1/¢,).
For example, if n = 2, then

1 1 1
h(t) = ¢, pv.— @ p.v.— + ¢, p.v.— ® d(t,)

1
+ €3 5(t1)®p'v't_ + ¢, 0(t;) ® 6(t,).
2

Proof (of Theorem 5.1). The proofis by inductionon n. Ifn = 1,then U;h = h
for every positive multi-index j if and only if there is a distribution f such that
h = lim;_ , U;f. Therefore, the expansion (5.1) for k follows from Theorem 3.2 in



ON THE LAPLACE TRANSFORM FOR DISTRIBUTIONS 73

this case. Let k be a positive integer and suppose that the theorem holds when
n =k — 1. Let h be a distribution in 2'(R¥) such that U;h = h for every positive
multi-index j. If we let r, denote the multi-index (0,0, - - - , 0, 7), where the r is in
the kth position, then

(5.2) U.h=h

for every positive number r. Equation (5.2) may be differentiated with respect
to r to get

d d
E(rh(tl, e, T)) = d—rh(l) =0
or
oh
(5.3 h(ty, -, rty) + rty—>(y, -+, rty) = 0.
oty
Setting r = 1 in (5.3) gives
oh 0
(5.4) h(t) + ”‘a—t;(’) = 5{;(”‘}'(’» = 0.

Therefore, the distribution #,A(z) is independent of ¢,, and there is a distribution
h, in 2'(R*~') such that

Lh(t) = h(ty, -, - ) ® 1(1).
Since 1(t,) = t, p.v.(1/t,), we have

ulh(t) — hfty, -, t—y) ® pv.(1/8)] = 0.

By a standard result there must exist another distribution h; in 2'(R*™1)
such that

h(t) — hylty, -, teo ) @ PV (1/8) = hilty, -+, 1, 1) ® ()
or
h(t) = by @ p.v. (1/t) + b @ 8(1y).

Now, since U;h = h for every multi-index j, h, ® p.v. (1/t,) + h; ® (t,) must also
be invariant under each U;. Therefore, if we let j = j;, ---, j,_,, we have

he ® pv. (1/6) + b, ® 8(1) = U,(h ® p.v- (1/2)) + U,k ® 8(1)
= Ush, ® U, p.v. (1/t) + Ush, ® U, 8(ty)
= Ush, ® p.v. (1/1,) + Ush ® 4(t,)
or
p.v. (1/1) ® (Uihy — h) + 8(t) ® (Ushy, — ) = 0.

This can happen for every multi-index j of order k — 1 if and only if U;h, = h,
and Us;h, = h for every j. Since h, and hj are both in 2'(R*""), the induction
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hypothesis says that there must be constants b, and b/, 1 < v < 2*~! such that

hk(tla”"tk—l)= Z, bv( ® pV—) (@60)

iel, t:

i¢l,
I.c{1.--k—1}
and
2k-1
Wty s tig) = ), b;( & pv—) (®5(t))
v=1 iel, i¢l,
I,<{1,--,k—1}
Therefore

W) = b ® pov. (/1) + b, ® «m

2k
v=1 iel, i¢l,
I,c {1,k

I

where the sequence {c,}3" is a rearrangement of the union of the two sequences
{b }Zk 1 nd {b,}zk 1

Thus for every positive integer n, a representation of the form (5.1) holds for
hin 2'(R") whenever Uh = h for every positive multi-index j.

Conversely, if h has a representation of the form (5.1), then it is easy to see
that Uh = h for every multi-index j. This completes the proof of Theorem 5.1.

By observing that h(t) = lim;_,, U;f(t) for some distribution f in 2'(R") if
and only if Uh = h for every multi-index j, we get an important corollary to
Theorem 5.1.

COROLLARY 5.1. If his in 2'(R"), then h = lim;_, , U, f for some distribution
fin @'(R") if and only if there exist constants c,, 1 < v < 2", such that

h(t)=§1cv( & pv—) (®6(t)

iel, i i¢l
Iy={1,,n}

The following theorem is an extension to n dimensions of Theorem 3.3.

THEOREM 5.2. If f'is in 2'(R™) and there are two complex numbers p,, p, with
Rep, # Rep, and a positive integer i, 1 £ i < n, such that {U;e”""f(1)} and
{U;e™Pf(1)} both converge in 9'(R") as the multi-index j — oo, then for every
complex number q for which the sequence converges, there is a distribution h(q) in
2'(R"™Y) such that

(5.5) lim U;e™f(t) = d(t) ® h(g).

Jj= o

Proof. We may assume, without loss of generality, that p, = 0 and that

p, = p has real part greater than zero. Define h(0) = lim;., U;f(¢) and h(p)

= lim;, , U; e ?if(t). Let ¢ be a test function in 2(R") with support of ¢ in

{t:t; > 0}. Then if j > oo, clearly the sequence {e”P/*ig(t)} converges to zero
in Q(R") Therefore we have

lim CU; e/ (). $(1)) = lim CU,f (1), e P, (1))

= (h(0), 0>
=0.
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But by Corollary 5.1, there are constants ¢,, 1 < v < 2" such that

2n 1
(5.6) hip) = cv( X  pwv. t—) ® (Q(I) 5(1,»)).
v=1 iel, i i¢gl,
v {l,,n}

A distribution of the form (5.6) can map every test function with support in
{t:1; > 0} to zero only if the coefficient of every term in which the factor p.v. (1/t;)
appears is zero. Therefore, h(p) = 8(t;) ® h'(p), where W'(p) is in 2'(R"™1).

Using a similar argument, just as was done in the one-dimensional case, we
can show that h(0) = &(t;) ® h'(0) for some distribution h'(0) in 2'(R""'). Thus,
for any g at which the sequence {U; e~ %if()} converges, its limit is of the form
given by (5.5), and the theorem is proved.

COROLLARY 5.2. If fe 9'(R") is such that lim;_, , U;f = h(0) and for each i,
1 £ i < n, thereis a complex p; such that Re p; # 0 andlim;_, , U;e™P*f(t) = h(p,),
then there is a constant c such that

hO) = c(t) = cd(ty, - » 1,).

Proof. By Theorem 5.2 it can be seen that for eachi = 1,2, ---, n there is a
distribution k;(0) in 2'(R"~ ') such that h(0) = 6(t;) ® h;(0). This can happen only
if h(0) = cd(t).

COROLLARY 5.3. Let Q be an open set in C" with the property that if p is in Q,
then the sequence {U;T ~Pf} converges in 2'(R") to a distribution h(p) as j — .
Then for every p in Q there is a constant c(p) such that

h(p) = c(p)o(ty,tys - s o).

Proof. Let p be in Q and pick ¢ > 0 such that the set {g:|g — p| < ¢} is also
in Q. Let g(t) = e"”f(t). Then lim;,, Ug(t) = h(p) and for i =1,2,---,n,
lim;, , Uje™*/2g(t) = h(;p), where, if p = (p,, p,, -+, p,), then

ip=(plﬂpz""9pi+8/29"”pn)‘

Therefore, by Corollary 5.2, lim;_, , U,g(t) = c(p)d(t), which completes the proof.

A generalization of Theorem 3.4 to 2'(R") does not change the statement of
the theorem significantly ; however, it is included here for completeness.

THEOREM 5.3. If f is a distribution such that the sequence {U;f} converges in
2'(R") as the multi-index j — co, then f is in &'(R").

The proof of Theorem 5.3 differs from that of Theorem 3.4 only in details
which are obvious. In particular, sets of the form {z:|¢| < k} must be substituted
for intervals [ —k, k7. and the value of the constant L introduced in (3.18) must
be adjusted.

COROLLARY 5.4. If p, and p, are in C" with Re p, < Re p, and are such that
{U;T~?f} and {U;T~?:f} both converge in %'(R") as the multi-index j — oo, then
whenever p is in C" with Re p; < Rep < Rep,,

lim U;T™?f = (T"?f,1)4.

Jjo oo

The proof of Corollary 5.4 follows from Theorem 5.3, Theorem 2.3 and
Theorem 3.1.
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We come next to the extension of the Laplace transform to distributions in
2'(R"). Since the definitions and theorems in § 4 were based on the work done in
previous sections, all of which has now been extended to n dimensions, the ex-
tensions of the results of § 4 are, for the most part, straightforward. We will state
the n-dimensional results without proof but will comment on the differences
caused by going to 2'(R").

We say that a distribution f in 9'(R") is Laplace transformable if there are
two constants «, f in R" such that whenever p is in C" with & < Re p < f, then
T ?f is in By(R"). If, for any other pair o, f satisfying the same property,
o = aand B < B, then we call the subset of C"

Q={pa<Rep<p}

the domain of definition of the Laplace transform for f. The existence of the set
Q again follows from Theorem 2.3.

The characterizations (4.1) and (4.2) of £[ f] in one dimension are also valid
in n dimensions, so we have

1 L
m}ir{é(UjT 1 8>,

where p € Q and ¢ is in 2(R") with ¢(0) # 0, and

(5.7) ZIf1p) =

(5.8) LU Np) =T77f, 15,

Formulas (5.7) and (5.8) are exactly the same as (4.1) and (4.2) but are interpreted
in n dimensions. Clearly, &#[f] is a linear complex-valued function of the n-
dimensional complex variable with domain Q.

Theorem 4.1 on the analyticity of the transform may be extended to give
the following theorem.

THEOREM 5.4. If f € 2'(R") is Laplace transformable in Q, then L[ f] is analytic
in Q and

0
5;3’[1‘1(1)) = ZL[-tf(0)p).

The proof of Theorem 5.4 requires the use of Hartog’s theorem (Bochner
and Martin [1]) which says that a complex-valued function of n complex variables
is analytic if it is analytic in each variable separately with all other variables held
constant. The proof that #[f] is analytic in each p, separately is essentially the
same as the proof of Theorem 4.1.

The convolution theorem requires no change.

THEOREM 5.5. If f and g are Laplace transformable distributions in 2'(R") and
the domains of their respective transforms have intersection Q, then f * g is Laplace
transformable in Q and for every p in Q,

LI *8lp) = L1 1) Zg]P).
THEOREM 5.6 (Inversion theorem). If f is Laplace transformable in
Q= {p:a<Rep<f},
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then for any fixed 6 € R" such that o < o < f§, we have

1 o +ir
: = lim —— Pt dp,
59) 10 =lim s [ et
where the limit is taken in 2(R") as r — oo in R". The integral in (5.9) is taken over
the subset of n-dimensional complex space defined by

{p:Rep,=o0;,|lmp| <r;,1 <i < n}.

THEOREM 5.7 (Uniqueness theorem). If f and g are Laplace transformable
distributions in 9'(R") such that the domains of their transforms have intersection
Q= {p:a <Rep < B}, and there is a fixed de€R" with o < ¢ < f such that
whenever Re p = ¢ we have L[ f1(p) = ZL[g)(p); then f = g as distributions.

THEOREM 5.8. If F(p) is analytic for pin Q = {p:o < Re p < B} and is bounded
in Q by a polynomial in |w| (or in |p|), then F(p) = L[ f1(p), where the distribution
fis defined as a limit in D(R") by

. 1 o +ir ot
(5.10) 10 = tim s [ erp) dp
for any fixed ¢ € R" such that « < 0 < f.

Theorem 4.4, which is the one-dimensional analogue of Theorem 5.8, was
proved in four steps, one of which required Cauchy’s theorem. An n-dimensional
analogue of Cauchy’s theorem can be found in Fuks [5].

The transform formulas developed in § 4 also have n-dimensional analogues.
For completeness, we list them here. In the following formulas, k is a multi-index,
t and 7 are in R", and p and q are in C". Recall that t* = k1t - .. thn)

Jlatkatoths

= aE ™ Rk ks
(5.11) L1 Pp) = P*L1f 1),
(5.12) LI 01(p) = (- HYM*FL[f1(p),
(5.13) ZLIf(t —0lp) = e "ZL[f1D),
(5.14) Lle™"f(](p) = ZL[f1p + 9),
(5.15) LU 1) = L[ f1(p/k).

Appendix. This Appendix contains a lemma which is used in the proof of
Theorem 2.2, along with the construction of a partition of unity for R" which
satisfies certain special properties. In order to construct such a partition of unity,
let &(t) be a function in 2(R) that satisfies the following properties:

(A1) &)=z 0 foreveryt,
(A2) support of (1) < [—3,3],
(A.3) &) = &(—1t) for every t,

(A.4) fm Etydt = 1.

-1/2
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An example of such a function is

lex ! It < %
= A Plaz 1) 2

0, Il = 35,

1/2 1
A= J exp [—] dt.
—12 4r* — 1

Let the function o(t) be defined by

where

o(f) = j & + ) — & — Y.

Then o € 2(R), 6(0) = 1, 6¥)(0) = 0 as long as j = 1, o(f) = o(—1) for all ¢, and
support o = [—1, 1]. Also, if t € (0, 1),

a(t) + ot — 1) = f [{( —) - f(r - 1)]& + f_l f(‘r + %) dt
=1 —J:(f(‘c—%) dr+fi:1§(t+%)dt
! 1 ! 1
l—fof(‘[—i)d’f‘l'foé(S“E)dS

=1, wheres=1+ 1.

Il

Now, for t € R", define yo(f) = o(|t]). Clearly, y, is infinitely differentiable as
long as t # 0. If we define y§)(0) = 0 for every multi-index j with |j| > 0, then y,
is in 2(R"). For every positive integer k, define the function y, by

() = o(lt| — k).

Then the support of y, is contained in {t:k — 1 < |tf| £ k + 1}, and y, is in 2(R")
for every k. Also, if k < |f| £ k + 1, then

Z P8) + Vi s(t) = o(t] — k) + o(it] — k — 1)

=1,

since |f| — k is in (0, 1). Therefore {y,}%, is a locally finite partition of unity
which has the additional property that

o\ 5]

for any multi-index j and any subset I of nonnegative integers.
Next, we prove as a lemma a fact about complex numbers which is used in
the proof of Theorem 2.2.

sup

< sup |07y,
t
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LEMMA. If {a};.; is a set of complex numbers with the property that there is
a number B such that for every finite subset I of J we have

2 %;|< B,

Jjel

then it is also true that
Z |°‘j| £ 4B
jel
for every finite subset I of J.
Proof. Suppose that there is a finite subset I' of J such that Zjel, IRe o] > 2B.

Then there must be a subset I” of I' such that all the numbers Re a; with jeI”
have the same sign and

Y. Rea;|= ) |Reaj > B.
jel” jel”
But by the hypothesis of the lemma,
Y Rea;| | o/ < B,
jel” jeI

so we have reached a contradiction. Therefore, for every finite subset I of J,
Zjel |Re o) < 2B, and similarly Zjel lIma| < 2B. Thus

Yol =3 Reaj] + Y |Imay

Jjel jel jel
< 4B,

and the lemma is proved.
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TOTAL POSITIVITY PROPERTIES OF GENERATING FUNCTIONS*
M. S. A-HAMEED anp F. PROSCHANY

Abstract. In this note, we strengthen results obtained in Keilson (1972). Our main result is: Let
Po(z) = Y2, piz' be the generating function of the sequence {p;}2,, with p; real for i = 0,1, ---,
N—1,py>0and p,=0fori= N+ 1, N+ 2, ---. Let p,(t) be defined by P(z + t) = Zf';opi(t)z‘.
Then (a) there exists a smallest nonnegative value t* such that p,, (t*) has the sign reverse rule
property of order r (RR,) in i, j =0, 1,2, --- (see Karlin (1968)) for r = 1,2, ---; (b) pi+j(t) is RR, in
i,j=0,1,2,---foreachfixed t > t¥,r =1,2,---;and (c) t¥ < t¥ < --- . Binomial moment inequalities
for Pélya frequency functions are an immediate consequence.

1. Introduction. Keilson (1972) considers the generating function

n
Py(z) = Y piZ
i=0
for a set of nonnegative masses on the integers 0, 1,2, ---, N, with py > 0. From

this, he defines the family of related generating functions

P(2) = Pz + 1) = ¥ post
k=0

He shows that the semi-infinite interval [0, co0) has precisely one value t*, such
that {p,(t)}§ is log-concave for ¢ = t*, and is not log-concave for ¢ < t*.

One interesting interpretation of the result is that starting with an arbitrary
set of nonnegative masses, a family of log-concave sequences is produced; this
differs from the usual situation in which log-concavity is shown to be preserved
under some standard mathematical operation such as convolution or integration
with respect to a kernel. Also, as a direct consequence of his result, Keilson ob-
tains inequalities on the binomial moments:

(1.1 Blo*D < BIF, r=1,2, .-,
where B, = Z p; 1) is the binomial moment of order r.
r

Log-concave and log-convex functions have been shown to have many
applications in analysis, statistics, reliability theory, inventory theory, and many
other fields. (See, for example, Karlin (1968), Barlow and Proschan (1965), Arrow,
Karlin and Scarf (1958), and Keilson and Gerber (1971).) Actually, such functions
are special cases of the class of totally positive functions, which are treated
definitively in Karlin (1968); totally positive functions constitute a powerful tool
in developing inequalities, and have uses in many theoretical and applied fields.

In this note we show that total positivity properties for generating functions
hold not only for order two (corresponding to log-concavity treated by Keilson),

* Received by the editors October 15, 1973.

T Department of Statistics and Statistical Consulting Center, Florida State University, Talla-
hassee, Florida 32306. This research was sponsored by the Air Force Office of Scientific Research,
AFSC, USAF, under Grant AFOSR-71-2058.
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but more generally for each positive integer order. As a direct consequence, we
obtain inequalities on the binomial moments generalizing those of (1.1).

To state and prove our results, we need to recall relevant total positivity
definitions ; see Karlin (1968). p;;, defined for integer i and j, is TP, if the mth
order determinant |p,, | 2 0 for each choice of integer a; <--- < a,, b, = ---
<b,,m=1,---,r; we also call the infinite matrix (p;)) TP,. If p;; is TP, and of
the special form p,_;, then we say p; is PF,. We say p; ; is RR, if the mth order
determinant |p,, | = 0 for each choice of integer a; < -+ < a,,, b,, = --- = by,
m=1,---,r. We also note that p; PF, implies that p;, . i is RR,. In the special
case r = 2 (correspondmg to Keilson’s results) p+; RR, is equlvalent to p, PF,,
i.e., log concave.

In this note, we confine attention to sequences {pq, Py, P2, - - -} ; by definition,

p-i1=p-p=--=0.

2. Total positivity results. The following generalization of Theorem 1 of
Keilson (1972) is the main result of this section.

THEOREM 2.1. Let Py(z) = Y. p;z' be the generating function of the sequence
{pi}iZo, with p; real for i =0,1,.--, N — 1, py >0, and p, =0 for i = N + 1,
N + 2,.--. Let the sequence {pi(t)}(",0 be defined for all t =z 0O by

2.1 P(z) = Py(z + 1) Zp 1)z
so that
© [k
2.2) P(t)y= Y, (.)t"*‘pk
k=0 \1

Then (a) there exists a smallest nonnegatwe value t¥ such that p,;. (tf) is RR, in
i,j=0,1,2,---, for each r = 1,2, ---; (b) p;(t) is RR, in i,j =0,1,2,--- for
eachﬁxedtgtf‘,r:l,z and(c)t*<t*<t*<'-~.

To prove (a), it will be helpful to first establish Lemmas 2.2 and 2.3 below.

LEMMA 2.2. Under the hypotheses of Theorem 2.1, there exists a finite value
t, such that p,(t) is PF, in integer i for each t 2 t,, r = 1,2, ---

Proof. Write

(2.3) o(Z)*PNﬂZ—r)H z—w)(z —w)l,

where the r; are real zeros of Py(z) and the w; and W; are complex zeros taken in
conjugate pairs. Hence

(24 Poz + ) = py[[[z + (¢t = )] [z + {iz + I

where, corresponding tow; = x; + iy;, {; = (t — x;) + iy;. Let 4; = max, ;{r;, x;}.
Then for t = A4,, Py(z + t) is a polynomial in z with nonnegative coefficients.

Consider the quadratic Q(z) = 2> + ({; + {))z + |{}|* = 2> + a;z + b;, where

;=2 —x;) and b; = (t — x;)* + y;. To show that the coefficients of Q;(z)
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constitute a PF,-sequence, it suffices to show that the infinite matrix

1 a; b; 0 0
0 1 a b; 0
B = 0 0 1 a; b
0 0 1 g

is TP,. (See Karlin (1968, p. 393).) As in Karlin (1968, p. 117), B is TP, if
aj/(z\/b‘j) > ¢,, where ¢, = cos (n/(r + 1)). Simplifying, B is TP, if

t2x;+ yiel — ™2

Let A, = max; {x; + y;c(1 — ¢2)”'/?}. Then for each t = A,, the coefficients of
each Q;(z) constitute a PF,-sequence. Since the convolution of PF,-sequences is
PF,, we conclude that p,(t) is PF, in integer i for each ¢ = t,‘i=ef max (A, 4,).
Q.E.D.

LEMMA 2.3. Let p;,; be RR; in i,j=0,1,2,---. Then p;,t) is RR, in
i,j=0,1,2,--- foreacht > 0.

Proof. First note that the function ¢(k + 1,i + l)dér(
i

k) i .
t*~'is TP, in

i,k =0,1,2,---, and also obeys the semigroup property

h

(See Karlin (1968, p. 142).) From the representation (2.2) and Theorem 5.4 of
Karlin (1968, p. 130), the conclusion now follows. Q.E.D.

Remark. Note that Lemma 2.3 holds even when the support of {p;} is
{0,1,2,---}.

With the aid of Lemmas 2.2 and 2.3, we may now prove Theorem 2.1.

Proof of Theorem 2.1. (a) By taking ¢} as the infimum of nonnegative ¢, for
which p;, (t,) is RR, in i,j = 0,1,2, - -, the desired conclusion is an immediate
consequence of Lemmas 2.2, 2.3, and the fact that a convergent RR,-sequence
has an RR,-limit.

(b) follows directly from Lemma 2.3.

(c) is an obvious consequence of the fact that RR,,, implies RR, for
r=12---. QE.D.

The moment inequalities of Theorem 2 of Karlin, Proschan and Barlow
(1961) may now be obtained from Theorem 2.1 above; the argument is similar
to that used in proving Theorem 2 of Keilson (1972).

THEOREM 2.4 (Karlin, Proschan, Barlow). Let {p,}3 be a PF,-sequence, with

binomial moments B,, = ij( ]). Then B,,,,is RR,inm=0,1,2,---and n = 0,
m
1,2, ---.
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ON EXISTENCE AND NONEXISTENCE IN THE LARGE OF
SOLUTIONS OF PARABOLIC DIFFERENTIAL EQUATIONS WITH
A NONLINEAR BOUNDARY CONDITION*

WOLFGANG WALTERY

Abstract. This paper deals with solutions u(t, x) of parabolic differential inequalities (a) u, < Lu,
or (b) u, > Lu, respectively, where L is a linear, weakly elliptic differential operator of second order.
The behavior of u for large ¢ is studied under the assumption, that on the lateral boundary a non-
linear boundary condition of the form (a) du/dv < f(u), or (b) du/dv > f(u), is imposed, where
f(z) = o0 as z - co. It is shown that the value of the integral {* dz/f(z)f'(z) is crucial for the growth
properties of w. If this integral is infinite, then we have the case of global existence, i.e., any solution
u of (a) is bounded in bounded sets. If, on the other hand, the integral is finite, then all solutions u
of (b) with large initial values become infinite in finite time.

1. Introduction. Let D = R”" be a bounded open set and let G = (0, T) x D,
R, = {0} x D,R, = (0, T) x dD. We consider functions u(t, x), x = (x{, -+, X,),
satisfying inequalities

(1) u < Lu inG, % < f(u) onR,
or
. Oou
(2 2 Lu inG, Ezf(u) on Ry,
where
(3) Lu = Z aij(ta x)uxng + Z bi(ta x)uxg + C(ts x)u + d(ta X).

iL,j=1 i=1

It is assumed throughout that the matrix a = (a;;) is positive semidefinite in G
and that f:R — R is continuous. Let Z be the class of functions u which are
continuous in [0, T) x D, which have continuous derivatives u,, u, = (u,),
Uy = (Uy,x;) in G and for which the outer normal derivative

@ =uyt,x) = lim [u(t,x) — u(t,x — av))/a, (t,x)eRy,

ov ar+0

exists (we assume that an outer normal ve R", |v| = 1, satisfying x — ave D for
small « > 0 exists at every point x € dD).

The functions f(z) we have in mind are positive and tend to infinity as z — oo.
Thus, in the heat flow interpretation, the condition u, = f(u) is an absorption
law which makes heat flow into the body. Our objective is (i) to find growth con-
ditions on f under which solutions of (1) are bounded in any bounded set G, and
(i) to find conditions on f such that solutions of (2) become infinite in finite time.

* Received by the editors December 10, 1973.
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In particular if solutions of a boundary value problem
4) u=Lu inG, u,=f(u onR,, u=uyx) onR,

are considered, case (i) leads to global existence (for all positive t), while in case
(ii) there is no global existence.

Our research was initiated by a recent paper of Levine and Payne [1]. In
this paper it is proved that in the case of the heat equation, u, = Au, (4) has no
global solution if f(z) = |z|' **h(z), h increasing, ¢ > 0, and if u, is sufficiently
large. Similar results are given or indicated for several other types of parabolic
and hyperbolic boundary value problems.

By using the theory of parabolic differential inequalities, we are able to give
a rather complete characterization of the two cases (i) and (ii), depending on
growth properties of f. It turns out that for a wide class of parabolic differential
equations (strong parabolicity is not assumed, and “‘heating” or ““cooling” terms
are permitted) the behavior of solutions for large t can be described in terms of
the integral

J‘ ®  dz
f@f'(2)
If this integral diverges, we have case (i) (global existence), if it converges, we have

case (ii). To illustrate the result, the function f(z) = z./log z belongs to case (i),
while f(z) = z(log z)* *9/2, ¢ > 0, belongs to case (ii).

2. A monotonicity theorem. The following theorem on parabolic differential
inequalities is basic for our treatment. It is a special case of Theorem 31.IV in
[2]. There are no assumptions on the coefficients in L or on f (except that the
matrix (g;;) be positive semidefinite).

THEOREM. Let v,we Z and

(a) v— Lv<w-— LwingG,

(b) dv/ov — f(v) < ow/Ov — f(w) on Ry,

(c) v<wonR,.

Then
v<w inG.

3. Upper bounds. We shall use the above monotonicity theorem in order to
obtain lower bounds u(t, x) for solutions u(t, x) of (2) and upper bounds w(t, x)
for solutions u(t, x) of (1). In this section, we are dealing with the latter case, i.e.,
we assume that u satisfies inequalities (1). We try to find an upper bound w of
the form

w(t, x) = Y(s), wheres = g(t) + h(x).

Using the notation h; = 0h/0x;, h;; = 0*h/0x,0x;, h, = Oh/0v, we are led to the
following inequalities:

(a) g' > Za,-j(hij + %h,hj) + Zb,h, +

(b) ¥'h, > £(§) on Ry,
(c) Y(g(0) + h(x)) > u(0, x) on Ry.

cy+d
'pl

in G,
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The functions  we consider are positive with positive derivative ¢’ (thus the
division by ¥/ in (a) is justified).
THEOREM 1. Let f(z) and f'(z) be continuous, positive and increasing for z = z,
and let
®  dz
5) =
2 S(f'(2)

Furthermore, let
lajl < A4, b4, ¢4, d<A

and let condition (H) be satisfied :
(H) There exists a function h(x) e C(D) N C*(D) such that

Yah;<A inG and g%gé>0 on dD.
i

Then there exists a function w(t, x), continuous in [0, c0) x D and tending to oo as
t — oo uniformly in x, such that for any u € Z satisfying inequalities (1),

u(0, x) < Wtg,x) (to = 0) implies u(t,x) < w(t + to,x) inG.

The function w(t, x) depends only on f, A, 6 and max |h|, max |h,]|.

Proof. The proof is very simple if f(z) = Bz or f(z) = Bz./log z. In the first
case conditions (a)-{c) are satisfied by putting y(s) = e*, g(t) = ft + y with an
appropriate choice of a, f, 7; in the second case one might take y(s) = e*’,
g(t) = Be".

In the general case we assume that h(x) > 0 in D and h, > 1 on dD. This is
justified since h may be replaced by Bh + C. We define y(s) by

V' =1, W0 =z,

thus satisfying condition (b). Since f' has a positive lower bound, it follows from
(5) that the integral from z, to oo of the function 1/f is divergent. Therefore y(s)
exists for 0 < s < oo and grows at least like ¢*, « > 0. Now we consider the
function p(s) = ¢"/{'. From the differential equation for ¥ we get p(s) = f'(¥(s))
and hence (substitution y(o) = z)

J~s ﬂ’_ _ sd—o. _ n[/(s)—dz—
oP@) Jo f'(W(o) J., f(Df(2)
Therefore the solution g(t) of

(ay) g =B+ Cp(g + N)

with initial value g(0) = 0 exists for 0 £ ¢ < oo for any choice of B, C, N > 0.
If we choose these constants in such a way that

Zauhu+Zb,h,+(Cl/I+d)/l//'_S_B, 0§2a”h,hj<c, 0§h<N,
i,j i ij

(6)

— 00 ass — oo.

then the function g(t) obtained from (a,) satisfies (a), and the same is true for the
function g(t + t,), where t, > 0. Note that p(s) is increasing, hence p(g(t) + h(x))
< p(g(t) + N), and that Y/y' < Y/f(Y) < 1/f'(z0).
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If, for a given u € Z satisfying (1), ¢, is determined in such a way that
u(0, x) < yY(glto) + h(x)) for xeD,

then the function W = y(g(t, + t) + h(x)) is an upper bound for u. This follows
from the monotonicity theorem, applied to the functions v and W (instead of v
and w). The conditions (a)(c) are satisfied. Hence, the function w = y(g(¢) + h(x))
has the properties stated in Theorem 1.

4. Lower bounds. It is assumed that u € Z satisfies inequalities (2). Using
again the monotonicity theorem, we shall construct lower bounds v for u, which
tend to infinity as t - T, < oo. The next theorem gives conditions under which
such a construction is feasible.

THEOREM 2. Let f, f' be continuous, positive and increasing for z = z, and let

W f@f @)

Assume that there exist a unit vector y € R" and two positive constants 8, A such that

™

n
Z a,-j))i'yj g 5 in G, |b'| é A, Cc g _A, d ; _A in G.
ij=1
Then there exists a function v(t, x), continuous in [0, T,) x D (0 < Ty < o) and
tending to infinity as t — Ty, uniformly in x, such that for any ue Z satisfying (2),

u0,x) > v(tyg,x) 0<ty<Tp)
implies
u(t,x) > v(t +ty,x) inG and TZ T, — to.
The function v depends only on 0, A, f and the diameter of D.
Proof. The function

ut, x) = Y(s), s =g(t) + hix),

is, according to the monotonicity theorem of § 2, a lower bound for u if the three
inequalities (a)-(c) of § 3 are satisfied, but with > replaced by <.
Let

h(x) =B +¢& Y, yixis
i=1

where y is given by the hypothesis on (a;;) and where f and ¢ > 0 are determined
in such a way that h > 0 in D and h, < 1 on dD. The function Y(s) is defined
exactly as in the proof of Theorem 1, as solution of ¥’ = (), Y¥(0) = z,. Then
(b) is satisfied. Let us assume for the moment that the solution ¥ exists for
0 < s < oo, ie., that the integral from z, to co of 1/f(z) is divergent. Again, we
have p(s) = ¥"/y' = f(Y), but this time the integral from 0 to oo of the function
1/p is finite, according to (6), (7). Therefore the solution g(t) of

(az) g =Cplg —B, (B,C>0

with an initial value g(0) = g, > 0 satisfying Cp(go) — B = 1, exists only in a
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finite interval 0 < t < T, and g(t) » o as t —» Ty. Since in the present case (a)
reads
- cy +d
g <Y @iy + ey by + ——,
W i,j i '//

we choose C = d¢? and B > 0 in such a way that

ey by, + (cy + d)/y' > —B.

Using these constants, the solution g(t) of (a,) satisfies condition (a) with the
< sign, and the same is true for g(t + to), 0 < to < Tp. It follows as in the proof
of Theorem 1 that the function v(t, x) = Y(g(t) + h(x)) has the properties stated
in Theorem 2.

If the integral from z, to oo of 1/fis convergent, we may replace f by a function
f1 = fin such a way that the integral of 1/f; is divergent and the integral of
1/f,f| is convergent, and proceed as above. Or, what amounts roughly to the
same, we determine ¥(s) from the inequality ' < f(y) for 0 < s < 00, Y(0) = z,
in such a way that the integral from 0 to oo of 1/p(s) = /" is convergent. Then
(b) is again satisfied, and the rest of the above proof goes through.

5. Remarks. The above theorems can be generalized in various ways, using
essentially the same method of proof.

(a) The boundary condition involving the normal derivative may be pre-
scribed only on part of the lateral boundary of G. To fix our ideas, let
Ry, =(0,T) x D,, where D, is a subset of D, and let Ry, be the union of R, and
R; — Rj. The monotonicity theorem of § 2 remains true if Ry, R, are replaced
by Ry, Ri. The same holds for Theorem 1. Naturally, the condition involving
the initial values of u, u(0, x) < w(ty, x), has to be modified. In the present case,
it reads

u(t,x) < wlto + t,x) onRj.

Also, Theorem 2 remains true if the condition involving u(0, x) is replaced by
u(t,x) > v(to + t,x) on Rp. But the theorem obtained in this way is of little use
since the condition of Ry cannot be satisfied if the boundary values of u on R},
are bounded. We mention only that a “‘useful” theorem on lower bounds can be
proved if, e.g., f(z) = z(log z)! *¢ (¢ > 0) for large z. Here, one works with a lower
bound of the form (¢, x) = Y(g(t)h(x)), where h(x) < 0 on 0D — D, and h(x) > 0,
h, > Oon D,, and gt) = 1T, — ¢).

(b) The monotonicity theorem, and, as a consequence, the theorems on
upper and lower bounds can be carried over to infinite regions D. In this case,
growth conditions on the coefficients a;;, b;, ¢, d for large values of |x| have to be
imposed. See, e.g., [2, 31.XIII]. Once the monotonicity theorem is established,
the proofs of Theorems 1 and 2 carry over with minor changes.

(c) It is clear that the above results apply also to nonlinear equations. For
example, let us consider the quasilinear case,

n

Lu = Z aij(t’x’u’ ux)ux‘Xj + b(t’ x’u’ ux)'
i,j=1
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If we assume that
Ib(t,x,z,p)l < L(1 + |z| + |p)), zeR, peR",

and that the matrix (a;;), where a;(t, x) = a;(t, x, u, u,), satisfies the conditions of
Theorem 1 [Theorem 2], then Theorem 1 [Theorem 2] holds with respect to the
quasilinear operator L.

(d) Condition (H) used in Theorem 1 is not very restrictive. If, for example,
the a;; are bounded and D is convex with 0 € D, then h(x) = x* (=x - x) serves our
purpose. Also, if u(t, x) is any solution of u, = ), . a;u,,; in G, u, >0 on Ry,
then one may take h(x) = u(t,, x), to fixed.
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A BOUNDARY VALUE PROBLEM FOR A TWO-DIMENSIONAL
SYSTEM WITH A PARAMETER*

JACK W. MACKIt anp PAUL WALTMAN{

Abstract. We consider the problem Jz' = [Q(t) + AA(t) — AF(t, 2))z, a- 2(0,4) = 0, b-z(1,1) = O,
—1
where J = [1 0:|, A is a real parameter, a, b and z are 2-vectors, while Q, 4 and F are 2 x 2 real

matrices. We assume the linear problem (F = 0) has a countable sequence of real eigenvalues
0 < 4, <4, < --- accumulating at infinity, and that the corresponding eigenfunction has a certain
nodal property. 4, is said to be a bifurcation point for the nonlinear problem if there are nontrivial
solutions for A near 4,. We establish sufficient conditions for each 4;,j = 1,2,---,tobea bifurcation
point. We also establish global results. We use a relatively simple polar coordinate argument.

1. Introduction. Recently there has been a great deal of mathematical interest
in nonlinear eigenvalue problems for both ordinary and partial differential
equations. Such problems occur in a variety of applications (see the collection of
articles in [3]). Most of the work in ordinary differential equations has been con-
cerned with second order scalar equations, for example, Crandall and Rabinowitz
[1], Hartman [2], Rabinowitz [5], Turner [6] and Wolkowisky [7]. Such problems
are also of interest for arbitrary systems of equations and have been studied by
Keller in an article in [3]. In an earlier paper [4] the authors investigated a non-
linear eigenvalue problem for a second order scalar equation, using relatively
simple geometric arguments in contrast to the degree theoretic approach of
Crandall and Rabinowitz and the fixed-point arguments of Wolkowisky in the
papers cited above. The elementary nature of our arguments makes the theory
accessible to those in applied areas, without requiring a command of sophisticated
mathematical tools.

In this paper we use these geometric arguments to obtain results for two-
dimensional systems, analogous to those in [4]. Although we have no specific
application in mind, this appears to be the next logical step in the development of
a theory of nonlinear eigenvalue problems for systems of ordinary differential
equations. All of the conditions are stated as matrix conditions, i.e., positive
definiteness of certain matrices replaces positivity of corresponding coefficients in
the scalar case. The nature of these conditions is such that the results of [4] are
not directly included (see Remark 2 below the proof of Theorem 1).

2. Preliminaries. For given 2 x 2 real matrices Q(¢), A(f) and F(t, z), map-
ping from [0, 1] and [0, 1] x R?* respectively, and given nontrivial 2-vectors a

* Received by the editors April 23, 1973, and in revised form March 15, 1974.
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and b, with respective components a;, b;, i = 1, 2, we consider the problem

(1) Jz = [0(t) + AA(t) — AF(t, 2))z, z = [é] J = [O _1},
n 1 0

(2a) a-z(0,A) = 0 (-1is the scalar product),
(2b) b-z(1,4) =0.

Here Greek letters represent real-valued functions or constants, lower-case italic
letters represent 2-vectors and | - || will denote both the Euclidean norm of a
vector and the associated operator norm of a matrix. 4 > 0 will mean that the
matrix A is positive definite. As in [4], we introduce polar coordinates
p =+ )2

cos 0(t, A)

sin (1. ) ] = p(t, Ault, 2).

Z(t’)') = P(l,l)[

Our basic hypotheses are as follows.

(H1) The linear problem (F = 0) is regular, in the sense that its eigenvalues
form a sequence 0 < 4, < 4, < --- and if (&, n,) is the eigenfunction (unique up
to a constant factor) corresponding to 4, then &, has exactly k zeros in (0, 1).

(H2) The matrix functions A, Q and F are continuous on the respective
domains [0, 1] and [0, 1] x R?, and solutions to the IVP (initial value problem)
(1), (2a) are unique.

(H3) A(t) > 0, F(t,0) = 0, F(t, z) > 0 for 0 # ||z|| small.

Remark. Wolkowisky has pointed out the uniqueness of the trivial solution
of (1), in the sense that £%(t, 1) + n*(t, 4) > 0 for A€ R, t € [0, 1], for any nontrivial
solution. This implies in particular that p > 0 is differentiable in ¢ on [0, 1].

If we substitute the polar coordinate functions into (1) and (2), and note that
u = 0'Ju, then some simple matrix manipulations yield:

3) 0, A) = —u*Mu, p = —pu*JMu, M =Q + AA — iF,
(4a) 0(0, ) = arctan(—a,/a,) = a, arctane(—mn/2,7/2],
(4b) 0(1, A) = arctan (—b,/b,) — nn = f,,,

where 7 is an integer. If either of a, or b, is zero, then the corresponding arctan
is /2 ; the star denotes transpose.

LemMMA 1. If (H2) holds and A is restricted to a compact interval I = [0, A],
then there are constants 8(A) > 0, K(A) > 0 such that for any solution of (3) with
rel,

p(0,4) £6=p(t,4) < Kp(0,4), te[0,1].

In particular, solutions with sufficiently small initial data are extendable.
Proof’ Since pl é “ _JM(t, )'a P O)HP,

p(t,2) = p(0, A) exp U AIAGI + 126N + lIIF(S,Z(S,i))ll)dS] ~
0
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Since F is continuous, there is an m such that |F|| < mfor t € [0, 1], | z(s, A)|| = 1.
Then as long as p(s, 4) < 1 on [0, t], we have

p(t, 2) = p(0, 4) exp [f (A4l + 12l + mA)dS]-
0

Clearly we can choose p(0, A) so small that this last implies p(t, A) < 1 for t [0, 1],
A€[0, A], which in turn implies the desired conclusion.

Let (£, ¢) be the polar radius and angle, respectively, for the associated linear
problem. The equation for ¢ ((3) with F = 0) does not involve {, so ¢ does not
depend on {(0, ). For the nonlinear problem, however, 0 is a function of (¢, 4, ),
p = p0,4).

LEMMA 2. Let (H1), (H2) and (H3) hold. For each A > J; there exists p,(1) > 0
such that
for every solution of (3) with p(0, 4) = u, 6(0, 4, u) = a.

Proof. Let 4 > J; be fixed, and consider any solution of (3) with p(0, 4, u) = «.
By further restricting p, if necessary, we can assert that if 4 < p,, then F(t, z(¢, 1))
2 0 and ||F|| < &, where &(4) is so small that (A — )4 — AF > 0 on [0, 1]. Then

0(t, A, ) = —u*[Q + A4 — AFJu < —u*[Q + A;AJu.

Since ¢'(t, 1)) = —u*[Q + A;A]u (with O replaced by ¢ in the vector u) and
0(0, 4, p) = a = ¢(0, 4;), a standard comparison theorem gives

01,4, 1) < (1, 4) = B;.

3. The local and global theorems.

THEOREM 1. Let (H1), (H2) and (H3) hold. Then for each 4, there is a non-
degenerate interval 1; = (A;, Aj) such that for each J.€1;, the problem (1), (2) has
at least two solutions. The first component of each solution vanishes at least j times
in(0,1).

Proof. Lemma 1 implies that solutions of (1), (2a) are extendable if u is
sufficiently small, say u < p,, and the uniqueness assumption in (H2) implies
that extendable solutions of (3), (4a) depend continuously on (u, 4). We assume
B < lo.

According to (H3), for u sufficiently small we have

0(t, 4, ) = —u*[Q + A4 — AjFlu > —u*[Q + 4;A]u.

If ({, ¢) corresponds to the jth eigenfunction pair of the linear problem, then
¢’ = —u*(Q + A;A)u; therefore, for p, sufficiently small and 0 < u < po,

01, 2;, 1) > ¢(1, 2)) = B;.

Continuity in (4, u) implies 6(1, 4, u) > f; in some interval 4; < 4 < A(u) for
fixed p. We define I; = Ug ., <, (4;, A(w)) = (4, A)).

If A€, is fixed, then A€ (4;, A(w) for some pu, 0 < pu < p,, hence 6(1, 4, p)
> B;. On the other hand, Lemma 2 implies there is a u, such that 6(1, 4, u,) < B;.
Continuity of 6(1, 4, p) in (4, u) implies the existence of pu,,pu; < u, < u, such
that 6(1, 4, u,) = B;, and this in turn implies the existence of a solution (;,7;)
of the original problem (1), (2).
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Noting that £;(t, 4) = 0 if and only if 0,(t, 4, p) = n/2 — kn, k =0, £1, ---,
the nodal properties follow easily from a counting argument. The second solution
is obtained by taking arctan € (n/2, 37/2]; which is equivalent to using the new
initial values —¢;(0, 1), —#;(0, 4) in (1), (2) (or, equivalently, replacing « and f,
by a + =, B + 7).

(H4) g,5(1) + [a,,(1) — f3,(8,2)] > 0.

Remark 1. 1f (H4) holds for all z, te[0,1], A Z 4o, then (¢, 1) will have
exactly j zeros in (0,1). This follows from the fact that & = 0 if and only if
0 = ©/2 — kn, which in turn implies

0
0= —-u*Q + M4 - F)lu<0 foru= [( 1)"]'
Thus 6(t, 4, u) can cross each line 6§ = n/2 — kn at most once. One can also
estimate the number of zeros of #,(t, ) using similar arguments.
Remark 2. The above theorem does not reduce to the corresponding result
in [1] or [4] when the second order scalar equation

=y" =[q(0) + Aa(t) — A1 (t, y,y)]y

is written as a system in the usual way. Even if a(f) and f(¢, y, y') are positive for
y? 4+ (¥')* small and ¢ € [0, 1], the matrices 4 and F will only be semidefinite. The
reason one can still obtain the desired conclusion is that 4 and F interact in a
special way to make the right side of the differential equation for 6(¢):

0 = —sin20 — [q + AMa — f)] cos® 6,

“nearly positive definite”” in the same sense as in the proof of the above theorem.
(See [4] for details.)

We now turn to the question of a global theorem, that is, an assertion that
for every 4 > 4;, there is a solution z(t, 4) of the original problem such that ¢
has j zeros (equivalently, A; = + oo forj=0,1,2, ).

(HS) For each A > J,, there is a solution of (1) such that 0(0, 4, u) = a,
0(1’ )" /“l) g ﬁO'

THEOREM 2. Let (H1), (H2), (H3) and (H4) hold and assume that solutions of
(1), (2a) extend to [0, 1]. Then (H5) is a necessary and sufficient condition that there
exist, for each k and each 2 > A, k = 0,1,2, -+, two solutions of (1), (2) such that
&(t, A) has exactly k zeros in (0, 1).

Proof. Let k and 4 > A, be fixed, and suppose (HS) holds. Let p, 0 solve (3),
(4a). By Lemma 2, there is a u, such that (1, 4, ;) < ;. By (H5), there is a p,
such that

01,4, u3) Z Bo Z Bo — km = B > 0(1, 4, py).

The assumption that solutions to (1), (2a) are unique and extendable implies
continuity of @ in u; therefore there exists a i such that 6(1, 4, i) = B,, and this
solution will generate the desired solution of (1), (2).

Now suppose (H5) does not hold and let 4 > 4, = 4,. Then there is no
solution of (1), (2a) for which 6(1, 4, u) = B,. Thus each solution of (1), (2) satisfies
0(1, A, p) = B, k = 1, which implies that 6(t, 4, u) crosses the line 6 = —m/2.
Therefore there is no zero-free eigenfunction, yet 4 > A,.
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Remark 3. The continuity of 6(1, 4, ) in (4, u), used several times in this
paper, is the sole reason for the extendability assumption in the above theorem
and the uniqueness assumption in (H2) (for small y, extendability follows from
Lemma 1). One can completely remove the uniqueness assumption at the expense
of more complicated arguments, by using funnel sections, as in [4].
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A NOTE ON THE VAN WIJNGAARDEN TRANSFORMATION*

H. A. LAUWERIERY}

Abstract. Theory and applications are given of the van Wijngaarden transformation by means
of which slowly convergent or even divergent series may be converted into rapidly convergent series.
Using the technique of generating functions it is shown that by the van Wijngaarden transformation
the Borel sum is kept invariant. The van Wijngaarden transformation is shown to be the Laplace
transform of the Euler transformation.

Introduction. In a paper on a transformation of formal series van Wijngaarden
[3] suggested the following method for summing a slowly convergent or even
divergent series ) «,." Introduce a sequence of nonvanishing multipliers 4, and
transform the series ) A4, by means of the Euler method. If the transformed
series is denoted by ) b,, there exists a sequence of conjugate multipliers z, such

that ) b, has the same (generalized) sum as Y a,. In particular, van Wijngaarden
takes the special case 4, = A*/k! and finds that

W = 2"*‘/le e M + o)k kg,
0

In a number of interesting cases the new series turns out to be rapidly convergent
which makes this process particularly well adapted to numerical computations.

In view of recent interest the problem is taken up again and considered from
a different point of view. The first section deals with the main properties of the
Euler transformation of a formal series ) a,. The analysis becomes very trans-
parent by using the generating functions ) a,x* and )’ a,x*/k!. The second section
shows the importance of the Borel summation and the concept of the Borel sum

00
j (Y ape/k 1) dx.
0

For convergent series the Borel sum equals the ordinary sum. For a wide class of
divergent series the Borel sum exists and can be taken as the generalized sum.
The importance of the Borel sum is that it is invariant for an Euler transformation.
In the third section it is shown that the use of generating functions permits a
rather simple treatment of the van Wijngaarden transformation. It is shown also
that this transformation leaves the Borel sum invariant. The properties of the
multipliers g, of the Special van Wijngaarden transformation given above are
the subject of a paper [2] by N. M. Temme who concentrates in particular on
their numerical computation.

In many applications one wishes to compute a Laplace integral

wj e” “*F(x)dx

0
by termwise integration of some series expansion of the integrand function F(x).

*Received by the editors April 24, 1973, and in revised form March 6, 1974.
+ Mathematical Institute, University of Amsterdam, Amsterdam-C., the Netherlands.
! In all summations denoted by Z, the index runs from 0 to infinity unless stated otherwise.
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Sometimes the resulting series is slowly convergent or even divergent. One might
consider subjecting this series to an Euler transformation or a van Wijngaarden
transformation. However, the same result can be obtained in a much more direct
and simpler way. It suffices to expand F(x) = Y a,x* as suggested by the generating
function of ) @, when subjected to an Euler transformation. We write

k+1 xk
F(x) =2 Zbk(l + XD
where Y b, is the Eulerized series of ) a,. Termwise integration of the latter
expansion gives at once Y ia,. This result may be formulated by saying that the
special van Wijngaarden transformation is the Laplace transformation of the
Euler transformation.

1. The Euler transformation. We consider a formal series Y_ @, and introduce
the forward shift operator S and the weighted mean operator M by means of

Sa = Gy,
M=p+¢qS with|p <1 and g=1-p.

Then we have formally

a qa
To= 80 = 2 5 =0T

This suggests the so-called Euler transformation E(q),

bk = quao,
or explicitly

K[k o

(1.1) b, = Z ( _)pk_Jquaj.

j=0\J

In numerical practice one uses the Euler method preferably with p = g = 1.
According to the folklore of the numerical analyst the Euler transformation turns
slowly convergent series into rapidly convergent series and transforms divergent
series into less divergent or even convergent series.

In order to get a better insight into what is really going on we consider the
generating functions

(1.2) a(z) = Y a2+, b(z) =Y b "',

We restrict our discussion at first to those series for which a(z) has a nonvanishing
radius of convergence R,. This enables us to handle divergent series such as
1—-—2+4+3—4+ .- but a series like 1! — 2! + 3! — 4! 4 ... falls outside this
class.

It is easily seen by comparing equal powers of z that the relation (1.1) 1is
equivalent to

— 9z
(1.3) b(z) = a(l = pz) .
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The radius of convergence of a(w), where

qz w
w = ’ z = 9
1 —pz q + pw

(1.4)

is determined by the singularities w = s of the holomorphic function a(w) as
(1.5) R, = infls|.

Then the radius of convergence of b(z) is given by

s
1.6 R, = inf .
1.6 =ini] 2
The Euler method is most effective if R,/R,, is as large as possible.
Example 1.1. If a(w) is singular at w = —1 and w = oo, then b(2) is singular

atz = (p — q)~' and z = p~'. The ordinary method with p = g = J gives R, = 1
and R, = 2. However, the method with p = § gives even R, = 3. If this is applied
to a(w) = w(l + w)~ /2, for example, we find indeed that b(z) = 2z(9 — z%)~ '/2,

Example 1.2. The ordinary Euler transformation changes the divergent series
1—-2+3—4+ .- into the convergent series + — 4 + 0 + 0 + --- of which
only the first two terms differ from zero. This rather surprising phenomenon is
explained by the fact that a(z) = z(1 4+ z)~? is singular only at z = —1 which
gives R, = o0. Indeed, b(z) = 3z(1 — 32).

If Z a, converges with sum A, then we know that R, = 1 and that a(1) = 4.
It follows from (1.3) also that b(1) = A. Hence it is tempting to conclude that
Y b, converges with the same sum A. However, it is not a priori obvious that ) b,
is convergent. But if this series converges, Abel’s theorem states that its sum must
be A. When the singularities of a(z) are distributed in such a way that R, > 1
there is no problem. However, when R, = 1 also some further analysis is needed.

A summation method which sums every convergent series to its ordinary
sum is called regular. Hardy [1] gives necessary and sufficient conditions for the
regularity of a wide class of summation methods. The regularity of the Euler
transformation then follows by checking the conditions. We shall give here a direct
proof.

THEOREM 1.1. The Euler method E(q) is regular.

Proof. Let A, = Y7~ ' &, B, = Y 7_ 1 b,, A, > A. Since (1.4) implies z/(1 — z)
= w/[q(1 — w)], the relation (1.3) may be replaced by

z

1
i il g

a(w).

Expanding both sides into a power series we have

k41 _ -1 1 -1 gz \’*!
Y Bt =q7'Y AWt =¢q ZAj—l—pz .

Taking the coefficient of z** ! we obtain

ko [k )
(1.7) B, = ) ( .)P""quAj-
=1\J

Jj
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If A; = A for all j, then B, = (1 — p¥)A. Thus also B, — A since |p| < 1. Hence-
forth we may assume 4 = 0. The relation (1.7) will be written as

m k
B.=Y+ ) =U+V.
j=1

j=m+1

Given an ¢ > 0 we can choose m = m(e) so that |4} < & for j > m. Then

k o[k .
Vise) (,)Pk”q’ =e.
=Y

For fixed m we have U — 0 as k — oo since each term of U tends to zero. Hence
for k sufficiently large |U| < ¢ so that |B,| < 2¢. This means that B, — 0 which
proves the theorem.

2. Borel summation. In an alternative way the Euler method may be dis-
cussed by considering the generating functions

2.1 a(z) =Y a,z¥/k!, B(z) = Y b,z¥/k!.

The relation (1.1) is easily seen to be equivalent to the functional equation
22) e *(z) = gqe” *a(qz).

It clearly suffices to consider the coefficient of z* in the expansions of qa(gz) exp (pz).
From (2.2) we obtain the following interesting result.
THEOREM 2.1. The Euler methods E(q) form a commutative semigroup with

E(q,)E(q2) = E(4:9>)-

We shall now extend the discussion of the Euler method to those series Y g,
for which «(z) is holomorphic in a domain which contains the positive real axis. If

(2.3) A= Jw e Yo(x)dx

0

exists, then the series is said to be Borel summable with A4 as its Borel sum. From
(2.2) and (2.3) the next theorem follows at once.

THEOREM 2.2. The Euler transformation E(q) with q real and positive does not
change the Borel sum.

Further we have the following property which is proved in Hardy [1, § 8.5]
in a more general context.

THEOREM 2.3. The Borel method (2.3) is regular.

Proof. Weputfork =0,1,2,---,

2

l * —lkd_ ~xl X xk
$ulx) = 17| eTdi=e X

and

W(x) = e *x*/k!.
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Ify a, = Aand } 7, a4, = A, then

J e 'ult) dt = Z% J‘ e~'tdt =) ay(l — ¢,)
'Jo

0
=4 - Zak¢k =4 - Z(Ak — A )= A — ZAkwk'
Hence it remains to prove that

lim e ) Ax*/k! =0,
X0
but this is an elementary matter.
In many applications a series which has to be summed is derived from some
integral expression. We consider in particular the integral

(2.4) f e F(x)dx,

0
where F(x) is holomorphic in x = 0, say F(x) = ) a,x*/k!. One may have the idea
of applying an Euler transformation to the series Zak which is obtained by
termwise integration of the power series expansion of F(x). However, the pre-
ceding analysis shows that the final result could be obtained in a shorter way
by writing the integral in the form

J e (e UTMF(x)} dx
0

and termwise integrating the power series expansion of F(x)exp {—(1 — w)x}.
Comparing this expression with (2.2) it appears that implicitly an Euler trans-
formation with ¢ = 1/u has been applied.

3. The van Wijngaarden method. In his paper [3], van Wijngaarden advocates
the following method of summing ) a,. Introduce nonvanishing multipliers 4,
and subject Y 4,4, to an Euler transformation. Let the resulting series be Y b, .
Then there exist conjugate multipliers y, such that ) b, has the same sum as
Y a,. The formal analysis is very simple. According to (1.3) and (1.4) we have
t k+1
(3.1 Y bk(————) =Y La .

q + pt

We suppose that there exists a moment generating function ¢(t) such that

(3.2) A= f o(n)k dt .
0
Then formal integration of (3.1) after multiplication by ¢(t)/t gives
(3.3) 2 b =) a,
where

0 [k
(34) m= [,
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van Wijngaarden considers, in particular, the multiplier set 4, = s*/k!. Then
¢(t) = sexp (—st) so that

N t gst
5 = L
) e pk“fo (Hr)“‘exp( p) ’

The general case of an arbitrary Euler transformation with the multiplier param-
eter s is seen to be equivalent to the special Euler transformation with p = q = 4
and the multiplier parameter gs/p. Therefore without loss of generality we may
putp =g =3.

If this method is applied to the power series

(3.6) Y aw*
with w either real or complex with Re w > 0, we take A, = w*/k! and compute
3.7 Y 27 s (w)by,
where
© [k
(3.8) S(w) = wJ:) e"“”m dt.

The functions s,(w) are studied from a computational point of view in a pub-
lication [2] by N. M. Temme.

THEOREM 3.1. The functions s(w) have for k — oo, wik « 1 the following
asymptotic behavior :

(3.9 s(@) ~ 'k 3% exp (B — 2 /kw).
Proof. Writing

sp(w) =J e el + 1)~ dt
0

with f(t) = log [(1 + t)/t] + (w/k)t we apply the saddle-point method. The positive
real axis is the line of steepest descent with a saddle point t, determined by
(1 + t) = 1, where ¢? = w/k, ¢ > 0. Explicitly,

to=—3+ 1/ + )P =c"" -5+ 0().
This gives
f(to) = 2¢ —1c? + 0(c?)
and
f(to) = 2¢® + O(c*).

Using these expressions it follows that s,(w) is asymptotically equivalent to
sw) ~ coexp { —k(2c — 3c?)} j e %’ du,
- ®©

which can be written in the form stated above.
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THEOREM 3.2. The van Wijngaarden transformation with A, = s*/k! does not
change the Borel sum.
Proof. The relation between the generating functions of ) @, and Y A,q, is
given by
x) = [ et dr
0

where

/1 k
S0 = LA

According to (2.2) the generating function of )_ b, is given by

B(x) = q e"™f(gx).
Thus we have

) = | : oM Bxt)plar) dt

On the other hand, we have for the generating function

Zﬂk X~

the expression

© 1 b,
X) =
8 Jo q+ptzk'( )¢(
or
| xt
= t)dt
00 = [t
Substitution of the expressions derived above for a(x) and g(x) into f§ e™ *a(x) dx
and j 5 g(x) dx shows their equality. The formalities are certainly justified if

Y a,is such that
a,xk

Zkvku

for x — oo with some constant m. The general problem can be treated in a similar
way.

Example 3.1. The rapidly divergent series Y (—1)*k!w™* is treated by the
multipliers 4, = w*/k!. This gives the formal series ) (—1)*. If the latter series
is subjected to the ordinary Euler method E(}) we find

14+0+0+0+ ---.

Accordingly, the Borel sum of the given series equals simply 4, or

o] e—wt
wf dt
o 1+t
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Indeed, the Borel sum of the original series as derived from the generating series
a(x) = Y (— 1)(x/w)* = w(x + w)~" agrees with the above given integral ex-
pression.

If we wish to compute an integral of the type

(3.10) on P(x)F(x) dx
0

where F(x) is holomorphic in x = 0, say F(x) = ) a,x* we may subject the series

which is obtained by termwise integration to a van Wijngaarden transformation

with multipliers (3.2). This means that an Euler transformation is applied to

Y a,. According to (1.3) the result of expanding xF(x) in powers of x(q + px)~" is
k

(3.11) F(x) = ) b, q+px)k+l

In view of (3.4), the effect of the van Wijngaarden transformation is merely the
substitution of (3.11) into (3.10) followed by termwise integration. Thus

(3.12) f; PF(x) dx = ¥ b,

Of particular interest is the case of a Laplace integral where (3.10) takes the
form

(3.13) flw) = on e”“*F(x)dx.

0

The usual treatment of termwise Laplace transformation of the power series
F(x) = ) a,x* gives the asymptotic expansion

(3.14) flw) ~ Y klaw™*

If, however, F(x) is expanded as in (3.1 1) we obtain the expansion

(3.15) Zbkp “si(@q/p),

where Y b, is the Euler transform of Z a, and the s, are given by (3.8). The same
expansion would be obtained by applying the special van Wijngaarden trans-
formation with 4, = w*/k! to the asymptotic expansion (3.14). This result may be
phrased as follows.

THEOREM 3.3. The special van Wijngaarden transformation is the Laplace
transformation of the Euler transformation.

The expansion (3.15) may be convergent even if (3.14) is divergent for all .
If, for example, the generating function Y ax* and Y b,x* both have a finite
radius of convergence, the asymptotic behavior (3.9) shows that (3.15) converges
for all w. On the other hand, it shares with (3.14) the asymptotic character for
w — oo since for fixed k,

(3.16) si(w) ~ klw™*.
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Example 3.2. We consider the Laplace integral

VTwe? erfc\/a = wf e (1 + )" V2 dt.
0

To the integrand function (1 + )~ /> we apply the Euler transformation E(2/3)
since by this choice the radius of convergence of ) b, x* takes the optimal value
of 3. In fact, ) bx* = 3(1 — x%/9)”'/? so that finally

Jrw e erfe /o = Z(’i)vksz,(

is convergent for all w.

Example 3.3. An interesting generalization is indicated in the following
integral for the modified Bessel function:

e“?Ko(3w) = f e~ VA1 + 1) M2 dt.
0
Applying the same transformation as in the previous example, given by
3k+ lb [k
1 1)~ 1/2 — R S
( + ) Z(2+t)k+l’
we obtain the expansion

tk-—l/2

2K o) = 2712 Y b, 3! f et dt.

R (1 + t)k+ 1
Introducing the following variant of (3.8):
© tk._ 1/2
oyw) = “’L e

we see that the final result may be written as

a) f 22K (% Z k52 2w).

The asymptotic behavior of ¢,(w) for kK — oo can be obtained in the same way as
for s,(w). The (obvious) result is

o) ~ 12k 73403 exp (o — 2 ko).

This shows that also in this case a convergent expansion is obtained.
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ZERO DISTRIBUTION AND BEHAVIOR OF ORTHOGONAL
POLYNOMIALS IN THE SOBOLEV SPACE W'"?[-1, 1]*

EDGAR A. COHEN, JR.T

Abstract. The distribution of the zeros of the polynomials orthogonal in the Sobolev space
W[ —1, 1] with constant weights is established within a certain range of values of the parameters by
relating the zeros to the zeros of the Legendre polynomials. In addition, as the weights vary, properties
of the expansion of one set of orthogonal polynomials in terms of the other set are established.
Monotonicity of the roots as the weights vary and interlacing properties of the zeros are established
in several cases.

1. Introduction. In recent years, there has been some interest in studying
the nature of polynomials which are orthogonal in the Sobolev space whose
norm is given by

b b
) 112 = J Po(x)[f (x)]? dx + f Pi()[f'(x)])* dx,

where a and b may be either finite or infinite and py(x) and p,(x) are nonnegative
weights. Althammer [1], Grobner [7] and Schifke [11] have studied the properties
of these polynomials in some detail when a = —1, b = 1, and p, and p, are con-
stants. In this case, the polynomials can be thought of as generalizations of the
classical Legendre polynomials. Lesky [8] and Brenner [4] have, in addition,
considered the weights py(x) = exp(—x), p;(x) =yexp(—x), a=0, b = + 0,
with y a positive constant. In both of these special cases, the zeros of the
orthogonal polynomials are shown to lie within the open interval (a,b). The
present paper is devoted in part to a study of the distribution of the zeros for the
case when a= —1,b=1,p,=1and p, =y =20, and to their behavior as 1
varies. In addition, as the weight is varied, properties of the expansion of one set
of orthogonal polynomials in terms of the other set will be established. Wilson
[15] and Askey [2], [3] have established results of a similar nature for classical
orthogonal polynomials.

2. Preliminary results and notation. The polynomials to be studied are those
of degree n orthogonal in the sense of the inner product

1 1
@ (o= fwemar+i [ regwas
-1 -1
We shall denote these polynomials by R,(x;4) to indicate their dependence on

both n and A. It will be convenient for our purposes to think of R,(x; 1) as a per-
turbation of the integral of the Legendre polynomial P, _ (x):

G) R@=[ powd, nz2
-1

* Received by the editors June 18, 1970, and in revised form February 22, 1974.
+ Naval Surface Weapons Center, White Oak, Silver Spring, Maryland 20910.
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We shall also define Ry(x) = 1 and R,(x) = x. As noted by Schifke [11], since
R,(x) = §,(x)/2n — 1)
= (Pn(x) - Pn—Z(x))/(zn - l)’

such polynomials are almost orthogonal in the sense that (R,(x), R,(x)) =0
when |[n — m| # 2 and n # m. In a manner parallel to his construction of the
orthogonal polynomials, we form

Ro(x;4) = Ro(x) =1,
(4) Ri(x;4) = Ry(x) = x,
R,(x;4) = Ry(x) + a,(DR, (x5 4), n=2.
One finds directly from the definition (2) that a,(4) = 1/3. By comparing
(4) with Schifke’s form (1.7), one sees that

—,(2n =5
©) ) = 2 =)

Schifke is also able to show that

=120 (N0 1 (n+2j — 1)}
(Z) Qi (n—2j— 1

and that a,, ,/a, is a strictly increasing function of A on [0, c0). From (5) and (6),
it follows that a,(4) is O(1/4) for large 4, so that a,(4) tends monotonically to O as
A — +00. Also, from (5) and (6),

() ,(0) = (2n - 5)/2n —-1), n=3.
It is clear that o, (4) is to be determined from the condition
(Rn(x 5 'I)a Rn-—Z(x; '1)) = 0'

This leads directly to the recurrence relation

(6) a, =

n

=
v

L,

i=o

- (Rn(X), Rn—-Z(x))
8 A) =
O DT R0 R S0 + oty o D(Ry 10, Ry o]

Schifke’s equations (1.4) and (1.5) lead immediately to the relations
2[4 4+ 2/2n + 1)(2n — 3)]

n=4.

) (Ry(x), Ry(x) = ) . nz2,
and
(10) (Ry(), Ry 5(x)) = =2 nz 3.

n — H(2n — 3)(2n = 5)’

From (7), (8), (9) and (10), it follows that, when A > 0 and n = 3,

1

(11) 0 < o,(d) < 55— Hin =3
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Inequality (11) shows the behavior of a,(4) for large n and A.
Using (8), (9) and (10), one can also show that
2n — 9 1

(2n — 3)2n — 5)2n — 94 + 22n — 3)  A2n — 1)(2n — 3)
1
<) =) < s, n26

Inequality (12) shows, in particular, that, for a given 4 and for all n = ng(1), o, (1)
must decrease with n. It is clear that, as 1 decreases, ny(4) increases, since a,(0)
is an increasing function of n. From (7) and (11), we see that

{0, A>0,
1, A=0.

(12)

lim o, (1) =

n— oo

From the definition, we have seen that o, = 1/3, and from either (5) or (8), it
follows that

1

T 56+ 1y

. 3

(150 + 1)
534 + 1)

%5 = 910542 + 454 + 1)

It is important to realize that R,(x) is directly related to dP,_,(x)/dx and
thus to the ultraspherical polynomial P{*:%)(x). To see this, integrate the differential
equation satisfied by the Legendre polynomial of degree n — 1 [10]:

d d

(13) Ei[(l - xz)g_y)z] Fnn—1y=0
to obtain

d*R (x) dP,_ (x)

— — (x2 — n = (x2 — n—1
(14) nn — DR, (x) = (x 1) e (x 1) Fo
Therefore [12,4.21.7, p. 62],
2 (1,1)

(15) R,(x) = (x” — DP,23(x) n>2.

2m—1)

In particular, R,(x) satisfies the following homogeneous second order differential
equation:

(16) d?y/dx* + n(n — 1)(1 — x*)~ 'y = 0.

3. Zero distribution. This section is devoted to establishing a result on
distribution of zeros of orthogonal polynomials. We have the following theorem.



108 EDGAR A. COHEN, JR.

THEOREM 1. The zeros of the polynomials R,(x; A) orthogonal with respect to
the inner product (2) are interlaced with the zeros of the Legendre polynomials of
degree n — 1 whenever 1 = 2/n.

Proof. We first demonstrate, for all n and 4 = 0, that

(17 R,(x; M) =1
whenever x € [— 1, 1]. From the definition (4), one sees that the statement is valid
forn = 0,1, 2. It is well known [10, p. 200] that

2
n=?2.

(13) IR (x)] = nl/z(n—_l)g,/za =

Assume now that
IR, »(x; ) = 1.
From (4), (7), (18) and the fact that «,(4) is maximum for A = 0,

2 2n — 5
n'Pn - 173 2n -1

IR,(x: A = nx3.

v

Therefore, the assertion is correct for all n; and, from (4), (11) and (18), it follows
that

1
19 R, (x;2) — R < a4 s = 3.
(19 IR = R S < o ey, 023
Inequalities (18) and (19) allow us to improve the bound on R,(x; A). We have
2 4 1
n'2(m — 1)¥? * A2n — 1)(2n — 3y

3.

(20) [R(x; ) <

=
v

Reapplying (4) and using (11) and (20), one finds that
[R,(x34) — R,(x)|

21 1 2 1 > 5
S = Don =3 alm =32t am—sam—n|° "=

From (15), one sees that all the zeros of R,(x) are real and simple and lie in
[—1,1], from which it follows that the relative maxima and minima of R,(x)
must alternate in sign. Applying Sonin’s theorem [12,7.31, p. 161] to (16), we
find that the relative maxima of [R,(x)| decrease as x increases from O to 1. Thus
the smallest maximum in [0, 1] is that relative maximum which is closest to x = 1.
Furthermore, by definition of R,(x), at any of its critical points, P,_(x) = 0.
The distribution of the zeros of the Legendre polynomials is well known. For
example, we can use the well-known inequalities of Markov and Stieltjes for the
positive zeros x; = cos 0; of P,_,(x) [12, 6.21, p. 118]:

(22) (—2n/n—1) <0;<jun, 1=j=[n—1)2]

Buell [5] has shown that no such interval as given by (22) can contain a zero of
dP,_ (x)/dx, hence, by (14), a zero of R,(x). By Sonin’s theorem, it is clear that
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x, = cos 0, is the abscissa of the smallest maximum of |R,(x)|, so that
(23) IR(x)) 2 IR,(x)] > |R,(cos (n/n)).

Therefore, to obtain a lower bound on |R,(x;)|, we shall bound |R,(cos (n/n))|
from below. To obtain this bound, we employ the method of Liouville-Steklov
[12, 8.63, pp. 208-210], which has been used by Gatteschi [6] to obtain infor-
mation about the Legendre polynomials. From (15), it follows that

( n) —sin (n/n) sin (/2n) cos (n/2n)P'1-Y(cos (n/n))
R, cos; = p—

(24)

By (4.24.2) of Szego [12, p. 66], the differential equation

d*u , Lsin”2(0/2) + cos™2(6/2)
(25) W"I‘{N—:S 16 M—O,

where N = n — 1, is satisfied by
u = [sin (6/2)]%*[cos (6/2)]3*P{1-Y(cos 6).

By (1.8.9) of Szegd [12, p. 17], the differential equation

d*u (

(26) 2'0“2 +

N2—4-39—2)u=0

is satisfied by

u = 0'2J,(N6)
and by

u = 0'2Y,(N0),

where J, is the Bessel function of first kind and order 1 and Y, is a Bessel function
of the second kind and order 1. Now (25) can be written as

2
@ G [V )= [ecorom il st )
Using an argument given by Szegd [12, 8.63, pp. 208-210], one sees that
[sin (0/2))%/?[cos (0/2))3/2P{L-Y)(cos 6)
=27'"2N"Y(n — 1)6'*J,(N6)

012 o
f [J,(NO)Y,(Nt) — Y,(NO)J,(N)Je'/?
0

(28) 2
3 3[1 1 }
“l16cos?(t2) 4|12 4sin®(1/2)

- [sin (¢/2)13/%[cos (t/2)]3 /2P (cos t) dt .

Suppose now that 6 = n/n in (28), and define
A(t,n) = J,(Nn/n)Y,(Nt) — Y;(N=/n)J,(Nt).
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Then the important quantity to appraise is

3212 prin 2 1 : :
L At, n)t!/ [m— (}7 4 sin? (t/2)”

-(sin t)*2P{"Y(cos 1) dt

g(n) = —

— 37'5 21/2J‘ At [( ) B 1:| §i_£1~t)3/2
sin t t
- P{-3(cos 1) dt.
By (1.71.4) of Szegd [12, p. 15],
Y,(x) = HHog (x/2) + y}y(x) = I/x _ x.
n 271
b 2i+1
29) % Z (X/Z)) 412 4 -t Ui
i=1

+ /1 + 124 - 4+ 1/ + 1)].
The series in (29) is an alternating series, and the absolute value of the ratio of
its ith to its (i — 1)st term is given by
2
X

- - 1/i+1i+1)
FT4iG+ 1) VI+124+ -+ 1=+ 11+ -+ 1/i |

The ratio r; is seen to be a decreasing function of i, so it attains its maximum when
i = 2. One finds that r, = x?/18 < 1,0 £ x < n. From (1.71.1) of Szegd [12, p.14],
it is seen that the series representation for J, is also alternating and that its terms
are decreasing in 0 £ x < m whenever v = 1. We have, for example, the following
inequality, valid for 0 < x < =n:

x x* x5 x7 <J()<x x3+x5 x’ N x°
Y Y £ I S R A — .
2 16 + 384 18432 = 7! =2 16 384 18432 1474560

(30)

It has been pointed out by R. Askey in a private communication that such
inequalities indeed hold for all x = 0. We shall suppose now that n = 6, so that
11n/12 < Nn/n < 7. Since J, decreases in this range, we have, using tables of
Bessel functions [13],

(31) Ji(Nn/n) £ J,(117/12) < 0.384
and

(32) Ji(Nm/n) = J,(n) = 0.284.
Also, when n = 6, and 0 < t < m/n, one sees that

(33) (¢/sin £)* — 1 < 0.359¢2,

since (sint)”2 — ¢t~2 is an increasing function for 0 < t < n/2. Finally, it is well
known [12, 7.32, p. 163] that on [—1, 1],

(34) IP22()l = n — 1.
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If we use the first few terms of the expansions for J,(x) and Y;(x) to bound
|A(t, n) and apply (31), (33), (34), and elementary formulas for integrals of powers
of t and of the type

n/n
f t*log (nt/m) dt,
0
we find that
le,(n)] < 3.036/n>.

From (28), we have that

sin (rt/2n) cos (r/2n)P - Y(cos (r/n))

T e G e
Now
/n < 6
sin (n/n) = 6 — (n/n)?
< 1.048, nz=6.
Defining
e(n) = 212 ;{nl(/gﬁj)ms‘(n)’
one finds that
(36) le(n)| < 4.397/n.

Therefore, using (32), (35) and (36), one finds, for n = 6, that
37 sin (r/2n) cos (r/2n)P{-Y(cos (n/n))| = 0.1359.
From (24), we conclude that

(38) [R,(cos (r/n))| = 0.407/n?, nzo6.

Now one can verify that the second member of inequality (38) will exceed
that of (21) for n =2 6 and A = 2/n, provided that

n ~ 0407(n — 3)(2n — 1) n*(n — 3)
'2n —3)"22n - 3) = n C42n -3 =52n=17)

(39)

That (39) is valid for n = 6 can be verified by substitution. Furthermore, it is

seen that the left member is a decreasing function of n, the first term in the right

member an increasing function of n, and the second term in the right member a

decreasing function of n. It follows that the inequality holds for n > 6 as well.
Putting (21), (23), (38) and (39) together, we see that

(40) IR,(xi3 ) — Ry(x)l < [R,(x)l, nz6, 1z2n,
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at every critical value x;, 1 < i <n — 1, of R,(x). Thus, at the maxima and minima
of R,(x), R,(x;4) and R,(x) are of the same sign. Since we have already shown
that the maxima and minima of R,(x) are of alternating sign, it follows that there
is a zero of R,(x; 4) between any two zeros of P,_ (x), the Legendre polynomial
of degree n — 1. This accounts for n — 2 of the zeros of R,(x; 4). We can account
for the remaining two roots as follows: Since R, (1) = 0 and R)(1) = P,_,(1) = 1,
it follows that R (x,) < 0 and by (40) that R,(x,; 4) < 0 also. But it can be seen
from the work of Althammer [1] that R,(1; 4) > 0. This fact can also be established
by applying (4), from which we conclude that, when n = 2,

& an—Z
R,(1;4) =

o0, _, - a3 >0, nodd.

.-, >0, neven,

It follows that R,(x; ) has a zero between x = x, and x = 1. By symmetry, there
must also be a zero between x = x,_; and x = —1. We want now to show that
(40) remains true when n < 6.

First of all, for n = 0 and 1, it is vacuously satisfied. For n = 2, we find that
(41) Ry(x;4) = (3x* — 1)/6,
a multiple of the Legendre polynomial of degree 2. In contrast,
Ry(x) = (x* — 1)/2.
In this case, the origin is the only critical point, and
IR;(052) — Ry(0)] = 3 < |R,(0)] = 3.
When n = 3, one finds that

3 3x(54 + 1
(42) Ry(x: 4) =x7 - 13231 I 1;

and that
R;(x) = x(x* — 1)/2.

The latter has critical values at x = + \/3/3.

By symmetry, we need only check what happens at the positive value. We
find

Ry(/3/3:2) = Ry(/33)| = ¢ f <f/9—|Rf/3 1z 0.

For n = 4, it is seen that

5x4 3x2(l 1 ) 1 1
)

R O

and that
R, (x) = (5x* — 6x% + 1)/8.
We must check the critical points x = 0 and x = ,/3/5. It is found that

1 1
. 1 >0.
|R4(0; 4) — R4(0) = #14(151 ) < 3§ = [Ry(0)], Az
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Also,
2
}R4(\/§§ ) — R4(\/§)| = m <ip= IR4(\/§)|5 Az0.

The last case to be considered is that for n = 5. For this case,

Rilx:2) = Z;C—S - %j[% B 9(105;1:4;/1 + 1):|
(44)
+f|:§ 3 50+ 1 ]
2|4 3(1052% + 450 + 1)
and

Rs(x) = x(7x* — 10x2 + 3)/8.

We have critical values at x* = (15 4+ 2,/30)/35. It turns out that (40) is again
valid. This proves the theorem.

4. Positivity results. The second major result is the relation between the
sets of orthogonal polynomials as the parameter A varies. We have indeed the
following,

THEOREM 2. Whenever A < p,

[n/2]
Rn(x 5 /1) = Z a(ka n)Rn—Zk(x > M):

k=0
where a(k,n) > 0 for all values of k when n is odd. For even n, a(n/2,n) = 0 and
a(k,n) > 0 whenever 0 £k <n/2—1. For A >y, a0,n) >0 and akk,n) <0
whenever n is odd and 1 £ k < (n—1)/2. In case n is even, ak,n) <0 for 1 <k
£n/2 — 1 and a(n/2,n) = 0.

Proof. 1t is clear, first of all, that for any 4, the set {R;(x; )} of orthogonal
polynomials forms a basis. Thus there exists a unique representation of any
polynomial R,(x; 1) in terms of the set {R;(x; u)}. Since R,(x; A) is an even function
for even n and an odd function for odd n, only those polynomials of even degree
or odd degree respectively enter the summation. Furthermore, one can use (4)
to expand R,_,,(x; ) and R,(x; 4) in terms of the set {R;(x)} of the integrals of
the Legendre polynomials. Clearly, from (4), a(0,n) = 1.

Also, using (4), we have
[n/2]

R,(x; ) = ZO ak, n) I:Rn— 24(X) + 0 (R, 5~ 5(X)
k=
+ 0, 2k ()0, — ok 2 (R - g a(X) + -+
+ ot o (100, — pp— 2 (1) - - Ay 2k—2j+ 2(H)Rn—2k—2j(x)

(45) SRR S-S (7). MEPPREPY () I
C Oy 2k - 2((n— 2k)/2]+ 2R, 5 - 2[(n— 2k)/2](x ]

(%) + o, (DR, 5(x) + o, (Ao, (AR, _ 4(X)
© o, (Aot 2(4) - i (DR, - 5i(X)

+
+ oo 4 o (A= o(A) - 214+ 2A0ADR, - o py2)(%)-
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We can now compute the coefficients a(k, n) recursively. For example, from
(45), since {R;(x)} also forms a basis, we find, on comparing coefficients of
Rn-—Z(x)’

(46) a(l,n) = a,(4) — a,(p).

Since a,(A) is strictly decreasing in 4 for n = 3, (46) is positive for n = 3 when
A < u and negative when n = 3 and A > u. Similarly we obtain, comparing co-
efficients of R, _ ,(x),

(47) o, (ot - o (1) + a(l, o, (1) + a2, n) = a,(Aot,, - 5(4).
Using (46) in (47), we see that
(48) a2, n) = o, (A)[ot, - 5(A) — o, ()],

which is positive for n = 5 when 4 < u and negative when A > pand n = 5.
We now prove by induction that, when k > 2,

(49) atk,n) = o, (Aot~ 5(A) -+ - 24 a(D) [0 = 244 2(4) — 0ty 2 ()]

First of all, the result is valid for k = 2 as is seen from (48). Suppose that (49) is
correct for j < k. If we form the coefficient of R, _,,(x) on both sides of (45), we
see that

o, ()0, — (1) -+ 0ty g o(pt) + a(l, mat, (1)t — (1) -+ 0y g4 2(14)

(50) + a2, o, _4(Wot, - 6 (1) - -+ oy aps () + -
+ alk — 1,00, _ 54 (1) + alk, n) = o, (Ao, 2(4) -+ %y _ 244 2(4).

By the inductive hypothesis, we may substitute into (50) for a(j, n), when j < k,
the expression given by (49), and we find that (49) follows for j = k. From (49),
it follows that, for k = 1, a(k, n) is positive when A < p and negative when 4 > pu
unless k = n/2, when it vanishes on account of the fact that «,(1) = 4 for all A.

We say that, for A < p, the polynomials R,(x; 1) are above the polynomials
R,(x; w) and that, for 4 > p, the polynomials R,(x; 4) are below the polynomials
R,(x; p). For results of this nature in another context, see Wilson [15]. There are
several immediate corollaries of this theorem.

COROLLARY 1. For A # u, R(x;4) # R (x; ), n = 3.

COROLLARY 2. 0R,(x; A)/0x lies above {R,(x; )} for every value of .

Proof. Expanding R,(x;A) in terms of the integrals of the Legendre poly-
nomials and differentiating the sum with respect to x, we have the derivative
expressed as a finite positive expansion in terms of Legendre polynomials. How-
ever, from Theorem 2, the Legendre polynomials lie above {R,(x; u)} for any u,
from which fact the result follows.

COROLLARY 3. —OR,(x; 1)/0A lies above {R,(x; )} when A < p.

Proof. From (46) and (49), a(k,n) is a product of nonnegative decreasing
functions of /, so the result is immediate.

5. Concluding remarks and observations. There are several interesting open
questions. These are:

1. For any A > 0, are the zeros of R,(x;A) interlaced with the zeros of
Rn+1(x;'{)?
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2. Are the positive zeros of R,(x; A), when n = 3, monotone functions of 4,
passing from the zeros of the Legendre polynomials to the zeros of the integrals
of the Legendre polynomials as 1 increases from 0 to oo?

3. There exists a reproducing kernel for all polynomials whose degree does
not exceed n, that is,

2, Qix: D3 .

where Q;(x; A) is the orthonormal polynomial in (2) with positive leading co-
efficient. In this regard, see Lewis [9]. Is there a Christoffel identity here as there
is in L2-spaces?

The first question could be answered in the affirmative, provided it could be
shown that

(1) R, (s HR,(x3 ) — R,y y(x; DRY(x:4) > 0

in the closed interval [—1, 1]. In this connection, see Videnskii [14] and Szegd
[12, 3.3, pp. 43-45]. For n = 1, (51) is obvious, since R,(x;A) is the Legendre
polynomial of degree 1 and R,(x;4) a positive multiple of the Legendre poly-
nomial of degree 2. Suppose that n = 2. Then, by (41) and (42), it is seen that
(51) becomes

x* x2 1 1

(52) 4 TI06i+ ) 127306+ )

The term (52) has a negative discriminant, so that it is positive for all x. Inequality
(51) cannot be justified, as it is in L2, by considering the limit of the reproducing
kernel as y — x, as simple examples show.

The second question is also unresolved ; although, for a few such values of n,
the positive zeros have been shown to be monotone. Suppose, first of all, that
n = 3, so that there is only one positive root, x = x(1), to be considered. If x(4)
were not monotone in A, there would exist two different values of 4, say 4, and
Ay, such that x(4,) = x(4,). Since there are only three roots and the zeros are
symmetric with respect to the origin, it would follow that R;(x; Ay) = Ri(x; 4,).
By Corollary 1 to Theorem 2, however, this is impossible. When n = 4, there is
the possibility that, for two different values of A, one of the positive roots could
be the same. By (43), the roots of R,(x; A) are given by

4(3[ 1 1 1 4201 + 19 |2
(53 D =io|s -z | | — e L

501212 7152 +1) 4 196(154 + 1)
From (53), one sees, by differentiation, that both positive roots are strictly in-
creasing functions of A. The roots of the quintic polynomial (44) are x = 0 and

x2(,1)~3§1— 304+ 1
T 70212 910542 + 4514 + 1)

[l 283504° + 859542 — 12004 — 11]“2}

(54)
+

4t 3410527 4 454 + 1)
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Upon differentiation and a laborious computation, it can be shown that both
positive roots, as given by (54), are strictly monotone increasing.
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ON A CLASS OF WEIESTRASS ELLIPTIC FUNCTIONS
AT HALF AND QUARTER PERIODS*

CHIH-BING LING+t

Abstract. The evaluation of a class of Weierstrass elliptic functions and their allied functions at
half and quarter periods is considered in this paper. The double periods of the functions are restricted
to 1 and 2*ci, where k is an integer and ¢ = 1, /3 or 1/\/3. The functions are found expressible in
closed form in terms of two special coefficients. The results are tabulated fork = —1,0, 1.

1. Introduction. In the present paper, we are concerned with the evaluation of
a class of Weierstrass elliptic functions and their allied functions, namely, the
derivative of the functions and the Weierstrass zeta function, at half and quarter
periods or their combinations. The double periods 2w and 2w’ of the functions are
restricted to 1 and 2%ci, respectively, where k is a positive or negative integer includ-
ing zero and ¢ = 1, \/3 or 1/\/3.

1t is known [1] that the Weierstrass elliptic function W(z) at the half periods
w, » and w + o' satisfies the cubic equation

(1) W3(z) — 156%W(z) — 350% = 0,

where ¢ and ¢¥ are the particular cases of the following double series:
X 1

@) o% = Y e S22

Q2mo + 2nw')>’

nm=— o

The prime on the summation sign denotes the omission of simultaneous zeros
of m and n from the double summation. In this paper, we are concerned with the
case 2w = 1 only. When there is a need to emphasize the period 2w’, we write

(3) W(z) = W(z2w'), o3, = 03 (2w).
Further, define two special coefficients ¢, and g, by
(4) o, = a¥(i), 05 = a¥(e™?).

The values of these two coefficients are given in a recent paper by the author [2].
It is found that when 2w’ = 2*ci, the class of Weierstrass elliptic functions and their
allied functions, at half and quarter periods or their combinations, can be expressed
in closed form in terms of 6, when ¢ = 1 and in terms of 65 when ¢ = \/§ orl /\/3.
A method of evaluation is first described and then the functions are evaluated and
tabulated for k = —1,0, 1.

It may be noted that some relations used in evaluation are existing relations
but some are new. The present investigation is motivated by a need raised in
summation of series involving hyperbolic functions. It is thought that it deserves
a separate consideration on its own merit.

* Received by the editors October 17, 1973, and in revised form March 15, 1974.
+ Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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2. 6% and 6% and W at half periods. Denote the three roots of the cubic

equation in (1) when 2w = 1 by
%) e,2w) = WiEl2w'), e,2w) = W(0'20), e;Qw)= WG + o'20).
When 2w’ = 2*ci, the coefficients ¢% and ¢ and the functions e,, e, and e, in the
case k = 0 have been evaluated in terms of ¢, for ¢ = 1 and in terms of g, for
¢ = \/3 orl /ﬁ [2]. Furthermore, it can be shown [1, p. 379] that for any integral
k including zero,
a¥(2kci) = {5e3(2 " ei) — o (2X Lei),
o¥(2kci) = o¥(2* ei)e (267 Lei) + $50¥(24 Lei).
Similarly, it can also be shown that

a¥(2kci) = e2(2** i) — 42X Lei),

a*(2kci) = 60%(2* Lei)e,(24F Lei) + 220%(24* ci).
The first pair of recurrence relations can be used to evaluate the coefficients for

k = 1 from those of k = 0, while the second pair can be used to evaluate the
coefficients for k < —1.

It is mentioned that when 2w = 1 and 2w’ = 2*ci, the cubic equation in (1)
possesses three distinct real roots such thate, > e, > e,. To facilitate the solution
of the cubic equation in this irreducible case, it is found that one of the roots is
given by

(6)

(7)

(8) e,(2%ci) = —Le, (2 1ci)
or
9) e,(2%ci) = —2e,(2¥* 'ci),

so that the cubic equation can be solved without difficulty.

3. W at quarter periods.The Weierstrass elliptic function W at quarter periods
can be found from the following relation [1, p. 376]:

W(z) = W(2z) + {W(Q22) — e,}'*{W(2z) — e3}'/?
(10) + {W(Q2z2) — e;} V12 {W(2z) — e, }!/?
+ {W(Qz) — e }'2{(W(22) — e,}'/2.

At quarter periods when z = 1,10’ and § + o/, respectively, we have

WE = e, + (e, — €)' e, — €)',
(11) WEw) = e, — (e, — e,)!%(e; — e))"'?,

WE +10) = e, File, — e;)'(e; — €)'
Here the amplitudes of the functions under radicals are considered in the manner

as described by MacRobert [3, pp. 13-15] so that the resulting functions under
radicals are all positive.
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4. W’ at quarter periods. The function W’(z) or the derivative of W(z) vanishes
identically at half periods. At quarter periods, it can be found from the following
relation [1, p. 367]:

(12) W'(z) = =2{W(2) — e} {W(2) — e} 2 {W(2) — e;}'2.

We have at quarter periods by similarly considering the amplitudes of the functions
under radicals,

W'E) =—2e, —e,)(e; — €)' — 2(e, — e;)(e; — ey)'?,
(13)  W(@Ee) =2, — e,)(e; — e,)"'* = 2i(e, — e,)(e5 — €,)''?,
Wk + 1) = 2e, — e5)(ey — e,)* £ 2i(e; — e,)(e; — e;)%.
5. Weierstrass zeta function at half periods. From the results in a previous

paper [2], the Weierstrass zeta function at the half period 4 for the three values of ¢
is, respectively,

¢ |1 J3 1/./3

i

The function at other half periods is given by

(14)

1 \/3 1 1/3 \/3 3 1/3
'2‘7! ~6——n+§(350'6) Tﬂ? 8(3566)

15) {Gcilei) = cit(ei) — =i,
(& + Lcilci) = (1 + ci)l@Glei) — ni.

It can be shown from the double series definition of the function that
(16) CE12%ci) = LAY tei) + Le (28 o),

so that the function at the half period 4 can be evaluated recurrently. This relation
is convenient to use when k = 1. When k < —1, the following relation may be
used instead:

(17) {E12%ci) = 20125 Lei) + Se, (25" Lei).
The function at other half periods can be found from (15) by replacing ¢ with 2*c.

6. Weierstrass zeta function at quarter periods. From the pseudo-addition
theorem of the Weierstrass zeta function [4, p. 446], we find that when two of
the arguments are equal,

(18) {2U(2) — {(22)}* = 2W(z) + W(2z).
Consequently, by taking the positive sign,
(19) {(2) = 3022) + 3{2W(2) + W(2z)}"/2.

Here the positive sign is chosen on a consideration of the behavior of the function
near the origin. Hence, we have at quarter periods by similarly considering the
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amplitudes of the functions under radicals,
(@) = 5G) + 33, + 2e, — ;) P(e, — e)'?}12,
(o) = K@) = £ (=36, + Ae, — )" 2ey — )27,
(20) 2
(A + L) = L@ + o) + ${3e, — 2i(e, — e5)! 2 (ey — €,)'/?}12,
(E — o) = L@ + o) — o) + ${3e; + 2i(e, — e;)"?(e5 — ) /?}2.
The last relation is obtained on account of pseudo-periodicity of the function.

7. Functions at combined half and quarter periods. From the following
relations [1, p. 365],

{W(Z + %) - el}{W(Z) - e1} = (el - 62)(61 - 63),
Wiz + o) - ez}{W(Z) — ey} = (e, —e))(e, — e,),

we find when z is at quarter periods 1o’ and §, respectively,

(21)

W(% + %wl) =e, + (63 - 32)1/2(91 - ez)llz,
W(i +w)=-e — (e, — e2)1/2(91 - e3)1/2'

Likewise, from (12) and (19), we find

(22)

W& + s0) = 2ile, — e,)(e5 — e,)'? — 2ie, — e,)(e, — €)',
WG+ o) =2e, —e,)(e, —ey)'* —2e, — e;)(e;, —e,)''?,

(23) c(% + %w/) — C(%) + %C(w/) _ % {—3(32 _ 2((:‘1 _ 6’2)1/2(63 _ 62)1/2}1/2,

(G + o) =3G) + Ue) + 3{3e; — e, — €)' (e, — ey)"*}!/2.

8. The results. As a check of the amplitude of the function in the foregoing
expressions, a direct method is to compare the resulting value of the function with
that given by the series expansion of the function whenever practicable. In case no
such series expansion is available, an indirect check may be made with the aid of
the following relations:

{(zlifc) = icl(ciz|ci),
(24) Wizli/c) = —c2W(ciz|ci),
W'(zli/c) = —ic*W'(ciz|ci),

where ¢ is written in place of 2“c for convenience.

From the foregoing results, it is seen that the functions under consideration
are expressed in terms of e, ¢, and e,. It follows therefore that when 2w = 1 and
2w’ = 2*ci, they can be expressed in terms of g, for ¢ = 1 and in terms of o, for
¢ = \/3 or 1/\/3. For convenience of reference, the values of the functions are
shown for k = — 1,0, 1 in the accompanying tables, where the following abbre-
viations are used:

(25) u = (150,)'2, v = (3504)",
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(26)
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A, =62 +2/3+2/6+1,

A, =62 +2/3-2/6 -1,

B, = (6/3 + 6/2 + 2./6 + 3)'2,
3)'2,

B, = (6/3 — 62 +2./6 —

C, =2/3(7/6 + 8/3

+9/2 + 16)12,

=2./3(7/6 + 8/3
— 9\/5 —
=232 + /62,

16)!72,

121
A, =62 -2/3+2/6-1,
A, =62 -2/3-2/6+1,
B, = (6/3 + 64/2 — 2,/6 — 3)'2,
B, = (6/3 — 6/2 — 2./6 + 3)'2,

C, =2/3(1/6 — 8/3
~ 92 + 16)'2,

C, = 2/3(1/6 — 8/3
+9/2 - 16)'2,

=2(3./2 - /6"

9. Checking formulas. The following relations may be used for further
checking purposes: for 2w = 1,
o¥(ifc) = c*o¥(ci),
oglijc) =
e, +e, +e;=0,
e? + e5 + e} = 300%,
e e,ey = 350¢,
{Q) + {@) - (G + ) =0,
)+ WG + 1) + WG — J0) + WE +
—WEWE + o) = W)W + % )

—cbo¥(ci),

W) + Wi o)+ WE+w)=0

@D = WG + 30)W(@ = 30)
= 4(e1 - ez)(e1 — e3)(e3 — ez),
W) + Wao') + WG £ 30) = {{Q) + (Go) — (G + 302,
WE + i) + W(l w’) + W(— 1w)
= {{G ) + LG+ o) + (G + d0) = 206 + )},
W’(z) W) 1
T W) W) 1/=0
—WEE ) WG o) |
and
WG+ 30) WG+ 30) 1
WE+o) Wi+o) 1]=0.
W+ o) WE+30) 1

Note that in the first two expressions, ¢ stands for 2*c in general.
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ON SUMMATION OF SERIES OF HYPERBOLIC FUNCTIONS. II*
CHIH-BING LINGt

Abstract. This paper extends the method of summation of series of hyperbolic functions presented
in the previous paper to two alternating series of an even degree and also to four series of an odd degree,
two positive and two alternating. The series are likewise summed in closed form in terms of two special

coefficients o, and o, when the parameter ¢ involved in the series takes on the special values 1, \/5 or

1/3.

1. Introduction. In a previous paper of the same title [1], the author presented
a method of summation of four positive series of hyperbolic functions of an even
degree. The method is based partly on partial fraction decompositions of hyperbolic
functions and partly on values of the Weierstrass elliptic function at half periods of
double periods 1 and ci.

The purpose of the present paper is to extend the method of summation
first to the following two alternating series of an even degree:

(1) I*(C)= i (—l)n—l H*(c)= i (_1)"—1
2 =, sinh® nne’ 2 =, cosh® nnc’
and second to the following four series of an odd degree, two positive and two

alternating:

o 1 © 1

-y b \ =
2 Har® ,,; cosh®~ ! nrc’ Vo ..;1 cosh®~! (2n — 1)me/2’
( ) o (_1)n—1 © (_l)n—l

Ilgs— 1(C) = Z

n=1

10063 _
. 310 = X e @n — rej2’

cosh®~! nnc =

wheres = landc =1, /3 or 1/\/3.

To sum the series in (1), essentially the same method ot summation is em-
ployed. However, the sums involve values of the Weierstrass elliptic function at
half periods of double periods 1 and 2ci instead. To sum the series in (2), different
partial fraction decompositions of hyperbolic functions are used. It turns out that
the sums involve values of the Weierstrass zeta and elliptic functions at quarter
and half periods. The functions involved in both cases have been evaluated in a
recent paper [2]. With these values, the sums of the series can also be expressed in
closed form in terms of the coefficient 6, when ¢ = 1 and in terms of the coefficient
oswhenc = \/3 or 1 /\/3. The reader may consult the author’s previous paper [1]
for the values of these two coefficients.

2. Summation of the series when s = 1. Using the partial fraction decomposi-
tions in the previous paper [1], and further decomposing the resulting alternating

* Received by the editors October 17, 1973, and in revised form March 15, 1974.
+ Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia 24061.
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2 Z i m? — 4n?c?
12 e T  (m? + 4n?c?)?

n=1m=

I3(c) =

w 2_122
233 L

n=1m= 1{’" + (2n — 1)’c 2}2’

(3)
8 2 2 (2m— 1) —402n — 1)%c2
%) =
T Zl mzl @2m — 1)* + 4(2n — 1)’c?}?
e 2m — 1) — 16n%c?

ZZZ

=2 — 1)? + 16n%c*}*

When the double series are expressed in terms of the Weierstrass elliptic function,
the preceding relations become

1
I%c) = — 6 92 e,(2ci),

) |

1 . 1 .
1I%(c) = 37 52 e,(2ci) + P e4(2ci),

where e,(2¢i), e,(2ci) and e,(2ci) are the Weierstrass elliptic function of double
periods 1 and 2c¢i at the half periods, 1, ¢i and (1 + 2¢i)/2, respectively.
Again, from the following partial fraction decompositions [3],

1 | SR 1 1
= —— —_ —1 m — ,
sinhtx  7x * n m;( ) (m +ix m~— ix)
(5) oo
1 2 1 1 \
== ) (=" —t )
cosh mx n 2m — 1 4+ 2ix  2m— 1 — 2ix

we similarly find

2.8 &, ., ! !
() = o nZl le(~1) ( — 1 + 2nci + 2m—1— 2nci)’
2 © @ 1 1
1 V)= — = —1"
o V.(c) n ngl m§=:1( ) {2m — 14 @2n— Dci + 2m — 1 — (2n — 1)ci}’
2 ® © 1 1
II* == m+n
1(0) 7 gl le( ) <2m — 1 + 2nci + 2m—1 — 2nci)’

1 @
III*(C) = Z Z ( m+n{ 1 _ 1 }

=1z 2m + 2n — l)ci 2m — (2n — 1)ci

The double series involved can be expressed in terms of the Weierstrass zeta
function. Denote the function by {(z|2w’), where 2w’ signifies one of the two periods
of the function whereas the other period is 2w = 1. We find from the usual double
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series definition of the function that when 2w’ = ci,

(e =+ ek = 43 % (=10 )

o 1 +4nci 2m— 1 — 4nci

U@ + Seilei) = (1 + 2ci){(Glei)

_422_)"{ — ! -+ 1 }

o) 1+ @n—2ci  2m—1~— (4n — 2ci

(7 Licilei) = — % + % {Gei)

o0 0 . 1 1
B 4,1; m;(_ 2 {4m +@n—Nci  4m— (2n — l)ci}’
(& + Leilei) = 42 + ci){(Eci)

1 1
- 4n21 mZI( { — 24 (2n = )i C4m -2 — 2n — I)Cl}'

By writing ¢/2 in place of ¢, the first two relations give, respectively,

© © 1 1 .
4y Y (=1 ( e 2na> + 3 Glyed) — {Glyci),

n=1m=1

®) ~ 1 i
4,,21 ,,,Zl( b { it Q=D 2m—1-(@n- l)ci}

= (1 + c)lGlci) — LG + deiled).

The differences of the first two relations and the last two relations give, respectively,

4 —1 m+n
n; m;( ) <2m ~ 1+ 2nci * 2m -1 — 2nci>

= — cillei) + (G + dei) — (e,
0 o0 n 1 _ 1
4,,\:/:1 m;(_ 2 {2m +@n—1ci  2m— (2n — l)ci}

= = e + L4 + eilei) — UGieled

These relations lead to

1 1 1
() = — 3 I {Glzei) + e {Glgei),
1
V()= —— (1 + ci){(3hci) + 7 UE + Seiliei),
(10) 1 |
I¥(c) = 5 — —C(2| ci) + %C(i + Seilci) — ﬂéﬁlcﬂ,
II*(c) = 2—ln C(%la) — 517"5 C(% + icilci) + —2}7—1: C(ﬁcﬂci).
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It is noted that the order of summation of the various double series in this
section is not interchangeable. With the values of the Weierstrass zeta and elliptic
functions at quarter and half periods given in the paper [2], the sums of the six
series in (4) and (10) can be expressed in closed form in terms of o, when ¢ = 1 and

in terms of 6, whenc¢ = ﬁ orl /\ﬁ. The results are shown in Table 1, in which the
following abbreviations are used:

u = (15q,)"2, v = (3504)"°,

(11) B, = (6/3 + 6/2 + 2/6 + 32, B, = (6./3 + 6/2 — 2/6 — 3)1”2,

B, = (6/3 — 6/2 +2./6 — 3)'2, B, =(6/3 — 6/2 — 2,/6 + 3)'2.

TABLE 1
Values of series in (1) and (2) for s = 1

¢ 11,(¢) 1V,(0) 113(0)

1 - 1 1
1 ——+»—\/‘u — U i—%\/;
N B N T RV

2 8=n
1

I NEER - o
-5+ Zis”‘*ﬂ ‘—8}—-3”4\ﬁ)v 57 5B - B,)\/3v

Sl

¢ 11 (c) 140 13(c)

Cl 1o 12
— ——4+-—=u - — =
2wV 6 4n’ 2 2n?
S : 1 2/3+1 L /26 +
3| —(B,-B —— D R S S
V3| ga(Ba = BV 6" e U 2 872
1 1 1 2/3-1 1 /23 -3
— | —(B, - B3 B I K
NE g B~ BV 6" 1en T 2 8n

3. Summation of the series when s 2 2. Define, for double periods 2w = 1
and 2w’ = ci,

. 3 1
0";8((31) Z (m-l-—nci)z_g’ S é 2,
(12 . |
Wzlci) = ) s 23,

T s
e — o (2 — m — nci)’

where the prime on the first summation sign denotes the omission of simul-
taneous zeros of m and n from the double summation. The function W, thus
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defined is an elliptic function of double periods 1 and ci. Furthermore, denote
fors > 1,

0 1 (27'C)ZS
S = —_— =
2s n; n® "~ 2(2s)!
© (__ l)n—l (223—1 _ 1)n2s
S* = ==
2s ngl nZs (25)' 2s°
(13) 0 |
U = —— = 1 —_——
2s ngl (271 _ 1)25 ( 223)S2s’
© (_l)n—l 1/ 2s5—1 EZ—
U* = = _|Z _T2s-2
251 ,.; @n—1»"t 7 2\2 2s — 2V

where B, and E,__, are Bernoulli and Euler’s numbers, respectively. The first few
valuesare B, = 1/6,B, = 1/30, B, = 1/42;and E, = 1,E, = 1, E, = 5. Note that
B, and B, in (11) have different meanings.

To sum the desired series in (1), the same method as in the paper [1] is em-

ployed. The resulting alternating double series is further decomposed into positive
double series. We find for s > 2,

(14)

S S* _1.& 0 © 1 1
Z 25, 26154(€) = (ncz);s_ ) > Z{ Fyrins - }

2002 lm + 2nei)® 0 (m — 2nci)®

__1)5 o) e 1 1
"Zl mzl [{m + ( 1)01}2’ {m — (2n — l)ci}zs}

Z — 1 1A2s,2kII>;k(C)

(- )szzsii{ L, 1 }

W2 l2m =1+ dnei)® T (2m — 1 — 4nci)*

_1s22soo © 1 1
(= ) 5 Z[ ]

a2 L em =1+ 2020 l)u}zs {2m — 1 — 2(2n — Dci}*

where the coefficients 4, ,, have been tabulated in the paper [1]. In particular,
A, = 1. Similarly, it can be shown that the preceding double series can be

expressed in terms of the function W, (z|2ci) at half periods. The results are, for
s =2,

—1) —1) s—1
150 = S s, + S s eiizen) - o3,2e} — X 4, L1800,
n 2n P
22s
(15) I (c) = r U, + 2 — W, (5 + cil2ci) — W, (312¢i)}

s—1

— 2 (=17 A, T 0),

k=1
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in which ¢%, can be expressed in terms of W, _as follows: For s = 2

1
(16) o3 (2ci) = 7w (W, (512¢i) + W, (cil2ci) + W, (& + ci|2ci)}
To proceed further, let

1 a»-2 n 2 12 Az 12k-1
(2s — 2)! dx* 2 sinh mx sinh?*~ ' nx’
17 o
(17) 1 dr-?2 n 251 Z et Ay 12k 1
(2s — 2)! dx**~2 cosh mx

cosh?*~ 1 nx’

where 4, ,,_, are coefficients to be determined. It is easy to see that 4

2s—1,25—1
1. Using the partial fraction decompositions in (5), we similarly find for s = 2
X (=
k=1

I)H 1A2s—1,2k— 1 SR (9)

_( 1) 2Zs 1 Y 1 ]

- nzl mzl (2m -1 + 2n0i)2sw1 * (2m -1 - 271(71.)25—1 ’
Z (—1)k+1A2s—1,2k-—IIV2k—1(C)
k=1

(01)3225 1 o ©

1
Zs -1 nzl mzl ( [{zm .

1+ 2n — Dei}* !

18 1
(18) 2m—1—Q2n— i} |
Z ( 1)k+1A25—1,2k~1H$2ﬁk—-1(C)
k=1

(__ 1)\22s 1 w

o0

m+n 1
7.52s—1 Z Z ( {(zm

n=1m=1

1
1+ 2nci)®*™ ' 2m—1— 2nci)23“}’
2 25— 1
Z A25—1,2k-—1111§k'1(c) = ( ) Ul-1
k=1

©

i(—1 s22s—1 o0 g 1
+ L;;%faw 2 (—1)'"“[

R 2m + (2n — ci}* !

1

{2m — (2n — l)ci}z“'_l}
These double series can be expressed in terms of the function W, _,. By decom-
posing the double series representing this function, we have for s = 2
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1 -
4551 W,o_ 1 (Glei) = U3, _,
—1)
nZ1 mzl( { — 1 + 4nci)*~! * 2m —1— 4nci)2“’“1}’
1 w
42s—1 Wy 1(4 ZCl|Cl) = Z
=1 m—l

1 1
‘[{2m — 1+ (4n = 2)ci}>! * {2m — 1 ~ (4n — 2)ci}25""1]’

1 s s
P W2s—1(ZCl|“)‘“"62s 1U°§s ;

——ngl mgl(_l) [{4 @n — Deiy>* ™" {4m — (2n — l)ci}zs‘l]’

! e
a=1 W G+ deile) = =Y Y (=
=1 m=1

1 1
'[{4'" =2+ @n—Deiy® ™1 {4m — 2 — (2n — l)ci}““]'

Consequently, the following relations are obtained for s = 2:

22\ 1 w. B (i|l()l.) s—1 ]
II = — U* —2sm 141270 S DALY PO | G ,
25-1(€) 2 2s-1 T Qn)>1 kgl( ) 25— 1,26~ 111 1(€)
Wy (& + dciel) ! i
Vo) = 2 (lzn)Z\ 41 2=~ Z(““l) +kA2s~1.2k—11V2k—1(C)a
k=1
2n! W Glei) | Wau_ (4 + deilel)
Ilgs* 1(6‘) = ;_[_25_:1 U?s—l - (22,”)125{1 = (57:)25'—21
20
(20) .
- Z (- 1)s+kA2s-I‘Zk—lllgk—l(CL
k=1
i(—1y
15,y (c) = — (_2;;2}_1 {Wasot 4Cl|C’) Wi, - 1( 4C’|U)}

s—1
- Z Ap- 1,2k— 1HI§k~ 1(c).
k=1

It is noted that, unlike those in the previous section, the order of summation
of the various double series in this section is interchangeable. To evaluate the
coefficients 4,,_, ,,_,, we differentiate both sides of either equation in (17) twice
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and equate the coefficients. The following recurrence relation is obtained for
s=land1 £k <s:

(21)

1
Agst1,26-1 = Z—S(is_——_l) {(2k — 2)(2k — 3)Azs—1, k-3 + 2k — 1)2A2s—1,2k—-1}'

In particular, for s = 1,
(22)

Azs—1,25—1 = 1.

It is thus seen that the desired series in (1) and (2) can be evaluated recurrently
from (15) and (20) by using the values of the series in Table 1 and the values of
W, (z|2ci) at half periods or the values of W, _ (z|ci) and W,,_,(z|4ci) at quarter and
half periods. In general, the function W, can be evaluated successively from the
values of W,, W, and W, by using the following recurrence relation:

(23)

s —2(s—3)F,=F,F,_,+F,;F,_y+F,F,_, + -+ F,_,F,, s=5,
where
(24) F, = (s — )W (z]2e'), s=2.

Note that W, is the Weierstrass elliptic function, W, is equal to — W;/2 and W, is
given by

(25) W,(z20') = W i(z]20') — S56%2w').

With the values of W,, W, and o given in the previous paper [2], all the
desired functions of W, and W,,_, can be evaluated. Note that at half periods,
W,._1(z]2w’) = 0 for s = 2. Therefore, the sums of the desired series in (1) and (2)
can be expressed in closed form in terms of g, when ¢ = 1 and in terms of 65 when
c= \/5 orl /\/3. The values of the series for s = 2 and s = 3 are shown in Table 2,
in which the same abbreviations as in (11) are used. Table 3 shows the values of
A 2s—1,2k— 1"

Postscript. It is noted that the expressions of B, + B, and B, + B, involved

TABLE 3
Values of Ay | -y

B 1 2 3 4 5 6
6 1/362880  7381/18,14400  2497/15120  121/120  11/6 1
5 1/40320 41/1008 161/280 32 1

4 1/720 91/360 7/6 1

3 1/24 5/6 1

2 12 1

1 1
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in some summations of the series as shown in Tables 1 and 2 can further be sim-
plified to the following form:

B, + B, = 4.3 B, — B, =342V /3 + 1),

(26) B, + By = 4.3V B, — By =3Y%212(/3 — 1.
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ASYMPTOTIC EQUIVALENCE OF NONLINEAR
DIFFERENTIAL EQUATIONS IN BANACH SPACES*

S. R. BERNFELD,t T. G. HALLAM} aND V. LAKSHMIKANTHAMY

Abstract. New concepts of asymptotic equivalence of differential equations in Banach spaces
are introduced. Our techniques use the comparison theorem and a result on asymptotic equilibrium in
Banach spaces. As an application we extend a nonlinear perturbation result of A. G. Kartsatos.

1. Introduction. Many results have been obtained on the asymptotic re-
lationship between the solutions of a differential equation and a perturbation of
that equation (see the references). One technique that is often employed in con-
nection with this problem is to utilize a variation of parameters formula in con-
junction with a fixed-point theorem. The articles [4], [5], [7]-[9], [12], [13] treat
linear perturbation problems using this approach, while the papers [1]-[3],[11]
employ the Alekseev formula as a tool for discussing nonlinear perturbation
problems.

Another procedure employed in asymptotic behavior problems for differ-
ential equations is the comparison principle. It has also been used coupled with
fixed-point theorems; see [4], [7], [9],[12]. In this paper, we present a new ap-
proach to the asymptotic equilibrium problem in differential equations. Our
technique uses the comparison principle and employs a known result on asymp-
totic equilibrium in a Banach space. This observation coupled with the new
concepts introduced in the definitions presents a new view of asymptotic equiv-
alence.

As an application of our work, we present an extension of a nonlinear per-
turbation result of A. G. Kartsatos [8]. Recent extensions of Kartsatos” work in
different directions may be found in [14] where a Lyapunov-like function approach
is used and in [6] where the concept of admissibility is used in conjunction with the
Schauder fixed-point theorem.

2. Definitions and preliminaries. Let R, denote the half-line [0, c0) and B

denote a real Banach space with norm | - ||. We consider the differential equations
(1) dx/dt = F(t, x),
)] dy/dt = G(1, y),

where F and G are in C[R, x B, B]. It will be tacitly assumed that solutions of (1)
and (2) exist locally. If B is locally compact, then local existence follows from the
continuity of F and G.
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We now introduce the terminology associated with the equilibrium problem.
Let A and Y, denote subsets of B.

DEerINITION 1. The differential equations (1) and (2) possess an A-terminal
correspondence with respect to Y, provided for each a € A and y, € Y, there exists
at, = T4(a, y,) with the property that corresponding to any solution y = y(t, 7y, y,)
of (2), there is an x, € B such that the solution x(t, 7, x,) of (1) is defined on [z,, o0)
and satisfies

lim x(t, T4, Xo) — Y(t, 7o, Vo) = 4.
t—
(This is the strong limit in B.)

DEerINITION 2. The equations (1) and (2) possess an A-convergent correspon-
dence with respect to Y, provided for each ae A and y, € Y,, there exists a T,
= Ty(a, yo) = 0 with the property that corresponding to any solution y(t, t,, ¥,)
of (2) with t, = Ty, there is a solution x(t, t,, x,) of (1) valid for t € [¢,, o0), with
Xy — Yo = a, and which satisfies

lim x(t, ty, x4) — Y(t, ty, yo) = ¢ for some ce B.
t— o

If Y, = B, the qualifying phrase—with respect to Y,—will be omitted.

DEerINITION 3. The equations (1) and (2) are in A-asymptotic equilibrium
with respect to Y, if (1) and (2) possess an A-terminal correspondence with respect to
Y, and an A-convergent correspondence with respect to Y.

DErINITION 4. If (1) and (2) possess an A-terminal correspondence with respect
to Y, and t, = 14(y,) for all ae A, then (1) and (2) possess a uniform A-terminal
correspondence, with respect to Y.

DEerFNITION 5. If (1) and (2) possess an A-convergent correspondence with
respect to Y, and T, = T;(y,) for all a€ 4, then (1) and (2) possess a uniform A-
convergent correspondence with respect to Y.

DerFINITION 6. If (1) and (2) possess a uniform A4-terminal correspondence
with respect to Y, and a uniform A-convergent correspondence with respect to
Y,, then (1) and (2) are in uniform A-asymptotic equilibrium with respect to Y.

The above definitions are “eventual” in the sense that 7, and T, need not be
zero. However, we will not clutter the definitions by adding this qualifier.

Some examples are given to demonstrate that the above concepts are distinct.

Example. Let n > 1 denote an odd positive integer. Consider the differential
equation

3) dx/dt = a(t)x";

in (3), xe R, te R, and a(t) is a positive continuous function defined for te R,
with [ a(t) dt < co. The structure of the solution space of equation (3) for initial
positions in Y, = R, — {0} is as follows. There is a solution ¢ = ¢(¢) of (3) that is
valid on R, with the property that lim,_, , ¢(t) = co. This function ¢ separates the
bounded solutions of (3) from the solutions with a finite escape time.

If A is any compact subset of R, — {0}, then (3) and

“) dw/dt = 0

are in uniform A-asymptotic equilibrium with respect to Y,. To verify this let
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Xo € Yy; then, choose Ty(x,) = t4(x,) such that ¢(t) — x, > d(A4), t = Ty(x,),
where d(A) denotes the diameter of A. This choice of T, is possible because
lim,, , ¢(t) = co. The solution x(t,t,,x,), where t, 2 Ty, x; = xq + a, a€ A,
of (3) satisfies lim,_, , x(¢, ¢y, x;) = x,, for some x_. Thus, (3) and (4) possess a
uniform A-convergence correspondence with respect to Y.

Given any terminal value x_ € Y,, there is a solution x(t, t,, x,) of (3) with
o X(t, Tgs Xo) = X, If a€ A is prescribed, then any solution w of (4) can be
written as w = w(t, 1o, X, + a) = x, + a for some x_ . Therefore, corresponding
to any solution w of (4), there exists an x, € R such that

lim

lim x(t, Ty, Xo) — W(t, T, X, + a) = a.

t— o0
This shows that (3) and (4) possess a uniform A-terminal correspondence, which in
turn shows that (3) and (4) are in uniform A-asymptotic equilibrium.

If A = R, — {0}, then, as may be demonstrated by using similar arguments
as those above, equations (3) and (4) are in A-asymptotic equilibrium with respect
to Y,; however, neither the A-terminal nor the A-convergence correspondence
involved in the equilibrium is uniform.

3. Main results. For a prescribed set 4, it is convenient to define the set
A,={peR:p = |a| for ae A} and to consider A, as a subset of the Banach
space R. We will denote by B, the ball,

B,, = {beB: [b] < po}.

We will discuss the A-convergence correspondence. The basic tool used here
is Theorem 5.6.1 of [10, p. 161].

THEOREM 1. Assume that for each p > 0:

(11) There exists a T = T(p) = 0 such that

IF@ x)l = £, 1Ix]) (¢€[T(p), x0), xeB,,

where f, € C[[T(p), ) x [0, p), R,] and f(t,r) is monotonically nondecreasing in
r for each fixed t € [T(p), c0); and

(lil) For each ry, 0 < r, < p, there exists a t, = ty(ro) = T(p) such that the
maximal solution r(t, t,, ry) of the initial value problem

dr/dt = f(t, 1),

Hty) = 1o

(5,)

satisfies r(t, to, ro) < p, t = t,.
Then for any set A, equations (1) and

6) du/dt =0 (teR,,ueB)

possess an
(liii) A-convergence correspondence and
(1iv) a uniform A-convergence correspondence.
Proof. We will establish (1iii) first. Let u, € B and a€ A be given and define

p = llugll + llall + 1. Select T, = to(llugll + llall), where ty(-) is defined in
hypothesis (1ii).
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To establish that (1) and (6) possess an A-convergent correspondence, it
suffices to show that lim,_, , x(t, ty, X,) = x,, exists where t, = T, and x, = u,
+ a. Once the existence of x, is demonstrated, then it follows that the asymptotic
limit c is determined by ¢ = uy — x,.

Theorem 5.6.1 of [10, p. 161] implies that x , exists; this completes the proof of
conclusion (1iii).

Conclusion (1iv) is obtained in an analogous fashion as (1iii). In this situation,
Xo€ B and ae A are prescribed. Result (1iv) can be demonstrated by choosing
T, = to(llx, ) and using the relationships u, = x, + aandc = x5 + a — x,. This
completes the proof of Theorem 1.

Next, we obtain some sufficient conditions for A-terminal correspondences.
A terminal analogue (Theorem 5.6.2 of [10, p. 164]) of Theorem 5.6.1 will be em-
ployed in the proof.

THEOREM 2. Assume that

(21) hypotheses (1i) and (1ii) are satisfied,
(2ii) F maps bounded sets into relatively compact sets.
Then, for any set A,

(2iii) equations (1) and (6) possess an A-terminal correspondence, and

(2iv) equations (6) and (1) possess a uniform A-terminal correspondence.

Proof. First, we indicate the proof of (2iii). Let a € 4 and u,, € B be given; con-
sider p = 2[|luy| + llall]. Corresponding to r, = |luy| + |lall, there exists a
function t, = t,(r,) such that the maximal solution r(¢, t,, r,) of (5,) is bounded on
[ty, o). Let r, = lim,_  #(t, tg, 1).

Choose J sufficiently large so that [ f,(1,2r,) dt < r,,. The existence of such
a J is demonstrated in the proof of Theorem 5.6.2 of [10, p. 164].

We now select t, = 74(a, uy) = max [t,(r,), J]. For such a t,, the proof of
Theorem 5.6.2 can again be used to show that there exists an x, € B with the pro-
perty that lim,_,  x(¢, 7., X,) = U, + a. This establishes the conclusion (2iii).

The conclusion (2iv) is obtained through an application of Theorem 5.6.1.
The details are omitted.

We now turn to equations (1) and (2) and the A-asymptotic equilibrium
problem.

THEOREM 3. Assume that

(3i1) F, Ge C[R, x B, B] and maps bounded sets into relatively compact sets;

(3ii) for each p > O there exists a T = T(p) Z 0 such that for t 2 T, ve B,,,

and each z(t)e B, t € [T, o),

(7 IF(t, z(t) + v) — G(t, z))| = h,(t, llv]]),
where h, e C[[T, o0) x [0, p], R.], h(t,r) is monotonic nondecreasing in r for each
teR;

(3iii) for each p > 0 and each ry,ry < p, there exists a t, = ty(ry) = T(p)
such that the maximal solution r(t, t, r,) of the initial value problem

dr/dt = h(t,r),
8,

H(to) = 1o

satisfies r(t, ty,ry) < p,t€[ty, ). Then, for any set A, equations (1) and (2) are in
A-asymptotic equilibrium.
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Proof. For any solution y(t) of (2), we consider z = x — y(t). If x satisfies (1),
it follows that z satisfies the equation

9) dz/dt = F(t, z + y(t)) — G(t, y(1)).

The equations (8,) and (9) are of the type considered in Theorems 1 and 2. By
virtue of the hypotheses (3i), (3ii) and (3iii), Theorems 1 and 2 imply that the
equations (9) and (6) are in 4-asymptotic equilibrium. Recalling that z = x — y(t),
a direct verification shows that (1) and (2) are in A-asymptotic equilibrium.

We now consider the situation when the hypotheses of Theorems 1 and 2 are
not satisfied globally. The restrictions that this specification places upon the sets
A and Y, are of special interest.

THEOREM 4. Assume that

(41) for (fixed)p, > 0and T > 0,

IF@ )l = f,@lxl) (=T, xeB,),

where f, € C[[T, o) x [0,p,],R.] and f,(t,r) is nondecreasing in r for fixed
te[T, o0);

(4ii) Let 0 < py < py;foreachry,0 < ry < po,thereexistsaty = to(rg) = T
such that the maximal solution r(t,ty,r,) of the initial value problem (5,) with
r(ty) = ro satisfies r(t, ty, o) < Po-

Then, for the sets A = B, and Y, = B,, where a; + «, < p,, equations (1) and
(6) possess an A-convergence correspondence with respect to Y,. Furthermore, if, in
addition to the above hypotheses, F maps bounded sets into relatively compact sets,
then (1) and (6) possess an A-terminal correspondence with respect to Y.

Proof. The proof follows readily from the arguments given in Theorems 3 and
4. One difference is in the choice of J in Theorem 2. In this instance choose J
sufficiently large so that

[ s5.00d5 <, = po.
J

An analogue of Theorem 3 with restricted domains can be readily composed.
THEOREM 5. Assume that

(51) condition (31) is satisfied;

(511) for (fixed) p; > 0 and T = 0, the inequality

IF(2, 2(2) + v) — G(t, ()] = h,, (2, [v]])

is satisfied for t = T, ve B, , and each z(t)€ B, t = T. The function h, € C[[T, c0)
x [0, p,], R,] and h, (t, r) is monotone nondecreasing in r for each te R, .

(511) Let 0 < p, < py; suppose that for each ry, 0 < ry < p,, there exists a
to = to(rg) 2 T such that the maximal solution r(t,t,,r,) of (8,) satisfies r(t,
to>To) < Po-

Then, for A = B, and Y, = B,, where a; + o, < p,, equations (1) and (2) are
in A-asymptotic equilibrium with respect to Y.

4. Application. As a corollary to Theorem 5, we shall indicate a result on the
nonlinear perturbation of a nonlinear system of differential equations. Consider
B = R" and F(t, x) = G(t, x) + H(t, x). Suppose that y = y(t), a solution of (2)
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defined on [T, ), and p,, a positive constant, are given. Let
[H@ y0) + o)l = M) @2 T, vl £ py)

and

1G(, y(t) + v) — G, Ye)| < alt)g(lv]) =T, vl < py).

We assume that 4 and ¢ are in C[[T, ), R,]1N L'[[T, ), R,]. Define for
0=r=py, Gr) = supgg,, &) and K = G(p,).

Choose t sufficiently large so that for some p,, 0 < Po < Py, we have
ff" [Ka(s) + As)] ds < p; — po- This property implies that the maximal solu-
tion r(t, ty, ) of

dr/dt = o(t)G(r) + At)

exists and is bounded on [t, ®0) by p, provided r, < p,. For «; = 0 and «, =20
witha, + o, < p,y, Theorem 5 implies that equations (1) and (2) are B, -asymptoti-
cally equivalent with respect to B,,.

The above application extends the previously mentioned result of Kartsatos
[8] who considered an A-terminal correspondence with 4 = B, = {0}.
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BOUNDS FOR THE SOLUTIONS OF POISSON PROBLEMS AND
APPLICATIONS TO NONLINEAR EIGENVALUE PROBLEMS*

CATHERINE BANDLEfY

Abstract. Pointwise upper bounds for the solutions of Poisson problems are given. These bounds
together with the method of lower and upper solutions are then used to estimate the spectrum for a
class of nonlinear eigenvalue problems.

1.1. Introduction. The first part of this paper deals with two-dimensional
Poisson problems. Sharp pointwise bounds for solutions satisfying different kinds
of boundary conditions are constructed. The results extend a theorem by Polya
and Szegb [9, p. 115] for the torsion problem Au = —2 in 9, u = 0 on 02. It
states that 0 < 2nu £ A, where A stands for the area of the domain. Equality
holds on the right if and only if 2 is a circle and u is taken at the center. Other
results in this direction were also obtained by Payne [8]. Our results are based on
geometrical isoperimetric inequalities by Alexandrow [1] and some generalizations
announced in [5]. Theorem 2.1 is already mentioned in [5] without proof.

The second part is concerned with nonlinear boundary value problems
of the type Au + Ap(x)f(u) = 0. This kind of problem arises in the theory of
thermal ignition of a chemically active mixture of gases. With the help of the method
of lower and upper solutions [10] and the results of §§ 1 and 2, we give estimates for
the least upper bound 4., of the values of A for which the nonlinear problem has a
solution. The value 4., is the critical explosion parameter for the unsteady problem,
that is, for 4 < A, there exists a stable solution of the time-dependent equation [7].
The problem of estimating 4., has been studied by many authors [3], [4], [6],
[71,[11]. For other properties of 4.,, especially those concerning the uniqueness of
solutions and their stability, we refer to [6],[7]; see also [3].

1.2. Bounds for the solutions of Poisson problems. Let & be a simply con-
nected domain in the plane whose boundary 02 consists of piecewise analytic arcs.
Let x = (x,, x,) stand for a generic point in R2. Consider in & a positive function
p(x) satisfying the differential inequality

(11 Alogp +2Cp =20 in 2.

Here, C denotes an arbitrary real number. We define
M = j p(x)dx (dx = dx,dx;).
9

This section deals with the Poisson problem
Ap(x) = —p(x) in 2,
o(x) =0 on 09.

(L.2)

Next, we shall introduce the complex variable z = x, + ix, and interpret problem
(1.2) in the complex z-plane. We set ¢(x) = ¢(z). Let w(z) be an analytic function

* Received by the editors November 29, 1973.
+ Department of Mathematics, Eidgendssische Technische Hochschule, Ziirich, Switzerland.
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which maps the domain & conformally onto the domain % = w(Z) of the complex

w-plane. By z(w) we denote the inverse function of w(z). Problem (1.2) is equivalent
to the problem

Avp(w) = —p(w) in2,

(1.2 ~
dw) =0 on 09,

where
(w) = @(z(w)) and p(w) = p(z(w))| dz/dw|>.

Since log |dz/dw|? is a harmonic function, it follows that g(w) satisfies the differen-
tial inequality A,, log p(w) + 2Cp(w) = 0in 2.

DEerINITION. We shall say that (2, p). is conformally equwalent to (2, P) if
there exists a conformal mapping z(w):% — 2 such that @ = z(&) and P(w)
= p(z(w))ldz/dw]*.

Remark. Let .4 be a piece of a Riemann manifold given in the following
isothermic representation. In the domain D of the x-plane, a Riemann metric is
defined by the line element do? = p(x)[dx? + dx3]. In this parameter system the
Beltrami operator is given by L = (1/p(x))A. For the Gaussian curvature of .# we
have K(x) = —[Alog p(x)]/2p(x). Problem (1.2) can now be written as L[¢(x)]
= —1in ., ¢(x) = 0 on d.4. Condition (1.1) means that K(x) < C on ./Z.

THEOREM 1.1. If CM < 4, then

1 47
1.3 < T
(13) o) = clog e

Equality holds if and only if (2, p) is conformally equivalent to (S, p), where S is the
circle r < R (r, 0 polar coordinates) and p = (1 + Cr?/4)~2. In this case ¢(x)
takes its maximum at the center.

Proof. Let D(t) = {xe D; ¢(x) > t} and let I'(t) = {x e D; ¢(x) = t}. Because
of the boundary condition it is clear that oD(t) = I'(t). We shall write A(¢)
= (9@ pdx and L(t) = [, f ds, where ds denotes the Euclidean line element

Jdx? + dxz By the Schwarz inequality we have
0g

(1.4) L(,, on| % Lnlaw/am Umfds] '

Here n is the outer normal. Because of (1.2) it follows that

(1.5) j
@)
Observing that

o9

n ds = A(t).

) A
ds = — —(t),
Lw [2g/an] i
we conclude that

1.6) - A(t)d—(t) > LA(t).
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Applying Alexandrow’s geometrical inequality [1, p. 514],

(1.7) L(t) = (4n — CA)A(),
we get

dA(t)
(1.8) T a = 4n — CA(1).

Therefore, e “[A(t) — 4n/C] is a nonincreasing function of t. If CM < 4r, it
follows that

1lo —4—n—>max (x)
C ®an—cm =GP

which yields (1.3). We now observe that in (1.7) the equality sign holds if and only
if (D(t), p(x)) is conformally equivalent (isometric) to a geodesic circle on a surface
of constant curvature C. A parametric representation of the extremal case is given
in the following form. Let S(¢) be the circle

o 440
= 4% = CAQ)
and
dé? = p(r) ds?

be the Riemannian metric. If D = § = S(0) and p(x) = p(r), a straightforward
calculation yields for the solution of (1.2)

47
(dn — CM)(1 + Cr?/4y

where M = nR?(1 + XCR?)™!. At the origin we have

olr) = % log

1 I 4n
c%an —cm
which completes the proof of the theorem.
A slightly different proof of this theorem is found in [3]. If C = 0, we obtain

@(x) = M/4rn, which is an extension of results in [8], [9]. For other properties of
(1.2), especially energy estimates, we refer to [2].

®(0) =

2. Generalizations. Let 2 and p satisfy the same assumptions as in § 1. We
now suppose that 02 is given in its parametric representation x(s), where s denotes
the length of 02 between the points x(0) and x(s). d2 is oriented in the positive
sense. By «(s) we denote the curvature of 2. It is defined everywhere except at
the corners where it has to be interpreted as a Dirac measure. n stands for the
outer normal to 02. 02 is subdivided into two connected arcs

Iy ={x(s);0<s < a}
and

r0=69‘r1.
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Let

i) = j [x(s) 32 10g p] ds

for each set n = I';. Clearly, u(n) defines an additive measure on I';. We write
p(Ty) = max,cr, u(n) for its positive component.

The geometric interpretation of y is as follows. Consider the Riemann mani-
fold .# described in § 1. Then (1 /\/;—)){x + 4(0/0n) log p} represents the geodesic
curvature of the boundary arc I'; € 0.4.

Consider the Poisson problem with mixed boundary conditions

Ap=—p in2,

g

@1 =
n 0 onIy,
¢ =0 onTl,.

For this problem the following theorem holds.
THEOREM 2.1. Let p*(I')) = n — o < mwand let CM < 20. Then

1 2a

(2.2) o(x) < Clog 3% — CM’
Equality holds if and only if (2, p) is conformally equivalent to (S, p), where § is the
circular sector {0 < r < R,0 < 6 < «} with the boundary arcs I’y = 8, ={0=0
and 0 =0} and Ty=088,={r =R}, R*=4M/(2x — CM), and p = (1 + Cr?/4)~2.
In this case @(x) achieves its maximum at the origin.

Proof. Using the same notation as in the proof of Theorem 1.1, we show that
(1.6) holds also in this case. Here, I'(¢) is not necessarily a closed level line. Alexan-
drow’s inequality (1.7) has therefore to be replaced by the inequality [5]

(2.3) L3(t) = (Qu — CA(t)A().
Equality holds if and only if (D(t), p) is conformally equivalent to (S(t), p), where

1/2
§(t)={r§R(t)= [ﬁ%} ,ogaga}

with I'(t) = 88,(t) = {r = R(t)}. The remaining part of the proof is the same as
for Theorem 1.1. It will therefore be omitted.

If C = 0, inequality (2.2) yields the estimate @(x) < M/2a. If I} = &, then
a = m, and (2.2) leads to ¢(x) < (1/C)log 2n/2r — CM), which is weaker than
(1.3)

3. Nonlinear eigenvalue problems. In this section we are concerned with a
class of nonlinear Dirichlet problems of the following type:

Au + Ap(x)f(u) =0 in 9,
u=0 ondZ

(3.1
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9 and p are defined as in § 1. We suppose f(t) to satisfy the following conditions:

H-0 f(¢) is continuous and positive for te R,
H-1 f) >0,
H-2 f(t) > 0 and is continuous for te R*.

Several authors [6], [7] were able to show that problem (3.1) has a positive solution
for all 1e(0, A,). 4, is the least upper bound such that problem (3.1) has a solution
for each 1 < A, whereas it is not solvable for 1 > /. A, is called the critical
explosion parameter [11].

Let

Ap +vpp =0 in 9,
¢ =0 on oo

be the problem of an inhomogeneous membrane with mass density p(x). With v
we denote its lowest eigenvalue. As Hudjaev [6] showed, Barta’s simple argument
using Green’s identity can be used here and yields

(3.2)

v

33 A -
ey inf [0/

IIA

cr

Let
m= in(f) Lf()/t] < 0.

Then we have the following result.

THEOREM 3.1. Under the assumption CM < 4, A, is bounded from below by
the expression

C 4n -1
3.4 Cllog— " b <
G4 m{ 8 4n — CM} = for

Proof. It suffices to prove the existence of a solution of (3.1) for the value
Ao = (C/m){log 4n/(4n — CM)}~'. For this purpose we use the method of upper
and lower solutions [6], [10]. /(x) is called an upper solution to problem (3.1) if

A A < i A
(35) v+ ipfW)=0 in2

Y =0 on i

If there exists a positive upper solution then problem (3.1) has a solution [6], [10]
such that u < . Consider the problem A¢p + Ap(x)f(t) = 0in 2, ¢ = 0 on 02,
where t is an arbitrary, but fixed positive real number. By Theorem 1.1 we have

Af(t) 4n _
o9 =5 mgLn_CM)=Bm.

If Bt) <t ie, if A <(t-C/f(t))- {logdn/(4n — CM)} "', then ¢(x) satisfies (3.5)
and there exists a solution of (3.1). Since t was arbitrary, we can set t/f(t) = m™*,
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which is the optimal choice. By the maximum principle, ¢(x) is positive. For each
A £ 1o we have constructed a positive upper solution. The assertion is therefore
established.

Example. Let 9 = {x;|x| £ 2/\/6, C >0} and p = (1 + Cr?/4)~2 In this
case CM = 27 and v = 2C. It then follows from (3.3) and (3.4) that 1.442.,(C/m)
S Ao = (2C/m).

Remark. If f(t) is convex, then 4, cannot coincide with A.,. We shall prove this
statement by contradiction. Let us assume that 1, = A.,. Then by the previous
remarks on upper solutions, u., (= solution of (3.1) corresponding to A.,) exists
and u, < ¢. It is known [7], [6], [3] that in this case 4., is equal to the lowest
eigenvalue p of the linearized problem

Av + ppflu,)v =0 in2, v=0ondi%

The eigenfunction v corresponding to p = 4., does not change the sign. We shall
assume that v(x) = 0 in 2. From the construction of ¢ it follows that the domain
where A¢ + A..pf(¢) < 0 has a positive Lebesgue measure. By Green’s identity
we have

0= L DA — ) dx — L (¢ — ue)Avdx
< - lcr Up(f(¢) - f(ucr)) dx + }‘cr B Upft(“cr)(¢ - ucr) dx < 0.
D

For the last inequality we used the convexity of f. We have obtained a contradiction.
Hence 1, # A,.

4. Generalizations. We now suppose that 9, p, I'; and I'; satisfy the assump-
tions of § 2. Consider the nonlinear problem

Au + Ap(x)f(u) =0 in 2,
4.1) =0 only,

6~u +o(xu=0 only,
on

where f(¢) satisfies the conditions H-0, H-1 and H-2, and where (x) is a nonnega-
tive Holder continuous function on I',. This problem, too, is solvable in an
interval I = (0, /,,) but for no A > ;. Let # denote the lowest eigenvalue of the
linear problem

Ad +pdp=0 in2, ¢=0o0nTl,,

Q‘é+6$=0 onTl,.
on

In analogy to (3.3) we have 1., < V/m.
In exactly the same way as Theorem 3.1, except that we use inequality (2.2)
instead of (1.3), we prove the following.
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THEOREM 4.1. Let uT)=n—o<n and CM < 20. Then the following
estimate holds for A, :

C 2q -t
= - <1
m{log 2 — CM} = A

The remark at the end of § 3 applies also to Theorem 4.1.
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DEPENDENCE OF A NONLINEAR INTEGRODIFFERENTIAL
SYSTEM ON PARAMETERS*

T. A. BRONIKOWSKIt

Abstract. In this paper we study the dependence on parameters of the solutions of a class of
nonlinear systems of integrodifferential equations arising in nuclear reactor dynamics. Continuity
with respect to a small parameter (physically, the thermal conductivity), a large parameter and initial
conditions is established.

1. Introduction. We consider the following real, nonlinear integrodifferential
systemfor0 £ x £ ¢; 0=t < o0

u'(t) = ~Jw a(x)T(x, t) dx,

0

(1.1)
Ti(x, 1) = (B(X)T(x, 1)), — 4(x)T(x, 1) + n(x)o(u(1)),

together with initial and boundary conditions

(1.2) u0) = uy, T(x,0) = f(x),

(1.3) a,;TO,1) + a,T0,t) = b, T(c,t) + bT(c,1) =0

in a number of settings. In this system «, #, f, g, b and ¢ are given functions; u,,
a,, a,, by, b,, c are constants with u, arbitrary, ¢ > 0, |a,| + |a,| > 0, |b,| + |b,]
> 0, the prime indicates differentiation with respect to ¢. This system is of physical
interest as a dynamic model of a one-dimensional continuous medium nuclear
reactor. For the physical significance of the quantities in (1.1), the reader should
consult the references and their bibliographies.

Systems similar to (1.1) have been studied in a variety of settings by Levin
and Nohel [4], [5], [6], [7], Bronikowski [1],[2] and more recently by Bronikowski,
Hall and Nohel [3]. Most results in these papers concerned the existence and
asymptotic behavior of solutions as t — oo. Here our prime concern is the de-
pendence of solutions on various quantities appearing in the system.

We will assume throughout this paper that b, b, g € C[0, c], b(x) > 0,9(x) = 0
for all x € [0, c], and thata,a, < 0, b;b, = 0. Then the Sturm-Liouville problem

(by) + (A —q)y =0,
a,y(0) + a,y'(0) =0,  byy(c) + byy(c) = 0,

which is associated with (1.1b) in a natural way, has a countable set of simple
nonnegative eigenvalues, A,, n=0,1,2,---, satisfying 4, = n’n?L"? + 0(1)
(n — o0), where L = [¢ b(x)~'/? dx. We will assume that the corresponding eigen-
functions, y,(x), are normalized and will denote by g, the Fourier coefficients of
any suitable function g; thus g, = {¢ gy,. The smallest eigenvalue will be positive

(1.4)

* Received by the editors November 19, 1973, and in revised form February 19, 1974.
+ Department of Mathematics, Marquette University, Milwaukee, Wisconsin 53233.
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if either ¢ = 0 or |a,| + |b;| > 0. If neither condition is true, then O is an eigen-
value, denoted by A, with corresponding y,(x) = ¢~ /2. In any event, 4, denotes
the smallest positive eigenvalue. The principal effect of 0 as an eigenvalue is in
the asymptotic behavior of solutions as t — co. It is of only very minor concern
here.

Regarding existence and uniqueness of solutions of (1.1), we have the fol-
lowing theorem [3, first conclusions of Thms. 1 and 2, based on Lemma 1].

THEOREM A. Let the following conditions be satisfied :

ceC'(—o, ), uo(u)>0ifus#0,

(1.5) x
S(x) = fo ou)du - o0 as|x| — oo,

(1.6) a, 1, f,(bn'), (bf') € L,(0,¢), feC(0,¢),

f.n satisfy the boundary condition (1.4b),
(1.7) oah, = 0, n=20,1,2,---,
there exist constants ¢ £ 1, ¢ 2 1 such that
(1.8) ¢ =a,/n, ¢ foralln for which oy, > 0,
(1.9) Uy = 0— o, =1, =0.

Then (1.1) has a unique solution u(t), T(x,t) existing for 0 St < o0, 0 < x=c
satisfying (1.2) and (1.3). Moreover if (1.4) does not have 0 as an eigenvalue, then
for some constant K > 0,
(1.10) lu(t) = K, sup |[T(x,7)) = K (0=t < o).

<x<

0<x=c

If 0 is an eigenvalue of (1.4), then for some constant K > 0, u(t) satisfies (1.10a) and

There are certain modifications of these hypotheses under which (1.10) and
(1.11) may be established [3, Lemma 2], [8]. We will not utilize them, however, to
obtain our results.

The continuity of solutions of (1.1) with respect to u,, o, # and f (the functions
regarded as points in the appropriate L, space) is established in §2. All that is
required is to point out several modifications in the proof of our former result for
the linear system [1, Thm. 4]. In § 3, in order to relate some of our results to those
in [4], we consider (1.1) where b(x) = b > 0, g(x) = 0. In the physical setting b,
the thermal conductivity of the reactor medium may be small, and one is thus
led to consider the behavior of solutions as b — 0*. The linear version of Theorem
2, which describes this behavior was established in [2]. Finally, in § 4 we study the
dependence of solutions as ¢ — oo in the linear case and relate limits of these
solutions to those of [4] in Theorem 3. The extension of this result to the non-
linear system is discussed after the proof is given.

f o(u(s)) ds

(1.11) sup |T(x,t)| < K(l +
0

0=<x=c
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In [3] it was shown that u(r) and T'(x, t) satisfy certain relations which we list
here for future reference. In these equations,

kln = ocnfn’ k2n = 0yllys

and the sums are from n = 1 to oo unless otherwise noted. First, u(z) satisfies the
Volterra equation

(1.12) u(t) = uy + K,(t) + ft K,(t — t)o(u(z)) dz,
0

where, if (1.4) does not have 0 as an eigenvalue,
(1.13) K1) = Zki,,/l,,"‘(e‘*"' - 1).

If 0 is an eigenvalue of (1.4), the formula for K;(¢) must be modified by the addition
of the term —k;yt. The uniform convergence of the formally differented series in
(1.13) for t = 0 shows that u(z) satisfies the following integrodifferential equation :

(1.14) K1) + f K%t — 1)o(u(t)) dr,
where
(1.15) Ki(t) = kae“’l"‘

It has also been found convenient to express the temperature component of a
solution in the form T(x, t) = Ty(x, t) + T;(x, t), where

(1.16) Tylx.1) = ¥ fyx) e,

(1.17) Tix, 1) = f ) ¢ o(u(a)) de
0

2. Dependence on u,, o,  and f. Using the notation of [1], we let Z denote
the product space (— o0, 00) x L,(0, ¢)>. The norm of a point

P = (ug,a,n,f)eZ is |P| = lug| + [ally + lInll, + 1112,

where the subscript denotes the usual L,-norm. If for i = 1, 2, P, = (u;0, o;, #;, f;)
€ Z, then ||Aa||, denotes [lo; — o, ,, and

[Py = Pyl = luyo = zol + llAafl, + [Anll, + [1Af ],

Also, u,(t), Ti(x,t) = Tiy(x, t) + T;(x, t) will denote solutions of (1.1)~(1.3) cor-
responding to u;qy, %;, #;, f;-

THEOREM 1. Let b, 0, a;, 1;, f; satisfy the hypotheses of Theorem A. Let u,
and u,q, be arbitrary real numbers, and let 0 < § # 3/4, T> 0,0 <r < A,. Then
for some constant K > 0,

@1 @) — w0  KIP, — Pyl (uniformly for0 < ¢ < T,
(22)  [Tiu(x, 1) — Tou(x, 0 = gOIAS], (0 = t, uniformly for 0 < x < ¢),
IT,(x,1) — Toylx, 1) < h(D)|P; — Py

(uniformly for0 < x £ ¢, 0=t = T1),

2.3)
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where, if 0 is not an eigenvalue of (1.4),

(2.4) g(t) = Ke g~ (1/4+o), h(t) = Ki?/4 =2,
whereas, if 0 is an eigenvalue of (1.4),
(2.5) g =c VR4 Ke WO () = e 4 K70,

Discussion of proof. The proof is nearly the same as that of [1, Thm. 4]. It
is necessary to replace u;(7) by a(u;(7)) in the integrals and to utilize the fact that,
by (1.10a), both u(f) and u,() are bounded. If B denotes an upper bound for
lu; ()] (i = 1,2,t =z 0) and if L = sup), <|d'(y)|, then

lo(uy (1) — ouy () = Lluy (1) — uy(1)].

The insertion of this Lipschitz condition on ¢ at the appropriate step in the
calculations yields (2.1), where the constant K now depends on L. There is no
change in the derivation of (2.2), but to obtain (2.3), the introduction of the above
estimate must be made as before.

3. Dependence on b. In this section we consider (1.1) when b(x) = b > O,
q(x) = 0, and we determine the limiting behavior of solutions as b — 0*. We
explicitly indicate the dependence on b in our notation u(t, b), T(x,t, b) for a
solution. Thus the system we study is

a) u'(t,b) = —J(: ax)T(x,t,b)dx,
Ti(x, 1, b) = bT (x, 1, b) + n(x)a(u(1)),

subject to initial conditions (1.2) and boundary conditions (1.3) in which
a, = b, = 0. In this case, then,

2 sin
A = bn*n?c™2, yn(x)=\/; : Cnnx’ n=1,2,--

Our starting point is the “‘degenerate’ system obtained by setting b = 0 in (3.1),
solutions of which will be V(¢), S(x, t). Thus

V'(t) = —JC ax)S(x, t) dx,

0

3.2)
Six, 1) = n(x)a(V(1)).

The following lemma is immediate.

LEMMA. Let (1.5a) and (1.6) be satisfied. Then (3.2) has a unique solution satis-
fying (1.2) and (1.3).

Proof. Let V(1) be the unique solution of the initial value problem

(3.3) V' + (a,mpa(V) =0, V(0) =uy,  VI(0) = <o, f),

where (-, - ) is the usual L,-inner-product, and let

t

(3.4) S(x, 1) = f(x) + n(x)f a(V(r))dr.

0
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In view of

(3.5) Vi) = —Canf — <a,n>f o(V(x)) dr,
0

the pair V(1), S(x, 1) is easily verified to be the desired solution of (3.2).

Clearly the smoothness hypotheses were not necessary to establish this
lemma. We also note that if ¢ satisfies (1.5b) and if {a, > > O, then it is well
known that the solution V(t) of (3.3) is periodic. In particular, if the system is
linear, letting w = <&, 1>'/2, we obtain

Lo,
w

V(t) = sin wt + uy cos wt,

&xJ)=fu)+nu{3%{>mman—1)+E@ﬁan.
w (60,

This is, incidentally, the same as the solution of the degenerate system in [4]
where, of course, the inner product is an integral over (— o0, ).

We now describe the limiting behavior of solutions of (3.1) as b — 0*. Note
that since b > 0, the hypotheses concerning (1.4) are still satisfied.

THEOREM 2. Let a, o, n, f satisfy the hypotheses of Theorem A. Then

(3.6) lim u(t, b) = V(1), ;irr(} T(x,t,b) = S(x, 1)

b0+ -0+
for each t £0and 0 < xZc. If 0 < T < 0, 0 <X, <Xx, <c, the limits are
uniform over [0, T] and [x,, x,] X [0, T], respectively.

Proof. Notingthat<a, f> = Y k;,and (o, n) = > k,,by Parseval’s theorem,
we obtain from (1.14), (1.15), (3.5),

3.7) W(t,b) = V(1) = Ykl — e + J, + J3,

where

J = f S ol = e 0No(V () de,
(3.8) °

Ja= fo Y kane " a(V (1)) ~ o(u(t, b)) dr.

Let ¢ > 0, T > 0. Because of (1.6) the series Y k;, both converge absolutely. Let
N be such that

0

Ykl <& i=1,2.

n=N+1
Using this estimate, the inequality 1 — ¢™* < min (1, x) (x = 0), and the formula
for 4,, we obtain for i = 1,2,
(39) Dkl —e ™ =Kib+e (0=tsT),
where K, = max,_; , 3 »_, |ky/N*7?c™*T. If M > 0 denotes a bound on |a(V (1))
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(0 <t < T)and K, = Y |k,,|, then from (3.8) and (3.9) we have
|Jil < (Kb + e)MT,

(3.10) .
I3l < K, f lo(V (1)) — alu(z, b)) dr.
0

Now, in [3, Lemmas 1 and 4, Thm. 1(i)] it was shown that the bound on |u(t)| in
(1.10) depends only on o, u,, o, # and f but is independent of the function b(x)
(the constant b in our setting). In particular ju(t, b)) £2Q, 0 <t < o0, b > 0,

where
2W,
Q = max [ —640, max [|x]:S(x) = WO],
(3.11)

Wo = max (S(uo), S(—uo) + 5 ¥ 3.

(S(u) = [}y 0, ¢ and ¢ were defined in (1.8).) Now let L = sup |o'(y)| for
[yl £ max (M, 2Q).
Then forallt = 0,5 > 0,
(3.12) la(V(1)) — olu(t, b)l = LIV(1) — ult, b).
Combining (3.7)-(3.12) we obtainfor 0 £ t £ T, b > 0,
lW'(t,b) — V') = Ky(1 + MT)b + (1 + MT)e
G-13) + K,L f tlu(r,b) — V(1) dr.
0
Integrating (3.13) and applying Gronwall’s inequality we obtain for such ¢ and b,
(3.14) lu(t,b) — V(1) £ (Cie + C,b)exp (K,LT?),

where C, = (1 + MT)T, C, = K,C,. Since ¢ is arbitrary, (3.14) implies (3.6a).
Turning our attention to T(x, t, b) we first recall that under hypothesis (1.6),

(3.15) lim Ty(x,t,b) = lim Y f,y,(x) exp (—n’n?c™2bi) = f(x)
t=0+ t=0+

for all x € (0, ¢), uniformly on any closed subinterval. Interchanging the roles of
b and ¢t in (3.15), an examination of the quantifiers involved establishes

(3.16) lim Ty(x,t,b) = f(x) 0O<x<ec,t>0),
b—0*
the limit being uniformfor 0 <t £ Tand 0 < x; < x £ x, < c¢. In the same way,
(3.17) lim 3" 7,y,(x) e~ = n(x).
b—0*
In view of (3.16) and (3.4), the proof of (3.6b) depends only on showing

(3.18) lim Tyx,t,b) = y(x) f

b—0*
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To this end we write

(3.19) Tdx,t,b) — n(x) Jq o(V(t)dt =1, + 1,,
0

where

I = f 2 tay(x) €74 a(u(z, b)) — o(V(2)] dr,
0

I, = L [Z Nayu(X) €2~ — p(x)]o(V (7)) dr.

Let0<t=T,0<x;, £x=x, <c and let ¢ > 0 be given. Let M > 0 denote
a bound again for |a(V(t))] on [0, T] and also for |5(x)| on [x,, x,]. Because of
(3.6a) and (3.17) we can find a § > 0 so that the bracketed differences in both I,
and I, are, in absolute value, smaller than ¢ when 0 < b < 6 uniformly in ¢ and
x as described. Also, the series in I, is majorized by M + ¢ and so we obtain

1] £ (M + ¢)Te, I, = MTe,
which establishes (3.18) and the proof is complete.

4. Dependence on c. Levin and Nohel have studied linear and nonlinear
versions of (1.1) on the x-interval (— o0, c0) in [4], [5], [6]. In this section we will
show that the solutions on the infinite interval are, in fact, pointwise limits of
solutions on the finite interval as the length increases. One difficulty is that our
interval has been (0,¢). There are two possibilities: to restate our results for
(=c¢/2, ¢/2) or to restate theirs for (0, c0). We have chosen the latter approach.

Because of the nature of the problem considered in [4], namely constant
coefficients in the heat equation and linearity, we consider the same problem on
the finite interval and state Theorem 3 for this special case. The extension to the
nonlinear case will be discussed after the proof of this theorem.

It will be noted that our hypotheses are much milder than in the nonlinear
case. We will denote by W(t), R(x,t) = Ry(x,t) + Ry(x, t) a solution of the system
on (0, c0). The system and side conditions now are

W'(t) = _on oa(x)R(x, t) dx,

(4.1) 0

Ry(x, 1) = bR (x, 1) + n(x)W(1),
(4.2) W) =u,, T(x,0)=f(x) (0<x< ),
(4.3) TO,)=0 (0 <t< o).

It should be noted that a positive constant a which occurred in (4.1b) in [4] has
been incorporated into b and u. This has simplified all of our expressions, and
nothing essential has been lost. The following theorem concerning (4.1) is true,
the proof being essentially as in [4].

THEOREM B. Let

o, r/?fELZ(Os OO), fGC(O’ OO),

n  satisfy a local Holder condition on (0, c0).

(4.4)
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Then (4.1) has a unique solution satisfying (4.2) and (4.3).

In the proof of this theorem certain relations satisfied by W(t) and R(x, 1),
analogous to (1.12)«1.17), can be derived. One writes down a formal solution of
(4.1b) using the fundamental solution of the heat equation for 0 < ¢, x < o0,

(x = &? ~ ex —(x + &?
4bt P 4bt ’

or equivalently, and better suited for our purposes,

G(x, &, 1) = (4bt)-1/2(exp —

0

2 2
G(x,f,t)=;f sin y& sin yx e~ dy.
0

This formal expression for R(x, t), (4.7) below, is substituted into (4.1a), and the
resulting equation integrated. These formal calculations eventually are justified.
We now list these equations in forms suitable for future use.

45) W) =u, + J Ky(y, 1) dp(y) + J fo Ky(y,t — 9 dp(y)W(v) dr,
0 0

where, if g4(y) = j'g" g(&) sin y& d¢, the Fourier sine transform of g € L,(0, o0),
Ky (y, 1) = 80 oy, 1), Kyy, 1) = &s()Aisya(y, 1),

(4.6) oy, 1) = (e — 1)/by? ify >0, 6(0,1)= —1t,
p(y) = 2y/m.

Moreover, the temperature components Ry and R, are given by

Ry(x. 1) = f (. x. 1) dp(y).
0

4.7) -
R0 = f f H(y, x,t — 1) dp(y)W (1) dr,

where 0vo A

(48) Hl(yo X, t) = fS(y) sin yx e—byzz,

H,y(y,x, 1) = fis(y) sin yx e .

Our notation for a solution of (1.1) will be u(t, ¢), T(x, t, ¢). In the special setting
of this section, the original system now takes on the form

ul(t,c) = —Jw aux)T(x,t,c)dx,
0
T(x,t,c) = bT (x,t,c) + n(x)u(t, c).

The side conditions are still (1.2) and (1.3) with a, = b, = 0. Note the exact

analogy between hypotheses (4.10) and (4.4) in the following theorem proved by
Bronikowski in [1].
THEOREM C. Let

a,n, feL,0,¢), feC(O,o0),

n satisfy a local Holder condition on (0, ¢).

(4.9)

(4.10)
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Then (4.9) has a unique solution satisfying (1.2) and (1.3).

In order to compare solutions of (4.9) with those of (4.1), it is convenient to
rewrite the series representations of u and T which occur in (1.12), (1.16) and
(1.17) as Riemann-Stieltjes integrals. To this end we recall the formulas for 4,
and y,(x) after relation (3.1) and define

1) = f f(&)sin yé dE,
lc y’ a 7 7 K2c(y7 t) = ac(y)r,c(y)a(y’ t)a
(4.11) ——<y<(n+ )72 n=0,1,2,.--,

ply) =
0, y=0,

H,(y,x,1) = f(y)(sin yx) e"»™,
H, [y, x, 1) = n(y)(sin yx) e” >,

Then (1.12), (1.16) and (1.17) can be rewritten as

u(t,6) = ug + fo Koy, ) dp.(y)

(4.12) o
+ f f K,(y,t — tu(z, ¢)dp(y) dr,
0vo0
4.13) Ty(x.1,0) = f Ho(y, %, 1) dp (),
(4.14) Ti(x,t,¢) f J H,(y,x,t — tyu(t,c)dp(y)dr.

We can now state and prove the following theorem.

THEOREM 3. Let «, #, f satisfy (4.4) on (0, o0) so that their restrictions to (0, ¢)
automatically satisfy (4.10) there. Let u(t, c), T(x, t, ¢) be the solutions of (4.9) which
result when the restrictions of a, 1, f appear in (4.9) and (1.2). Let 0 < ty, T < 0,
0 < x, < x, < o0. Then
(4.15) lim u(t, c) = W(t) (t = 0, uniformly for0 <t £ T),

[hudiee]

lim Ty(x,1t,c) = Ry(x,1)

(4.16) o
(0 < x,t < o0, uniformly for x; £ x £ X,,t5 S t < 0),
lim Ty(x,t,c) = Ryx, 1)
(4.17) o

(0 < x,0 £ t, uniformly for x, £ x £ x,,0=t=T).

The proof of this theorem follows the sequence of lemmas below. The lemmas
are much simpler if in addition to (4.4) (and, therefore, (4.10)) we further assume
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that
(418) O(,ﬂ,fELl(O,W)

and thus the restrictions of these functions to (0,c) are in L,(0, c). These hy-
potheses will not be stated explicitly in each lemma for brevity. The first lemma
lists some elementary properties of the functions listed in (4.6) and (4.11).

LEMMA 1. Let Q be the quadrant 0 < y, t < o0, S(T) the strip 0 £ y < 0,
0Lt < T Then

lim , f(y) = fs())) uniformly for 0 < y < oo.
(4.19) Moreover, f, and fg are continuous and bounded (by | f1/,) for 0 £ y < oo.
Similar statements hold for o, 8s, 1., fis .

(4 20) llmc—>oo Pc()’) = p )umformlyfor 0 < y < o since
‘ 0 = p(y) — py) = 2/c for such y.

a(y, t) is continuous on Q and bounded on any S(T) since
—t=o0(y,1) =0

For i=1,2 it follows from (4.19) and (4.21) that Ky, 1), K;(y,t) are
(4.22) continuous on Q for all ¢ > 0. Moreover lim__ , K;(y,t) = K;(y,t) on Q
uniformly on any S(T) since, for example, if (y, t) e S(T), using (4.21),

K1y, 1) = Koy, 0 £ Tloel0) £0) = s sl
The result now follows from (4.19).

(4.21)

Fori=1,2itis easy to show that H,(y, x, t), H,(y, x, t) are continuous for
0=y, x,t < oo, uniformly continuous on 0 Ly <Y< o0, 0 x; £x
< x,; < 00,0 =t < 00. Moreover lim,_, ,, H,(y, x, t) = H,(y, x, t) uniformly
for 0 < y, x,t < oo since, for example,

|Hy (v, x,8) — Hy(y, x, 0] £ 1£0) = fs0)l,

and now use (4.19).

4.23)

LEMMA 2. Fori = 1,2,

(4.24) nym@ nyn@()

converge uniformly for0 <t < T,0 < c.

(4.25) lim [ K. 0 doy f Ki(v, 1) dp(y)
c—> 0 0

(t = 0, uniformly for0 £t < T).

Proof. We consider the case i = 1. From the definitions in (4.6) and (4.11)
and from the boundedness conclusion of (4.19), we have

(4.26) Kyl 1Kl £ b7 el Lf iy~ (0 <y,c<o0,0=0).

This together with (4.21), (4.22) and the definition of (0, 1) establish (4.24) for
K. To establish this result for K,. we use (4.26), integration by parts and
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p(y) £ (2/m)y to calculate for any 0 < y, < y,,

< b—luanluful(p‘?’)
y

Y2
f ch dpc
Y1

Y2 V2
+ 2J py)y 3 dy)

1 Y1
2 3 1

< — el 1S (— - —)-
nb ! ! Y1 )2

This establishes the result. The proof is the same if i = 2 with # replacing f.
To prove (4.25), let ¢ > 0 be given. Now because of (4.24), we can choose
Y so large that

f Kidp|,f K,.dp.|<e for0<t<T, O<ec.
Y Y

Y Y
J‘ Ki dp - f Kic dpc
0 0

y
f (K; — Ky dpcl + 2e.
0

Then

f thp_J\ Kicdpc é
0 0

+

Using the uniform continuity of K;for 0 <y < Y,0 < ¢ < T, and a slight modi-
fication of a well-known convergence property of Riemann-Stieltjes integrals,
there exists ¢; > Osuch thatifc = ¢, the first term on the right side of the estimate
above is smaller than ¢ uniformly for 0 < ¢t < T. From (4.22) and the fact that the
total variation of p.(y) over [0, Y] is no more than 2Y/x, there exists ¢, such that
the second term is also smaller than ¢ for ¢ = ¢,. Then for ¢ = max(c,, ¢,), the
left side is less than 4¢ uniformly for0 < ¢t < T.
LEMMA 3. For 0 < ¢, uniformly for 0 <t £ T,

4.27) lim u(t, ¢) = W(1).

[mdee]

Proof. Let & > 0. Using (4.5) and (4.12), we may write

W) —ult,c)=J, + J, + J5,

where

lef K, dp _J Kicdp.,

0 0
t [ee) 0

J, = f j K,dp — f K, .dp W(t — 1)dr,
oJo 0

Jy = fo fo K, dp (W(t — 1) — u(t — 7,¢))dr.

By (4.25) if ¢ is sufficiently large, ¢ = ¢, say, and if M > 0 is a bound for |W()|
on [0, T], then|J|| < ¢,|J,] < MTefor0 <t £ T. From (4.22) and (4.24) it follows
that [ K, dp is continuous for 0 < t < oo and thus bounded, say by M > 0, on
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[0, T7. Using (4.25) again it follows that for ¢ = c,, say,

SM+e=M,.

f KZC dpc
0

Thus
5 My [ W) — ke o ds
0
for such c and 0 < ¢t £ T. Combining these estimates on the J’s we obtain
W) —u(t, o)l £(1 + MT)e + M, J:lW(‘L’) — u(t, c)| dr,

which implies (4.27) after Gronwall’s inequality is applied.
LEMMA 4. Let 0 < x; < x, < o0 and 0 <ty < co. Then fori= 1,2,

(@28) [ Hox0d0. [ 0 0d00)
converge uniformly for 0 < x,c < 00, t, < t.

(4.29)

nyxt)dp

ffuyxnw(ﬂ<Mt

for 0 < x, t, ¢ < o0, for some constant M > 0.

0

(4.30) lim &nxo@y)J'nyn@m

[adiv e} 0
for 0 < x,t < o0, uniformly for x; £ x < x,,t5 < 1.
Proof. Relation (4.28) is immediate from the estimate
(4.31) |H,|,|H| £ M, et 0=y, t<o,0<x,c< ),

where M, = || fll,, M, = |[nll,. To obtain (4.29) for K;, we use (4.31) and the
change of variable Z = /bt y so that

f Hidp‘g 2M"f e % dzZ.
(o] n\/i;t 0

We get (4.29) for H,, using (4.31), integration by parts and the inequalities
p(y) £ 2/m)y, e * < x Y2 for0 < x, ¢, y < co. The details, which we omit, show
that M can be taken as the larger of

(2 +4Mij Zze‘zde)/nb, i=1,2.
0

The convergence relation (4.30) is established just as (4.25) in Lemma 2.
The procedure is again to *‘chop off the tails’ of each integral and use the uniform
continuity of H; and H, as described in (4.23) together with the convergence
property of Riemann-Stieltjes integrals.
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Taking i = 1 in (4.30) and recalling the representations of Ry(x, ) in (4.7)
and Ty(x, t, ¢) in (4.13) we see that conclusion (4.16) of Theorem 3 is true (but still
with the L, hypothesis (4.19)). The next lemma establishes (4.17) with this
restriction.

LEMMA 5. Let 0 < T, 0 < x, < x,. Then convergence relation (4.17) is true
as described.

Proof. From (4.7) and (4.14) we may write Ty(x,t,¢) — R/x, 1) =J, + J,
when

J, = jo fo H, dp (u(t — t,c) — W(t — 1)) dr,

t 0 0
J2=f (f HZCdpc—f szp)W(t—r)dr.
0 \Jo 0

Let ¢ > 0, and, without loss of generality, we assume ¢ < ./T. From (4.27) there
exists ¢, such that |u(t,c) — W(1) < ¢ if ¢ =2 ¢, for 0 <t < T. This, together
with (4.29), yields

t
(4.32) AR Msf V2 dr < 2MTV?%

0
uniformly for0 < x,0 <t < T.

To estimate J,, let 0 < t, < ¢* and break up the 7 interval of integration
into two parts: from O to t, and from ¢, to t, letting J,, denote the integral over
the first interval and J,, the integral over the second. If M denotes a bound on
[W(),0 =t < T, as well as the constant in (4.29) we obtain by (4.29),

to

(4.33) |1, < 2M? f T2 dr = AM2))? < AM 2
0

uniformly for 0 < x, ¢ < 00, 0 <t < T. Now in the case of J,, we apply (4.30)
and pick ¢, so that ¢ = ¢, implies

f HZCdpc—f szpl<s forx;, = x=<x,, to<t.
0 0

Then for such ¢, x, t,

(4.34) |22 £ M(T — to)e.

Combining (4.32), (4.33) and (4.34) for ¢ = max(c,, ¢,) now produces the desired
result.

Before proceeding to the proof of Theorem 3 we must state another result
of Levin and Nohel proved in [5] for the case where —oo < x < oo, but easily
shown to be true if 0 < x < 0. It is closely related to our Theorem 2.

THEOREM D. For i = 1,2, let a;, n;, f; satisfy (4.4), let u,, and u,, be arbitrary,
and let W(1), Ri(x,t) be the corresponding solutions of (4.1). Then if T > 0, re-
lations (2.1)+2.4) are true with r = 6 = 0, and the estimates are uniform for
0<x< .
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Proof of Theorem 3. We describe a sequence of steps which establishes
(4.15)+4.17) without the L, hypothesis (4.18). Let ¢ > 0, and let

¢ 1/2 el 1/2
lgll,. = U gz) N U gz) -
0 0

Given a, #, f satisfying (4.4) on (0, o0) we first pick &, 7, f continuously differentiable
and of compact support on (0, o) so that ||a — &|, ., < ¢ and similarly for #, 7,
f, f. This is possible because, as is well known, the set of such functions is dense
in L,(0, ). Each such function is obviously in L,(0, o). If W, R denote the
solution of (4.1) corresponding to the barred functions, then by Theorem D we
have |W(t) — W(1)| and |R(x, t) — R(x, t)| smaller than a constant multiple of ¢
as described in (2.1)+(2.4). Now, we restrict &, 7, f to (0,c), and, letting (1, ),
T(x, t, ¢) denote the corresponding solution of (4.9), we can apply Lemmas 3, 4
and 5 so that for ¢ sufficiently large we have |W (1) — (1, ¢)|, |R(x, 1) — T(x, t,c)l < ¢
as described. Observing that |g|,. < |gl,.,, and therefore [« — a|,, < ¢ and
similarly for #, 7, f, f, we now apply Theorem 2 to @, T, and u, T, the solution of
(4.9) corresponding to «, #, f restricted to (0, ¢). Thus |u(t, ¢) — @(t, c)|, | T(x, t, ¢)
— T(x,t, c)| are smaller than a constant multiple of ¢. The conclusions of Theorem
3 now follow by the triangle inequality. For example,

lu(t, c) — W) < lult, ) — alt, ) + lalt, c) — W()
+ W) — W) £ Me+ Mye + Mae

uniformly for 0 < ¢ < T, where M, = 3K (from (2.1), Theorem 2), M, =1
(from 4.27), Lemma 3), M; = 3K (from (2.1), Theorem D). The T(x,t, c) and
R(x, t) estimates are done in a similar way. This completes the proof.

Theorem 3 can be extended to the nonlinear case as well. Here, the systems
whose solutions are compared are (4.1) and (4.9) with a(W(t)) replacing W(t),
o(u(t, c)) replacing u(t,c) in each heat equation. The proof of existence and
asymptotic decay to 0 of solutions in the nonlinear infinite interval case was
done in [6] with o € C(— o0, c0) as the only smoothness requirement on o. The
additional assumption that ¢ € C'(— o0, o0) or that ¢ satisfies a Lipschitz con-
dition permits the proof of Theorem D in this case. Then Theorem 3 can be
established in the nonlinear case by modifying the proofs of Lemmas 1-5 above
in the manner described in § 2 regarding Theorem 1. The full set of hypotheses
will not be listed here, but the reader is referred to [6] for the details.
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ASYMPTOTIC BRANCH POINTS AND MULTIPLE
POSITIVE SOLUTIONS OF NONLINEAR
OPERATOR EQUATIONS*

THEODORE LAETSCH*

Abstract. We study the large positive solutions of the nonlinear operator equation u = A4,uina
partially ordered Banach space, where 4, is a positive, asymptotically linear operator depending on a
real parameter 2. We show that large positive solutions exist for A near a number u determined by the
asymptotic derivatives 4,; more specific assumptions about the asymptotic behavior of A4, enable us
to ascertain that the large solutions exist only for 4 > p or only for 4 < u. The latter result is applied to
prove the existence of at least two positive solutions of certain problems with isotone operators for
which 4,0 > 0.

1. Introduction. In this paper, we discuss the behavior of the positive fixed
points of large norm of a family { A(4): 1 € J} (where J is an interval of real numbers)
of asymptotically linear positive operators A(4) on a partially ordered Banach
space & with a positive cone . We are interested in the existence of a number u
such that, for each A sufficiently close to u, the operator A(4) has a positive fixed
point u(A) such that |u(A)| —» oo as 4 — u. We call such a number an asymptotic
branch point; as is known, under certain conditions on the asymptotic derivatives
of the A(A), the number p is determined by the eigenvalues of these asymptotic
derivatives. We are specifically interested in circumstances under which it can be
asserted that the large fixed points u(4) exist only for A on one side of p.

Very roughly, our results are as follows: Suppose that the operators A1) = A,
have the following behavior on positive vectors of large norm:

A = Ay + Cou + ol[ul) as Jull - o0, u>0,

where A’(oc0) is a positive, compact operator which is differentiable with respect
to A at A = y, and C, is homogeneous of degree s < 1. Then u is an asymptotic
branch point (if and) only if 4 (c0) has an eigenvalue 1 corresponding to a positive
eigenvector ¢. (We shall prove the “if ”assertion only when C,u = b;; i.e, s = 0.)
Moreover, the large fixed points exist only for 4 > u if C,¢ < 0 and only for
A< pif C,p > 0,if A;(c0) increases with 4.

These results will be applied to prove the existence of at least two fixed points
in certain cases when {A(41):A € J} is an increasing family of forced, isotone
operators. The method used is the following: Suppose there is an increasing family
{u°(4): A € A} of positive fixed points in an interval A and that there is an asymptotic
branch point u € A. If there exist fixed points u(A) for A > u such that |ju(4)|| - oo
as A — u, then clearly u(1) # u°(4), since {u°1):4 € A} is an increasing family.

In §2, we introduce the notation and definitions. Our results for the special
case Au = g + AAu are presented in §3, mostly without proofs. The theorems
and proofs for the general case are given in §4. We conclude in §5 with the applica-

* Received by the editors May 29, 1973, and in revised from October 26, 1973.
1 Department of Mathematics, University of Arizona, Tucson, Arizona 85721. This research
was supported in part by the National Science Foundation under Grant GP-33652.
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tion to the existence of multiple solutions. In [9], we will apply these results to
nonlinear integral equations.

Related work on asymptotic branching and multiple solutions can be found
in Krasnosel’skii [6, Chap. 5], [7, §IV.3], Amann [1], [2], Bazley and McLeod [3]
and the author [10], [12].

2. Notation. Let & be a partially ordered Banach space with a closed positive
cone A = {xe&:x = 0}. We assume that ¢ is normal [6, p. 20]; we can then,
without loss of generality, assume that the norm on & is such that 0 S u =<v
implies [ul < [vl|.

We define 8" = {ue&:|ul| £r}and A" = A N A"

Let & be asubset of &, with @ N A" # F. An operator A: 9 — & is positive on
2if A2 N AH)< X, isotone on D if u,ve P and u < v imply Au < Av; forced
if 0e 2 and A0 > 0; A "-compact on & if, whenever 2, is a set whose closure is a
bounded subset of 2 N 4, then A(Z,) has compact closure; 4 -bounded on 2
if A(2,) is bounded for any 2, as above.

The # -spectral radius of a #-bounded positive linear operator T on & is
defined as lim,_, , | T"| %", where || T||, = sup {||Tul|:ue A, |u| < 1}; for such
T, we define po[T] = || T|; ', so that 0 < po[T] £ + oo. According to a generaliza-
tion of the Krein-Rutman theorem due to Bonsall [4], if uo(T) < + o0, then a
A -bounded #-compact linear operator T has a positive eigenvector ¢ cor-
responding to the characteristic value uq(7T):

0% uo(T)Thp = p e A

(A characteristic value of a linear operator T is a number u such that there exists
he & with uTh = h # 0.)

If A is an operator defined on a set 2 < .4 containing elements of arbitrarily
large norm, then A is A -asymptotically linear [6] if there exists a .#-bounded
linear operator A'(c0):& — & such that

|Au — A’(oo)u_|1 — 0
[[ull ’

A'(00) is the A -asymptotic derivative of A. If A is positive, then A’(c0) is a positive
operator [6, p. 109].

lim

[[ul]] =0
ue9

3. The results for a special case. Let g€ ", and let 4 be a positive operator
on 4. In this section we consider the equation

3.1 u=g+ AAu,

where A is a positive real parameter. We denote by A the set of positive numbers
A for which (3.1) has a positive solution u € £, and set A* = sup (A).

Most of the results of this section can be obtained as corollaries of the more
complicated theorems of §4, where we state and prove the results for the general
case of a family {4,:1€ J}.

The standard result on the value of an asymptotic branch point is the following
(cf. [6, p. 159], [7, p. 207)).
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THEOREM 3.1. Let A be a continuous operator on A~ with a A -compact A -
asymptotic derivative A'(c0). Suppose that there is a convergent sequence {A,} in A
corresponding to positive solutions {u,} of (3.1) such that lim,_, , |u,| = co. Then
lim, ., ,, 4, is a characteristic value of A'(00) corresponding to a positive eigenvector
¢, there exists a subsequence of {u,/||u,ll} converging to ¢, and every convergent
subsequence of {u,/||u,|} converges to such a positive eigenvector.

The theorem asserts, in particular, that under the stated conditions, we must
have lim,_ 4, > 0. Furthermore, A'(c0) has a positive spectral radius--i.e.,
UolA'(c0)] < + oo—and therefore 4'(c0) has a positive eigenvector corresponding
to the characteristic value py[A'(c0)]. Thus, if every positive eigenvector of A’(c0)
corresponds to the same characteristic value, then we have lim,_, , 4, = po[A4'(c0)].

Under certain circumstances, it is possible to say that the points of the sequence
{2,} in Theorem 3.1 must all lie on one side of ¢ = lim,_, ,, 4, when the correspond-
ing solutions {u,} have sufficiently large norm, and this information can be
helpful in predicting the number of positive solutions of (3.1).

THEOREM 3.2. Let A be a positive, continuous, # -asymptotically linear operator
on A" which has the form

Au = A'(o)u + Cu + wu

foru > 0, where A'(0) is a A '-compact, bounded linear operator which has a unique
positive eigenvector ¢ of norm 1, the corresponding characteristic value is simple,
and C is a continuous operator on A \{0} which is homogeneous of degree s < 1.
(If g = 0in (3.1), then we assume that C is not the zero operator; if g > 0, then we
allow C to be zero, in which case the following conditions hold for some s < 0.)
The operator w satisfies :

(a) for some positive number pg, the set {||wul/||ull*:ue X, |ull = po} is
bounded, and

(b) for all positive numbers p = p,,

(3.2) lim (B + Fh) =0
/3d{]+ﬂ“'hw>0
uniformly on the set

{h:\h]l = p, Bp + P*h > O for all sufficiently large f}.

Let p(o0) = po[A'(00)], and let & be a positive eigenvector of the adjoint of A'(o0)
corresponding to the characteristic value u(oo), normalized so that &(¢p) = 1. Let
{A,} be a bounded sequence in A corresponding to solutions {u,} of (3.1) with

lim,,, [lu,| =co.
Then,
nlin; Ay = (0),
(c0)*E(Co) if sg>0,
(3-3)  lim (4(c0) — Al 75 =3 w(00)?&C + w(e0) " 'g) if sg =0,
H(00)<(g) if sg<0

I

Voo
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and

)

asn —oo, where s’ = (1 — s)~ L.

COROLLARY 3.3. Let the conditions of Theorem 3.2 be satisfied. Then any of the
Jollowing conditions imply that, for any number u > p(o0), there exists a positive
number r such that (3.1) has no positive solution u with ||u| > r for A e [u(c0), ul,
and for any number 6 > 0O there exists p > 0 such that (3.1) has a positive solution u
with |ull > p for some A € [u(c0) — 9§, u(c0)):

(i) 0 <s < land &Co) > 0;
(i) s = 0and E(Ch + u(oo) 'g) > 0;

(1)) s < 0,g = 0and &C¢) > 0;

(iv) s <0,g > 0and &g) > 0.

On the other hand, if any of the conditions (i)-(iii) holds with the last inequality
in that condition reversed, then there exists a positive number r such that (3.1) has
no positive solution u with ||u| > r for A € [0, u(o0)], and for any number 6 > 0 there
exists a positive number p such that (3.1) has a positive solution u with |ul > p for
some A € (u(00), u(co) + 9).

The conditions (a) and (b) on w of Theorem 3.2 are implied by the following
seemingly more natural condition on the remainder wu:

(34) U, = [nﬁ—] $ + o(lu(o0) — Al~%)
/.l( - ’ln

(3.5) ||:}|i|Too llull=*lloul = 0;

however, for the integral equations considered in [9] there are cases, particularly
when s = 0, when (3.5) is not satisfied, while (a) and (b) are. The results of Corollary
3.3 for the case g = 0 are illustrated in Fig. 1.

There is a partial converse to Theorem 3.1 and Corollary 3.3 when Cu = b
is a constant: Under appropriate conditions on the remainder w, if A’(c0) has a
simple characteristic value u to which there corresponds a positive eigenvector,
then for each 4 sufficiently close to u with

05 sgn(u— 4) = sgn(ub + g),

equation (3.1) has a positive fixed point u, and for any sequence {4,} of such
numbers 4, these corresponding solutions u,, satisfy

ué(ub + g)
- ,1"

For details, see Theorem 4.4 below and [7, pp. 207-208].

llu, |l ~ as n —oo.

4. Behavior of fixed points of large norm. Our first theorem gives a necessary
condition for the existence of fixed points u(4) such that |Ju(1)|| — oo as A approaches
a number u. The proof is straightforward.

THEOREM 4.1 Let {A,: A € J} be a family of continuous operators on A . Suppose
that there is a sequence {A,} in J converging to u € J such that the operators A, have
fixed points u, in A" with lim,_, ., lu,| = oo, and A, has a A -compact A -asymptotic
derivative A;(c0) such that
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no solutions if no solutions if N\
%ﬁ(%) <07 &C) > 0
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|
|
|
|
|
|
|
A
|
(o)
FiG. 1
Au— A
(@.1) lim A= Ao
Jull = o [[ull

A=u

Then 1 is an eigenvalue of A)(o00) corresponding to a positive eigenvector ¢ of unit
norm. There exists a subsequence of {u,/||u,|} converging to ¢, and every convergent
subsequence of {u,/\\u,|} converges to such an eigenvector.

The next theorem describes in more detail the behavior of a sequence {u,}
of fixed points with ||u,| — oo.

We shall use the following definition. Let ¢ be a positive eigenvector of a
bounded linear operator T corresponding to a characteristic value u. We say
that (¢p&, P) completely reduces T if & is a bounded, positive, linear functional on &

with &(¢p) = 1, and P is a bounded projection on & such that every u € & may be
written in the form

u = &u)p + Pu,
where TP = PT, and (I — uT) restricted to P(€) has a bounded inverse on P(&).
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It follows that P¢ = 0 and &(Pu) = O for all u € &, and the functional £ is a
positive eigenvector of the adjoint of T corresponding to the characteristic value u.

It is well known that if T is compact on & and p is a simple characteristic
value, then there exist (¢, P) such that (¢&, P) completely reduces T. More generally,
there exist (£, P) such that (¢&, P) completely reduces T if and only if u is an
isolated, simple characteristic value of T (cf. [5, §111-6]). (We call a characteristic
value simple if the corresponding spectral projection has a one-dimensional
range.)

If, in the preceding definition, we replace “bounded” by “#-bounded”
everywhere, and require that u = &(u)¢ + Pu hold for all u € ., then we say that
(&, P) A -completely reduces T. We do not know whether there exists a .# -
complete reduction (¢&, P) of a A "-compact linear operator T whenever T has a
characteristic value u corresponding to a positive eigenvector ¢.

THEOREM 4.2. Let {A,: A € J} be a family of positive continuous operators on A’ .
Suppose there is a we J and a sequence {A,} in J converging to u such that the
operators A, have fixed points u, in A with lim,_,  |lu,| =oco. Let the operators
A, have the form

4.2) Au=Au+ A —wBu+ Cu+ Du+ ou, u>0,

where the A -asymptotic derivative A, = A,(0) of A, is A -bounded, A "-compact,
and has a unique positive eigenvector ¢ of unit norm. Also, the characteristic value
uolA,] is simple, B, is a continuous linear operator, {C,} is a family of operators
on A \{0} homogeneous of degree s (i.e., for h > 0, Ae J, a > 0, C,(ah) = &*°C;h)
for some number s < 1, the mapping (A, u) » C,u of J x A into A" is continuous.
In addition, the family {D,} of continuous linear operators satisfies

(4.3) lim 1221 _ 0,
A= A— u
and the family {w,} satisfies: For all 1 in a neighborhood N (relative to J) of winJ,
(a) the set {||w,ull/|ul*:u > 0, A € N} is bounded, and
(b) for any positive number r, the limit

(4.4) BLier B~ llw;(Bp + Bh)| =0
B+ ph>0
exists uniformly for all A€ N and all h such that B¢ + B*h > 0 for all sufficiently
large B > 0 and |h|| £ r.
Let & be a positive linear functional and P be a projection such that (¢p&, P)
A -completely reduces A;(c0); suppose &(B,p) # 0. Let s’ = (1 —s)™ .
Then 1 = pylA4,],

. - UC9)
(4.5) Yim Gy = Wl = =
lim |2, — p"u, = Tim (|4, — e,
(40 _|iGar
&(B, ¢)
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and, with R = [1 — A/ Jp/P,

u

. Pu, I UCH)
4.7) }1}20 TN R|: 4B,¢) B¢ + Cﬂd):l.

Note that for 4 near y, equation (4.2) implies that

so that B, is the derivative with respect to 4 of Aj(co) at 4 = p.
COROLLARY 4.3. Let {A,: A€ J} and p € J satisfy the conditions of Theorem 4.2.
If &B,9)e(C ) # O, then there are positive numbers r and 0 such that for all A with

0 = (4 — p)sgn [E(B,9)K(C,9)] = 0,

the operator A, has no fixed points in A" with norm greater than r.

Proof. Since equation (4.1) of Theorem 4.1 is satisfied by the operators 4, and
A, = A,(00), 1 is an eigenvalue of 4, corresponding to the positive eigenvector
¢ = lim,, , u,/|u,|. From (4.2) we obtain

0 = (4, — W&(B,u,) + &(C,u,) + &D; u,) + &, u,).
Dividing by (4, — u) ||lu,| and letting n — oo, we have

1 u 1
0=¢B lim—— | &[C, )+ .
“B.g) + i (zn—u)nunw-{f( e nunn>+ o 5(“’“"")]

If &B,¢) # 0, it follows from hypothesis (a) that lim sup, ., , |4, — g |u,||' ™ < co.
Similarly, if we divide

Pun = R{(/ln - H)Buun + Clnun + Dlnun + wlnun}

by |u,|l*, we obtain

Pu B u u
= R(A, — Wllu, |7 =+ C <-"*>
([, { [, A\ oy |

1 u . U
+ oD, [ ) — 1+ ":},
Ao = 1 A"(II%II) llu |

. Pu
lim sup | "l' <0
noaw Uyl

Since lim,,_, ,, &(u,)/|lu,| = 1, we also have

i sup 1P
im sup

oo C(Ua)

Let B, = &u,), h, = Pu,/B5. Then there is a positive number r such that
A, < rfor all n. In view of the uniformity of the limit in (4.4), we have

SO

<0

lim flu,| "0, u, = lim w0, (B,¢ + Bh,) = 0.

Equations (4.5), (4.6) and (4.7), and Corollary 4.3 follow from the equations above.
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We next show that if C,u is a constant b, for u € 4" and if the operators w,
satisfy the asymptotic condition (4.4) with s = 0, then we can establish a converse
of the preceding results for operators of the form of equation (4.4): If 4, has the
simple characteristic value 1 to which there corresponds a positive eigenvector,
then the operators 4, have fixed points of arbitrarily large norm for A near p.

THEOREM 4.4. Let {A,: A € J} be a family of continuous operators on a cone A,
containing A, with A, 4", < A for A e J, and let the operators A, have the form
of (4.2) for some p € J, where A, and B, are continuous linear operators,C,u = b, e &
foralluand all 2 € J, the mapping A — b, of J into & is continuous, D, is a continuous
linear operator which satisfies (4.3), and the operators w, satisfy conditions to be
specified later. Let A, have the simple eigenvalue 1 corresponding to the positive
eigenvector ¢ interior to A" ; let (, P) be such that (¢, P) completely reduces A),.

Let w, satisfy the following conditions for any sufficiently small number r > 0
and for 1 in an open subset N (relative to J) of J containing u:

(4.8) lim (B + h)| =0

B>+ x
B+ heX

uniformly forhe #" = {ue &:|u|l <r}and e N;and
lwi(Bid + hy) — w,(B¢ + hy)l
S qo(Bis Bas his has DN(Big + hy) — (B + hy)ll,

where q.(B1, B,; hy, hy; A) is a real-valued positive function of the numbers f, f,,
the vectors hy, h,, and the number A, such that

(4.9)

(4.10) im q(B1, Baih, hai) = 0
l§1>13;0

uniformly for h,, h, € #" and L € N.
Then there exists a number 6 > 0 such that for each A € J with

(4.11) 0 < (u — 4)sgn [E(b,)EB,)] <o,

A, has a fixed point w(A)e A, and for any sequence {1}, the elements of which
satisfy relation (4.11), the corresponding fixed points u(l,) = u, of A, satisfy
(4.5), (4.6) and (4.7), with s = 0.

Proof. The proof consists of a standard Lyapunov-Schmidt technique.
We seek a solution u of the equation 4,u — u = 0 in the form u = y + f¢ by
first attempting to solve

(4.12) P(Au — u) = P[Ay + o) — (v + )] =0
for y in terms of f3, and then choosing f so that the equation
(4.13) S(Au —u) = LA,y + o) — (v + )] =0

is satisfied. Then u = y + f¢ will satisfy 4,u — u = 0.
Equation (4.12) is equivalent to

(4.14) z = T(a Az,
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where
a=@A—-wp, z=Pu-k,;,
ko, = o(h — )~ 'R[(A — wB, + D;]¢ + Rb,,
R={[I - AJps} P
and
@.15) T(o, Az = R[(A — WB,(z + k, ;) + D;(z + k, ;)

+ 0z + ky; + o2 — )7 'P)].

For any positive number 6 and sufficiently small positive #, it is possible to find
a neighborhood N, of u in J such that for |u] £ 6, Ae N, and o(4 — p) > O,
T(a, A) is a contraction mapping of %" into itself. Thus, (4.14) has a solution z, ;,
which depends continuously on o for each 1 € N;.

Setting y, , = z,, + k, ; and substituting for y in (4.13), we find that for N,
sufficiently small, || £ 0, f = «(A — w)~! > 0, equation (4.13) has a solution «(4)
for A € N with |u(4)] < 0 and

sgn o(4) = sgn (4 — ) = —sgn [¢(b,)E(B,P)],

for an appropriate choice of 0. Thus, there is a positive number 6 such that for any A
satisfying inequality (4.11), the operator A4, has a fixed point
o(4)
UA) = Yuuya t :1—_—_/1 ¢.
From (4.8),(4.9), (4.10) and (4.3), the solution () of (4.13) may be taken arbitrarily
close to —¢(b,)/¢(B,¢) for 4 sufficiently close to u. Then

1}111 Eu(A)) (A — p) = m a(4) = —&(b,)/E(B,¢).

Similarly, (4.7), and thence (4.5) and (4.6), may be obtained from (4.13). Let 4, — pu.

Since ¢ is interior to #; and Pu,/é(u,) — 0 as n— 400, u,/l(u,) = ¢
+ Pu,/é(u,) is in ¢, for all sufficiently large n; since £, is a cone, u, € ., for all
large n. Thus u, = A; u, € & for all large n. This completes the proof.

5. Multiple positive solutions. The preceding theorems will now be applied
to obtain results on the existence of more than one positive solution of equation
(3.1) or the more general equation u = A4 u.

Our results on multiple positive solutions are based on the following result
concerning the existence of minimum positive solutions of u = 4,u [11].

LEMMA 5.1. Let J be an interval in [0, + c0) with A_ = inf (J), and let W be an
isotone, compact operator on J X A such that the operators A; (Au = W(4, u))
are forced. Suppose the set A is nonempty. Then A is an interval with inf (A) = 1_;
for every A€ A, there is a minimum positive solution u®(1). The map A — u°(3) is
a nondecreasing, left-continuous function on A, and if we set 1* = sup (A), then
either A* = sup (J) or exactly one of the following conditions holds:

(i) lim,, 5 u®(A)]| =+ c0;

(i) ¥ e A.
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This result is actually valid for a much broader class of operators than
compact operators; cf. [11].

The next theorem is an example of the results on multiple solutions which
follow from the preceding theorems.

THEOREM 5.2. Let g € A" and let A be a forced, isotone, compact, X -asymptoti-
cally linear operator on & which satisfies the conditions of Theorem 3.2 and Ag > 0.
Let A be bounded. Suppose that either s >0 and &(C¢p) <0, or s =0 and
E(b + u(o0)"'g) < 0. Then u(co) € A and there exists & > 0 such that (3.1) has at
least two positive solutions for each A € (u(c0), u(co) + 9).

Proof. The assertions follow from Theorem 3.2, Lemma 5.1 and the fact that
under the stated conditions, (3.1) has solutions of arbitrarily large norm [6, p. 161],
[13], since (3.1) is equivalent to v = AA(v + g), withv = u — g.

Remark. If A is Fréchet differentiable, then it can be shown (by using the
implicit function theorem) that under the hypotheses of Theorem 5.2, equation (3.1)
has at least two positive solutions for all A € (u(c0), A¥).
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ASYMPTOTIC BRANCH POINTS AND MULTIPLE
POSITIVE SOLUTIONS OF NONLINEAR
INTEGRAL EQUATIONS*

THEODORE LAETSCH+t

Abstract. The values of 4 for which there exist large positive solutions of a nonlinear Hammerstein
integral equation with an eigenvalue parameter 4 are determined from the asymptotic behavior of the
nonlinearity f(w). With the assumption that the nonlinearity has the asymptotic form f(w) = mw
+ ew' + o(w')as w — +oo, withm > 0 and 0 < 5 < [, the asymptotic branch point p for positive
solutions is determined by m, and the sign of 4 — u for values of 4 corresponding to large solutions is
determined by the sign of ¢: If ¢ > 0, then 4 < g, and if ¢ < 0, then A > p. The latter condition,
¢ < 0, implies that if /(0) > 0, then the Hammerstein equation has at least two positive solutions for
some values of 4 > pu. If the nonlinearity f(w) is convex, then the last result stated is sharpened by
assuming only that f(w) — mw is negative for large w.

1. Introduction. We consider the behavior of the large solutions of the
nonlinear integral equation

(L.1) u(x) = f K(x. »)f (), ) dy + g(x),
Q

where K(x,y) is a positive weakly singular kernel, the nonlinearity f(w, x) is
nonnegative, and g = 0. Knowing the asymptotic behavior of f(w, x)asw — + oo,
we are able to predict the values of A for which large solutions do or do not exist.
When f(0,x) > 0, and f(w, x) is nondecreasing in w, these results give sufficient
conditions for the existence of at least two positive solutions of (1.1) for certain
values of . Our results are based on the results for abstract operator equations
obtained in [10].

If, in addition, f(w, x) is convex in w, we are able to state conditions which are
“almost” necessary and sufficient for the existence of multiple solutions of (1.1);
in particular, when f(w, x) is independent of x, our conditions are precisely neces-
sary and sufficient.

In §2, we give some preliminary lemmas which enable the results of [10] to
be applied to (1.1). The results for the nonconvex case are given in §3; here it is
indicated how the asymptotic behavior of f(w, x) determines the values of A for
which (1.1) has large solutions, and we give the asymptotic form of these solutions.
We also indicate how, under certain circumstances, these results imply the exist-
ence of multiple positive solutions of (1.1). Section 4 contains the stronger result
on multiple solutions for the convex case. Finally, the Appendices contain a
summary of the useful properties of linear integral equations with weakly singular,
positive kernels and a general lemma used in the proof of Theorem 4.2.

It is to be expected that our results apply also to the nonlinear elliptic bound-
ary value problems (cf. [6], [15))

Lu(x) = f(u(x), x), xeQ,
Bu(x) = g(x), x € 0Q,

* Received by the editors July 20, 1973, and in revised form February 18, 1974.
1 Department of Mathematics, University of Arizona, Tucson, Arizona 85721. This research
was supported in part by the National Science Foundation under Grant GP-33652.
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for a sufficiently smooth domain Q, uniformly elliptic operator L, and boundary
operator B.

The existence of multiple positive solutions of such equations with L and
B self-adjoint has been discussed by Keener and Keller [5], where a result similar
to, but weaker than, our Theorems 3.7 and 4.2 is proved in a different way.

2. Lemmas. The following elementary proposition, whose proof is omitted,
lists some relations between the asymptotic properties of f(w, x) which are useful
in applying our results.

PROPOSITION 2.1. Let Q be a subset of R". Let f(w, x) have a continuous partial
derivative D, f(w X) with respect to w for each pair (w, x) € (p, +00) X ), where
pz0 Iflim,,, N fw,x)=mx) S +o0 exists (uniformly for x € Q), then
lim,_, ,  f(w, x)/w exisi. uniformly for x € Q) and equals m(x). If, for some number
se[0,1), lim,_ ., w *[f(w,x) — wD, f(w, x)] = (1 — s)b(x) exists (uniformly for
x € Q) and is finite, then lim,, ., D, f(w,x) = m(x) exists (uniformly for x € Q)
and is finite, and lim,_ ,  w [ f(w, x) — m(x)w] = b(x) exists (uniformly for
x € Q) and is finite.

The functions

fiw) = w + $sin(w),

fo(w) = w? + w[l + sin (2w)] + 3 cos 2w),

1 ¥ sin (v)
5

Ssw)=w + Ews

dv, 0s<1,

0

are continuously differentiable increasing functions which show that the converses
of the assertions of Proposition 2.1 are not valid: lim,, _, , ., f{(w) does not exist for
i=1and 2 butlim,,,  fi(w/w=1land lim,,,  fo(w)/w = +o0;

lirnw—>+oo f3(W)/W = 1imw—> + o0 f/3(W) =1=m,
lim,_ ., w[f3(w) — mw] = n/4, but lim,,,  w °[f3(w) — wf}(w)] does not
exist.

Throughout the rest of this paper, Q denotes a bounded open set in n-dimen-
sional space R" whose boundary 6Q has zero n-dimensional measure, and Q
= Q U 9Q. We denote by K(x, y) a weakly singular kernel (see Appendix A) defined
for (x, y) € Q x Q. All integrations are over Q unless otherwise noted. The Banach
space of continuous functions on Q is denoted by C(Q).

LEMMA 2.2. Let ¢ be a nonpositive number, and let f be a continuous function
on [o, +0) x Q. Define the operator A on a subset of C(Q) by

@.1) Aufx) = f K(x. )£ (u(y), y) dy.

Suppose that for some number s € [0, 1),

lim w™¥f(w,x) =0,

w—+ o0

uniformly for x € Q. Then for any continuous function ¢ which is positive almost
everywhere on Q, and for every positive number p, we have
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(2.2) lim B °A(B¢p + p°h) =0
ﬂql;-l_—'[}-thogcr
(in the sense of the usual maximum norm | - || on C(Q)), uniformly for h in the set

{he C(Q):||h| £ p and there exists v, such that v,¢ + vih > a}.
Proof. Let
f(r) = max {|f(w,x):xe Q0 S w <1},
IK(x, )l = x/lx — yI"

for some o € [0, n) and k > 0, and let

y = sup{ f |K(x, y)| dy:x € (_2}.
Q

Assume, without loss of generality, that ||¢|| = 1.
Let ¢ and r be given positive numbers and choose ' > 0 such that | f(p, x)|
< pe[y(1 + )]~ for p = ¥ and x € Q. Choose & > 0 such that

f K(x, D)l dy < e[ £
B(x;0)

for all x € Q, where B(x; d) = {y € Q:|y — x| < J}, and choose , > 0 such that
¥+ ﬂf)r} g &
meas {x € Q:¢(x) £ < - -~
{ P Rk T
If B = By and [[h] < r, then Bd(y) + B°h(y) < r’ implies
¢0) < B = BRI = Bolr + Bt
Thus, setting u = f¢ + p°h and

Q, ={yeQuuy) =r,|x — y| > 6},
Q, ={yeQuuy) =v,|x — yl £},
Q, = {yeQ:uy) > r'},

we have

ABd + BRI < Ll f L K(x, y)f(u(y), )l dy

K e o
|5 ]]
! & N
+ [fulr)] 7 + (1 ) I8¢ + Fhil*y

< 2e + ef + &,

since ||f¢ + ph|* < p° + r*B*°. Thus (2.2) holds uniformly for |h| < r with
Bo + ph > o.
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LEMMA 2.3. Let the kernel K, the function, f, and the operator A have the
properties described in the first sentence of Lemma 2.2. Suppose that there exists a
number p > 0 such that for each x€Q, f(w,x) is a continuously differentiable
Sunction of w for w € (p, + ), the partial derivative D, f(w, x) is measurable and
bounded on (p, + o0) x Q, and there exist functions m and b on Q such that

lim D, f(w, x) = m(x)

w—+ o

and

lim [f(w, x) — m(x)w] = b(x)

w— + 0

uniformly for x € Q. Define the operator w by

wu(x) = f K(x, y)[f(u(y), y) — m(yu(y) — b(y)) dy.

Then for any sufficiently small number r > 0 and for every function ¢ € C(Q)
such that ¢(x) > 0 almost everywhere on Q, we have

(2.3) LIIP (B + h)| =0
ﬁﬂ4)+hgoa

uniformly for he #" = {he C(Q): |h|| £ r}, and

24)  oBip + hy) — 0By + h)ll = 4By, By hys ho)lIB1d + hy — Bop — s
ifh,e #", and B;p + h; > o for i= 1,2, where

(2.5) lim q(B,,B,;h,h,) =0

Ba2—+ o0
B> B2

uniformly for h, € #" and h, € &'

Proof. The proof of the preceding proposition, with f(w, x) replaced by
S(w, x) — m(x)w — b(x), shows that w satisfies (2.3). Condition (2.4)-(2.5) is proved
in a similar way: Let

1
M(w,,w,; x) = f D, f(w, + a(w, — w,), x)da.
0

Then for any functions u,, u, € C(Q)) and any y € Q, we have
Lf (1), y) = m(y)uy(y) — fua(p), y) + m(y)uy(y)
S IM(uy(y), uy(y); ) — mlluy(v) — uy(VI-

Using this inequality, we can show, as in the proof of the preceding proposition,
that given ¢ > 0 and a sufficiently small » > 0, there exists f§, such that whenever
Bi 2 By 2 By, lihy |l = r,and [[h,] < r, we have

lw(Byp + hy) — a(fyp + b))l < ell(Byd + hy) — (B, + hy)l.
Thus (2.4) and (2.5) are satisfied.
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3. Asymptotic branch points. We now begin our study of the integral equation
(1.1). Let Q be a bounded open set in n-dimensional space, whose boundary 9Q
has n-dimensional measure zero, and let K be a weakly singular kernel defined
on Q x Q. We make the following assumptions on f and g:

(CP1) g is a continuous, never negative function on Q.

(CP2) f is a continuous, never negative function on (— oo, 4+ o) x Q.

(AL) f is asymptotically linear; i.e., there exists a function m on Q such that
(3.1) lim w™f(w,x) = m(x) uniformly for x € Q.

w= + o0

Then, because of (CP2), the operator A defined by (2.1) maps C(Q) into the
positive cone .#” of never negative functions in C(€), and A4 is compact (completely
continuous). The operators u — g + A4u, for 4 = 0, are compact, positive
operators on C(Q), and all solutions of (1.1) for 4 = 0 are in X",

In addition to the assumptions above, we may impose one or more of the
following conditions on f:

(I) For each x € Q, f(w, x) is an increasing (i.e., never decreasing) function of w.

(F) For some x € Q, f(g(x), x) > 0 (the forced case).

(UF) For all x € Q, f(g(x), x) = 0 (the unforced case).

(L) There exist positive numbers p and M such that for all x e Q and all
w, = w; Z p, we have

f(Wy, x) = f(wy, X)| < Mlw; — wyl.

We distinguish the forced and unforced cases because in the latter (1.1) has
the trivial solution u = g for all 1 > 0, whereas in the forced case u =g is a
solution only for A = 0.

In connection with (1.1) and assumption (AL), we also consider the linear
eigenvalue problems

(3.2) $x) = u f K(x, ym()() dy
and
(3.3) ) = u f K(y, )m()p(y) dy.

These equations each have a unique normalized positive eigenfunction, which we

denote by ¢, and ¥, respectively, corresponding to the same eigenvalue y,[o0]
> 0 (Appendix, §§A.3, A.4).
Because of (AL), the linear operator

(3.4) A(c0)h(x) = f K (x, y)m(h(y) dy

is the 4 -asymptotic derivative [10] of the operator A4, ¢, is a positive eigenvector
of A'(c0), and the positive linear functional & on C(Q) defined by

(3.9) &) = f b OmGou(x) dx

is a positive eigenvector of the adjoint of 4'(c0).
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An asymptotic branch point for (1.1) is a number u for which there exists a se-
quence {u,} of positive solutions of (1.1) with lim,_, .  [lu,| = + co such that the
corresponding sequence {4,} converges to u.

Our first theorem is valid in both the forced and unforced case; however, we
shall obtain a stronger result for the forced case below (Theorems 3.3 and 3.6).
This theorem is a restatement of the general Theorem 4.4 of [10] for the case of
equation (1.1).

THEOREM 3.1. Assume (CP1), (CP2), (AL) and (L). Suppose there exists a
function b: Q — (— 00, + o0) such that

lim [f(w,x) — m(x)w] = b(x)
w= + o0
exists uniformly for x € Q, and m(x) > 0 for some x € Q. Let ¢, , be, respectively,
the positive eigenfunctions of the linear equations (3.2) and (3.3), corresponding to the
eigenvalue p,[00], normalized so that | ¢ || = 1 and [ Y (x)$ . (x)m(x) dx = 1. If

Yo = fwm(x)[ul[oojbw + g0l dx # 0,

then there exists a number 0 having the same sign as y,, such that for each A between
py[oo] and py[00] — 6, there is a solution u(4) of (1.1) such that lim,_, , ., lu(Z)]|
= o0, and there is a positive number r such that for each A between i,[c0] and
uy[o0] + 0, there are no solutions of (1.1) with norm greater than r. The solutions
u(A) satisfy
1
py[0] — 4

as 2. — p,[00], uniformly for x € Q.

Proof. Because of the assumed uniform Lipschitz continuity in w of f(w, x)
for large w, we can apply Lemma 2.3 above and Theorem 4.4 of [10] to obtain the
desired result.

We now consider the case that u = g is not a solution of (1.1).

Suppose that f[g(x), x] > 0 for some x € Q. The equation u = g + AA4u is
equivalent to v = AA(v + g), with v =u — g, and v = 0 is not a solution for
A > 0; it follows from [18] that there exists an unbounded continuum of solutions
(4, v) in [0, 4+ 00) x A" containing (0,0). Thus there is an unbounded continuum
of solutions (4, u) of (1.1) in [0, + 00) x A" containing (0, g).

Let

u(4; x) Yoo ®on(X) + 0|y (00) = A7)

A = {4 > 0:(1.1) has a positive solution u}.

If A is bounded, then, in the forced case under consideration, there must be
solutions of arbitrarily large norm; conditions guaranteeing that A is bounded are
given in Theorems 3.4 and 3.5 below.

LEMMA 3.2. Suppose that f satisfies (CP2), (AL) and (F). If m(x) = 0 for all
xeQ, then A = (0,+ ).

Proof. For any w, = 0, define

JoaxWo) = max {f(x,w):x€Q,0 < w = wy}.
If m(x) = 0 for all x € Q, then for any & > 0, there exists p > 0 such that

fw,x) S ew + fil0)-
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Define
rww=fKuJMw@a

Then we have Au < elu + If, . (p). For any 4 > 0, choose ¢ < (4||T'||))"*, and
then choose o = (||g|| + AT ()1 — A|T|) ™" If u satisfies u = 0, |ul| < o,
then so does g + AA4u. By the Schauder fixed-point theorem, (1.1) has a solution.
Thus, when m(x) = 0, A = (0, + o0).

In Theorem 3.5 below, we show that the converse of this lemma holds if f also
satisfies condition (I).

THEOREM 3.3. Suppose that f satisfies (CP2), (AL) and (F). Suppose that A
is bounded. Then m(x) > 0 for some x € Q, and there exists exactly one asymptotic
branch point u,[co]; p,[oo] is a positive finite number, the smallest eigenvalue of the
linear equation (3.2). If {u, } is any sequence of solutions of (1.1) such that lim,_, , ., |lu,|
= + o0, then the corresponding sequence {4,} converges to y,[0], and

u

lim — =¢,,

n—too ]

where ¢, is the positive eigenfunction of (3.2) corresponding to the eigenvalue
u,[oo], with ¢ (x) > 0 for all x € Q.

Proof. This is Theorem 3.1 of [10], which is applicable because of Lemmas 2.2
and 3.2 above (cf. [8, p. 209)).

We now give two conditions for A to be bounded.

THEOREM 3.4 (cf. [6, Cor. 3.3.4]). Suppose there exists a never negative, not
identically zero, continuous function p on Q such that f(w,x) = p(x)w for all
(w, x) € Q x [0, +00). Then A is bounded above by the smallest eigenvalue of the
linear integral equation (A.1).

Proof. Any solution u of (1.1) is strictly positive on Q and satisfies

mnzAJMmeMwsznm

for all x € Q. It follows from §A.5 in the Appendix that 4 < p,[T].

THEOREM 3.5. Suppose that, in addition to the usual assumptions, f satisfies
(I) and (F). Then there is one and only one number ;[ 00 ] for which there is a sequence
{4,} converging to p,[o0] such that (1.1) has positive solutions {u,} satisfying
lim,, ., |u,l = +c0. If m(x)=0 for all xeQ, then u,[0]= 4+ and
A = (0, +00). If m(x) > O for some x € Q, then A is bounded, u,[c0] is positive and
finite, and Theorem 3.3 applies.

Proof. Under the stated conditions, the set A is an interval, and for each A € A,
there is a smallest positive solution u°(A), which is an increasing function of A
(see [10, Lemma 5.1]). From u = g + AAu = AAg, it follows that if A = (0, + o0),
then as 4 - + oo, we have u(4; x) » + oo for all corresponding solutions u(1) of
(1.1), uniformly on any closed subset of Q.

Suppose that A were unbounded and m(x) > O for some x € Q. There exists a
closed ball ©, = Q such that m has a positive lower bound, say 2u, on Q,, and
there exists a positive number p such that f(w, x) = uw on Q,, since f(w, x)/w
— m(x) uniformly on Q. For some A,, the corresponding u°(4,) = u, satisfies
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u,(x) = p for all x € Q,. Therefore, for every 4 > A, any corresponding solution
u(A) satisfies

u(A;x) 2 2 | K(x, y)uu(y) dy = ATu(4; x),
Qo

where T is the compact positive linear operator given by

Thix) = f K(x, y)p()h(y) dy,

Q

with p(y) = 0 for x e Q\Q,, p(y) = u for x € Q,. The operator T has a positive
spectral radius p,[T], and u = ATu implies that 1 < u,[T], which contradicts our
assumption that A is unbounded. Thus A is bounded and we can apply Theorem
3.3.

THEOREM 3.6. Suppose, in addition to the conditions of Theorem 3.3, that there
exists a continuous real function b on Q and a number s € [0, 1) such that

fw, x) = mx)w + b(x)w* + o(W*) as w— +o0

uniformly for x € Q. Let \,, be the positive eigenfunction of (3.3) normalized so that
[ ¥ ()0 o (x)M(x) dx = 1. Then

lim (4, — gy [oo])u,|' ™% = 7.,
where e
(36) . {MOOJ [Vulbx)gsdx, 5 >0,
[ ¥ (9)y [00b(x) + g(x)]dx, s = 0.

If v, # 0 (in particular, if s = 0 and g(x) is not identically zero, or if b(x) is not
identically zero and does not change sign on Q), then

() = (ﬁT ) $o) + ollpy[00] = 2,7

as n — oo, uniformly for x €Q, where s’ = (1 — s)"'. If y,, > 0 (or 7y, < 0), then
there is a number r > 0 such that (1.1) has no positive eigenfunctions with norm

greater than r corresponding to eigenvalues A in [ [00], 00) (or [0, u,[00]], respec-
tively).

Proof. If m(x) > 0 for some x € Q, then we have

Au = A'(o)u + Cu + wu,
where

Culx) = f K(x, WhO)G)T dy
and
o(u) = Au — A'(c0)u — Cu.

By Lemma 2.2, w satisfies the hypotheses of Theorem 3.2 of [10]. The conclusions

of the present theorem are then exactly those of Theorem 3.2 and Corollary 3.3
of [10].
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We continue the discussion of the forced case under the additional assumption
(I). A complete description of the smallest positive solutions u°(4) in this case is
given in Lemma 5.1 of [10]. From Theorem 5.2 of [10] or directly from Theorem 3.6
above, we obtain the following condition for the existence of a second positive
solution for some values of 4.

THEOREM 3.7. Suppose that f satisfies (CP2), (AL), (1) and (F). Suppose that
m is not identically zero, that for some s € [0, 1),

lim w™[f(w, x) — m(x)w] = b(x)

w= + oo

exists uniformly for x € Q, and that y,, < 0O (where y, is defined in (3.6)). Then for

every 6 > 0, there exists i€ (u,[00], u[00] + ) such that (1.1) has at least two
positive solutions.

4. Convex nonlinearities. When the nonlinearity f(w, x) in the integral
equation (1.1) is convex in w, Theorem 3.7 can be improved considerably. We recall
that, in general (whether or not the nonlinearity is convex), if f(w, x) is forced and
increasing in w and f(w, x)/w is decreasing in w in a sufficiently strict sense, then
the solutions of (1.1) are unique for each 4, and thus lim,_, ;. |u°(4)|| = + oo (for
details, see [7, Chap. 6], [11]; for the corresponding results for partial differential
equations, see [15]).

For second order ordinary differential equations in which f(w, x) is independ-
ent of x, the condition that f(w)/w is decreasing in w is not only sufficient but also
necessary for the uniqueness of solutions [13] in the convex case.

We now show that this is very nearly true also for the general integral equation
(1.1) when f(w, x) satisfies (AL).

Our discussion will use the following fact about convex functions [2, 1.4.4,
Ex. 7b]: If F(w) is a convex function of w on an interval I, with lim,, ;. ,F(w) > 0,
then either F(w)/w is strictly decreasing for all w € I, or there exists w, € I such
that F(w)/w is strictly decreasing for w < w, and constant for w > w,, or there
exist wy, w, € I such that F(w)/w is strictly decreasing for w < w,, constant for
wo < w = wy, and strictly increasing for w > w,.

Thus the limit lim,, , , , f(w, x)/w = m(x) exists for each x € Q; if this function
m is bounded on Q, then the operator defined by (3.4) is a bounded linear operator
on C(Q)), and we again denote by yu,[00] the reciprocal of its spectral radius.

From the convexity of f(w, x) in w, it follows that

(4.1 Sy, x) — flwy, x) £ m(x)(w, — wy)

whenever 0 < w; < w,. Thus from [11, Chap. 1.4], [1, Thm. B], [12, Thm. 3-6]
we obtain the following Theorem.

THEOREM 4.1. Assume conditions (CP1), (CP2), (AL), (F) and (1), and that
f(w, x) is convex in w. Then the integral equation (1.1) has a unique positive solution
for each 4 € (0, u,[00]).

If strict inequality holds in (4.1) for all x € Q, then the solution of (1.1) for
A = p [oo]—if there is one—can be shown to be unique. The situation is more
complicated if we merely assume (4.1); the results in this case are the same as the
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corresponding results for partial differential equations presented in [14], and we
omit them here, except for the special case described in Theorem 4.4 below.

It follows from (4.1) that if m(x) = 0 for some x € Q, then f(w, x) = f(0, x)
for this x and all w = 0. Thus if m(x) = 0 for all x € Q, then we have essentially a
linear problem; under assumptions (F) and (I), it is in this case, and only this case,
that A is an unbounded interval.

Our major result in this section is the next theorem and Corollary 4.3,

THEOREM 4.2. Assume that conditions (CP1), (CP2), (AL), (I) and (F) are
satisfied, and that f(w,x) is convex in w for (w, x) € [0, +00) x Q. Let Y be a
positive eigenfunction of (3.3) corresponding to the characteristic value u,[o0].
Define

WO w) = f Vo)W — £w, ) — m(g()] dy.
Q

If either of the following two equivalent conditions is satisfied:

(a) There exists wy > 0 such that WP(Q; wy) > 0, or

(b)
4.2) lim W(Q; w) > 0,

w=+ oo

then:

(1) There exists a positive number r such that (1.1) has no solutions with |u|| > r
corresponding to A € (0, p,[00]).

(i) For all positive numbers p and 0, there exists A € (p,[00], u,[c0] + 8) for
which (1.1) has at least two positive solutions, one of which has norm greater than p.

Proof. Hypotheses (a) and (b) are equivalent since the convexity of f implies
that W(Q; w) is an increasing function of w. These hypotheses imply that m is not
identically zero on Q, so by Theorem 3.5, A is bounded. Hence there exist solutions
of arbitrarily large norm, and by Theorem 3.3, u,[oc] is the asymptotic branch
point. Thus, according to Lemma B.1 of Appendix B, it suffices to show that

(A (0)(u — g) — Au] > 0

for sufficiently large solutions u = AAu + g, where ¢ is the linear functional (3.4).

Let ¢, be the normalized positive eigenfunction of (3.2). Since 0Q has measure
zero, there is an open subset Q, < Q, < Q and a positive number f such that
(cf. hypothesis (a)) W(Q,; wy) = B for all open subsets Q, with Q, < Q, < Q.
Since ¢, is strictly positive on Q,, we can choose ¢ > 0 so small that

Q = {xeQ:p (x)>2¢ 2Q,

and

V(0 {m(y)g(y) + 110, y)} dy < 3P.
Q.
By Theorem 3.3, we can find p > 0 so that if u = A4du + g and |ul| > p,
thenu 2 [[ull(,, — e)onQ;thusonQ,,u = fufle. Let fy(w, y) = m(y)g(y) + f(w, »);
then if u = A4u + g and |u| > p,
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pi[ooJe[A'(0)(u — g) — Au] = fl//w(y)[m(y)u(y) — fiu(y), y)] dy
4.3) z | Yo imW)llulle — fi(lulle, y)} dy
Q,

- Y., (110, y) dy,
QIQ,
where we have used the fact that m(y)w — f,(w, y) is an increasing function of w,
since f(w, ) is convex in w. Then |ju|| = max {p, wy/e} in (4.3) implies

p1[00JE[A' (o) (u — g) — Au] Z 3B > O,
as desired.

For sufficiently small w, f(0, x) > 0 implies f;(w, x) = m(x)w; the condition
(4.2) means that for sufficiently many x and sufficiently large w, f;(w, x) < m(x)w.
Now the relation f;(w, x) < m(x)w for some x is true if and only if f;(w, x)/w is
strictly increasing for all sufficiently large w, since otherwise we would have
Siw, x)/w = lim,_, ., fi(p, X)/p = m(x) for all w > 0. In particular, we have
the following corollary.

COROLLARY 4.3. The conclusions of Theorem 4.2 hold if we replace assumption
(4.2) by the following: For all x € Q, [ f(w, x) + m(x)g(x)]/w is eventually increasing
in w, and there exists a subset Q, of Q of positive measure and a number p > 0
such that [ f(w, x) + m(x)g(x)]/w is strictly increasing in w for all x € Q, and all
w > p.

If the nonlinearity f(w, x) is independent of x, the preceding results can be
expressed more elegantly as follows.

THEOREM 4.4. Let f be convex, nonnegative, and increasing on [0, + o0), with
f(0) + g > 0, where g is a nonnegative constant. Let m = lim,_, , , f(w)/w, with
0 < m < +o0. Let K(x, y) be a weakly singular kernel on Q x Q, and consider the
equation

(4.4) mm=g+iwawﬂmm@
Q

Let [i be the eigenvalue of the linear equation
= 1 | K ) dy

corresponding to a positive eigenfunction.

Then (4.4) has a unique positive solution u°(%) for each A€ (0, i/m). If
[mg + f(w)]/w is eventually strictly increasing in w, then (4.4) has at least two
solutions for some values of A > fi/m. Otherwise, A* = sup (A) = fi/m, and either

(@) there is no solution for 4 = A* and lim,_, ,._ |u®(2)|| = + o0, or

(b) there are infinitely many solutions for A = A*, and there is an oy > 0 such
that all solutions for A = A* have the form u®(A*) + a¢ , for o = a,.

Case (a) occurs if [mg + f(w)]/w is strictly decreasing in w for all w > 0,
or if there exists x € 0Q such that K(x, y) = 0 for all y € Q.
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Proof. If [mg + f(w)]/w is eventually strictly increasing in w, the result follows
from Corollary 4.3. In the other case, the assertions are proved in the same way
as the corresponding assertions for partial differential equations in [14], [15].

COROLLARY 4.5. Let f be convex and increasing on (0, +o0), with f(0) > 0
andm = lim,,_, . . f(w)/w <+ 00. Suppose there exists x € 0Q such that K(x, y) = 0
for all y € Q. Then the following statements are equivalent:

(i) f(w)/w is eventually strictly increasing in w.

(i) f(w) — wf"_(w) is eventually negative.

(iii) Equation (4.4) has more than one positive solution for some A > [i/m.

(iv) A* > a/m.

Another way of describing the nonuniqueness result of the last theorem is to
say that if f(w)/w is eventually strictly increasing in w, then the integral equation
(without the parameter 1)

ux) = [ K(xf o) dy
Q
has at least two solutions if i < m.

Appendix A.
A.1. We consider the linear integral equation with a weakly singular kernel

(A1) hx) = A f K(x, y)p)h(y) dy.,

where Q is a bounded, open, connected subset of R", K(x, y) is continuous in
(x,y) on QxQ except possibly when x = y, there exists a constant k > 0 and a
number o € [0, n) such that

IK(x, y)| = x/lx = yI*

for all (x, y) € Q x Q, x # y, and p is a bounded, measurable function on Q. For a
general description of the analysis and properties of this equation, see [3], [16],[17].

A.2.The operator T: C(Q) — C(Q) given by
Tux) = | K yp(ohuts) dy
Q

is a compact linear operator on C(Q) by Arzela’s theorem and is positive if N(x, y)
= K(x, y)p(y) = 0. We define Tu(x) = | K(x, y)u(y) dy, so Tu = I'pu. The mth
iterated kernel N, is defined in the usual way; N,, is the kernel of T™. Each kernel
N,,is bounded on Q x Q for m > n/(n — «) [17, Chap. III]. It is possible to choose
m > n/(n — ) so that the eigenfunctions of N corresponding to any eigenvalue
A of N are precisely the same as the eigenfunctions of N, corresponding to the
eigenvalue A" (the eigenvalues A of N, that is, of equation (A.1), are the characteristic
values of T:h = ATh # 0). For such m, u is an eigenvalue of N, if and only if one
of the mth roots of u is an eigenvalue of N [17, §111.3]. In general, there may be no
eigenvalues.

A.3. We assume henceforth that K is strictly positive on Q x Q, that p = 0
on Q, and that there exists an open subset Q, of Q on which p is strictly positive.
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Then there is an eigenvalue: We choose m > n/(n — o) as described in the preceding
paragraph. The iterates of N have the form N, (x, y) = K, (x, y)p(y), where K, is
strictly positive on Q x €, and therefore jQ N, x) dx > 0. Since N, is bounded,
it follows from the Fredholm theory for integral equations with bounded kernels
that N, has an eigenvalue [17, p. 178] and hence (by choice of m) N does also. The
Krein-Rutman theorem [9] implies that N has a nonnegative eigenfunction ¢
corresponding to the eigenvalue uy[T] (the largest positive eigenvalue of N and
the reciprocal of the spectral radius of T); it is easily verified that ¢ is strictly
positive on Q.

The arguments of Jentzsch ([4], cf. [3, §17.5]) applied to the bounded kernel
N,, imply that p,[T] is a simple eigenvalue of N (the simplicity of (u,[T])" as
an eigenvalue of N,, implies the simplicity of u,[T] as an eigenvalue of N); [ T]
is larger than the absolute value of all other eigenvalues of N, and the positive
multiples of ¢ are the only positive eigenfunctions of N.

A.4. Similarly, the integral equation

hx) = j Ky, x)p0)h(y) dy

has a “unique” positive eigenfunction i, and the corresponding eigenvalue is
easily seen to be u,[T]. The linear functional £: C(Q) — R defined by

&h) = f YIPCOR(x) dx

is a positive eigenvector of the adjoint of T corresponding to the characteristic
value po[T]; ie., uo[TIE[Th] = h for all he C(Q). This follows from the easily
verified fact that, for any v € C(Q),

o[ T)E(T0) = f o) dx.

Note that &(h) > 0 if h = 0 and there exists x € Q, such that h(x) > 0.

A.5. The operator T has the following property, as can be verified using the
functional ¢. Suppose that for some h e C(Q), h = 0, we hdve h — ATh = 0 on Q.
If h(x) > O for some x € Q,, then A = p [T];if h(x) — ATh(x) > 0 for some x € Q,,
then 4 < po[T] (cf. the property (PA) in [11] and “regularly solvable” in [1]).

Appendix B. In this appendix we state and prove the lemma used in the proof
of Theorem 4.2. We use the notation and terminology of [10, §3].

LeEMMA B.1. Let & be a partially ordered Banach space with a positive cone
A . Let A be a positive operator on A~ which has a continuous A -asymptotic deriva-
tive A'(c0). Suppose that there exists a solution (A, u) of u = g + AAu withue A,
A > 0. Let pu be a positive characteristic value of the adjoint of A'(c0) to which there
corresponds a positive eigenvector & (that is, £ is a positive linear functional such that
uE[A'(c0)h] = h for all h € &) such that E(u — g) # 0. Then

sgn (u — 2) = sgn ({[Au — A'(co)u + p~'g))
= sgn ({[Au — A'(0)(u — g))).
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Proof. We have
0 < pé(u — g) = pAl[Au — A'(0)(u — g)] + Al(u — g),
so that

__'u_/l_ _ / -
u—i—é(u_g)é[Au A'(co)u + p~'g].

The desired result follows immediately.

Lemma B.1 is of particular interest when we combine it with Theorem 3.1
of [10] and take u to be an asymptotic branch point.

We assumed the existence of the positive linear functional ¢ in Lemma B.1; by
theorems of Krein and Rutman [9], such a ¢ exists if A’(c0) is compact on A, if
u = po[A’(00)], the reciprocal of the spectral radius of A’(c0), and if either # — A~
is dense in & or .4 has interior points.
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SOLUTIONS TO A PROBLEM
IN POWER SERIES REVERSION*

A.J. GOLDSTEIN anp A. D. HALL*t

Abstract. This paper presents the general solution of the following problem in two forms.

Let f(x, y) be defined by the formal power series f(x, y) = Y *_ > ®  f.x"" with fo, # 0.
If v satisfies v(x, y) = f(xv", yv’), where a and b are constants, then find the formal power series ex-
pansion of v“(x, y), where ¢ is also a constant.

A special case.of this problem, which occurs in a paper by R. A. Handelsman and J. S. Lew [1],
has been proposed as a problem to be solved by computer using a symbolic algebra system [2].

1. Introduction and summary. In this paper we give two formulations of the
answer to the following problem.
Let f(x, y) be defined by

g oo}

fe) =2 Y X"
m=0n=0
with fy, # 0. If v satisfies
(1) o(x, y) = f(xv, yo°),

then find the formal power series expansion of v°(x, y) for arbitrary c.
First, we show that

1+ c-Inf)u, am +bn+c=0,

) (0 = ¢ .

am n+C s b " 0’

am+bn+c(f s am -+ b+ ¢ #

where the notation (g),,, denotes the coefficient of x™y" in the series expansion of
g(x, y). .

Equation (2) is conceptually simple but computationally difficult. To provide
a formula more amenable to computation we show that (2) can be rewritten as

fE)O’ m=n=0,

(3) (vc)mn = +b +cm+" -k
of oty Fumon)am +bn+ ¢ — 1), fod, m+n>0,
k=1

where (w), is the falling factorial defined by
(W)O = 1’
Wh=ww =1 (w—k+1), k>0,

and F, is defined by the generating function

@ >

e8]
Z Fk(m, n)xmynzk = W)~ 1(0,0))z

* Received by the editors November 2, 1973, and in revised form March 1, 1974,
+ Bell Laboratories, Murray Hill, New Jersey 07974.

192



POWER SERIES REVERSION 193

We then derive the following recursive formula for the computation of
F,(m, n) for all k, m and n:

Fy0,0) =1,
Fo(m,n)=0, m+n>0,
5 =
®) F(m,n) =0, maon <k,
I & e, . . .
Fkﬂ(m,n):-—m-T;i:ZOj:O(l+])ﬁij(m—l,n—J), m+n>0.

2. Derivation of formula (2). In order to illustrate a technique that may be
applicable to other similar problems, we give a derivation based on the residue
operator for formal power series! given in [3]. Proofs based on complex variable
theory can be obtained for the one-variable case from Lagrange’s theorem [4,
§7.32], and for the two-variable case from the generalization of that theorem
by I. J. Good in [5].

We shall briefly summarize the relevant results of [3]. Let h(x,, ---, x,) be a
formal power series in r variables (i.e., no convergence restrictions) of the form

0 e}
h = Z e hn|~-~nr'x'{l e x:"‘,
ny =k np=ky
where k, -+, k, are finite but may be negative. The sum, difference, product

and partial derivatives of formal power series are defined in the usual way and
have the usual properties. For exponentiation, let h have a nonzero constant
term h, and no negative exponents. Thus

(6) h = hO(l + H(xla Y X’n))a
where H has a zero constant term and no negative exponents. Then h* can be

defined by
a a - (O() Hk
= ho( y

k=0

and this exponentiation has all the usual properties. For h as in (6), we define

Inh=1Inhy +In(1 4+ H)

=1Inhy +) (— D" H¥k
and k=1

o — ohogholl

a0
= eM ) (hoH)/k!.
k=0
These have the usual inverse and differentiation properties.
The basic requirement in the manipulation of formal power series is a finiteness
condition: If the manipulation of the operands g, h, - - - (which are formal power
series) results in a formal power series f, then the coefficient of any term in f may

' 1. Niven gives an excellent survey of formal power series in [6].
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not involve more than a finite (but possibly unbounded) number of coefficients
of the operands g, h, - - - .

The residue operator applied to any h is defined by

R(h) = coefficient of x; ' --- x, ! in h.
As a consequence,
7 R(h/x71*1 ... x™*1) = coefficient of x}' - - - x}" in h.
The main result for this operator deals with substitutions [3]. Let
g = XT o XMG Xy, e, X,)s i=1,---,r,
where G; has no negative exponents and a nonzero constant term and m;; = 0

with 3 m;; > 0. Then

(8) det (m;;) R(h) = R<h(g1, . 8) 25%_%)
1 >

where the Jacobian is defined by

ALy 8D _ 4o <0gi>

0(xyy-v s X,) 0x;

The fact that h(g,, - - -, g,) is well-defined can be shown by observing that each
coefficient in its formal series will involve only a finite number of the coefficients
from the g; (see [7] for a detailed proof).

For our problem, let us first make a change of variable from x, y to s, t, so
that (1) becomes

u(s, t) = flsv*(s, 1), tv'(s, 1)),
where f,, # 0 and therefore vy, = fo0. If
x = sv¥(s, t),
y = t’(s, t),
then
us, 1) = f(x,))
giving
s = xf7x, ),
t=yf7"x, y),
ol =0, y), f P y) = f(x ),

which is the dual of equation (1).
Now by (7),

() = RO, /s 1Y),
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and so the substitution theorem (8) yields

c — vc(xf_a’ yf—b) am+ta+tbn+b a(xf_a’ yf—b)
(VYmn —R<Wf 6(x—,y)>

_ R fam+bn+a+b+c axf ,Yf b)
xm+1yn+1 a(x’ y)

The Jacobian has the value

f~a—b( —axf laf f 1 f)

giving (with d = am + bn + ¢)

() = R(fd<1 — axf‘l % — byf ! (;_f_>/xm+1yn+l>
= R(f4/xm+1yn*1) — (fd 1 f/ n+1> — bR<f"‘1 gf;/xmﬂyn)

Now for any h,

oh
(9) R(g/xmyn+l> — mR(h/xm+1yn+l).

Thus if d # 0, the second term is

7R<af / myn+1> — _:;?T_R(fd/xm+1yn+1)

and similarly the third termis (—bn/d)R(f¢/x™*1y"*1). Replacingd by am + bn + ¢
and adding, we have

C

v° o am+bn+c
hn = e (L

which is the second part of (2).
If d = 0, the second term is

_,of Oln f
_ 1V mon+1\ __ m.n+1
oy Gfroet) =5 o)
— —amR(ln f/Xm+ lyn+ 1)’
and similarly the third is
—bnR(In f/xm*1ynt 1y,
Therefore, since d = 0 we have ¢ = —am — bn and

(V) = (1 + 10 [y
which is the first part of (2).
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3. Derivation of formulas (3) and (5). Formula (3) is a special case of the
following more general result: If h(x, y) = g(u) and u = f(x, y) where f is a given
formal power series with no negative exponents and g(u) has a series expansion
around the point u, = f(0,0) = fy,, then the coefficients of the formal series for h
are given by:

hoo = g(£(0,0)),
(10) m+n k

d
hmn= ZFk(man);gE m+n>0,
k=1 du u=£(0,0)>

where, as before, the F,(m, n) are defined by

(11) >
m=0n

S
L

Fo(m, n)x™y"zk = oV = 50,00z

0k=0

I
]

Using (10) we obtain (3) in the case am + bn + ¢ # 0 by just specializing
g(u) to (¢/y)u” so that h(x, y) = (c¢/y)f’. Then (10) gives

¢ c
_fv> =1,
<7 o0 7V o0

¢ m+n B
<;fy) =c Z Fi(m, n)(v)k-lf%ok, m+n>0.
mn k=1

Settingy = am + bn + c and substituting these into the lower part of (2), we arrive
at (3).

To obtain (3) for the case am + bn + ¢ = 0, we specialize g(u)to 1 + y-Inu,
so that h(x, y) = 1 + y-In f. Then (10) gives

(I+7y-Inf)go=1+7y-1n fo,
m+n

A +yIn =7 X Flmn)(=1-1foo, m+n>0.

k=1
Setting y = ¢ = —am — bn and substituting these into the upper part of (2),
we obtain
1, m=n=c¢=0,

(0 =

e S Fumom(= D fo&, m+n>o0,
k=1

which agrees with (3) when am + bn + ¢ = 0.
Now to prove (5) and (10), we first equate the coefficients of z*¥ in (11) to obtain

1, k=0,

12 mg'o ngo Fim, mxy” = ) ;' /G, 0))k, k> 0.
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From this, we see immediately that
F(0,0) = 1,
Fomn) =0, m+n>0,
F(m,n)=0, m+n<k,

which are the first three parts of (5).
If we expand h(x, y) in a series around the point u,, we have

< dkg (u — uo)k
h(x, y) = k;) diF —— T
Ifu = f(x, y) and u, = f(0, 0), then
2 d'g (f(x, y) — f(0, 0))
h(x, y) = — R
. 5) kgo du u= £(0,0) k!

whence by (12),

Z——gk (Z Zanxy>
k=0 u= f(0,0) \m=0n

Interchanging the order of summation and equating coefficients of x and y we
obtain (10).

It remains to prove the last formula in (5). First differentiate (11) with respect
to x to obtain

Y Y Y Rimmmx y=<§f< y>)
(Z Z Z mn)xmnk+1><

Equating coefficients of z**! we have

i Fkﬂm n)mx™ "~ 1y"—<§ i W(m, n)x y><z Z mxm ! )

Applying the convolution formula for the product of two power series and equating
the coefficients of x™~'y", we obtain

"MS

mF, . (m, n) = Z Z ifyiFfm — i, n — j).

i=0 j=
Similarly, differentiating (11) with respect to y, we obtain
nFyy (m, n) = Z Z]quk(m in—j).
i=0 j=0

Finally, adding these two equations and dividing by m + n we obtain the last
formula in (5).



198 A.J. GOLDSTEIN AND A. D. HALL

REFERENCES

[17 R. A. HANDELSMAN AND J. S. LEW, Analytical evaluation of energy eigenralues for a class of an-
harmonic oscillators, J. Chem. Phys., 50 (1969), pp. 3342-3354.

[2] J.S. Lew, Problem 3— Reversion of a double series, SIGSAM Bulletin, No. 23, July 1972, pp. 6-7.

[3] A. JAY GOLDSTEIN, 4 residue operator for formal power series in several variables, to appear.

[4]) E. T. WHITTAKER AND G. N. WATSON, Modern Analysis, 4th ed., Cambridge University Press,
London, 1927.

[S) 1.J. Goob, Generalization to several variables of Lagrange’s expansion, with applications to stochastic
processes, Proc. Cambridge Philos. Soc., 56 (1960), pp. 367-380.

[6] 1. N1vEN, Formal power series, Amer. Math. Monthly, 76 (1969), pp. 871-889.

[7] J. BOCHNER AND W. T. MARTIN, Several Complex Variables, Princeton University Press, Princeton,
N.J., 1948.



SIAM J. MATH. ANAL.
Vol. 6, No. 1, February 1975

ON AN EXPANSION PROBLEM OCCURRING IN THE THEORY
OF DIFFRACTION*

D. NAYLORYt anp D. W. BARCLAY

Abstract. This paper considers an eigenfunction expansion arising in certain problems in diffrac-
tion theory involving an impedance-type boundary condition. The c¢xpansion in question is usually
convergent only in part of the domain of interest and involves an infinite set of orthogonal functions
which do not form a complete set, in the sense that it is not in general possible to expand a given
function in terms of them no matter how well-behaved the function may be. A theorem is established
which asserts the validity of the expansion whenever it converges. Also a more general expansion
formula is obtained which is valid for all sufficiently general functions and which reduces to the basic
expansion whenever the latter converges.

1. Introduction. This paper is devoted to an investigation of the validity
of an expansion involving the orthogonal functions H{'(kr), where u,, u,, ---
are the zeros of the function

(1) g(u) = H\V' (ka) + iZH(ka).

Here k, a > 0 and Z is a given complex constant.
The expansion in question can be expressed in the form

uH(kr)g (WF ()

el 10y = —in ¢ RN,
where
o) §100) = Jika) + iZJ (ka)
© d
@ P = [ o

The zeros u,, which are discussed in [1], [2], are neither real nor purely imaginary
and are located in the first and third quadrants of the complex u-plane. The summa-
tion in (2) includes only those zeros which lie in the first quadrant. Series of this type
are not valid in general [6] no matter how smooth the function f(r) may be or how
well-behaved it is at infinity. In practice such series arise as the solutions of certain
problems in diffraction theory and are frequently convergent only in part of the
domain of interest, being divergent elsewhere, a phenomenon which has not been
satisfactorily explained. Since many functions exist which can be represented in
the form (2) it is not sufficient to argue that the above eigenfunctions are generated
by a singular non-self-adjoint problem and therefore do not form a complete set.
Under what conditions will the expansion (2) converge and equal the function f(r)?
This paper provides a partial answer to this question by constructing an expansion
which is valid for all sufficiently general functions and which reduces to (2) when-
ever the latter converges.

* Received by the editors February 22, 1974.
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In an earlier paper [4], the authors discussed the similar series involving the
functions H{)(kr), where u,, u,, - - - are the zeros of H{"(ka). The series in this case
takes the simpler form

HO(kr)J (ka)F
© 0= =ix £ it

The principal result obtained in [4] established the validity of (5) whenever
the series appearing on the right-hand side is convergent. Hitherto there had been
no guarantee that a formal series like (5), even if convergent, would represent the
function f(r) since a set of sufficient conditions to justify (5) had not been discovered.

The object of the present paper is to extend the earlier results to cover the
more general expansion (2) and to obtain suitable conditions under which the
series appearing in (2) does in fact represent the function f'(r). These conditions are
stated in the following theorem.

THEOREM. Suppose that f(r) is twice continuously differentiable for r = a,
r Y2f. 4+ f. + k*rf)e L(a, ©), f(r) and f'(r) are O(r~'?) as r— oo and
rY2(f, — ikf) - 0 as r -0, where k is real and positive. Then, if the parameter 1.
tends to zero through positive values,

(i) forrza,

Y MW (k, r)F (u)u du

© 1) = tim [ €SI,
where

(7 W, (k, r) = J,(kr)g(u) —H(kr)g , (u);

(i) forr = a,

“e'{quLI )(kr)gl(u)Fl(u) .

bl

) f(r) =—in l;_rg u;‘” P
(iii) equation (2) is valid whenever the series appearing therein is convergent.
The path W appearing in (6) is illustrated in Fig. 1. It lies to the right of the
zeros u, of (1) and is asymptotic to the lines arg u = + , where V is a fixed angle
in the interval n/4 < Y < /2. This choice of W is possible since it is known that
the zeros u, situated in the first quadrant are such that arg (u,) » n/2 as n — 0.

2. The integral theorem. This section describes the method of derivation of the
integral formula (6), the expansion (8) being readily deduced from (6) by deforming
the path W onto the imaginary axis and taking the residues at the poles. The
formula (6) is constructed by following the procedure developed in [5]. Let f(r),
the function to be expanded, satisfy the conditions of the theorem and define

©) Pfo + tf, + (K22 =) = h(), rza,

where v > 0. The expansion problem of interest here is that associated with (9)
when the quantity f'(a) + ikZf(a) is prescribed and the function f(r) satisfies the
radiation condition

(10) lim r*2[ f'(r) — ikf(r)] = 0.

r— o
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o,

FiG. 1

To obtain the formula (6), equation (9) is inverted by means of the relation
H{V(kr)

kg(v) ’
where G(r, p) denotes the Green’s function defined by the equations

nH O (kp) ¥, (k, )

(11) ﬂn=Jmhmmmpﬁ%+wfwy+manm

<
2igy) ° ‘="=P
(12) Grop)={
nH{V(kr)¥, (K, p)
—r 2 a<psr.
2ig(v)

The Green’s function as defined by the above composite expression must now
be represented by means of a single formula, which will be inserted in (11). In this
paper the following representation will be adopted:

M (k, ) H D (kp)u du
13 G(r, p) = lim o
(13) (r. p) -0 Jy 2w?* — v?)g(u)
In this formula, which is proved in the Appendix to the paper, the term e* is a
summability factor, the parameter A tending to zero through positive values.
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The path W is chosen so that the point v lies to the right of it. The insertion of (13)
into (11) yields the formula

dp .. J‘ e H M (kp)¥ (k, r)u du
— lim 5 5
w 2u” — v7)g(u)
HP(kr)
kg(v) -
The limit A — 0 is now taken outside of the repeated integral. This step can be

justified by verifying that the p-integral is uniformly convergent for A = 0, and
for this purpose use will be made of the following bound:

(1) [T(u + HHD(kp)| < [2/(nkp))'? eWIT( + H[27 12 + /() @/kp) 2]
In this result, which was derived in [5, p. 118], u =t + is and t > 4. The

asymptotic behavior on W of the functions ¥, and g(u) may be estimated with the
aid of the relations

10 = [ o) <L tim

(14)

+ [f"(a) + ikZf(a)]

1 r
(16) I~ W HP ~ 1

giving '
Wk, 1) ~ —— [(r/a)* + (a/r)"],
nka

17
1" Tw+1)

g ~— =2 = fkay ™,

where, by Stirling’s formula,
(18) |T(u)| ~ (27/R)"'? exp [R cos 0 log (R/e) — RO sin 0],

where u = Re', and |0| < =. It is then found that as R — co the integrand in (14) is

O{p “U2ZR"Zexp [/IR2 cos 2y + R(m + 2y)sin y — R cos Y log <§> sec? x//}}
19
) =0{p~"*R™?exp [AR? cos 2y — R cos y log (p/p,)]},

where p, = 2rcos® Y exp [(n + 2¢)tanyy]. The bound (19) holds as R — oo
on W, uniformly for A > 0, p > a. Since cos 2y < 0, the expression in (19) is
O(p~ 'R~ %) for p = p, and the contour integral in (14) is O(p ™~ '/?) uniformly for
A = 0. The p-integral in (14) is uniformly convergent for A = 0 since by hypothesis
p~32h(p) € L(a, ). The limiting operation in (14) can therefore be placed outside
the repeated integral. Finally the order of integration can be changed since it is
evident from the above bounds that for 1 > 0 the repeated integral is absolutely
convergent, the dominant term in the exponentials being the O(R?) term. The
formula (14) now takes the form

e (k, Pyu du (©

T St
SOy =T | 2 = e
H{V(kr)
kg(v)

HP)H (kp) 22
(20) P

+ [f"(a) + ikZf(a)]



AN EXPANSION PROBLEM 203

The formula (6) may now be obtained from (20) by substituting the expression
1) f h(p)Hf,”(kp)%)B = (u® — v*)F (u) + kaf (@)H\""(ka) —af (@)H,"(ka).

This relation follows from (9) by multiplying by r~'H{"(kr) and integrating by
parts. The insertion of (21) into (20) gives the equation

L M (k, r)F (u)u du
(22) £0) = lim fw o

The definitions of the quantities 4,, 4, appear below. It will be shown immediately
that A, = 4, = 0 so that equation (22) reduces to formula (6) of the theorem.

+ A1 f(a) + Azaf'(a).

1

iZHV(kr) . ka e**¥ (k, )H\" (ka)u du
_ KD | i f ,
g(v) =0 Jy 28(u)(* — v?)
_ H{(kr) lim J’ M (k, r\H "(ka)u du
2 kagv) im0y 28 — v?)

The quantity 4, defined by the first of the above equations can be shown to
be zero by the following device, which starts with the identity

J Mk (k, VHY (ka) — H O (kr)W'(k,a)]u du

w W — v*)g(u)

_ J k e*[J (kr)H Y (ka) — J'(ka)H " (kr)Ju du
w

(23)

u? — v?

This equation follows immediately from the definition (7) of ¥,. The path W
appearing in the integral on the right-hand side of (23) may be deformed onto the
imaginary axis since it can be shown with the aid of the definition

H\(x) = —i[J_ (x) — e~ ™"J (x)] cosec un

and the first of the relations (16) that the integrand is O{u~'e*’[(r/a)* + (a/r)*]}
as u —o0. Since the integrand on the right-hand side of (23) is also an odd function
of u the value of the integral along the entire imaginary axis is zero. Furthermore
it follows from the definition (7) in conjunction with the Wronskian identity
W(J,, H,) = 2i/(nka) that W(k,a) = 2Z/na. When this expression is inserted into
the integral on the left-hand side of (23) and the resulting expression equated to
zero we find the equation

(24) J‘ k e (k, ) H" (ka)u du 2Z M H O (kr)u du
w

(u* — v*)g(w) S oma Jy P - v7)g)

As u — oo on or to the right of W the integrand appearing on the right-hand
side of (24) is O[u~2 ¢*’(a/r)*] and on W itself this is O(u~2) uniformly in 1. The
limiting value of the expression on the right-hand side of (24) as 4 — 0 can therefore
be obtained by setting 4 = 0 in the integrand and evaluating the resulting integral
by closing the contour on the right and taking the residue at the pole u = v. It is
then found that the limit equals —2iZH{"(kr)/ag(v) so that A, = 0 as required.
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To show that 4, = 0 it is only necessary to note that the integral appearing
in the expression for 4, is the same as that appearing in the formula (13) for the
Green’s function G(r, p) with p set equal to a therein. Since G(r, a) can be obtained
from the second formula in (12) it follows that

_HO(Kkr)  n¥(k, ) H O (kr)
27 kagv)  2ig()

Finally from the definition (7) of ¥, and the Wronskian W(J,, H,) = 2i/(nka)
it is seen that W (k, a) = 2i/(nka) and hence that 1, = 0.

3. The expansion theorem. In this section the expansion (8) of the theorem
is obtained from the formula (6) already established by deforming the path W onto
the imaginary axis and taking the residues at the poles that are crossed. Since
HY(x) = ™™ H!)(x) it follows from the definitions (1), (4) that g(—u) = ™" g(u)
and F(—u) = ¢"“" F(u) while on expressing the Hankel functions appearing in (7) in
terms of J,and J _,, it can be shown that ¥ _, = ¥,. The integrand appearing in (6)
is therefore an odd function of u and the value of the integral along the imaginary axis
is zero. The expansion (8) follows on evaluating the residues at the poles u,, situated
in the first quadrant.

To justify the above procedure it is necessary to form a suitable sequence of
paths which recede to infinity and which avoid the zeros of g(u). The asymptotic
behavior of this function can be obtained from (1) by expressing the Hankel
functions in terms of Bessel functions and using the first relation in (16) in conjunc-
tion with Stirling’s formula (18). This gives the relation

glu) ~ <%> e™*(u/m)!/? cosh{u log [2u/(kae)] + %}{1 + 0<%>}

so that
(25) u, log [2u,/(kae)] = (n + Din + O(u, ).
If we set u = Re'? and define the functions

(26) g, = R{cos 0 log [2R/(kae)] — 0 sin 0},
(27) go = R{sin 0 log [2R/(kae)] + 6 cos 0},

then the large zeros occur when g, = 0 and g, = (n + $)x, where n is a sufficiently
large integer. The equation g, = (n — §)n defines a path C, which avoids the zeros.
On C, it can be shown by analogy with [5, p. 120] that H{"(kr)/g(u) is
O[R ™ !(r/a)R***°] and that

u? (k, r)e*’

— - O[R'"* exp {AR? cos 20 + RO sin 0

(28)
— R cos 0 log [2R/(ker)]}].

This bound applies in the sector Yy < 6 < 7/2, a similar bound holds in the sector
—m/2 £ 0 < — . Suitable asymptotic bounds on the function F,(u) can be obtain-
ed from equations (22), (28) of [4] where it is shown that
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Olexp {(m + |0))|R sin 0] + R cos 0 log [(4R cos? 0)/(kae)]}],
(29) F,(w) = Re (u) =
)

1
2
Ofexp [(m + |0])|R sin 0] — R cos 0 log (R/e)]}, 0 < Re(u) < %,
as R — oo in their respective domains.
An inspection of the bounds (28), (29) shows that the deformation of W onto
the imaginary axis is permissible, the dominant term in the exponential being
AR? cos 20 which is negative in the region crossed.

4. The convergence theorem. With the aid of formula (8) just established
it is now possible to proceed to a proof of the main result of the paper, to the effect
that the function f(r) can be represented by equation (2) whenever the series
appearing there is convergent. The method used depends on an Abelian-type
argument to show that the series in (8) will be uniformly convergent for 4 = 0
whenever the series appearing in (2) is convergent. In these circumstances the
validity of equation (2) itself will follow from (8) on taking the term by term limit
as A — 0.

The uniform convergence property of the series in (8) can be proved by
writing this equation in the form

= l.
f(r) lim Y av,,

where v, = exp (Au;), and verifying that the series Y |v,,; — v,| is convergent
and that its sum is bounded uniformly in A. With this aim in view we note the
identity

A A
(0 s -0, = 2exp [5 ., + u3>] sinh [5 ., - u,%>].

The asymptotic behavior of u, = R,e'*" can be obtained from (25). Equations of
this type have been investigated in [2], [3], [1]. The sequences R,, R, cos §,,
R, sin 0, tend steadily to infinity as n — co. The angle 6, is also steadily increasing
and tends to n/2. With this notation (30) becomes

A
a1 [U,41 — vl = 2 exp [5 (RZ,, cos 20,,, + R? cos 29,,)]
-[sinh? (3Ax) + sin? (14y)]"/?,
where
x = RZcos 20, — R?, , cos 20,, ,,
y=RZ, sin20,,, — R?sin 20,.

It follows from the identities sin 20 = 2 sin § cos 0, cos 20 = 2 cos? 0 — 1
together with the monotone properties of the sequences R, cos 6,, R, sin 0,, that
y > 0and x < R?,, — R2. Also since 20, — = then

0 <sin 20,,, < sin 20, < —cos 20, < —cos 20, .,
so that

y < (R%,, — R)sin 20, < (R? — R2,,)cos 20, < x.
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Hence
0<y<x=Rj,,—RIS2R,;; —R)R,.y;
therefore
sin (4y/2) < sinh (4y/2) < sinh (Ax/2) < sinh [A(R,.; — R)R, . ].

In addition since cos 20, —» —1 the argument in the exponential function
appearing in (31) is evidently less than —2AR2, , for n large enough. Equation (31)
may then be written as

A
(32) a1 — vl = 2\/5 €xp <_ ZRr%H) sinh [A(R,+; — R)R, ;]

for n = N say. This expression can be simplified further by using the fact that the
difference (R,,, — R,) tends to zero as n —oo. To obtain this property we take
the modulus of (25) which gives the equation

kae
On replacingnby (n + 1) and using the fact that6, =< 0,, ,,R, = R, ,, we find that

/ 2R,\?
(34) R,., |6} +log <kaen> <+ Pn + ORR, ).

From (33) and (34) by subtraction we deduce that

2
(33) R, [0} + log <2R”> =+ Prn + OR,; ).

/AR \2
(Rn+1 - Rn) 03 + log <i§en> é T+ O(Rn_l)

so that (R, ,; — R,) tends to zero as n — co. If this property is used together with
the inequality sinh (bx) < b sinh x (which applies whenever x > 0and0 = b < 1)
to modify the argument appearing in the sinh function in (32), we find that

A .
a1 = 0l £ 2/2 /AR, — R,) exp(- ZRfﬂ) sinh ((/4 R, 1 1)
or
[Vpr1 — vl = 2\/E (Sus1 = Sh(S,41),

where s, = /4 R, and h(s) = exp (—s?) sinh s. By differentiation it can be shown
that the function h(s) is increasing for 0 < s < s, and decreasing for s = s,, where
So 1s the positive root of the equation s = 2 coth s.

Hence

S st = 0 S 2023 hsyi 1) (Suir — S2)
< 2/2 soh(se) + 24/2 f ) h(s) ds.

This inequality shows that the series )’ |v,,, — v,| is convergent and that its sum
is uniformly bounded for 0 = A < 1. It follows from an Abel type of criterion that
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the series ) a,v,, where g, is independent of A, will be uniformly convergent
for 0 < A <1 whenever the series Y a, is convergent. In particular, the series
appearing in (8) will be uniformly convergent whenever that appearing in (2) is
convergent and in this event the validity of the representation (2) follows from (8)
on letting A — 0.

Appendix. It remains to establish the formula (13) for the Green’s function.
To this end we note from (16) and (17) that

u¥ (kN HDkp) =i [(r\ | (pr\™"
T —ogw mi|\p) T\&@

asu —oo in |arg u| < ¢ < n/2. If r £ p, the above expression is O(u~ ?) uniformly
in A as u — oo on W, since |e**’| < 1 thereon. For such values of r, p the integral
(13) is uniformly convergent for 4 = 0 and the value of the limit may be obtained
by setting 4 = 0, closing the contour on the right and taking the residue at u = v.
The expression (13) then reduces, for p = r, to the first of the expressions appearing
in (12) as required.

The above procedure cannot be used directly when p < r for then the integral
in (13) is not convergent without the summability factor. The validity of (13) for
such values of r, p may be established as follows. On using the definition (7)
it follows that

[ U kH (ko) — J (kp)H(kr)u du
G(r, p) = Glp. r) = lim L2 (;uz v(z)p) (kr)Ju
m ], -

The integrand here is an odd function of u and is
r
o5
o

as R —o0. The path W may be deformed onto the imaginary axis whereupon it is
seen that G(r, p) = G(p, r) for all values of r, p since the integral along the entire
imaginary axis is zero. The value of the integral in (13) when r > p can therefore
be obtained by interchanging r, p. The resulting integral is uniformly convergent
and may be evaluated as before by setting 4 = 0 and taking the residue at u = v.
This procedure shows that the value of the expression (13) when r > p is equal to
the second of the expressions in (12).

O{R‘2 exp l:iRZ cos 20 + Rcos 6
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ON THE SOLUTION OF AN INTEGRAL EQUATION OF
CONVOLUTION TYPE*

E. H. bpE GROOTY anp E. M. pE JAGER}

Abstract. The solution Q% of the integral equation

xQ4x) = [{(2 — p) + pf} * Q4](x)
is considered as a transform of the function f; f'is a function of the real variable x, and A and p are
real-valued parameters with 4 positive.

The functions Q4[ f] with f fixed form a group under the convolution operator.

The functions F%(x) = I'(A)x'~*Q4[f](x), occurring in elementary particle physics, exhibit
properties, such as their analyticity and behavior at the origin and at infinity, similar to those of the
input function f(x).

Besides several applications concerning hypergeometric functions, a table is presented giving
various input functions f and their transforms F4.

1. Introduction. In this paper we consider the convolution equation
(1.1) xq(x) = (k * q)(x), 0<x< oo,

where k is a given function of the real variable x, analytic in x = 0 with k(0) > 0.
Moreover, we assume that k(x) is the restriction of a function k(z) = k(x + iy),
which is holomorphic in a sector S, in the complex z-plane with S, defined as

—g+0<argz<+g—9, 0<0<§.

The function k(z) — k(0) = O(e®?), uniformly in arg z, for some complex number w,
asz —»oo in Sy.
The symbol  stands for the convolution operator

(12) (k % )x) = f Kx — y)a(y)dy = j Ky)a(x — ) dy.

Because the solution of (1.1) is uniquely determined apart from a multiplicative
constant, we use a suitable boundary condition. As will be shown in § 2, the function
q behaves near the origin as

xk(O)— 1

g(x) ~ C ——=,

I'(k(0))

and we shall specify our solution of (1.1) by demanding that C = 1.
The boundary condition then reads

(1.3) lim T(k(0))x* ~¥Og(x) = 1.

xl0
The most interesting aspect of (1.1) is not so much its explicit solution as the relation
between solutions for different functions k, which differ only by a real linear

* Received by the editors September 7, 1973.
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lands.
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transformation, viz., ak + f with o and f real parameters. Therefore, without loss
of generality, we put

(1.4) k(x) =4 — u(1— f(x)),

with f(0) = 1, A, u real numbers and 1 > 0.

We consider the set of solutions Q4 ] of (1.1) for different values of A and
u and the same function f. In this way one generates from each function f a class
of functions Q4[ f]. It will be shown that in a certain sense these Q4[ /] form a
group with respect to the index u and that the Q3*[f], — o0 < a < + o0, form
a half-group with respect to the index 4; the group operation is again the convolu-
tion. Furthermore, we consider the set of functions

(1.5) Fi(x) = T(A)x' " *Q4[ f1(x).

Owing to the boundary condition (1.3), the functions F4(x) are bounded at x = 0
with F40) = 1.

These functions occur in the theory of many particle production phenomena
in elementary particle physics (see [1], [2]). It will be proved that the functions
F4(x) are also restrictions of functions F%(z), holomorphic in S,, and that they have
in a neighborhood of x = 0 and in a neighborhood of infinity a behavior similar
to that of the input function f.

In the following, we call F% the (u, ) shadow transform of the function f, a
name we have chosen to suggest the similarity between f and the FY. Writing
u = o, we denote by the symbol S[f] the set of all F3* with a, 4 real and A > 0.
If we take the “closure” of this set by taking the limits 4 | 0 and A — oo we obtain
the following interesting results:

(1.6) lim Fe4(x) = (1 — &) + af(x)
Al0

and

(1.7) lim F%%(x) = exp [af'(0)x].
A=

The set S[f] together with the functions lim, o F4* and lim, -, F5* will be called
the shadow class S[ f].

Hence the function f'itself as well as its linear transforms (1 — «) + o f belong
to S[f']; the same is true for the exponential functions e’ as long as f'(0) # 0.

The solution of (1.1) is constructed in §2.1, while in §2.2 the common proper-
ties of the input function and the transform F4% are deduced. Moreover, some formu-
las are given which express the transforms of related input functions, such as
(1 — B) + Bf(yx) and e f(x), in terms of the transform of the function f. In
§3 we prove the above-stated group properties of the functions Q% and Q%;
the closure S[ f] of the class S[ ] is constructed in § 4, and in § 5 we present several
examples of shadow classes S[ f]. Finally, in §6 we give applications of the group
properties of the functions Q4; in particular, convolution integrals involving
shadow transforms can easily be calculated. Another application is the solution
of a generalization of Abel’s integral equation.
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The motivation for the present investigation is mainly the occurrence of the
shadow transforms F% in the context of calculations concerning many particle
production phenomena in elementary particle physics as dealt with by the first
author [1], [2].

2. The solution of the convolution equation and some properties of the shadow
transformation.
2.1. The transform Q4[f]. In this section we look for solutions, locally
integrable and exponentially bounded at infinity, of the convolution equation

(1.1) xq(x) = (k * q)(x), 0<x<oo,

where k is a given function of the real variable x, analytic in x = 0 with k(0) > 0.
Defining the sector Sy in the complex z-plane as

@.1) —g+0<argz<g—6, 0<9<g,
we assume also that k(x) is the restriction of a function k(z), holomorphic in Sy, with
k(z) — k(0) = O(e®?) uniformly in arg z, for some complex number w, as z -
in Sg.

Under the hypothesis that (1.1) indeed possesses solutions which are locally
integrable and exponentially bounded at infinity, we can solve (1.1) by using

the Laplace transformation. By means of the convolution property of this trans-
formation, we obtain for the transform

2.2) L)) = 4(s) = f gx)e™ dx
0
the differential equation
dagl N
23) ~ ) _ ko),

ds
with

k(s) = L[k)(s) = fowk(x)e_xs dx

(2.4) K0)

= J {k(x) — k(0)}e ™ dx + —
0 S

Because of the assumptions for k(x), the transform k(s)is holomorphic in the sector

(2.5) —n+0<arg(s—w <+n—0,

with the possible exception of the point s = 0, (see, for instance, [3, p. 33 fI.]),

and (2.3) can be solved in this sector. Hence, we have

(2.6) d(s) = A exp {— f ' k(s') ds’},
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with s a fixed complex number and A the constant of integration; the path of
integration lies inside the domain (2.5), but the point s = 0 is avoided.
In order to reduce (2.6) we write

g(s) = As’i‘o’{s"“o’ exp [Js {k(:,)) - E(s’)} ds’]},

where s~ ¥© is uniquely defined by exp[ —k(0)log s] for s > 0 and by introducing
a cut along the negative real axis in the complex s-plane; the path of integration
lies again inside the domain (2.5) but outside the cut. Since k(x) is analytic at
x = 0, we may apply Watson’s lemma (see, for example, [3, p. 34]), and we have

k(s) = k—i(,l + 0<Sflz>,

uniformly with respect to arg s’ as s’ — oo in the sector (2.5).
Hence g(s) may also be written in the form

g(s) = Cs @ exp [— J‘“O{%O) — E(s')} ds’],

where C is still an arbitrary constant and where the path of integration is situated
inside the domain (2.5) but outside the cut.

With the aid of a well-known formula from the theory of Laplace transforma-
tion, the latter expression can be reduced to

2.7 g(s) = Cs“"(o’exp[— fwe‘s‘{k(ﬂ:—k(ﬂ} dt].

0

The integral

[ {k«» - k(r)} "

is uniformly bounded for Res = o = 6o > Re w with ¢, any arbitrary real
number larger than Re w. Using again the abovementioned lemma of Watson, we
see it is clear that

? ) kO) — k(@) & k™) _,

0 n=1

uniformly in arg s as s — o0 in the sector (2.5).
Therefore, we have in this sector for s sufficiently large the uniform estimate

(2.9 eXp[— fwe‘s‘{k(o)—_km}dt] =1+ k) + 0(%)
0 t S S

Since k(0) > 0, the function g(s) is the Laplace transform of the locally integrable
function

¢+ i 00 _
(2.10) q(x) = < s M exp [— J e‘”{@?&} dt:‘ ds, x>0,

2mi c—ico 0
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the path of integration lies in the domain Re s = ¢, > Re w, and ¢ may be any
positive real number with ¢ > Re w.

Equation (2.10) may be written in the form

C ctioo
q(x) = — f s RO g
2mi c—ioo

C C+ioo 0 _
(211 4+ = e""s"“o’{exp[— f e"“{w} dt] - l}ds
27'Cl c—ioo 0 t

ka(O)—l C ¢+ i e k() © . k(O) _ k([)
_W +‘2—T[-1 c_iooe S €xp _foe -t- dr | — 1 db,

valid for x > 0; because the path of integration lies in the domain (2.5) and because
in this domain the estimate (2.9) is valid, the integral in the right-hand side of
(2.11) converges uniformly with respect to x.

Using the estimate (2.9), we see immediately that

(2.12) g(x) = O(e”)

for x —» oo.

The function g(x) given by (2.10) is locally integrable and exponentially
bounded at infinity, and therefore it is indeed the solution of the integral equation
(1.1 for 0 < x < 0.

Alternative forms for the solution ¢(x) are

O TO)
"(")‘Cr(k(o))[“r 2ni

. J~cx+lwess_k(0){exp [__ Jwe—xt/X{l(M} d[:| - l}dg:l
ex—ieo 0

O Tk
= Ty [” omi

.ch+1ooessﬁk(0){exp|:“ Jwe_St{{M} d[] — l}ds]’
cx—ioo 0

with x > 0 and ¢ > max (Re w, 0). We remark once more that the integrals in the
s-plane converge uniformly with respect to x.

Because of this convergence, one verifies easily that T'(k(0))x' *©g(x) is
continuous for x = 0; taking the constant C equal to 1, we find that

(2.13)

(2.14) lim T(k(O)x! ~*Og(x) = 1.
xl0

Introducing

(1.4) k(x) = 4 = p{l = f(x)}
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with f(0) = 1 and A, p real numbers and 4 > 0, we obtain for the image Q%[ f]
under the transformation induced by (1.1) the formula

4 f1Ux) = %[ + 1;(—71) cxﬂooess"l{exp [—y fooe ! _tf(—) dt} }ds],
ex—ie 0
(2.15)

where ¢ is any positive number larger than Re w; x > 0.
For practical purposes we sometimes prefer the equivalent expression

(2.16) NHflx)=2L" l{s”’l exp [— uc%’{l—# }(s)]}(x), x > 0.

2.2. The shadow transform FY. The (u, 1) shadow transform of the function f'is
defined as
(1.5) Fi(x) = T(A)x' Q4L 1), xz 0,

with x! ™% real for x > 0.
According to (2.15) we have the formulas

Fh(x) =1+ ﬂ Cxﬂwess"l{exp[——u Jwe“s‘L;f—()@dt:l—l}ds

2mi cx—io 0 t

cx +ioo 0 _
1+ I:QJ ess"l{exp[—u f e‘“’xl———f~(ﬂdt—‘—l}ds,
27 Jex—ioo o t i

with ¢ any positive number larger than Re w.

The function F%(x) is continuous for 0 < x < oo with F4(0) = 1 (see (2.14)).
At this stage it is not difficult to show that F4(x) is the restriction of a function
F¥(z), holomorphic in the segment Sy. For this purpose we define

1—*,{ d+ico 0 _

Fix) =1+ (—) e's” l{exp[-uj. e_s’/zl—f(t)dt]—l}ds, ze Sy,
2mi d—ioo 0 t

(2.18)

(2.17)

I

x>0,

with d = max {Re(z(w + ¢)), Re ¢z} and ¢ arbitrarily small and positive.

The expression
exp l:—,u f e Mz —tf—() dt:I— 1
0

is holomorphic in (s/z) in the sector

(2.19) —n+0<arg<§—w><+n—0,

and it is uniformly asymptotically equal to uf'(0)z/s + O((z/s)?) for (s/z) —»c0
in this sector.

The relation (2.19) is fulfilled whenever Re s = d and

—g+0<argz<+g—0.
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Hence the expression in the right-hand side of (2.18) exists and the outer integral
converges uniformly with respect to z for all z within a closed subdomain of Sy;
it follows that FY(z) is holomorphic in Sp and the derivative of F4(z) may be obtained
by differentiation under the sign of integration.

Because (2.17) is the restriction of (2.18) for z = x, the function F%(x) is the
restriction of F4(z), which is holomorphic in the segment S,.

Using again the uniform asymptotic behavior of the exponential function
in (2.18) and taking the limit under e sign of integration, we find that
(2.20) lim FY4(z) = 1.

2e50

Before investigating the behavior of F4(z) in S, for z — oo, we remark that the
right-hand side of (2.18), after substitution of s = zs’, can be written in the form

221) Fiz)= 1+—2%)z-“‘ Je”’(s')—*{eXp [_ﬂf -y —tf(” dt]— l}ds’,

7r
where the integration variable s satisfies the relations
Re (zs') = max {Re (z(w + ¢)), Re (ez)} and —oo< Im(zs) <+ o0, e>0.

Because s satisfies (2.19), the integration variable s’ must lie in the sector
—n+ 0 < arg (s — w) <+ n — 0, and hence

exp |:—;1 J:O e st =70 —_tf(t) dt]— l=u f;(,o) + 0<<§> >

for s’ — 0o in this sector.

It follows that the outer integral in (2.21) converges uniformly with respect
to z and

(2.22) F4(z) = 0(e*?)
uniformly for z — oo in Sy, with
(2.23) x(z) = max {Re (z(w + ¢)), Re (¢z)}

and ¢ arbitrarily small and positive.

Summarizing these results, we have now the following theorem.

THEOREM 1. If f(z) is regular in the segment S,, f(z) — 1 = O(e“*), uniformly
in arg z for some w, as z - oo in Sy, and if f(2) is analytic in z = 0 with f(0) = 1,
then the shadow transform FY(x) exists for all real A > 0 and all real u; moreover,
FY(x) is the restriction of a function F4(z), also regular in the segment Sy, and F¥(z)
= O(e™™), uniformly in arg z as z —> o in Sy; y(z) = max {Re (z(w + €z)), Re (e2)}
with ¢ arbitrarily small and positive. Further, lim,_, .5, F4(z) = 1.

It follows from (2.17) that F%(x) for 0 < x <oo may be written as

c+ioo 0 1 —
Fix)=1+ M) f ess_’l{exp [—uf e ﬂdt}— l}ds.
27‘(1 c—io 0 t
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Because the integral converges uniformly in the complex s-plane, F4(x) may be
differentiated with respect to x by taking the derivative under the sign of integration,
and so we have

dF* T ¢+ ioo © 1 — ©

Using Cauchy’s theorem, it is not difficult to show also that f'(z) is O(e®?), uniformly
in any segment S* with closure in S.
Applying Watson’s lemma once again we can see that the limit for x — 0 may
be taken under the sign of integration, and so we obtain the interesting result that
n u
(2.24) im 954 () — 4F4

Kt
m (x) = ——(0) == f10).

The shadow transform F#4(x) has some more remarkable properties, which are
stated in the next two theorems.

THEOREM 2.If f(z) satisfies the conditions of Theorem 1 and if f(x) has the
shadow transform F4(x), then g(x) = (1 — &) + af(fx) has the shadow transform

Gli(x) = F¥(px),
with o arbitrarily real and B arbitrarily positive.

Proof. Substituting the function g(x) = (1— «) + af (Bx) in the first formula
of (2.17), we obtain

dx+ioo [+ _
Gix)=1+ F—(/l_) ess”l{exp [—auf e M dt]— l}ds,
2mi dx—io 0 t

with d any positive number larger than  Re w.
It follows immediately that

(2.29) Gix) = Fi*(Bx).

Remark. If f(z) is an entire function of z and such that a neighborhood of
infinity can be covered by a finite number of segments S, and f(z) = O(e“*?),
uniformly in arg z, for some wy, as z - o0 in S, then B may be taken arbitrarily
complex. This remark will be used frequently later on in §5 and §6, where applica-
tions of shadow transforms will be given.

THEOREM 3. If f(x) has for p = J the shadow transform F(x), then g(x) = €**f(x)
has for p = A the transform
(2.26) Gi(x) = e”*Fi(x),
with 8 arbitrarily complex.

Proof. For the function Q4[ f](x), we have the relation

xQAf1x) = A{f * QIS 1),
and therefore,
xeP QI f1(x) = A{ePf(x) * QI f1(x)}.

It follows that the Q% function corresponding with e#*f(x) is given by ef*Q4[ f(x),
and hence the result of the theorem follows.
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3. The group properties of Q% and Q%*. From the formula (2.16) and the
convolution property of the Laplace transform, we obtain, for x > 0,

(Q%UT*QﬁUD@%=$'{f“"hem4}—wl+uﬁ${ f”@(ﬂ%m

or

3.1 Q41+ Qulf]1 = oniialfl.

In particular, applying (2.16), we find that, for u; = —p, = g,
Ai+Ar—1

(3.2) Q411 * QLML D) = QF, + L f1x) = T, + )

valid for x > 0.
We introduce now the set A[ f] consisting of elements

(3.3) A= {Q4f1: 4> 0},

which are in their turn the sets of all functions Q4[ ] with f'and p fixed and with
A ranging from zero to infinity and 4 > 0.
In the set A[ f] we define a convolution operator as follows:

(3:4) A Lf1 % Al f1= {0011 * Q2L f1; 4 > 0,4, > 0}.
Using (3.1) we obtain

A [f1* A1 = {04380 f], 4 > 0,4, > 0}
={QI"[f1, 4> 0} = A,,4,,[/].

In particular, according to (3.2) we have

).—1
(36 ALSIxA_[f]= Alf1=1{QUS); 1> O} = { A > 0}

(3.5)

T’

From the results (3.5) and (3.6) we have obtained the following theorem.
THEOREM 4. The set Al f] is a commutative group under the convolution opera-
tion; the unit element is the element

l -1
Aolf] = { T’ /1>0}
Besides the set A[ f], we introduce also a set B[ f], consisting of elements

(3.7) Bilf1={Q%[f]; —0 < & <+ 00},

which are the sets of all functions Q%[ f] with fand A > 0 fixed and « ranging from
— 00 to + 0.

A convolution operator may be defined, similarly as in (3.4), by

Bulf1* Bulf1= {031 Q2 [f]; —o<ay, a2 <+o0}

(3.8) Ay tazd
= {Q3A L2 f]; —o < ay,a; <+ 00},
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Taking B = (o4, + a4,)/4,4,, we see that f§ ranges from —oo to +00 when
o; and a5, range from — oo to + c0. Hence

(39) By [f] B[] = {082 1f]: —0 < B < +oo0} =By, 5,[[].

A unit element is not so easily constructed as in the set A[ f ] because 4 is not allowed
to be nonpositive. In order to do so, we add to the set B[f] the element By[f]
defined as

(3.10) lim B;[f],
A0

where the limit is taken in the weak sense:

.1 Bo[f1* Bilf] = {llm @3M[f 1% 02 Sf]); —oo< oy, 0 < +OO}

= {lim QRTINS —o< B < +oo} = Bilf],

2110

valid for all B,[ f] with 1 > 0.

The set B[ f ] together with the element B,[ f]is denoted by B[ f]. The element
B[ f] can be given a specified meaning as follows. In order to remove the singular
factor x*~ ! in Q%*[f], we consider the limit of F¥!(x) for 4 0.

In the expression (2.17) for F4(x), we develop

exp [—u LOO e s 1__{—()“) dt]

in a Taylor series with respect to pu. Putting u = ol and taking the limit for 2 1 0,
we obtain, owing to the uniform convergence of the outer integral, for x > 0:

cx +ioo © _ .
lim F¢*(x) = 1 — lim ocll“(’i_) J ess‘l{f e 1__tf(x_l) s} ds
0

210 210 2mi cx—ioo

=1-" rm es{Jw emu LSO dz} ds
(312) 2mi cx—ioo 0 t

ox ct+ico - o0 . 1 “f(t) ]
_—%J;—iooe {JO ¢ t dt}db
=1—-al —f(x) =010 —0o)+af(x).

It is now quite natural to define Bo[ f] as

l—l

Bolf] = llm 03[ f1 = llm "D

A—1 A—1

X X
. =i -
(3.13) im 5 + l;lrf)l m){ a f(x) — 1)}

F3'(x)

xll

=1
T e TO)”
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where the latter limit has a meaning only in the weak sense. This means that

v—1

I'(v)
Finally, using the well-known weak limit (see, for example, [4, pp. 64—65])

(3.14) Bo[f]*B,[f] = {m( Q‘“[f]) —0 << +oo}.

lim A
vio T(v)
with x%" ! = 0(x)(x)’ " !, 0(x) denoting Heaviside’s unit step function, and 5(x)
the Dirac distribution, we indeed obtain
Bolf1#* Bi[f] = {Q¥[f]; —o0 < a < + o0} = By[f].
Summarizing the last results, we obtain the following theorem.

THEOREM 5. The set B[f] is a commutative half-group under the convolution
operation; the unit element is

= d(x)

A-1

X
Bolf] = lllfrol T’

where the limit should be taken in the weak sense.

4. The shadow class S[f]. The shadow class S[f] is the set of all shadow
transforms F3*, 1 > 0, —o0 < a < + 00, together with the functions

lim F$* and lim F$*.
Al0 A=

The first limit has been calculated in the foregoing section, and the result is:

(3.12) lim Fe*(x) = (1 — o) + af(x)

Al0
In order to calculate lim;_. ; ., F%* we use (2.17), which may be written as
T /1 A+ ico 0 1 _ t
Fi'x) = —(2 j ess"lexp[— alj e"s‘—f(x—)dt] ds,
21 Jiciw 0 t

valid for 0 £ ¢x < A. Expanding (1 — f(xt))/t in a Taylor series and again using
Watson’s lemma, we obtain for all x in a bounded segment,

A+ ico
P =50 [ e ten [af'(O)x %] s + 0@).
A—ioo

Hence
[e¢] 0 A+ico
l' Fatl — OCf( f S.—A—n
/11—>n;lo ) = /11—>oo 27Tl nZO n! A—iow . &
i & @O AT
A2 n=0 I’l! r(’1 + n)

or
.1 lim Fe*(x) = exp [of'(0)x]

A= ©

From the formulas (3.12) and (4.1), we have the following result.
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THEOREM 6. The shadow class S[f7] contains the function f as well as all its
linear transformations (1 — o) + af, with —oo <o < +00. The exponential
function e is an element of all shadow classes S[ f] with f'(0) # O.

Remark. From the result (4.1) it is obvious that lim; . ., F4*(x) is not a shadow
transform in itself, because it does not exhibit the exponential behavior with the
right constant w as is required by Theorem 1. It is clear that the limits x — oo
and 4 — oo should not be interchanged.

We conclude this section with another remark which will be applied frequently
in the next section.

If the class S[f] is given by

4.2) S[f1 = {F¥x)},
then it follows from Theorem 2 that
4.3) S = B) + Bf(yx)] = {F3(yx)}

for all real values of  and for all positive values of y;y may be taken arbitrarily
complex if f satisfies the conditions stated in the remark following Theorem 2.

5. Examples of shadow classes.

5.1. Shadow classes of hypergeometric functions of one variable. In this section
it will appear that hypergeometric functions of the types F,, ,F,, ,F, may be
considered as representatives for certain shadow classes.

The hypergeometric function ,,F, is defined as

Jaz); - - (amh x

(b Y(ba)y - (ba) 117

with (a,); = I'(a, + )/T(a,) and (b,), = I['(b, + )/T'(b,) (see, for example, [5,
p. 182]). Hypergeometric functions of the types ,F, and ,,F, +, are connected with
each other by the formula

TAx' 2L s  Flar, az, -+ 5 ams by, bay oo+, bys as™¥](x)

AA+1 A+k—1 k
:an+k{alaa27"'aam;blabZa"'abm ) ki * 70‘()_6)}7

(51) mFln(al9a27"'aam; b17b29" Z

Kk k k
(5.2)
valid for m£n+1, A>0, —co <a< +00, k=1,2,3,---, and x > 0 (see
(6, p. 297].

It follows now immediately from (1.5) and (2.16) that ,F, . {a,az, - ,am;
by, by, -+, by Ak, (A + V/k, -+, (A + k — 1)/k; ox/k)} is a shadow transform
F4(x) whenever the hypergeometric function ,Fa,,a;, - -, a,;by, by, -,
b,;as™*) can be written in the form {p(s)}* with p(s) independent of A and p.
There are three hypergeometric functions which have this property, viz.,

(5.3) (a) oFo(—pus™") = exp [—pus™"],

(5.4) (b) 1F0<%2 - S"‘) = (1 +s797
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1
(5.5) © 2F1< Z > 2% + 1: ~s“"> = 22WK(] 4 (1 4 s~ F)l/2)=2ulk,

We now investigate each of these three cases, and the corresponding shadow classes
will be constructed.
(a) From (5.2) we obtain

A A+1 A+k—1 k
(5.6) (x)—oFk<k e A —u(i))

According to (3.12), the input function f(x) is

A k¥ x\k x*
— limFix) = 1 + li alXY =1
fx) = IimFix) DG k=1" )<k> (k= 1)!
(5.7)
Taking the more general input function
(yx)"
5. = =1 —
(5.8) glx) = flyx) =1 k-1

where 7 is an arbitrary complex number, we obtain from Theorem 2 the shadow
transform

AA+1 A+k—1 k
(59)  Gix) = Filyx) = oy (k—{-—+—k——u<%>>

The shadow class S[g] consists of all functions

_ A A+1 A+k—1 px\¥
Sg] {oFk<k P , k ; oci(k)),l:(), w <o < +oo},

(5.10)
and in particular, for k = 1, we obtain
S[1 — yx] = {oFy(A4; —opAx);A 2 0, —00 < a < 400}
(5.11)
= {T()oyAx) A~ D2 J, 12\ /apdx); A = 0, —0 < & < +00},

where J,_; denotes the Bessel function of the first kind.
(b) From (5.2) we obtain

poA A+ 1 A+k—1 x\*
H(y) = prAosr D o 2TET (2
(5.12) F4(x) le{k,k, T R k ) )

According to (3.12), the input function is

. 12 k—1 x\*
f(x)=l;flgFﬁ(x):0Fk‘l<Eak’a—kh»—(">>

(5.13) - 1)'"

1 & .
- Z = e L, P DAL
1=1
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Taking the more general input function

(5.14) gx) =1 = p) + Bf(yx),

we obtain with the aid of Theorem 2 the shadow transform

Ad+l A+ k-1 px\k
515  GXx) = Ff*yx) = . F, Bu. LAt k=1 (X
( ) ,1(X) l(yx) 1k<k k k ) ) k s k ’

with f an arbitrary real and y an arbitrary complex number.
The shadow class S[g] consists of all functions

afi A A+1 A+k—1 px\*
[ i - > _
S[g] { <k k k ) ) k 5 <k>>’i=0’ o <a< +OO}.
(5.16)

In particular, for = 1,y = —1 and k = +1, we obtain
(5.17) Sle¥] = {1Fi(ah; A;x); A =20, —00 < & < +00},

and the shadow class of e* appears to be a set of confluent hypergeometric functions.
For f =1,y = 1 and k = 2 we have the result

_ ak A A+1 X

5.18 = _ 2V 1>0 - )
(5.18)  S[cos x] {Fz<2 S5 4>,/1_0, oo<a<+oo}
A subset of this class (o« = 1) consists of the functions

A+1 X2 A+1 .
(5.19) OFI( ) ;—2‘> = F<~2—>(%x) * 1)/2/-I</1—1)/:).(X)-

(c) From (5.2) we obtain
A A+1 A+k—1 x\

(5.20) (x)—zFHk(k By laki T—k—_@)

According to (3.12), the input function is

(521)  f(x) = lim Fi(x) = ,F G L2

Al0

W'II\J

k—1 x\¥
)

(5.22) g(x) = (1 = B) + Bf(yx),

The more general input function

with B real and y complex, similarly yields as above the shadow transform

Gli(x) = F{"(yx)

(5.23) _F ﬁ/v‘.BH_*_ zﬁﬁ+1%i+l,,,i+k—l._&k
281 +k k k 2a k aka k 5 s k s k .

For f =1,y =—2iand k = 1 we obtain
(5.24) g(x) = f(=2ix) = Fy(3; 15 2ix) = e™Jo(x),
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with

(5.25)  S[e™Jo(x)] = {2Fa(ah, 0l + 3520 + 1,4;2ix); A 2 0, —00< a0 < +00}.
For f =1,y = 1and k = 2 we obtain

(5.26) Jx) = oF1<1; - %2) = Jo(x),

with

_ od ad 1 AA+1 1
J = _— — e x2). >
S[J o(x)] {2F3<2,2+2,a/1+1,2, 5 4x>,/1_0, oo<a<+oo}.

(5.27)
A subset of this class (¢« = 1) consists of the functions
(5.28) oF1(A + 1; —1x?) = T(A + 1)(3x) " *Ji(x).

5.2. Shadow classes of hypergeometric functions of several variables. The
result (5.18) may be generalized as follows.

We introduce the hypergeometric function of several variables

q)Z(al’aZ"" 7an;b;x1’x2"" ,xn)
(529) _ i (al)ml(GZ)mz e (an)m,. xrlnlx';z e x:tn"
m;=0 (b)m1+m2+m+mn (ml)'(mZ)' e (mn)'
i=1,2,n

We consider now

=

—-

(5.30) 2|V LB oy log *— 1+
= i=1
X

with f; real, y; complex and Y!_, ; = 1. Equation (5.30) is valid for Re s > 0
and Re s > Rey;,i = 1,2,---, n. Putting

(531 16 = Y. e

and using (2.16), we obtain

0 f1(x) = f—l{s-i (S = V")”"}(x), >0,
i=1

or with the aid of [6, p. 222],

A—1

Q4 f1x) = %%(uﬁl, By s B V1% 2%, s X)),

valid for 4 > 0. Hence we have obtained for the shadow transform of f the formula

(5.32) Fi(x) = @a(uBy, P2, -5 WPns A5 1%, P2X, - -+, PuX)
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or, equivalently,

(5.33) S[Z ﬁie“":l= { DB 1A, aBal, -+, afuds A3 p1x, P2X, -+, PuX);
i=1
220, —0o<a <+o00}.

Finally we give two other classes of shadow transforms consisting of hypergeo-
metric functions of the type:

) & (@ XY
(534) d)3(a, b, X, y) = m,”z=0 (b)m+" W m
For
(3.35) fx) = Blx — 1) + (1 + p)e’™,

with f§ arbitrarily real and y arbitrarily complex, we have

3’[1%@]:2[—[3+(1 +pl _eyx](s)= P+ progi=?,

X S N

valid for Re s > 0 and Re s > Re .
Using (2.16) we obtain

OIS = £ 1{s”<¥>_mWe*“ﬂ“}(x), x>0,

or with the aid of [6, p. 223],

A-1

X

(5.36) Q4S1x) = T Q3(u(l + B), 4; yx, upx).
Hence we have obtained for the shadow transform of f'the formula
(5.37) Fi(x) = ®3(u(1 + B), 4; yx, upx)

or, equivalently,

S[B(x — 1) + (1 + Pe’™]= {@3((1 + Pk, 4; yx, afix), A =0, —00< o0 < +00}.
(5.38)
For

(5.39) f(x) =1 + px)e’™,

with f arbitrarily real and 7y arbitrarily complex, we have

2[} _f(X)}(S) = 3’[_56’“ 1= ey"](s) - Py log>—,
x s—

X S

valid for Re s > 0 and Re s > Re .
Using (2.16) again, we obtain

i = 2 {22 e,
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which may be reduced, with the aid of [6, p. 223], to
QAfIx) = e L7 Hs™H(s + yy~Pet P} (x)

_ eyxg_l{s_l<s + 'y)ﬂ“le+[}u/s}(x)
S

A—1
()
valid for 4 > 0. Hence we have for the shadow transform of f the formula

(5.41) Fix) = e™®@3(4 — p, 4; —x, Pux)

(5.40)

e @3(A — u, 4; —yx. fux),

or, equivalently,

S + px)e™] = {e™@3((1 — )4, 4; —yx, afAx); A 2 0, —o0< a < +00}.
(5.42)

6. Applications of shadow transforms.

6.1. Table of shadow transforms. For applications concerning calculations in
elementary particle physics (see [1]) and for applications to be dealt with in the
next section, it is useful to summarize all the results of §5 in a table (see below)
in which we use the following notation:

p real, y complex, k positive integer, A positive and p real number. The functions
»F, denote hypergeometric functions, ®, and ®; are hypergeometric functions

Input function f(x)

Shadow transform F¥(x)

v
(k — 1)!
1 —yx
- ﬁ) +E i erxexplin(21=1/k)
k=

X

€

cos x

SN Y LI (”‘
1-p Flsee o b\%
e™Jo(x)

Jo(x)

flx — 1) + (1 + Ple™
(1 + Bx)er™

k-1

kK -"(y"k{)k)

T(A)(pyx)~ A~ 12J ;- (24/ pyx)

F('{ A+1
Okik’ k ’ 3

Bu A A +1 A+k—1 (yx)")
Fil =5, PR ST\

k k k k k
1Fi(u; 45 x)

X2
1F2<%ﬂ§ 54+ 1); - Z)

Bu Bu 1 _Pu AA+1 l+k—1._<£c>“>
2F1+k<7,7+5,27+1,1, P > X ; *

2o, u + 5520 + 1, 45 2ix)

LA

Falaw du+ 5p+ 1,2,
23(2#2# > H L)

Oy(uBy, 1Pz, -+ s WBns A5 91X, Y2X, -+ 5 PuX)

Q3(u(1 + ), 4; yx, upx)
e ®3(A — p, A; —yx, pupx)
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of several variables (see § 5, formulas (5.29) and (5.34)) and J stands for the Bessel
function of the first kind.

6.2. Applications of shadow transforms. From §2 it follows that Q4[f] is a
solution of the integral equation

xQ4 = [4 — (1 = f(x)] = Q4,
and hence for p # 0,
f(X)*Q‘i=xQ'i+<1 —&>*Q‘i.
It I

Taking 4 = u and using the definition (1.5), we obtain for shadow transforms
the convolution rule

A
(1) Fx) * (7 F(x) = ’% Fi(x),

valid for all positive 4. This rule may be applied to all input functions and shadow
transforms, listed in the table given. For example, one has the formula

) 1 %i+l.../1+k—l._<ilf">]
62) (1 (k—1)!>*[" OF"<k’ e A

x* LA+l A+k—1 px \¢
-2 on(p A A )

Other results concerning convolution products may be obtained by using the
convolution rule (3.1) for the function Q4] f]:

QST Q4lf1 = Qn i ilS]
or, equivalently for shadow transforms:

T(4)T(42)
T(A; + 42)

This formula may be applied to every function in the right column of the table.
For example,

— - AytAz—1 +
(6.3) S LR & TIPS

2

2

2
X _ X
xl‘"11F2<%u1;%/11,%(/11 +1); — 7) * x* ‘1Fz<%uz;%/12,%(iz +1); — 7)

_ TUAI(4,) X

2
= l“(/ll_-l-Tz)xMHz_11F2<%(ﬂl + Wa); HAr 4+ A2, HA + Ay 4+ 1) — —4“>

(6.4)

Finally we mention an application in the theory of integral equations of
convolution type. We consider the following integral equation

6.5) o) = f FOIK(x = 3 dy = (f» K)x), 0 < x <o

g is a given function that is sufficiently smooth, and f'is the unknown.
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Whenever K(x) is of the form
(6.6) K(x) = C;1Q4[f1(x) = Cox* " 'Fi(x),

with C, an arbitrary constant and C, = C/I'(1), the integral equation (6.5)
can be solved easily by using (6.3). It may be remarked that (6.5) with (6.6) is a
generalization of the integral equation of Abel. The method used to solve (6.5)
is completely similar to that used to solve Abel’s integral equatio<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>